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A B S T R A C T

Survival models can help medical practitioners to evaluate the prognostic importance of clinical variables to
patient outcomes such as mortality or hospital readmission and subsequently design personalized treatment
regimes. Electronic Health Records (EHRs) hold the promise for large-scale survival analysis based on
systematically recorded clinical features for each patient. However, existing survival models either do not
scale to high dimensional and multi-modal EHR data or are difficult to interpret. In this study, we present a
supervised topic model called MixEHR-SurG to simultaneously integrate heterogeneous EHR data and model
survival hazard. Our contributions are three-folds: (1) integrating EHR topic inference with Cox proportional
hazards likelihood; (2) integrating patient-specific topic hyperparameters using the PheCode concepts such that
each topic can be identified with exactly one PheCode-associated phenotype; (3) multi-modal survival topic
inference. This leads to a highly interpretable survival topic model that can infer PheCode-specific phenotype
topics associated with patient mortality. We evaluated MixEHR-SurG using a simulated dataset and two real-
world EHR datasets: the Quebec Congenital Heart Disease (CHD) data consisting of 8211 subjects with 75,187
outpatient claim records of 1767 unique ICD codes; the MIMIC-III consisting of 1458 subjects with multi-modal
EHR records. Compared to the baselines, MixEHR-SurG achieved a superior dynamic AUROC for mortality
prediction, with a mean AUROC score of 0.89 in the simulation dataset and a mean AUROC of 0.645 on the
CHD dataset. Qualitatively, MixEHR-SurG associates severe cardiac conditions with high mortality risk among
the CHD patients after the first heart failure hospitalization and critical brain injuries with increased mortality
among the MIMIC-III patients after their ICU discharge. Together, the integration of the Cox proportional
hazards model and EHR topic inference in MixEHR-SurG not only leads to competitive mortality prediction
but also meaningful phenotype topics for in-depth survival analysis. The software is available at GitHub:
https://github.com/li-lab-mcgill/MixEHR-SurG.
1. Introduction

The rapid adoption of Electronic Health Records (EHRs) [1] enables
systematic investigation of phenotypes and their comorbidity [2–5].
EHR include rich phenotypic observations of patient subjects from
physician and nursing notes to diagnostic codes and prescription. One
important application of EHR is to detect and understand the risk of
adverse events such as death based on the recent health history of the
patient [6]. Accurate detection will enable efficient resource allocation
for the high-risk patients and can cost-effectively save many lives [7].
Understanding the mortality risk is equally important as it can in-
form practitioners for subsequent intervention. Many machine learning
methods were developed recently for predicting adverse events such as
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mortality and unplanned emergency re-admission [8–11]. However, the
progress on this front has been hindered by the lack of an interpretable
approach that can distill interpretable phenotypic concepts relevant to
the outcome of interest while having competitive detection precision
on those events.

Predicting mortality events using EHRs has been a long-standing
challenge due to the large search space of causal events. Survival
analysis models have evolved beyond traditional Cox proportional
hazards (PH) models [12] to include sophisticated techniques capable
of handling complex, high-dimensional data. For instance, the kernel
Cox regression method [13] extends the Cox model by incorporat-
ing kernel methods, allowing for a nuanced understanding of patient
vailable online 15 April 2024
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survival in relation to a broader range of clinical factors. Random
Survival Forests [14] and LASSO-penalized Cox models [15] were
developed for high-dimensional data, enhancing the predictive accu-
racy and interpretability of survival outcomes. These advancements
represent significant strides in survival analysis, enabling more precise
and comprehensive evaluations of patient data. While these have set the
foundational benchmark, they sometimes sidestep the complex, patient-
specific nuances. Recently, deep learning methods like DeepSurv [9]
and neural multi-task logistic regression [8] have entered the fray, har-
nessing the power of neural networks to predict patient survival with
greater accuracy. However, these methods are hard to interpret and
often require external approaches to explain their prediction [16–18].

