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S1. Notation table
Notation Description
K Total number of topics
M Total number of EHR types
P Total number of patients
m ∈ {1, . . . ,M} Index for EHR types
V (m) Total number of unique EHR features for document type m
k ∈ {1, . . . ,K} Index for topics
j ∈ {1, . . . , P} Index for patient
N

(m)
j Number of tokens in the EHR document of type m for patient j

i ∈ {1, . . . , N (m)
j } Index for tokens for patient j and document type m

πj ∈ [0, 1]K Phenotype prior for patient j
θj ∈ [0, 1]K Topic assignment for patient j
α ∈ RK

+ Hyperparameter for Dirichlet distribution of θj

ϕ
(m)
kv ∈ [0, 1]

Feature distribution of token with index v for topic k and document
type m

ϕ
(m)
k ∈ [0, 1]V

(m)
Feature distribution for topic k and document type m

β(m) ∈ RV (m)

+ Hyperparameter for Dirichlet distribution of ϕ(m)
k

x
(m)
ji ∈ {1, . . . , V (m)} Word index of token i in the EHR document of type m for patient j

z
(m)
ji ∈ {1, . . . ,K} Latent topic assignment for token i in document m for patient j

γ
(m)
jik ∈ [0, 1]

Variational probability of the kth topic assignment for token i of EHR
type m for patient j

z̄j ∈ [0, 1]K Average topic weight for patient j
Tj ∈ R+ Observed time for patient j
δj ∈ {0, 1} Censoring status for patient j
h0 (Tj) Baseline hazard function for patient j
H0 (Tj) Baseline cumulative hazard function for patient j
w ∈ RK Cox PH regression coefficient
T ∈ RP

+ Vector of observed times for all patients
δ ∈ {0, 1}P Vector of censoring status for all patients

X (m) =

{{
x
(m)
ji

}Nj

i=1

}P

j=1

A set of P lists of word indices for all tokens of EHR type m for all
patients

X =
{
X (m)

}M
m=1

The entire EHR data over the M EHR types

Z(m) =

{{
z
(m)
ji

}Nj

i=1

}P

j=1

A set of P lists of topic indices for all tokens of EHR type m for all
patients

Z =
{
Z(m)

}M
m=1

The topic assignments of the entire EHR data over the M EHR types
π ∈ [0, 1]P×K Matrix of phenotype priors for all patients
θ ∈ [0, 1]P×K Matrix of topic assignments for all patients
ϕ(m) ∈ [0, 1]K×V (m)

Matrix of feature distributions for all topics of EHR type m

Φ =
{
ϕ(m)

}M
m=1

List of feature distribution over the M EHR types
B =

{
β(m)

}M
m=1

List of hyperparameters for Dirichlet distribution of ϕ(m)
k

U ∈ RP×K Matrix of PheCode counts for all P patients and K PheCodes
ujk Count of the k-th PheCode for the j-th patient

S2. Generative process the model variants

S2.1. Generative process for MixEHR
MixEHR follows the following generative process as illustrated in Fig. ??a:
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1. Generate patient-specific topic assignment θj ∼ Dir (α) , j = 1, . . . , P

2. Generate the feature distribution ϕ
(m)
k ∼ Dir

(
β(m)

)
for topic k = 1, . . . ,K and type m =

1, . . . ,M .
3. For each of the EHR token x

(m)
ji , i = 1, . . . , N

(m)
j :

(a) Generate a latent topic z
(m)
ji ∼ Mul (θj)

(b) Generate a specific token x
(m)
ji ∼ Mul

(
ϕ

(m)

z
(m)
ji

)
Generative process for MixEHR-G

The generative process for MixEHR-G is illustrated in Fig. ??b:

1. Obtain the phenotype prior πj by a modified MAP [1] algorithm
2. Draw patient specific topic assignment θj ∼ Dir (α⊙ πj)

3. Generate the feature distribution ϕ
(m)
k ∼ Dir

(
β(m)

)
for topic k = 1, . . . ,K and type m =

1, . . . ,M .
4. For each of the EHR token x

(m)
ji , i = 1, . . . , N

(m)
j :

(a) Generate a latent topic z
(m)
ji ∼ Mul (θj)

(b) Generate a specific token x
(m)
ji ∼ Mul

(
ϕ

(m)

z
(m)
ji

)
Generative process for MixEHR-Surv

The generative process for MixEHR-Survival is illustrated in Fig. ??c:

1. Generate patient-specific topic assignment θj ∼ Dir (α)

2. Generate the feature distribution ϕ
(m)
k ∼ Dir

(
β(m)

)
for topic k = 1, . . . ,K and type m =

1, . . . ,M .
3. For each of the EHR token x

(m)
ji , i = 1, . . . , N

(m)
j :

(a) Generate a latent topic z
(m)
ji ∼ Mul (θj)

(b) Generate a specific token x
(m)
ji ∼ Mul

(
ϕ

(m)

z
(m)
ji

)

4. Compute the average topic proportion for each patient: z̄j = [z̄jk]
K
k=1 =

∑M
m=1

∑N
(m)
j

i=1 I(z(m)
ji =k)∑M

m=1 N
(m)
j

K

k=1

5. Calculate the patient’s hazard through the Cox proportional hazards model h (Tj |z̄j) =
h0 (Tj) exp

{
w⊤z̄j

}
, and we could further visualize the survival curve or estimate survival

time using the median survival time.

