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Expectile regression [Newey W, Powell J. Asymmetric least squares estimation and testing, Economet-
rica. 1987;55:819–847] is a nice tool for estimating the conditional expectiles of a response variable
given a set of covariates. Expectile regression at 50% level is the classical conditional mean regression.
In many real applications having multiple expectiles at different levels provides a more complete pic-
ture of the conditional distribution of the response variable. Multiple linear expectile regression model
has been well studied [Newey W, Powell J. Asymmetric least squares estimation and testing, Econo-
metrica. 1987;55:819–847; Efron B. Regression percentiles using asymmetric squared error loss, Stat
Sin. 1991;1(93):125.], but it can be too restrictive for many real applications. In this paper, we derive
a regression tree-based gradient boosting estimator for nonparametric multiple expectile regression.
The new estimator, referred to as ER-Boost, is implemented in an R package erboost publicly available
at http://cran.r-project.org/web/packages/erboost/index.html. We use two homoscedastic/heteroscedastic
random-function-generator models in simulation to show the high predictive accuracy of ER-Boost. As an
application, we apply ER-Boost to analyse North Carolina County crime data. From the nonparametric
expectile regression analysis of this dataset, we draw several interesting conclusions that are consistent
with the previous study using the economic model of crime. This real data example also provides a good
demonstration of some nice features of ER-Boost, such as its ability to handle different types of covariates
and its model interpretation tools.

Keywords: asymmetric least squares; expectile regression; functional gradient descent; gradient boosting;
regression tree

1. Introduction

The goal of regression analysis is to gain knowledge about a response variable Y through a model
(parametric or nonparametric) of explanatory variables X. There are several approaches to regres-
sion analysis and modelling. The most commonly used one is the conditional mean regression,
which aims to estimate the optimal prediction function E(Y |X) under the L2 loss. However, in
many applications one wants to know more about the relation between the response and the
explanatory variables besides the conditional mean. Quantile regression [1] is a nice tool for such
a purpose, providing estimates of the conditional quantiles of Y given X. Koenker and Bassett
[2] showed that one could estimate the conditional α-quantile by minimizing the empirical check
loss. Note that the check loss function is defined as ψα(t) = |I(t ≤ 0) − α||t|. Following the spirit
of quantile regression, Newey and Powell [3] considered estimating the conditional expectiles of
Y given X. Similar to conditional quantiles, a series of conditional expectiles can summarize the
relation between Y and X . Newey and Powell [3] showed that one can estimate the conditional
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2 Y. Yang and H. Zou

ω-expectile by minimizing the empirical asymmetric least squares (ALS), which has the
expression φ(t | ω) = |I(t ≤ 0) − ω|t2. Many authors studied the connection between quan-
tile regression and expectile regression.[4–8] It is interesting to observe that quantile regression
includes the conditional median regression as a special case (α = 0.5) and expectile regres-
sion includes the conditional mean regression as a special case (ω = 0.5). Quantile regression
and expectile regression have their advantages over each other. Quantile regression can be more
robust to outliers than expectile regression; Newey and Powell [3] argued that expectile regression
has at least two major advantages over quantile regression:

(1) it is computationally friendlier. Note that the ALS loss is differentiable everywhere while the
check loss is singular at zero.

(2) the calculation of the asymptotic covariance matrix of the multiple linear expectile regression
estimator does not involve calculating the values of the density function of the errors.

Because neither approach is uniformly superior, both methods have received a lot of attention in
the literature.

Parametric expectile regression models can be too rigid for real applications. Yao and Tong [7]
considered the nonparametric expectile regression when the explanatory variable is one dimen-
sional and proposed local linear regression estimator, for which the asymptotic normality and
the uniform consistency were established. However, the local fitting approach is not well suited
for estimating a nonparametric multiple expectile regression function when the dimension of
explanatory variables is more than five. In the current literature nonparametric multiple expectile
regression is understudied, which motivates us to fulfil this need.

In this paper, we adopt the gradient tree boosting algorithm to derive a fully nonparametric
multiple expectile regression method. Our proposal is motivated by the proven success of gradient
tree boosting for classification and conditional mean regression problems.[9,10] Our proposal has
several nice features. The method can easily handle many types of explanatory variables (numeric,
binary, categorical) and is invariant under monotone transformations of explanatory variables. The
method can easily incorporate complex interactions in the final estimator, reducing the potential
modelling bias when interaction terms have non-ignorable effects. The gradient tree boosting
estimator also provides useful model interpretation tools such as relative variable importance
scores and partial dependence plots.