Topic models are a family of Bayesian models [19]. In our context,
we treat patients as documents and their EHR codes as tokens. Topic
models infer the topic mixture of each document, the latent topic
for each token, and a set of latent topic distributions. Here the topic
mixture represents the mixture of phenotype of the patient and the set
of topic distributions represent the set of phenotypic distributions over
the EHR codes. Despite the simple generative process, topic models are
effective in distilling phenotype concepts from the EHR data [20–22].
Recently, we developed a guided topic model called Mixture of EHR
Guided (MixEHR-G) [23], which specifies the topic hyperparameters
based on the high-level phenotype codes (i.e., PheCodes) observed in
the patients. As a result, each topic is identifiable with known phe-
notype codes, thereby improving the down-stream analysis. However,
MixEHR-G does not have the ability to predict mortality. To address
this challenge, we aim to develop a model that leverages EHR data
for two primary purposes: (1) inferring mortality risk of patients from
their multi-modal EHRs; (2) identifying phenotype concepts of disease
comorbidity in order to explain high risk of mortality.

In this study, we present MixEHR Survival Guided (MixEHR-SurG;
Fig. 1). MixEHR-SurG is an extension of MixEHR [20] and MixEHR-
G [23] and designed to integrate survival information and high-
dimensional EHRs data via a supervised topic model framework [24].
Our contributions are three-folds: (1) integrating EHR topic infer-
ence with Cox proportional hazards likelihood; (2) integrating patient-
specific topic hyperparameters using the PheCode concepts such that
each topic can be identified with exactly one PheCode-associated phe-
notype; (3) multi-modal survival topic inference. As a result, MixEHR-
SurG can perform guided phenotype topic inference and survival risk
analysis simultaneously. We perform comprehensive evaluations of
MixEHR-SurG, benchmarking on both its predictive accuracy for pa-
tient survival times and its ability to generate meaningful survival-
related phenotype topics. In our simulation study, MixEHR-SurG not
only accurately predicts survival times but also identifies true survival
topics. When applied to the real-world Quebec Congenital Heart Dis-
ease (CHD) dataset and the MIMIC-III ICU dataset, MixEHR-SurG excels
in predicting survival times and produces meaningful mortality-related
phenotype topics. In the CHD dataset, MixEHR-SurG reveals cardiac-
related phenotypes as significant mortality risk factors after the first
onset of heart failure. In the MIMIC-III dataset, MixEHR-SurG identifies
critical neurological conditions as one of the key mortality indicators.

2. Methods

2.1. MixEHR

This section briefly reviews MixEHR [20]. EHR includes a collection
of medical documents of 𝑀 types, indexed by 𝑚 = 1,… ,𝑀 , such as ICD
odes, drug codes, and clinic notes, etc. These documents provide a
omprehensive overview of patients’ clinical histories and examination
esults, which reflects personal health conditions. For document type
, a list of EHR features, indexed by 𝑣 = 1,… , 𝑉 (𝑚), encompasses
ll potential unique EHR features that are collected for that specific
ocument type present in the dataset. For patient 𝑗 ∈ {1,… , 𝑃 },

the EHR document of type 𝑚 contains 𝑁 (𝑚) tokens, and each token
2

𝑗

is represented as 𝑥(𝑚)𝑗𝑖 , for 𝑖 = 1,… , 𝑁 (𝑚)
𝑗 . In the context of topic

modeling, the feature distribution of document type 𝑚 under topic 𝑘
is denoted as 𝛟(𝑚)

𝑘 = [𝜙(𝑚)
𝑘𝑣 ]

𝑉 (𝑚)

𝑣=1 ∈ R𝑉 (𝑚) . These weights are derived
from a Dirichlet distribution, with an unknown hyperparameter 𝛃(𝑚) ∈
R𝑉 (𝑚) . Additionally, the model assumes a specific topic assignment,
represented as 𝛉𝑗 ∈ R𝐾 , for each patient 𝑗, which is also derived from
a Dirichlet distribution, with a 𝐾-dimensional hyperparameter 𝜶. For
every EHR token 𝑥(𝑚)𝑗𝑖 , with a latent topic assignment represented as
𝑧(𝑚)𝑗𝑖 , MixEHR has the following generative process (Fig. 2a):

1. Generate the feature distribution 𝛟(𝑚)
𝑘 ∼ Dir

(

𝛃(𝑚)
)

for topic 𝑘 =
1,… , 𝐾 and type 𝑚 = 1,… ,𝑀 .