Generative process for MixEHR-SurG
The generative process for MixEHR-SurG is illustrated in Fig. ??d:

1. Obtain the phenotype prior πj by a modified MAP [1] algorithm
2. Draw patient specific topic assignment θj ∼ Dir (α⊙ πj)

3. Generate the feature distribution ϕ
(m)
k ∼ Dir

(
β(m)

)
for topic k = 1, . . . ,K and type m =

1, . . . ,M .
4. For each of the EHR token x

(m)
ji , i = 1, . . . , N

(m)
j :
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(a) Generate a latent topic z
(m)
ji ∼ Mul (θj)

(b) Generate a specific token x
(m)
ji ∼ Mul

(
ϕ

(m)

z
(m)
ji

)
5. Compute the average topic weight for each patient:

z̄j = [z̄jk]
K
k=1 =

∑M
m=1

∑N
(m)
j

i=1 I(z(m)
ji = k)∑M

m=1N
(m)
j


K

k=1

6. Calculate the patient’s hazard through the Cox proportional hazards model h (Tj |z̄j) =
h0 (Tj) exp

{
w⊤z̄j

}
, we could further visualize the survival curve or estimate survival time

using the median survival time.

S3. Computing PheCode topic priors

We compute πjk = p(yjk = 1 | ujk) for each patient j and topic k in 3 steps:

• Step 1: After mapping each ICD code to its corresponding PheCode (https://phewascatalog.
org/phecodes), we calculate the PheCode counts ujk for each patient, denoted by j, where
j = 1, . . . , P , across each PheCode, denoted by k, where k = 1, . . . ,K. It’s important to note
that for a patient who encounters the same PheCode multiple times, either due to repeated
ICD code mappings or multiple healthcare visits, each instance is individually accounted for.
This approach results in the possibility of accruing multiple counts for the same PheCode for
a single patient. As a result, we convert the P × V (ICD) to a P ×K matrix U = [ujk]P×K . We
then infer the posterior distribution of yjk in two parallel ways.

• Step 2A (Model A): Assuming that the counts for a PhenoCode k follows a Poisson distribution
with parameters πjk, ρ0 and ρ1. The Poisson likelihood takes the following form:

P (ujk) = πjk
(ρ1)

ujk e−ρ1

ujk!
+ (1− πjk)

(ρ0)
ujk e−ρ0

ujk!
, (1)

where πjk corresponds to the foreground Poisson component with larger mean ρ1 and and
1− πjk corresponds to the population background Poisson with lower mean ρ0. Given data
{ujk}Pj=1, we perform expectation-maximization (EM) algorithm: in the E-step, we infer the
posterior probability π̂jk = p̂(yjk = 1|ujk) and in the M-step, we maximize the likelihood with
respect to ρ1 and ρ0.

• Step 2B (Model B): Alternatively, we can assume that for each PheCode k, the log-transformed
count data g(u1k), . . . , g(uPk), with g(u) = log(u) + 1 follows a two-component univariate
Gaussian mixture model:

P (g(ujk) = x) =
π′
jk√
2πσ2

1

exp

(
−(x− µ1)

2

2σ2
1

)
+

1− π′
jk√

2πσ2
0

exp

(
−(x− µ0)

2

2σ2
0

)
(2)

We then perform EM algorithm to alternate between inferring π̂′
jk = p̂(y′jk = 1|ujk) and

computing maximum likelihood estimates for the Gaussian parameters.

• Step 3: The prior probability for a patient j having phenotype k is set to πjk = 1
2

(
π̂jk + π̂′

jk

)
.
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In the application of the MIMIC-III data, as it is not a longitudinal dataset, each PheCode was
documented no more than once for each patient. In this case, we assigned the hyperparameters
πjk for each phenotype k as either one or zero, based on whether the corresponding PheCode was
observed or not for patient j, respectively.