The rest of the paper is organized as follows. In Section 2 we briefly review quantiles and
expectiles. The main methodological development of ER-Boost is presented in Section 3 where
we also discuss some important implementation aspects of ER-Boost. We use simulation to show
the high predictive accuracy of ER-Boost in Section 4. As an application, we apply ER-Boost to
analyse North Carolina crime data in Section 5.

2. Expectiles and quantiles

Due to the historical reason we first discuss quantile functions. Recall that the α-quantile of Y
given X = x, denoted by qα(x), is defined as

α = P{Y ≤ qα(x) | X = x}. (1)

Quantile regression is based on the following key observation [2]:

qα(x) = arg min
f

E{ψ(Y , f | α) | X = x}, (2)
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where ψ(y, f | α) is the so-called check loss and

ψ(y, f | α) =
{

(1 − α)|y − f |, y ≤ f ,

α|y − f |, y > f .
(3)

Consider a random sample of size N , (yi, Xi)1≤i≤N . Then we can derive an estimator of qα(x) by

q̂α(x) = arg min
f ∈F

1

N

N∑
i=1

ψ(yi, f (xi) | α), (4)

where F denotes a ‘parameter space’. For example, in multiple linear quantile regression, F is
the collection of all linear functions of X .

Obviously when α = 0.5, qα(x) is the conditional median and the check loss becomes the stan-
dard least absolute deviation loss. We see that, by putting different weights on the positive and
negative residuals, quantile regression can estimate more than just the median. Following the
same spirit of asymmetric weights for positive and negative residuals, expectile regression uses a
different loss function for regression analysis. Define the ALS loss as

φ(y, f | ω) =
{

(1 − ω)(y − f )2, y ≤ f ,

ω(y − f )2, y > f .
(5)

The conditional ω-expectile fω, ω ∈ (0, 1), of Y given X = x can be defined as the minimizer of
the expected loss [3]

fω(x) = arg min
f

E{φ(Y , f | ω) | X = x}. (6)

When ω = 0.5, ALS loss reduces to the usual least-squares loss and f0.5(x) = E(Y |X = x). Con-
sider a random sample of size N , (yi, xi)1≤i≤N , expectile regression derives an estimator of fω(x)
by minimizing the empirical ALS loss within a ‘parameter space’ F :

f̂ω(x) = arg min
f ∈F

1

N

N∑
i=1

φ(yi, f (xi) | ω). (7)

Quantiles and expectiles are different but closely related. Newey and Powell [3] pointed out
that expectiles are determined by tail expectations while quantiles are determined the distribution
function. More specifically, to make Equation (6) hold, the expectile fω(x) must satisfy

ω = E{|Y − fω(x)|I{Y≤fω(x)} | X = x}
E{|Y − fω(x)| | X = x} . (8)

For comparison, we can rewrite the quantile function (1) as

α = E{I{Y≤qα(x)} | X = x}
E{1 | X = x} . (9)

There exists an one–one mapping α �→ ω = ω(α, x) such that fω(α,x)(x) = qα(x), i.e. the
conditional ω(α, x)-expectile equals the conditional α-quantile. Specifically, we have

ω(α, x) = αqα(x) − ∫ qα(x)
−∞ y dGx(y)

2[αqα(x) − ∫ qα(x)
−∞ y dGx(y)] + [E(Y | x) − qα(x)]

, (10)

where Gx(y) is the conditional cumulative distribution function (CDF) of Y given X = x.
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4 Y. Yang and H. Zou

To make the connection more interesting, let us consider the canonical nonparametric regression
model

Y = m(X) + σ(X) · ε, (11)

where ε is the random error, which is assumed to be independent of X. Now, under model (11) it
is easy to see that

qα(x) = m(x) + σ(x)q∗
α , fω(x) = m(x) + σ(x)f ∗

ω , (12)

where q∗
α and f ∗

ω are the α-quantile and ω-expectile of ε. To match qα(x) and fω(x), it is necessary
and sufficient to choose ω = ω(α) such that f ∗

ω(α) = q∗
α . It is important to note that under model

(11) the one–one mapping between expectile and quantile is independent of X. By Equation (10)
we have

ω(α) = αqα − ∫ qα

−∞ ε dG(ε)

2[αqα − ∫ qα

−∞ ε dG(ε)] + [μ − qα] , (13)

where μ = E(ε). For example, if the error distribution is N(0, 1) then

ω(α) = (2π)−1/2 exp(−q2
α/2) + αqα

(2/π)1/2 exp(−q2
α/2) + (2α − 1)qα

.

Yao and Tong [7] discussed the above connection between expectiles and quantiles under model
(11). They further developed a local linear estimator of fω(x) when X is one dimensional and
established its asymptotic normality. In theory their method can be extended to higher dimension
settings, but in practice it is not easy to do so, because local regression suffers severely from the
so-called ‘curse-of-dimensionality’.Alternatively, in this work we introduce a tree-based boosting
estimator for multiple expectile regression.