2. For each patient 𝑗 = 1,… , 𝑃 , sample a 𝐾-dimensional topic
mixture: 𝛉𝑗 ∼ Dir (𝜶).

(a) For each of the EHR token 𝑥(𝑚)𝑗𝑖 for 𝑖 = 1,… , 𝑁 (𝑚)
𝑗 , 𝑗 =

1,… , 𝑃 and 𝑚 = 1,… ,𝑀 :

i. Sample a latent topic for token 𝑖: 𝑧(𝑚)𝑗𝑖 ∼ Mul
(

𝛉𝑗
)

.

ii. Sample a word for token 𝑖: 𝑥(𝑚)𝑗𝑖 ∼ Mul
(

𝛟(𝑚)
𝑧(𝑚)𝑗𝑖

)

.

The posterior distributions of 𝛉𝑗 and 𝛟(𝑚)
𝑘 are approximated by

he collapsed mean-field variational inference method [25]. Although
ixEHR is useful for multi-modal topic inference, it does not directly

redict a target phenotype of interest. [21] proposed the MixEHR-
model in their study, which enables supervised topic inference for

redicting a binary phenotype label. Nevertheless, time-to-event out-
omes for survival analysis are crucial in medical research and clinical
pplications. Consequently, we seek to expand the MixEHR family to
urvival-supervised disease topic learning.

.2. MixEHR-G

The data generative process (Fig. 2b) assumes that for each patient
, a set of noisy phenotype label are observed based on a phenotype
eference such as the Phenotype Code or PheCode [26]. Let 𝐮𝑗 ∈ {0, 1}𝐾

e a binary vector of observed phenotype labels in patient 𝑗. The topic
ixture is sampled from a Dirichlet distribution 𝛉𝑗 ∼ Dir(𝛑𝑗 ), where
𝑗𝑘 ≡ 𝑝(𝑦𝑗𝑘 = 1 ∣ 𝑢𝑗𝑘), where 𝑦𝑗𝑘 is a binary latent variable indicating
resence or absence of phenotype 𝑘 for patient 𝑗. We infer the posterior
istribution of 𝑦𝑗𝑘 using two-component univariate mixture models as
escribed in Supplementary Section S3. In a nutshell, topic 𝑘 with
he observed phenotype label support in patient 𝑗 will have relatively
igher mixture proportion of 𝜃𝑗𝑘 than those topics without the pheno-
ype label support. The rest of the data generative process is identical
o MixEHR.

.3. MixEHR-SurG

Our objective is to identify phenotype topics that are informative
f patient survival time. To this end, we extend MixEHR-G to integrate
urvival information. Let 𝑌 be the survival time for a patient, i.e., the
ime until a specific event occurs. In many applications, such as clinical
tudies, the survival time of a patient may not be known exactly. For
xample, a patient may not experience the event before the study
nds or dropout during the study period (i.e., censored). Let 𝐶 be the
ensoring time. The actual observed time 𝑇 is either the survival time
r the censoring time, whichever comes first, i.e., 𝑇 = min(𝑌 , 𝐶). Let
= I(𝑌 ≤ 𝐶) ∈ {0, 1} be the censoring status, where 𝛿 = 1 indicates

hat 𝑌 is observed and 0 otherwise.
The survival function 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) outputs the probability of

urvival beyond time 𝑡:

(𝑡) = exp [−𝐻 (𝑡)]

here 𝐻(𝑡) is the cumulative hazard function, defined as 𝐻(𝑡) =
𝑡 ℎ(𝑢)d𝑢. This function accumulates the hazard function ℎ(𝑢), over
0
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Fig. 1. MixEHR-SurG overview. MixEHR-SurG consists of four main steps. The training process is highlighted in green, and the prediction process is depicted in purple. In Step 1,
we prepossess and aggregate raw EHR data for each patient 𝑗. Step 2 involves determining a 𝐾-dimensional phenotype topic prior, 𝛑𝑗 = (𝜋𝑗1 ,… , 𝜋𝑗𝐾 ), for each patient. Step 3 infers
phenotype topic distribution 𝛟(𝑚)

𝑘 ∈ R𝑉 (𝑚) for EHR type 𝑚 in topic 𝑘 (i.e., the model parameters of MixEHR-SurG). This requires inferring the latent topic assignment 𝑧𝑗𝑖 ∈ {1,… , 𝐾}
for each EHR token 𝑖 in patient 𝑗. In Step 4, the trained model is applied to predict personalized survival function for new patient. The details of the probabilistic graphical model
is depicted in Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the interval [0, 𝑡]. The hazard function ℎ(𝑢) typically represents the
instantaneous risk of the event (such as failure or death) occurring at
time 𝑢.

Here we use a semi-supervised Cox PH model [12] for the hazard
function. We further assume that the latent topic assignments can
influence the survival response 𝑇𝑗 (i.e., observed survival time for
patient 𝑗). Specifically, we first compute the topic proportion 𝐳̄𝑗 for each
patient 𝑗 = 1,… , 𝑃 :

𝐳̄𝑗 = [𝑧̄𝑗𝑘]𝐾𝑘=1 =

⎡

⎢

⎢

⎢

⎣

∑𝑀
𝑚=1

∑
𝑁 (𝑚)

𝑗
𝑖=1 I(𝑧(𝑚)𝑗𝑖 = 𝑘)

∑𝑀
𝑚=1 𝑁

(𝑚)
𝑗

⎤

⎥

⎥

⎥

⎦

𝐾

𝑘=1

where 𝐳̄𝑗 can be viewed as the estimate of 𝛉𝑗 .
Next, the survival time 𝑇𝑗 corresponds to the Cox proportional haz-

ards (PH) model with a system-wide 𝐾-dimensional Cox PH regression
coefficients 𝐰 (fixed but unknown). The baseline hazard function is
defined as: ℎ0 (⋅), for each patient 𝑗 = 1,… , 𝑃 :

ℎ
(

𝑇𝑗 |𝐳̄𝑗
)

= ℎ0
(

𝑇𝑗
)

exp
{

𝐰⊤𝐳̄𝑗
}

The preceding generative process of MixEHR-SurG is the same as
MixEHR-G (Fig. 2d). Lastly, as one of the simplified model, we also
implemented MixEHR-Surv (Fig. 2c), which is a survival-supervised
MixEHR without using the PheCode guide.

2.4. MixEHR-SurG model inference

As depicted in Fig. 1, MixEHR-SurG combines MixEHR-G and sur-
vival topic model into a single model. The joint-likelihood function
is:

𝑝
(

𝐓, 𝛅, ,, 𝛉,𝜱 ∣ 𝛂,𝛑,, ℎ0(⋅),𝐰
)

= 𝑝(𝛑 ∣ 𝐔)𝑝( ,, 𝛉,𝜱 ∣ 𝛂,𝛑,)𝑝
(

𝐓, 𝛅 ∣ , ℎ0(⋅),𝐰
)

The first term is the prior term 𝛑 for the phenotype topic, which we
separately infer using 2-component mixture univariate model on the
Phecode counts matrix 𝐔 for each PheCode-guided topic as detailed in
3

the Supplementary Section S3. The second term is the unsupervised
part of the likelihood and the same as the MixEHR-G [20]. The third
term is the survival supervised component of the model. We use the
Cox PH model with elastic net penalization (i.e., L1 + L2 norm) [27]
for the survival coefficients.

While we fit the first term separately and fix 𝛑 to the expected value,
we jointly fit the second and the third term of the joint likelihood.
Specifically, the full likelihood function of the penalized Cox PH model
is obtained by incorporating Breslow’s estimate of the baseline hazard
function and the penalty term with the hyperparameter 𝜆1 for L1 norm
and 𝜆2 for L2 norm.