S4. Details of stochastic joint collapsed variational Bayesian inference

First, we derive the joint-likelihood function of all the parameters for observational data and
latent variables conditioned on priors and survival regression coefficients for MixEHR-SurG (Fig
??d) model:

p (T,δ,X ,Z,θ,Φ | α,π,B, h0(·),w)

= p (T,δ | Z, h0(·),w)︸ ︷︷ ︸
supervised part

p (X ,Z,θ,Φ | α,π,B)︸ ︷︷ ︸
unsupervised part

where for the survival supervised part, we use the Cox proportional hazards (PH) model with elastic
net penalization for the survival coefficients. The full likelihood function of the penalized Cox PH
model is obtained by incorporating Breslow’s estimate of the baseline hazard function.

p (T,δ | Z, h0(·),w)

=
P∏

j=1

p (Tj , δj | z̄j , h0(Tj),w)

=

P∏
j=1

[h (Tj , z̄j)]
δj S (Tj , z̄j) exp

{
−λ2∥w∥22 − λ1∥w∥1

}
=

P∏
j=1

{[
h0 (Tj) exp

(
w⊤z̄j

)]δj
× exp

[
−H0 (Tj) exp

(
w⊤z̄j

)]}
exp

{
−λ2∥w∥22 − λ1∥w∥1

}
.

Here H0 (t) denotes the cumulative baseline hazard function, obtained by the integral of the baseline
hazard function between integration limits of 0 and t as H0 (t) =

∫ t
0 h0 (u) du. The elastic net penalty

terms including ∥w∥22 =
∑

k w
2
k and ∥w∥1 =

∑
k |wk| consist of the L2 and L1 regularization term

weighted by the hyperparameters λ2 and λ1, respectively.
We will use the collapsed variational inference algorithm to integret out θ and Φ in the joint

likelihood function to achieve more accurate and efficient inference [2]. This is due to the conjugacy
of Dirichlet variables θ and Φ to the multinomial likelihood variables X and Z.

p (T,δ,X ,Z | α,π,B, h0(·),w)

=p (T,δ | Z, h0(·),w) p (X ,Z | α,π,B)

=p (T,δ | Z, h0(·),w)

∫ ∫
p (X ,Z,θ,Φ | α,π,B) dΦdθ

=p (T,δ | Z, h0(·),w)

∫ ∫
p (X | Z,Φ) p (Φ | B) p (Z | θ) p (θ | α,π) dΦdθ

=p (T,δ | Z, h0(·),w)

∫
p (X | Z,Φ) p (Φ | B) dΦ×

∫
p (Z | θ) p (θ | α,π) dθ

Upon substituting the distributions outlined in the generative process of MixEHR-SurG, as
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detailed in Methods S2, the integral can be evaluated as follows:

∫
p (Z | θ) p (θ | α,π) dθ

=

∫  P∏
j=1

K∏
k=1

θ
n
(•)
j•k

jk

×

 P∏
j=1

Γ
(∑K

k=1 αkπj

)
∏K

k=1 Γ (αkπj)

K∏
k=1

θ
αkπjk−1
jk

 dθ

=

P∏
j=1

Γ
(∑K

k=1 αkπj

)
∏K

k=1 Γ (αkπj)

∫ ( K∏
k=1

θ
αkπjk−1+n

(•)
j•k

jk

)
dθ

=

P∏
j=1

Γ
(∑K

k=1 αkπj

)
∏K

k=1 Γ (αkπj)

∏K
k=1 Γ

(
αkπj + n

(•)
j•k

)
Γ
(∑K

k=1αkπj + n
(•)
j•k

)
∫

p (X | Z,Φ) p (Φ | B) dΦ

=

∫  M∏
m=1

K∏
k=1

V (m)∏
v=1

ϕ
(m)n

(m)
•vk

vk

×

 M∏
m=1

K∏
k=1

Γ
(∑V (m)

v=1 β
(m)
v

)
∏V (m)

v=1 Γ
(
β
(m)
v

) V (m)∏
v=1

ϕ
(m)β

(m)
v −1

vk

 dΦ

=
M∏

m=1

K∏
k=1

Γ
(∑V (m)

v=1 β
(m)
v

)
∏V (m)

v=1 Γ
(
β
(m)
v

) ∫
V (m)∏

v=1

ϕ
(m)β

(m)
v −1+n

(m)
•vk

vk

 dΦ

=

K∏
k=1

M∏
m=1

Γ
(∑V (m)

v=1 β
(m)
v

)
∏V

v=1 Γ
(
β
(m)
v

) ∏V (m)

v=1 Γ
(
β
(m)
v + n

(m)
•vk

)
Γ
(∑V (m)

v=1 β
(m)
v + n

(m)
•vk

)
where the coordinate sufficient statistics are:

n
(m)
•vk =

P∑
j=1

N
(m)
j∑
i=1

I
[
x
(m)
ji = v, z

(m)
ji = k

]

n
(•)
j•k =

M∑
m=1

N
(m)
j∑
i=1

I
[
z
(m)
ji = k

]
Thus, we have:

p (X ,Z | α,π,B)