3. ER-Boost

In this section we develop the gradient tree boosting method for fitting a nonparametric multiple
expectile regression function. We consider minimizing the empirical ALS loss in Equation (7) by
doing functional gradient descent in the ‘parameter space’ of regression trees.

3.1. Algorithm

Boosting [11,12] is one of the most successful machine learning algorithms applied to both
regression and classification problems. Its basic idea is to combine many prediction models
called base learners in a smart way such that the combined model has a superior prediction
performance. The first popular boosting algorithm was AdaBoost [11,12] designed to solve binary
classification problems. Later, [13,14] revealed that AdaBoost could be viewed as a functional
gradient descent algorithm. Friedman et al. [9] and Friedman [10] further developed gradient
boosting algorithms, which naturally extend AdaBoost to regression problems. In the literature
there are many papers on the numerical and theoretical study of boosting. Due to space limitation
we could not possibly list all the references here. For a nice comprehensive review of boosting
algorithms, we refer interested readers to Bühlmann and Hothorn.[15] In this paper we adopt the
gradient boosting algorithm introduced by Friedman [10] to estimate the conditional expectile
functions fω(x) defined in Equation (6).
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Journal of Statistical Computation and Simulation 5

Let us start with the observed data {yi, xi}N
1 . Gradient boosting uses an iterative procedure to

sequentially update the estimator and then stops after a sufficient number of iterations. The initial
estimate is given by

f̂ [0](x) = arg min
β

1

N

N∑
i=1

φ(yi, β | ω). (14)

Write f̂ [m−1](x) as the current fit at the m step of the gradient boosting procedure. Compute the
negative gradient of φ(· | ω) evaluated at f = f̂ [m−1](xi):

u[m]
i = − ∂φ(yi, f | ω)

∂f

∣∣∣∣
f =f̂ [m−1](xi)

(15)

=
{

2(1 − ω)(yi − f̂ [m−1](xi)), yi ≤ f̂ [m−1](xi),

2ω(yi − f̂ [m−1](xi)), yi > f̂ [m−1](xi).
(16)

Then we find a base learner b(x; â[m]
) to approximate the negative gradient vector (u[m]

1 , . . . , u[m]
N )

under a least-squares criterion

α̂
[m] = arg min

a

N∑
i=1

[u[m]
i − b(xi; a)]2. (17)

Our base learner is an L-terminal regression tree that partitions the explanatory variable space
into L disjoint regions Rl, j = 1, 2, . . . , L and predicts a constant hl to each region. In other words,
each base learner has the expression

b(x; α̂[m]
) =

L∑
l=1

ū[m]
l I(x ∈ R[m]

l ), (18)

with parameters α̂
[m] = {R[m]

l , ū[m]
l }L

l=1. Note that within each region R[m]
l ,

ū[m]
l = meanxi∈R[m]

l
(u[m]

i ).

Friedman et al. [9] proposed a fast top-down ‘best-fit’ algorithm to find the fitted terminal regions
{R[m]

l }L
l=1. We use the same algorithm in our work to build the tree. However, in principle any good

regression tree building algorithm can be used at this step.
The next step is to update the current estimate based on the base learner. We choose a best

constant γ
[m]
l to improve the current estimate in region R[m]

l in the sense that

γ̂
[m]
l = arg min

γ

1

N

∑
xi∈R[m]

l

φ(yi, f̂ [m−1](xi) + γ | ω), l = 1, . . . , L. (19)

Having found the parameters γ
[m]
l , 1 ≤ l ≤ L, we then update the current estimate f̂ [m−1](x) by

f̂ [m](x) = f̂ [m−1](x) + νγ
[m]
l I(x ∈ R[m]

l ) for x ∈ R[m]
l , (20)

where 0 < ν ≤ 1 is the shrinkage parameter [10] that controls the learning rate. Friedman [10]
has found that the shrinkage factor improves estimation.
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6 Y. Yang and H. Zou

Finally, we discuss how to carry out the computations in Equations (14) and (19). Mathemati-
cally they are the same optimization problem:

min
β

∑
s

φ(zs, β | ω).

In Equation (14) z is the response variable y, while in Equation (19) z is the current residual
y − f̂ [m−1](x) evaluated inside region R[m]

l . The following lemma shows how to calculate the
unique minimizer exactly.

Lemma 1 Given {zs}S
1, the unique minimizer of

∑S
s=1 φ(zs, β | ω), denoted by β̂, can be

rigorously calculated using Algorithm 3.1.