𝑝(𝐓, 𝛅 ∣ , ℎ0 (⋅) ,𝐰)

=
𝑃
∏

𝑗=1

{

[

ℎ0
(

𝑇𝑗
)

exp
(

𝐰⊤𝐳̄𝑗
)]𝛿𝑗 exp

[

−𝐻0
(

𝑇𝑗
)

exp
(

𝐰⊤𝐳̄𝑗
)]

}

× exp
{

−𝜆2‖𝐰‖22 − 𝜆1‖𝐰‖1
}

Note that here 𝐰 is not a variable and there is no prior distribution. The
second term was added only for regularization purpose using Elastic
Net (Eq. (9); S4).

We will first integrate out 𝛉 and 𝜱 to achieve more accurate and
efficient inference, due to the conjugacy of Dirichlet variables 𝛉 and 𝜱
to the multinomial likelihood variables  and  [25]. Then, the ELBO
for the current marginal distribution for the observed data is:

𝐸𝐿𝐵𝑂 = E𝑞
[

log 𝑝
(

𝐓, 𝛅, , ∣ 𝜶,𝛑,, ℎ0 (⋅)
)

,𝐰
]

− E𝑞
[

log 𝑞()
]

(1)

where we assume a mean-field variational distribution for the topic
assignments:

𝑞() =
𝑀
∏

𝑚=1

𝑃
∏

𝑗=1

𝑁 (𝑚)
𝑗

∏

𝑖=1
𝑞(𝑧(𝑚)𝑗𝑖 ) =

𝑀
∏

𝑚=1

𝑃
∏

𝑗=1

𝑁 (𝑚)
𝑗

∏

𝑖=1

𝐾
∏

𝑘=1

(

𝛾 (𝑚)𝑗𝑖𝑘

)[𝑧(𝑚)𝑗𝑖 =𝑘]

Maximizing the Evidence Lower Bound (ELBO) with respect to 𝛾 (𝑚)𝑗𝑖𝑘 is
equivalent to computing the conditional expectation of the variable
(𝑚)
𝑧𝑗𝑖 = 𝑘 given the estimates for other tokens. There exists an efficient
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Fig. 2. Probabilistic graphical model (PGM) illustration of four models variants. (a) PGM for MixEHR. We first generate topic distributions 𝛟(𝑚)
𝑘 for each topic 𝑘 and document

type 𝑚, then we generate of a 𝐾-dimensional topic proportion 𝛉𝑗 for every patient 𝑗. Finally, we generate latent topics 𝑧(𝑚)𝑗𝑖 and corresponding words 𝑥(𝑚)𝑗𝑖 for each EHR token. (b)
PGM for MixEHR-G. We infer patient specif PheCode-Guided topic prior 𝛑𝑗 for each patient 𝑗 and used it as Dirichlet hyperparameters for the patient topic mixture 𝛉𝑗 enclosed
by a blue dashed rectangular. (c) PGM for MixEHR-Surv. For each patient 𝑗, we obtained the survival time 𝑇𝑗 and employed the Cox proportional hazards (PH) model with
coefficient 𝐰 and baseline hazard function ℎ0(⋅) to guide the learning of topics, as enclosed by a green dashed rectangular. (d) PGM for the proposed MixEHR-SurG. We combine
both PheCode-Guided prior and survival information into one single model. The resulting model can use the guided phenotype topics to model the Cox PH of survival likelihood.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
closed-form update expression (Supplementary Section S4):

𝛾 (𝑚)𝑗𝑖𝑘 ∝ exp
{

E
𝑞
(

𝑧(𝑚)(𝑗,−𝑖)

)

[

log 𝑝
(

𝑇𝑗 , 𝛿𝑗 ∣ 𝑧
(𝑚)
(𝑗,−𝑖), 𝑧

(𝑚)
𝑗𝑖 = 𝑘, ℎ0(𝑇𝑗 ),𝐰

)]