=
K∏
k=1

M∏
m=1

Γ
(∑V (m)

v=1 β
(m)
v

)
∏V (m)

v=1 Γ
(
β
(m)
v

) ∏V (m)

v=1 Γ
(
β
(m)
v + n

(m)
•vk

)
Γ
(∑V (m)

v=1 β
(m)
v + n

(m)
•vk

) P∏
j=1

Γ
(∑K

k=1 αkπj

)
∏K

k=1 Γ (αkπj)

∏K
k=1 Γ

(
αkπj + n

(•)
j•k

)
Γ
(∑K

k=1αkπj + n
(•)
j•k

)
Then, we will derive the evidence lower bound (ELBO) for the current marginal distribution for

the observational data as follows:
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LELBO ≡ Eq(Z) log p (T,δ,X ,Z | α,π,B, h0(·),w)− Eq(Z) log q (Z)

=
∑
Z

q (Z) log p (T,δ,X ,Z | α,π,B, h0(·),w)−
∑
Z

q (Z) log q (Z)

Maximizing LELBO is equivalent to minimizing the Kullback–Leibler (KL) divergence, as they sum
up as the joint distribution of the observational data which is a constant:

KL[q(Z)∥p (T,δ,X ,Z)] = Eq(Z) log q (Z)− E(Z) log p (T,δ,X ,Z | α,π,B, h0(·),w) + log p (T,δ,X )

= −LELBO + log p (T,δ,X )

The mean-field assumption pertains only to word-specific topic assignments Z, which have the
proposed distribution under the variational parameter γ(m)

jik as defined below:

q(Z) =
M∏

m=1

P∏
j=1

N
(m)
j∏
i=1

q(z
(m)
ji | γ(m)

ji1 , . . . , γ
(m)
jiK) =

M∏
m=1

P∏
j=1

N
(m)
j∏
i=1

K∏
k=1

γ
(m)

I[z(m)
ji

=k]

jik

Under the mean-field assumption, maximizing the ELBO with respect to γ
(m)
jik is equivalent to

calculating the variational expectation Eq(Z)[z
(m)
ji = k] conditioned on the variational expected value

for other tokens [3, 4]. The coordinate ascent update has an approximate closed-form expression
as derived below:

γ
(m)
jik =

exp

{
E
q
(
z
(m)
(j,−i)

) [log p (T,δ,X ,Z | α,π,B, h0(·),w)]

}
exp

{∫
E
q
(
z
(m)
(j,−i)

) [log p (T,δ,X ,Z | α,π,B, h0(·),w)] dz
(m)
ji

}
∝ exp

{
E
q
(
z
(m)
(j,−i)

) [log p (T,δ,X ,Z | α,π,B, h0(·),w)]

}
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Then we aximizing the ELBO with respect to γ
(m)
jik ,

log γ
(m)
jik = E

q
(
z
(m)
(j,−i)

) [log p (T,δ,X ,Z | α,π,B, h0(·),w)] + const

= E
q
(
z
(m)
(j,−i)

) [log (p (T,δ | Z, h0(·),w) p (X ,Z | α,π,B))] + const

= E
q
(
z
(m)
(j,−i)

) [log p(Tj , δj | z(m)
(j,−i), z

(m)
ji = k, h0(·),w

)]
+ E

q
(
z
(m)
(j,−i)

) [log p (X ,Z | α,π,B)] + const

= E
q
(
z
(m)
(j,−i)

) [log p(Tj , δj | z(m)
(j,−i), z

(m)
ji = k, h0(·),w

)]
+ E

q
(
z
(m)
(j,−i)

)
[
log

(
K∏
k=1

M∏
m=1

Γ
(∑V (m)

v=1 β
(m)
v

)
∏V (m)

v=1 Γ
(
β
(m)
v

) ∏V (m)

v=1 Γ
(
β
(m)
v + n

(m)
•vk

)
Γ
(∑V (m)

v=1 β
(m)
v + n

(m)
•vk

)
P∏

j=1

Γ (
∑

k αkπj)∏K
k=1 Γ (αkπj)

∏K
k=1 Γ

(
αkπj + n

(•)
j•k

)
Γ
(∑K

k=1 αkπj + n
(•)
j•k

))]+ const

Thus, we calculate the expontential spontaneously at both side

γ
(m)
jik ∝ exp

{
E
q
(
z
(m)
(j,−i)

) [log p(Tj , δj | z(m)
(j,−i), z

(m)
ji = k, h0(·),w

)]}

exp

{
E
q
(
z
(m)
(j,−i)

)
[
log

(
K∏
k=1

M∏
m=1

Γ
(∑V (m)

v=1 β
(m)
v

)
∏V (m)

v=1 Γ
(
β
(m)
v

) ∏V (m)

v=1 Γ
(
β
(m)
v + n

(m)
•vk

)
Γ
(∑V (m)

v=1 β
(m)
v + n

(m)
•vk

)
P∏

j=1

Γ (
∑

k αkπj)∏K
k=1 Γ (αkπj)

∏K
k=1 Γ

(
αkπj + n

(•)
j•k

)
Γ
(∑K

k=1 αkπj + n
(•)
j•k

))]}

where the footnote (j,−i) denote when we calculating the coordinate sufficient statistics, we exclude
the variable with index ji.