The proof of Lemma 1 is presented in the Appendix. With Lemma 1 and Algorithm 3.1 we can
do all the needed computations for completing the update in Equation (20), a boosting step. The
boosting step is repeated M times and then we report f̂ [M](x) as the final estimate. In summary,
the complete ER-Boost algorithm for expectile regression is shown in Algorithm 3.2.4.

Algorithm 1 Solving the optimization problem minβ S−1 ∑
i φ(zs, β | ω)

1. Sort {zs}S
1 increasingly as {z(s)}S

1, and let z(0) = −∞, and z(S+1) = ∞.

2. Compute β̂k =
∑S

s=1(1−ω)z(s)I(s≤k)+ωz(s)I(s≥k+1)∑S
s=1(1−ω)I(s≤k)+ωI(s≥k+1)

for k = 0, 1, . . . , S.

3. For k = 0, 1, . . . , S, find the only k∗ that satisfies

z(k∗) ≤ β̂k∗ ≤ z(k∗+1).

4. The minimizer of the problem is β̂k∗ .

3.2. Implementation

We now discuss some important implementation details of ER-Boost. In principle, one could
use other types of base learners in functional gradient descent to derive a boosting algorithm
for expectile regression. We prefer regression trees for several good reasons. First, gradient tree
boosting has proven to be very successful for conditional mean regression. Second, regression
trees are invariant under monotone transformation of explanatory variables and naturally handles
all types of explanatory variables. ER-Boost inherits those nice features. Third, but not last, using
L-terminal trees allow us to include L − 1 way interactions in the final estimate. This flexibility
is very convenient and important in real applications.

3.2.1. Tuning

There are three meta parameters in Algorithm 3.2.4: L (the size of the trees), ν (the shrinkage
constant) and M (the number of boosting steps). For mean regression and logistic regression
Friedman [10] has found that smaller values of ν result in better predictive accuracy at a cost of
large M values and hence more computing time. Following Friedman [10] we fix ν as ν = 0.005
throughout. Then only L and M are to be determined by the data. Selection of L is very important.
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If we want to fit an additive model, then we can fix L = 2. Likewise, if we only want to fit a model
with main effects and two-way interactions, we can fix L = 3. However, in many applications we
do not have such prior knowledge or preference about the underlying model, then we should use
data to determine which L value is the best. If N is reasonably large, we can split the observed data
into two parts – training and validation. For a given L, we run ER-Boost and report the validation
ALS loss at each boosting step

VALS(L, M) =
∑

validation

φ(yi, f̂ [M](xi) | ω).

Then we stop ER-Boost when the minimum validation ALS loss is reached, i.e. M∗
L =

arg minM VALS(L, M). If we need to choose L too, then we repeat the process for several L
(say, L = 2, 3, 4, 5, 6) and report the one with the smallest minimum validation ALS loss, i.e.
L∗ = arg minL VALS(L, M∗

L).

3.2.2. Measure of relative importance

Following Friedman [10] and Ridgeway,[16] we define a measure of importance of any explanatory
variable Xj for the ER-Boost model with a combination of M regression trees. Specifically, the
relative importance Ij of variable Xj is defined as the averaged importance over regression trees
{T1, . . . , TM},

Ij = 1

M

M∑
m=1

Ij(Tm), (21)

where Ij(T) is the importance of variable Xj in tree T . In ER-Boost, each regression tree is used
to fit the gradient under the squared error loss. Thus we follow [17] to define Ij(T) as

Ij(T) =
√∑

t

ξ̂ 2
t I(Xj is the splitting variable for node t). (22)

Inside the square root is the sum of ξ̂ 2
t over all internal nodes when Xj is chosen as the splitting

variable, and ξ̂ 2
t is the maximal squared error reduction induced by the partition of the region

associated with node t into two sub-regions.
The value Ij alone as a measure of variable importance is not enough. Because even if there

is no correlation between Y and Xj, Xj can still be possibly selected as splitting variable, hence
the relative importance of Xj is non-zero by Equation (22). Following Breiman [18] and Kriegler
and Berk,[19] we compute the ‘relative importance baseline’ for each explanatory variable by
re-sampling explanatory variables one at time and calculating the corresponding relative impor-
tance. The following is the procedure for computing each explanatory variable’s baseline relative
importance:

(1) For j = 1, . . . , p, repeat steps 1–4.
(2) Randomly re-shuffle the values of Xj while keeping all other explanatory variables’ values

unchanged.
(3) Fit the ER-Boost model using the modified dataset in step 1 and compute the relative

importance for Xj. The same tuning method is used.
(4) Repeat step 1 and 2 for 100 times, each time a relative importance of Xj is computed from a

re-shuffled dataset.
(5) Report the averaged relative importance of Xj of 100 repetitions.
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8 Y. Yang and H. Zou