}

×
(

𝛼𝑘𝜋𝑗𝑘 +
[

𝑛(∙)𝑗∙𝑘
]

(𝑗,−𝑖)

)

𝛽(𝑚)
𝑥(𝑚)𝑗𝑖

+

[

𝑛(𝑚)
∙𝑥(𝑚)𝑗𝑖 𝑘

]

(−𝑗,−𝑖)
∑

𝑣 𝛽
(𝑚)
𝑣 +

[

𝑛(𝑚)∙𝑣𝑘

]

(−𝑗,−𝑖)

, (2)

where the subscript (𝑗,−𝑖) indicates excluding token 𝑖 of patient 𝑗 when
calculating its own expectation and the coordinate sufficient statistics
are:

𝑛(𝑚)∙𝑣𝑘 =
𝑃
∑

𝑗=1

𝑁 (𝑚)
𝑗
∑

𝑖=1
I
[

𝑥(𝑚)𝑗𝑖 = 𝑣, 𝑧(𝑚)𝑗𝑖 = 𝑘
]

,

𝑛(∙)𝑗∙𝑘 =
𝑀
∑

𝑚=1

𝑁 (𝑚)
𝑗
∑

𝑖=1
I
[

𝑧(𝑚)𝑗𝑖 = 𝑘
]

.

This equation is derived under the principle that the Kullback–
Leibler (KL) divergence reaches its minimum when the approximation
of the variational parameter matches the expectation under all other
known latent variables. Additionally, the hyperparameters 𝜶’s and
𝛃(𝑚)’s updates are refined through empirical Bayes by optimizing ELBO
given the variational estimates of the topic assignments 𝛾 (𝑚)𝑗𝑖𝑘 ’s. Detailed
derivation are described in Supplementary Section S4.
4

Given the variational expectation of , the Cox regression coeffi-
cients 𝐰 are fit via penalized log likelihood of log 𝑝(𝐓, 𝛅 ∣ , ℎ0 (⋅) ,𝐰)
via Cox elastic net regression, which was originally implemented in
the glmnet R package [27]. In our MixEHR-SurG implementation,
we use the Python wrapper of the glmnet (https://pypi.org/project/
glmnet/).

Upon training MixEHR-SurG, we obtain 𝜱̂
(𝑚)

, where 𝑚 = 1,… ,𝑀 in-
dexes modalities, the hyperparameters 𝛂̂ and ̂, and the point estimates
of the Cox regression coefficients 𝐰̂ along with the two-component mix-
ture models trained for each PheCode-guided topic (Supplementary
Section S3).

2.5. Inferring personalized survival probabilities

For a new patient 𝑗′ with EHR documents denoted as 𝑥(𝑚)
1∶𝑁 (𝑚) ,𝑗′

, 𝑚 =
1,… ,𝑀 . We first compute the topic assignments by the following steps:

1. For every token 𝑖 = 1,… , 𝑁 (𝑚)
𝑗′ over every modality 𝑚 = 1,… ,𝑀 :

𝛾 (𝑚)𝑗′𝑖𝑘 ∝
(

𝛼𝑘𝜋𝑗′𝑘 +
[

𝑛(∙)𝑗′∙𝑘
]

(𝑗′ ,−𝑖)

)

𝛟̂
(𝑚)
𝑥(𝑚)
𝑗′ 𝑖𝑘

where 𝜋𝑗′𝑘 is inferred using the trained 2-component mixture
model on the training data, 𝛼𝑘 is the estimated global hyperpa-
rameter, and 𝛟̂

(𝑚)
1∶𝐾 is the estimated topic distributions from the

training data.

https://pypi.org/project/glmnet/
https://pypi.org/project/glmnet/
https://pypi.org/project/glmnet/
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2. Update sufficient statistics:

𝑛(∙)𝑗′∙𝑘 =
𝑀
∑

𝑚=1

𝑁 (𝑚)
𝑗′
∑

𝑖=1
𝛾 (𝑚)𝑗′𝑖𝑘

3. Evaluate the log marginal likelihood:

𝑗′ =
𝑀
∑

𝑚=1

𝑁 (𝑚)
𝑗′
∑

𝑖=1

𝐾
∑

𝑘=1
log θ𝑗′𝑘𝜙

(𝑚)
𝑘𝑥(𝑚)

𝑗′ 𝑖

where 𝜃𝑗′𝑘 = 𝑛(∙)𝑗′∙𝑘∕
∑𝐾

𝑘′=1 𝑛
(∙)
𝑗′∙𝑘′ .