We choose the survival model as the Cox proportional hazards model. The corresponding
hazard function and survival function could be written as

h (Tj , z̄j) = h0 (Tj) exp
(
w⊤z̄j

)
and

S (Tj , z̄j) = exp
[
−H0 (Tj) exp

(
w⊤z̄j

)]
respectively. The vector w ∈ RK contains the survival coefficients, and h0 (Tj) is the baseline
hazard at time Tj . H0 (Tj) denotes the cumulative hazard at time Tj , which is obtained by the
integral of the baseline hazard function between integration limits of 0 and t as H0 (t) =

∫ t
0 h0 (u) du.
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Under those settings, we could further derive the supervised part as follows:

E
q
(
z
(m)
(j,−i)

) [log p(Tj , δj | z(m)
(j,−i), z

(m)
ji = k, h0(·),w

)]
(i)
= E

q
(
z
(m)
(j,−i)

) [log p(Tj , δj | z̄(m)
(j,−i), z̄

(m)
ji , h0(·),w

)]
= E

q
(
z
(m)
(j,−i)

) [log(h(Tj , z̄
(m)
(j,−i), z̄

(m)
ji

)δj
S
(
Tj , z̄

(m)
(j,−i), z̄

(m)
ji

))]
= E

q
(
z
(m)
(j,−i)

) [δj log h0 (Tj) + δjw
⊤z̄

(m)
(j,−i) + δjw

⊤z̄
(m)
ji −H0 (Tj) exp

(
w⊤

(
z̄
(m)
(j,−i) + z̄

(m)
ji

))]
(ii)
= δj log h0 (Tj) + δjEq

(
z
(m)
(j,−i)

) [w⊤z̄
(m)
(j,−i)

]
+ δj

wk

N
(m)
j

−H0 (Tj)Eq
(
z
(m)
(j,−i)

)
[
exp

(
w⊤z̄

(m)
(j,−i) +

wk

N
(m)
j

)]

= δjEq
(
z
(m)
(j,−i)

) [w⊤z̄
(m)
(j,−i)

]
+ δj

wk

N
(m)
j

−H0 (Tj)Eq
(
z
(m)
(j,−i)

) [exp(w⊤z̄
(m)
(j,−i)

)]
exp

(
wk

N
(m)
j

)
+ const

(iii)
≈ δjEq

(
z
(m)
(j,−i)

) [w⊤z̄
(m)
(j,−i)

]
+ δj

wk

N
(m)
j

−H0 (Tj)Eq
(
z
(m)
(j,−i)

) [w⊤z̄
(m)
(j,−i) + 1

]
exp

(
wk

N
(m)
j

)
+ const

≈ δjEq
(
z
(m)
(j,−i)

) [w⊤z̄
(m)
j

]
+ δj

wk

N
(m)
j

−H0 (Tj)Eq
(
z
(m)
(j,−i)

) [w⊤z̄
(m)
j + 1

]
exp

(
wk

N
(m)
j

)
+ const

(iv)
= δjw

⊤γ̄
(m)
j + δj

wk

N
(m)
j

−H0 (Tj)
(
w⊤γ̄

(m)
j + 1

)
exp

(
wk

N
(m)
j

)
+ const

The equation (i) follows by defining

z̄
(m)
ji =

I
(
z
(m)
ji = k

)
N

(m)
j

K

k=1

,

and

z̄
(m)
(j,−i) =


∑N

(m)
j

i′=1 I
(
(z

(m)
ji′ = k) ∩ (i′ ̸= i)

)
N

(m)
j


K

k=1

.

The equation (ii) follows by

[
z̄
(m)
ji

]
k
=

I
(
z
(m)
ji = k

)
N

(m)
j

=
1

N
(m)
j

and [
z̄
(m)
ji

]
k′
=

I
(
z
(m)
ji = k′

)
N

(m)
j

= 0,

for k′ ̸= k, since z
(m)
ji = k.
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The approximation (iii) is due to the first-order Taylor series of the exponential term exp

(
w⊤

[
z̄
(m)
(j,−i)

]
j

)
.

Note that the exponential function can be approximated by Taylor series as exp(x) = 1+x+x2/2!+
x2/3! + . . .. For computational efficiency, we only took the first order of the Taylor series, which
correspond to the first two terms 1 + x.