3.2.3. Partial dependence plots

Using relative importance measure we can rank explanatory variables. The next natural step is
to look at the main effect of each important variable and their possible significant interactions.
For that, Friedman [10] suggested using partial dependence plots. Let XS be the sub-vector of
p-dimensional explanatory variables X, where S ⊂ {1, 2, . . . , p} and S ∪ Sc = {1, 2, . . . , p}. For
example, for the main effect of variable j, S = {j} and for the two-way interaction of variables i
and j, S = {i, j}. The partial dependence of f̂ (XS) on XS can be estimated by Friedman, [10]

f̄ (XS) = 1

N

N∑
i=1

f̂ (XS , xiSc),

where {xiSc}N
i are values corresponding to XSc in the training data. We plot f̄ (XS) against XS to

make the partial dependence plots.

3.2.4. Software

We provide an implementation of the ER-Boost algorithm, along with discussed model interpre-
tation tools, in the R package erboost which is publicly available at http://cran.r-project.org/
web/packages/erboost/index.html.

4. Simulation

In this section we evaluate the performance of ER-Boost by simulation.All numerical experiments
were carried out on an Intel Xeon X5560 (Quad-core 2.8 GHz) processor.

4.1. Setting I: Homoscedastic model

In the first set of simulations we adopt the ‘random function generator’ model by Friedman.[10]
The idea is to see the performance of the estimator on a variety of randomly generated targets.
We generated data {yi, xi}N

1 according to

yi = f (xi) + εi,

where εis are independent generated from some error distribution. Each of f functions is randomly
generated as a linear combination of functions {gl}20

1 :

f (x) =
20∑

l=1

algl(zl), (23)

where coefficients {al}20
1 are randomly generated from a uniform distribution al ∼ U[−1, 1]. Each

gl(zl) is a function of a randomly selected pl-size subset of the p-dimensional variable x, where
the size of each subset pl is randomly chosen by pl = min(�1.5 + r
, p), and r is generated from
an exponential distribution r ∼ Exp(0.5) with mean 2. Each zl is defined as

zl = {xWl(j)}pl
j=1, (24)
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Algorithm 2 ER-Boost

1. Initialize f̂ [0](x).

f̂ [0](x) = arg min
β

1

N

N∑
i=1

φ(yi, β | ω).

(Call Algorithm 3.1 with zi = yi for i = 1, . . . , N .)
2. For m = 1, . . . , M repeatedly do steps 2.(a)–2.(d)

2.(a) Compute the negative gradient

u[m]
i =

{
2(1 − ω)(yi − f̂ [m−1](xi)) yi − f̂ [m−1](xi) ≤ 0,

2ω(yi − f̂ [m−1](xi)) yi − f̂ [m−1](xi) > 0.
i = 1, . . . , N .

2.(b) Fit the negative gradient vector u[m]
1 , . . . , u[m]

N to x1, . . . , xN by an L-terminal node
regression tree, giving us the partitions {R[m]

l }L
l=1.

2.(c) Compute the optimal terminal node predictions γ̂
[m]
l for each region R[m]

l , l = 1, 2, . . . , L.

γ̂
[m]
l = arg min

γ

1

N

∑
xi∈R[m]

l

φ(yi, f̂ [m−1](xi) + γ | ω).

(Call Algorithm 3.1 with zi = yi − f̂ [m−1](xi) for {i : xi ∈ R[m]
l }.)

2.(d) Update f̂ [m](x) for each region R[m]
l , l = 1, 2, . . . , L.

f̂ [m](x) = f̂ [m−1](x) + νγ
[m]
l I(x ∈ R[m]

l ), if x ∈ R[m]
l .

3. Report f̂ [M](x) as the final estimate.

where each Wl is an independent permutation of the integers {1, . . . , p}. Each function gl(zl) is an
pl-dimensional Gaussian function:

gl(zl) = exp

[
−1

2
(zl − μl)

TVl(zl − μl)

]
, (25)

where each of the mean vectors {μl}20
1 is randomly generated from the same distribution as that

of the input variables x. The pl × pl covariance matrix Vl is also randomly generated by

Vl = UlDlUT
l , (26)

where Ul is a random orthonormal matrix and Dl = diag{d1l . . . dpll}. The variables djl are ran-
domly generated from a uniform distribution

√
djl ∼ U[0.1, 2.0]. In this section we generated

X from joint normal distribution x ∼ N(0, Ip) with p = 10. We considered three types of error
distribution:

(1) Normal distribution ε ∼ N(0, 1).
(2) Student’s t-distribution with 4 degrees of freedom ε ∼ t4.
(3) Mixed normal distribution ε ∼ 0.9N(0, 1) + 0.1N(1, 5).
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10 Y. Yang and H. Zou