4. Repeat 1 and 2 until 3 converges.

Finally, we compute the mean of the variational estimates of the
topic assignments:

̄𝑗′𝑘 =
𝑀
∑

𝑚=1

1
𝑁 (𝑚)

𝑗′

𝑁 (𝑚)
𝑗′
∑

𝑖=1
𝛾 (𝑚)𝑗′𝑖𝑘

Using 𝛄̄𝑗′ =
[

𝛾̄𝑗′𝑘
]𝐾
𝑘=1 and survival coefficients 𝐰̂, we can calculate

the estimated hazard ratio for the new patient:

ĤR𝑗′ = exp
(

𝐰̂⊤𝛄̄𝑗′
)

oreover, we can compute the survival function for patient 𝑗 up to time
𝑡:

𝑃 (𝑇𝑗′ > 𝑡) = exp[−𝐻0(𝑡)ĤR𝑗′ ]

where 𝐻0(𝑡) = ∫ 𝑡
0 ℎ0(𝑢)d𝑢 denoted as the baseline cumulative hazard

function. With this survival function, we can generate personalized
survival curve for every patient and estimate their survival probability
at specific time points [12].

3. Data processing and experiments

3.1. Simulation design 1

We designed a simulation study to evaluate MixEHR-SurG in terms
of the accuracy of (1) identifying topics associated with patient survival
and (2) predicting patient survival times. We set the vocabulary to be
1000 words (𝑉 = 1000) and simulated 500 distinct topics (𝐾 = 500).

e sampled 8000 patients and each patient consists of 100 tokens
sing the data generative process of MixEHR-SurG. For each patient
∈ {1,… , 8000}, the topic proportions 𝛉𝑗 was sampled from a Dirichlet
istribution with the hyperparameter 𝜶 sampled from a Gamma dis-
ribution with a shape parameter of 10 and a scale parameter of 1.
he topic distributions 𝛟𝑘 was sampled from a 𝑉 -dimensional Dirichlet
istribution with the hyperparameter  sampled from a Gamma dis-
ribution with shape and scale parameters of 2 and 500, respectively.
he topic assignment 𝑧𝑗𝑖 ∈ {1,… , 𝐾} was sampled from a Categorical
istribution at the rate set to 𝛉𝑗 , and word assignments 𝑥𝑗𝑖 ∈ {1,… , 𝑉 }
ere sampled from another Categorical distribution at the rate 𝛟𝑧𝑗𝑖 .

To evaluate whether our model can identify mortality-related topics,
e set the survival coefficients 𝐰 to be a sparse vector. Specifically,
e set 50 out of the 450 coefficients to 6 and the rest to 0. We then

omputed the topic proportion 𝐳̄𝑗 for each patient 𝑗.
Survival time 𝑇𝑗 were simulated via the Cox model:

𝑗 = 𝐻−1
0

(

− log(𝑈 ) exp(−𝐰⊤𝐳̄𝑗 )
)

here 𝑈 is a uniformly distributed random variable on the interval
0, 1], and the transformation is done through the inverse of the baseline
azard function 𝐻−1

0 [28]. We chose 𝐻−1
0 based on the distribution

f the survival times. For simplicity, we adopt the Exponential dis-
ribution, a common choice in survival analysis. In this scenario, the
umulative baseline hazard function is expressed as 𝐻0(𝑡) = 𝜆𝑡, with 𝜆
eing a hyperparameter set to 1 for simplicity, leading to the inverse
unction 𝐻−1(𝑡) = 𝜆−1𝑡.
5

0

.2. Simulation design 2

To create a simulated dataset that closely replicates real-world data,
e focused on the CHD dataset, utilizing diagnosis codes documented
rior to the first ICU discharge of CHD patients for predicting mortality
ime. Our simulation was tailored to mirror the CHD dataset’s specific
ttributes, including a total of 8211 patients (P = 8211) and maintain-
ng consistency with the actual count of phenotype topics found in the
HD dataset (K = 490).