The equation (iv) follows by defining:

γ̄
(m)
j = [γ̄

(m)
jk ]Kk=1 =

∑N
(m)
j

i=1 γ
(m)
jik

N
(m)
j


K

k=1

=


∑N

(m)
j

i=1 E
q
(
z
(m)
(j,−i)

) [I(z(m)
ji = k

)]
N

(m)
j


K

k=1

= E
q
(
z
(m)
(j,−i)

) [z̄(m)
j

]
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And the expectation of the unsupervised part could be derived as:

E
q
(
z
(m)
(j,−i)

)
[
log

(
K∏
k=1

M∏
m=1

Γ
(∑V (m)

v=1 β
(m)
v

)
∏V (m)

v=1 Γ
(
β
(m)
v

) ∏V (m)

v=1 Γ
(
β
(m)
v + n

(m)
•vk

)
Γ
(∑V (m)

v=1 β
(m)
v + n

(m)
•vk

)
×

P∏
j=1

Γ (
∑

k αkπj)∏K
k=1 Γ (αkπj)

∏K
k=1 Γ

(
αkπj + n

(•)
j•k

)
Γ
(∑K

k=1 αkπj + n
(•)
j•k

))]

= E
q
(
z
(m)
(j,−i)

)
[

K∑
k=1

M∑
m=1

log Γ

V (m)∑
v=1

β(m)
v

−
V (m)∑
v=1

log Γ
(
β(m)
v

)

+

V (m)∑
v=1

log Γ
(
β(m)
v + n

(m)
•vk

)
− log Γ

V (m)∑
v=1

β(m)
v + n

(m)
•vk

]

+ E
q
(
z
(m)
(j,−i)

)
[

P∑
j=1

log Γ

(∑
k

αkπj

)
−

K∑
k=1

log Γ (αkπj)

+
K∑
k=1

log Γ
(
αkπj + n

(•)
j•k

)
− log Γ

(
K∑
k=1

αkπj + n
(•)
j•k

)]

= E
q
(
z
(m)
(j,−i)

)
[

V (m)∑
v=1

log Γ
(
β(m)
v + n

(m)
•vk

)
− log Γ

V (m)∑
v=1

β(m)
v + n

(m)
•vk


+

K∑
k=1

log Γ
(
αkπj + n

(•)
j•k

)
− log Γ

(
K∑
k=1

αkπj + n
(•)
j•k

)]
+ const

= E
q
(
z
(m)
(j,−i)

)
[
log Γ

(
β
(m)

x
(m)
ji

+ n
(m)

•x(m)
ji k

)
− log Γ

V (m)∑
v=1

β(m)
v + n

(m)
•vk


+ log Γ

(
αkπj + n

(•)
j•k

)
− log Γ

(
K∑
k=1

αkπj + n
(•)
j•k

)]
+ const

(i)
= log

(
β
(m)

x
(m)
ji

+

[
n
(m)

•x(m)
ji k

]
(−j,−i)

)
− log

V (m)∑
v=1

β(m)
v +

[
n
(m)
•vk

]
(−j,−i)


+ log

(
αkπj +

[
n
(•)
j•k

]
(j,−i)

)
− log

(
(

K∑
k=1

αk)πj +

K∑
k=1

[
n
(•)
j•k

]
(j,−i)

)
+ const

= log


(
αkπj +

[
n
(•)
j•k

]
(j,−i)

)
(
β
(m)

x
(m)
ji

+

[
n
(m)

•x(m)
ji k

]
(−j,−i)

)
∑V (m)

v=1 β
(m)
v +

[
n
(m)
•vk

]
(−j,−i)

+ const
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The equation (i) follows by defining the first term as

[
n
(m)

•x(m)
ji k

]
(−j,−i)

=
P∑

j′=1

N
(m)
j∑

i′=1

I
[
(x

(m)
j′i′ = x

(m)
ji , z

(m)
j′i′ = k) ∩ (j′ ̸= j, i′ ̸= i)

]
,

the second term as

[
n
(m)
•vk

]
(−j,−i)

=
P∑

j′=1

N
(m)
j∑

i′=1

I
[
(x

(m)
j′i′ = v, z

(m)
j′i′ = k) ∩ (j′ ̸= j, i′ ̸= i)

]
,

the third and the forth term as

[
n
(•)
j•k

]
(j,−i)

=

M∑
m=1

N
(m)
j∑

i′=1

I
[
(z

(m)
ji′ = k) ∩ (i′ ̸= i)

]
.