4.2. Setting II: Heteroscedastic model

In the second set of simulations we modified the ‘random function generator’ model to include
heteroscedastic error. Everything stayed the same except that we generated data {yi}N

1 according to

yi = f (xi) + |σ(xi)|εi,

where both f and σ were independently generated by the random function generator.
We used ER-Boost to estimate the expectile functions at seven levels:

ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.
The shrinkage constant ν is 0.005. For each model we generated three independent datasets: a
training set with N observations for model estimation, a validation set with N ′ observations for
selecting the optimal (M, L) pair, and a test set with N ′′ observations for evaluating the performance
of the final estimate. Following Friedman [10] the test error is measured by the mean absolute
deviation (MAD)

MAD = 1

N ′′

N ′′∑
i=1

|fω(xi) − f̂ω(xi)|.

Note that the target function fω(x) is equal to f (x) + bω(ε) in the homoscedastic model and
f (x) + |σ(x)|bω(ε) in the heteroscedastic model, where bω(ε) is the ω-expectile of the error
distribution. See also Equation (12). In our study N = 500, N ′ = 200 and N ′′ = 2000.

We show box-plots of MADs in Figures 1 and 2 and report the average MADs and standard
errors in Tables 1 and 2. We can see that the prediction accuracy is very good in all examples,
although the estimation appears to be more difficult in the heteroscedastic model as expected.
Normal and t4 are symmetric distributions. Their prediction MADs also appear to be symmetric
around ω = 0.5 (the conditional mean). However, the prediction MAD is asymmetric in the
skewed mixed-normal distribution case.

We also study the effect of sample size on predictive performance. For this analysis, we fit
the ER-Boost model using various sizes of training sets with N ∈ {400, 800, 1600, 4800} and
validation sets with N ′ ∈ {100, 200, 400, 1200}, and evaluate the performance of the final estimate
using an independent test set of size N ′′ = 6000. The models are fitted over a range of values for
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Figure 1. Setting I, homoscedastic models.
Note: Box-plots of MADs for expectiles ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} based on 200 independent replications.
The error distribution: (a) normal, (b) t4 distribution and (c) mixed normal.
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Figure 2. Setting II, heteroscedastic models.
Note: Box-plots of MADs for expectiles ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} based on 200 independent replications.
The error distribution: (a) normal, (b) t4 distribution and (c) mixed normal.

Table 1. Setting I, homoscedastic models. The averaged MADs and the corresponding standard errors based on 200
independent replications. ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. The corresponding averaged computation times (in
seconds) are also reported.

Homoscedastic model

Normal t4 Mixed-normal

ω MAD Time MAD Time MAD Time

0.05 0.355 (0.003) 2.86 0.474 (0.006) 2.85 0.361 (0.003) 2.86
0.1 0.334 (0.003) 2.89 0.422 (0.005) 2.89 0.339 (0.003) 2.90
0.25 0.314 (0.002) 2.92 0.369 (0.003) 2.88 0.318 (0.002) 2.91
0.5 0.307 (0.002) 2.89 0.350 (0.003) 2.92 0.312 (0.002) 2.89
0.75 0.315 (0.003) 2.88 0.373 (0.003) 2.88 0.319 (0.002) 2.89
0.9 0.333 (0.003) 2.87 0.427 (0.005) 2.87 0.339 (0.002) 2.87
0.95 0.353 (0.003) 2.89 0.473 (0.006) 2.85 0.360 (0.003) 2.86

Table 2. Setting II, heteroscedastic models. The averaged MADs and the corresponding standard errors based on 200
independent replications. ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. The corresponding averaged computation times (in
seconds) are also reported.

Heteroscedastic model

Normal t4 Mixed-normal

ω MAD Time MAD Time MAD Time

0.05 0.549 (0.007) 2.88 0.774 (0.013) 2.87 0.521 (0.007) 2.86
0.1 0.455 (0.005) 2.96 0.600 (0.010) 2.93 0.431 (0.005) 2.93
0.25 0.359 (0.004) 2.89 0.424 (0.007) 2.90 0.346 (0.005) 2.91
0.5 0.321 (0.004) 2.89 0.363 (0.006) 2.90 0.321 (0.004) 2.89
0.75 0.355 (0.004) 2.88 0.426 (0.007) 2.88 0.373 (0.005) 2.89
0.9 0.450 (0.005) 2.87 0.601 (0.009) 2.90 0.477 (0.006) 2.87
0.95 0.543 (0.007) 2.86 0.773 (0.012) 2.87 0.579 (0.008) 2.87

L ∈ {1, 2, 3, 5, 7, 10} while the shrinkage constant ν is fixed at 0.005. We then report the minimum
predicted ALS loss achieved by the chosen L and the corresponding optimal choice of M. Since
the results are mostly similar for different simulation settings, here we only show the result from
the heteroscedastic model with mixed-normal distribution defined in Setting II.
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12 Y. Yang and H. Zou

(a) (b) (c)

Figure 3. Predicted ALS loss as a function of sample size and tree complexity.
Note: Models are fitted on the training sets of 400–4800 observations, and minimum predicted ALS loss is estimated on
an independent test data set of 6000. (a) ω = 0.1, (b) ω = 0.5 and (c) ω = 0.9.