Finally we will get the estimation of the closed-form latent variational expectation update of γ(m)
jik

after calculating the following and normalizing afterwards:

γ
(m)
jik ∝ exp

((
δjw

⊤γ̄
(m)
j

)(
δj

wk

N
(m)
j

))

× exp

[
−H0 (Tj)

(
w⊤γ̄

(m)
j + 1

)
exp

(
wk

N
(m)
j

)]

×
(
αkπj +

[
n
(•)
j•k

]
(j,−i)

)
(
β
(m)

x
(m)
ji

+

[
n
(m)

•x(m)
ji k

]
(−j,−i)

)
∑V (m)

v=1 β
(m)
v +

[
n
(m)
•vk

]
(−j,−i)

Furthermore, we update the hyperparameters α and B by maximizing the marginal log likelihood
function under the estimate of the expectation of the variational parameter. Noting that α and B
only participate in the unsupervised term of the ELBO, the closed-form update can be derived by
the fixed point process [5]:

α∗
k = argmax

αk

Eq(Z) [p (X ,Z | α,π,B)] (3)

=
aα − 1 + αk

∑P
j=1Ψ

(
αk + n

(•)
j•k

)
−Ψ(αk)

bα +
∑P

j=1Ψ
(∑K

k=1 αk + n
(•)
j•k

)
−Ψ

(∑K
k=1 αk

) (4)

β(m)∗
v = argmax

β
(m)
v

Eq(Z) [p (X ,Z | α,π,B)] (5)

=
aβ − 1 + β

(m)
v

(∑K
k=1Ψ

(
β
(m)
v + n

(m)
•vk

))
−KV (m)Ψ

(
β
(m)
v

)
bβ +

∑K
k=1Ψ

(
V (m)β

(m)
v +

∑V (m)

v=1 n
(m)
•vk

)
−KΨ

(
V (m)β

(m)
v

) (6)
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To update the survival-relevant parameters w and h0(·), we focus on maximizing the components
related to these parameters within the ELBO. This maximization is conditioned on the expected
values of the latent variables Z:

(w, h0 (·)) = argmax
w,h0(·)

Eq(Z)p (T,δ | Z, h0(·),w) (7)

= argmax
w,h0(·)

P∑
j=1

{
δj log h0 (Tj) + δjw

⊤Eq(Z) [z̄j ] (8)

−H0 (Tj) exp
(
w⊤Eq(Z) [z̄j ]

)}
− λ2∥w∥22 − λ1∥w∥1 (9)

= argmax
w,h0(·)

P∑
j=1

{
δj log h0 (Tj) + δjw

⊤γ̄j (10)

−H0 (Tj) exp
(
w⊤γ̄j

)}
− λ2∥w∥22 − λ1∥w∥1 (11)

Above formula mirrors the coefficients estimates employed in the Cox proportional hazards
regression with elastic net penalization, which combines both L1 and L2 norms for regularization
[6] . In this context, γ̄j function as covariates, while [Tj , δj ]

P
j=1 provide the survival information. The

update of w and h0(·) is facilitated using the scikit-survival [7] Python module, a tool specifically
designed for handling such statistical computations in survival analysis.

The whole collapsed variational Inference algorithm for MixEHR-SurG is in Algorithm 1.
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Algorithm 1: Collapsed Variational Inference for MixEHR-SurG
Initialization:

αk ∼ Gamma(a, b) for k = 1, . . . ,K

β
(m)
v ∼ Gamma(c, d) for v = 1, . . . , V and m = 1, . . . ,M

γ
(m)
jik ∼ Unif(0, 1) for all i, j, k,m

Normalize γ
(m)
jik to sum to 1 over k

repeat
E-Step:

for m = 1, . . . ,M do
for j = 1, . . . , P do

for i = 1, . . . , N
(m)
j do

for k = 1, . . . ,K do
Update γ

(m)
jik using Eq. (??)

end
Normalize γ

(m)
jik to sum to 1 over k

end
end

end
M-Step:

for k = 1, . . . ,K do
Update αk using Eq. (3)

end
for m = 1, . . . ,M do

for v = 1, . . . , V (m) do
Update β

(m)
v using Eq. (5)

end
end
Estimate w, h0(·) by Eq. (7) using Coxnet with updated γ̄j as covariates, and

survival data [Tj , δj ]
P
j=1.

until Converge;

S5. Evaluating causal phenotypes in simulation study

For the quantitative evaluation of MixEHR-SurG, we first focused on assessing its capability
to identify mortality-related topics. In the simulation section, we used Receiver Operating Charac-
teristic (ROC) curve, a widely-used metric in machine learning to evaluate the variable selection
performance of our models. The ROC curve is the true positive rate TPR=TP/(TP+FN) as a function
of the false positive rate FPR=FP/(FP+TN) in variable selection, where TP, FP, FN, TN are true
positive, false positive, false negative, and true negative, respectively. In our context, this involves
comparing the estimated survival coefficients of the simulation data set with the ground truth
coefficients we predefined (i.e., 50 survival-related topics with a coefficient of 6, and all others set
to 0).
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S6. Survival analysis

From w learned by MixEHR-SurG, we selected the top 3 and bottom 3 survival-related phe-
notypes with the largest positive and negative coefficients, respectively. To assess the statistical
significance of each coefficient wk, we conducted chi-square tests against the null hypothesis that
wk = 0 [8]. Specifically, we divided patients into two groups based on their topic proportion. For
the phenotype with the highest survival coefficient, denoted as kmax = argmax

k
wk, we empirically

determined the threshold to be the top 30% percentile of the topic mixture probabilities such that
patients above the percentile were assigned to one group and the rest of the patients were assigned
to the other group (Fig. ??b and Fig. ??b). We then computed the chi-squared test p-values using
the survival R package [9] (Fig. ??c and Fig. ??c).