As shown in Figure 3, sample size strongly influences predictive performance: large samples
produce models with lower predictive error. Gains in prediction accuracy from the increased
tree size are greater with larger data sets, presumably because more data contain more detailed
information, and larger sized trees can better model the complexity in that information. Deci-
sion stumps (L = 1) always produce higher predictive error but for small samples there was no
advantage and even little sacrifice in prediction accuracy for using very large trees (higher L).

5. North Carolina crime data

In this section we apply ER-Boost to analyse the North Carolina crime data. In previous study
by Cornwell and Trumbull [20] and Baltagi [21] the crime rates (the ratio of FBI index crimes
to county population) of North Carolina counties were related to a set of explanatory variables,
including deterrent variables and variables measuring returns of legal opportunities, as well as
other county characteristics.The dataset contains 630 records measured over the period 1981–1987
for 90 countries in North Carolina. Table 3 summarizes 19 explanatory variables for each sample.
The economic model of crime is based on the assumption that individual’s participation in the
criminal sector depends on the relative monetary benefits against the costs the illegal activities (cf.
[22–24]). Cornwell and Trumbull [20] showed both labour market and criminal justice strategies
are important in deterring crimes. The skewed distribution of the crime rate and the presence of
county heterogeneity in the data shown by previous study [20] suggest that by estimating several
expectiles – including the conditional mean as one of them – we could gain more information
about the crime rate.

We use five-fold cross-validation for choosing the optimal tuning parameters (L, M). During
each fold the data are randomly split into a training set and a validation set with ratio 4:1. Model
building is conducted on the training sets, and the optimal (L, M) pair is chosen from the model
with a minimal cross-validation error. We then fit the final model with the chosen (L, M) using
all of the data. The total computation times for conducting cross-validation and fitting the final
model with conditional expectiles ω ∈ {0.1, 0.25, 0.5, 0.75, 0.9} are also reported in Table 4.

See Section 3.2. Figure 4 shows the five estimated expectiles for 20 randomly chosen explana-
tory variables. The varying width of the expectile band across observations suggests a moderate
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Table 3. Explanatory variables in the North Carolina crime data.

ID Variables Type Details

1 PA 1 The ratio of arrests to offenses
2 PC 1 The ratio of convictions to offenses
3 PP 1 The ratio of prison sentences to offenses
4 S 1 Average prison sentence in days
5 POLICE 1 Police per capita
6 WCON 2 Weekly wage in construction
7 WTUC 2 Weekly wage in transportation, utilities and communications
8 WTRD 2 Weekly wage in wholesales and retail trade
9 WFIR 2 Weekly wage in finance, insurance and real estate
10 WSER 2 Weekly wage in service industry
11 WMFG 2 Weekly wage in manufacturing
12 WFED 2 Weekly wage of federal employees
13 WSTA 2 Weekly wage of state employees
14 WLOC 2 Weekly wage of local governments employees
15 DENSITY 3 Population per square mile
16 PCTMIN 3 Percentage minority or non-white
17 PCTYMLE 3 Percentage of young males between the ages of 15–24
18 REGION 3 One of ‘other’, ‘west’ or ‘central’
19 URBAN 3 ‘yes’ or ‘no’ if the county is in the SMSAa

Note: Type 1, deterrent variables; Type 2, variables measuring returns of legal opportunities; Type 3, county characteristics.
aWhether the county is a US metropolitan statistical area and populations are over 50,000.

Table 4. Timings (in seconds) for conducting five-fold cross-validation and fitting the final model with conditional
expectiles ω ∈ {0.1, 0.25, 0.5, 0.75, 0.9} for the North Carolina crime data.