S7. Supplementary Figures

Figure S1: Comparison of the mean AUC between the pipeline MixEHR-G+Coxnet and MixEHR-SurG based
on 10 simulated datasets.
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(a) (b)

Figure S2: Dynamic AUC curves for predicting time to death in patients from the simulated data. (a) Dynamic
AUC curves for predicting time to death in patients from simulating dataset based on the CHD dataset. (b)
Dynamic AUC curves for predicting time to death in patients from simulating dataset based on the MIMIC-III
dataset.

Figure S3: Comparison of mean AUC differences for mortality time prediction between MixEHR-SurG and
MixEHR-G+Coxnet (∆AUC = AUC(MixEHR-SurG) - AUC(MixEHR-G+Coxnet)), based on 10,000 bootstrap
datasets for (a) CHD and (b) MIMIC-III dataset. The 75% confidence intervals are indicated by the dashed
lines.
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Figure S4: Mutual information between the top ICD codes from the top 6 survival phenotype topics identified
from the CHD dataset. ICD codes in red are the ones that define the corresponding PheCode. The diagonal
entries as well as mutual information between the same ICD codes were intentionally masked out for the
ease of viewing.
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Figure S5: Dynamic AUC curves for predicting time to death in patients from the MIMIC-III dataset. We set
a series of time points beginning at 20 and increasing in steps of 20, extending to 1400. At each of these
intervals, we calculate the cumulative AUC, which is then used to construct the Dynamic AUC curve.
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816.0: Cerebral laceration and contusion
348.2: Cerebral edema and compression of brain
573.6: Nonspeci�c elevation of levels of transaminase or LDH
361.2: Retinoschisis and retinal cysts
569.2: Gastrointestinal complications
300.4: Dysthymic disorder

(a) (b)

Figure S6: Comorbidity analysis of the top ICD codes for survival phenotype topics identified from the
MIMIC-III data. (a) Heatmap displaying the top 3 ICD-9 codes per survival phenotype topics for the top
3 and bottom 3 phenotypes. The color gradation indicates the prevalence of each feature within each
phenotype topic. The last row indicates the Cox regression coefficients. The last two columns display the
color intensities proportional to the -log p-value from the log-rank test for high mortality risk and low mortality
risk, respectively. (b) Mutual information between the top ICD codes from the top 6 survival phenotype
topics. ICD codes in red are the ones that define the corresponding PheCode. The diagonal entries were
intentionally masked out for the ease of viewing.

816.0: Cerebral laceration and contusion
348.2: Cerebral edema and compression of brain
573.6: Nonspeci�c elevation of levels of transaminase or LDH
361.2: Retinoschisis and retinal cysts
569.2: Gastrointestinal complications
300.4: Dysthymic disorder

(a) (b)

Figure S7: Comorbidity analysis of the top drug codes for survival phenotype topics identified from the
MIMIC-III data. The presentation of the panels is the same as in Supplementary Fig. S6
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816.0: Cerebral laceration and contusion
348.2: Cerebral edema and compression of brain
573.6: Nonspeci�c elevation of levels of transaminase or LDH
361.2: Retinoschisis and retinal cysts
569.2: Gastrointestinal complications
300.4: Dysthymic disorder

(a) (b)

(a) (b)

Figure S8: Comorbidity analysis of the top DRG codes for survival phenotype topics identified from the
MIMIC-III data. The presentation of the panels is the same as in Supplementary Fig. S6

816.0: Cerebral laceration and contusion
348.2: Cerebral edema and compression of brain
573.6: Nonspeci�c elevation of levels of transaminase or LDH
361.2: Retinoschisis and retinal cysts
569.2: Gastrointestinal complications
300.4: Dysthymic disorder

(b)(a)

Figure S9: Comorbidity analysis of the top lab tests for survival phenotype topics identified from the MIMIC-III
data. The presentation of the panels is the same as in Supplementary Fig. S6
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816.0: Cerebral laceration and contusion
348.2: Cerebral edema and compression of brain
573.6: Nonspeci�c elevation of levels of transaminase or LDH
361.2: Retinoschisis and retinal cysts
569.2: Gastrointestinal complications
300.4: Dysthymic disorder

(a) (b)

Figure S10: Comorbidity analysis of the top CPT words for survival phenotype topics identified from the
MIMIC-III data. The presentation of the panels is the same as in Supplementary Fig. S6
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