Timings: North Carolina crime data

ω 0.1 0.25 0.5 0.75 0.9

Time (s) 107.48 105.87 108.34 106.93 105.76

amount of heteroscedasticity. This figure also suggests that the conditional distribution of the
crime rate tends to be skewed, which is consistent with the previous study.[20]

Figure 5 shows the relative importance and baseline value of each explanatory variable for
ω ∈ {0.1, 0.5, 0.9}. If the relative importance (the dot) is larger than the baseline (the line-length),
it indicates that the importance of that explanatory variable is real. We found that for all expectiles,
DENSITY, PCTMIN, POLICE, PA and REGION are the most important explanatory variables and
their relative importance scores are significantly above the corresponding baselines. Interestingly,
we find that the deterrent effect of S is small and insignificant. This result confirms the conclusion
in Cornwell and Trumbull [20] that the severity of punishment is not effective means of deterring
crime, as opposed to previous studies (cf. [25]). It is also notable that the relative importance of
PC and PCTMIN varies across different expectiles: the importance of PC is more significant in
low-crime-rate counties (ω = 0.1), while the importance of PCTMIN is more significant in both
low-crime-rate (ω = 0.1) and high-crime-rate (ω = 0.9) counties, but relatively less significant
in the moderate-crime-rate (ω = 0.5) counties.

To visualize the marginal effects of those significant explanatory variables on the crime rate, in
Figure 6 we plot the partial dependence [10] of six explanatory variables, which have the highest
relative importance values. In general, the dependence is more noticeable for the high crime rate
case (ω = 0.9) than for the low crime rate case (ω = 0.1). We see that both PA and PC have
deterrent effects on the crime rate. But when PA passes a threshold 0.54 or when PC passes 1.56,
the crime rate curves become flat, which suggests higher ratio of punishment has little effect on
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Figure 4. Five non-crossed estimated expectiles for 20 randomly chosen covariates (the sample IDs are on x-axis).

Fraction of reduction in sum of squared error in gradient prediction
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Figure 5. The relative importance and baselines of 19 explanatory variables for the models with conditional expectiles
ω ∈ {0.1, 0.5, 0.9}.
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Figure 6. Partial dependence plots of crime rate versus 6 most significant explanatory variables for the models using
conditional expectiles ω ∈ {0.1, 0.5, 0.9}.

Figure 7. Partial dependence plots of the strong pairwise interactions: (a) ω = 0.1, (b) ω = 0.5 and (c) ω = 0.9.
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16 Y. Yang and H. Zou

crime rate once the former reaches a certain level. On the other hand, the partial dependence plots
suggest that POLICE, DENSITY and PCTMIN have strong positive effects on the crime rate.
The crime rate is positively associated with POLICE. This could be explained by the fact that a
higher crime rate leads to hiring more policemen (cf. [20]). We see that ‘central’ region has higher
crime rate than ‘other’ region. The partial dependence plots also indicate heteroscedasticity, as
the marginal effects vary across different expectiles.

In our analysis it turned out that the data-driven choice for L is 3, which means that our ER-boost
model has two-way interactions. We found that an important two-way interaction for ω = 0.1 is
PCTMIN × PA. A high PCTMIN and high PA are accompanied by high crime rate, and low
PCTMIN and low PA are related to low crime rate. There are also strong REGION × POLICE
interactions for ω = 0.5 and 0.9. To visualize the marginal effect of two-way interactions we made
the joint partial dependence plots as shown in Figure 7.
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Appendix

Proof of Lemma 1 It is easy to see that φ(· | ω) is strictly convex and continuously differentiable as a function of β, and
it goes to +∞ as β goes to −∞ or ∞. This suggests that

∑
s φ(zs, β | ω) has a unique minimizer (either local or global).

With sorted {z(s)}S
1 and let z(0) = −∞ and z(S+1) = ∞. β̂ must be in [z(k), z(k+1)] for some k. Then the following

equation holds:

∂

∂β

S∑
s=1

φ(z(s), β | ω)

∣∣∣∣∣
β=βk

= ∂

∂β

{
S∑

s=1

[(1 − ω)I(s ≤ k) + ωI(s ≥ k + 1)](z(s) − β)2

}∣∣∣∣∣
β=βk

= 0.

Subsequently β̂ should equal to a certain βk , which is determined by

βk =
∑S

s=1(1 − ω)z(s)I(s ≤ k) + ωz(s)I(s ≥ k + 1)∑S
s=1(1 − ω)I(s ≤ k) + ωI(s ≥ k + 1)

.

We use the above formula to compute βk for k = 0, 1, . . . , S and only one of them is β̂. On the other hand, we note that
βk is a local minimizer in [z(k), z(k+1)] and hence the global minimizer β̂, if and only if βk is located in [z(k), z(k+1)]. This
suggests a way for finding β̂: for k = 0, . . . , S, we check whether βk is located in [z(k), z(k+1)].

Another method for finding β̂ is by directly comparing the objective function evaluated at βk for k = 0, 1, . . . , S, and β̂

is the one yielding the smallest value. However, this method is computationally more expensive than Algorithm 3.1. �
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