For the simulation of topic distributions 𝛟𝑘, we drew from a 𝑉 -
imensional Dirichlet distribution, with each hyperparameter 𝛃𝑘 deter-
ined by the relationship between ICD-9 codes and PheCodes. Specif-

cally, for a given ICD-9 code 𝑣 and PheCode 𝑘, we set 𝛽𝑘𝑣 = 1 if
here exists a mapping between 𝑣 and 𝑘; otherwise, 𝛽𝑘𝑣 = 0. To satisfy
he Dirichlet distribution requirement that 𝛃𝑘 > 0, we transformed
he mapping to 𝛽𝑘𝑣 = 𝛽𝑘𝑣 × 3 + 0.6. This adjustment ensures that the
imulated topic distributions closely approximate those learned from
he CHD dataset by reflecting the distribution of words within a topic
nd highlighting dataset-specific signals and differences.

For each patient, the topic proportions 𝛉𝑗 were directly sampled
ased on the observed patient’s PheCode frequency from the CHD
ataset. The number of records 𝑁𝑗 for each patient was also matched
o the CHD dataset to preserve information density and sparsity. We
hen simulated the ICD codes for the patient as follows: for each code
, the topic assignment 𝑧𝑗𝑖 ∈ {1,… , 𝐾} was sampled from a Categorical
istribution parameterized by 𝛉𝑗 . The ICD code for 𝑥𝑗𝑖 ∈ {1,… , 𝑉 } was
hen sampled from the Categorical distribution parameterized by 𝛟𝑧𝑗𝑖 .

e then randomly designated 10% of the Phenocode topics to have
urvival coefficients 𝑤𝑘 set to 6, with the remainder set to 0. Survival
imes 𝑇𝑗 for each patient was sampled the same way as in Simulation
esign 1.

.3. Preprocessing of the Quebec CHD data

We leveraged the inpatient and outpatient ICD codes from a pa-
ient’s first documented heart failure episode to predict their subse-
uent time to death, measured in days. The cohort for this study was the
ongenital Heart Disease (CHD) claim database. This dataset combines
he Physician Services and Claims spanning from 1983 to 2010, the
ospital Discharge Summaries from 1987 to 2010, and the Vital Status

ecords from 1983 to 2010. The dataset contains 8211 CHD subjects,
ho experienced at least one heart failure and had a recorded death
ate. The data were constructed by collating all the ICD codes recorded
uring the hospitalization of the first heart failure episode. In total,
here are 75,187 records and 1767 unique ICD9 codes. We mapped the
CD9 codes to 498 unique PheCodes in one-decimal code format for
he guided topic inference (Supplementary Section S3). We selected
heCodes that appeared in over 25% of the patient population within
he dataset. The survival time of each CHD patient is the time difference
etween the death date and the discharge date of the first heart failure
ospitalization.

.4. Preprocessing of MIMIC-III data

To demonstrate the generalization of MixEHR-SurG and the ability
or inferring multi-modal EHR topics, we made use of the Medical Infor-
ation Mart for Intensive Care III (MIMIC-III) dataset [29]. MIMIC-III

s a comprehensive dataset originating from the Beth Israel Deaconess
edical Center in Boston, MA, encompassing 53,423 distinct hospital

dmissions across 38,597 adult patients and 7870 neonates from 2001
o 2012. The dataset was downloaded from the PhysioNet database
mimic.physionet.org) under its user agreement. We carried out the
ame preprocessing as described in [23]. We then selected patients who
ad multiple inpatient records and a documented time of death. We
tilized all available EHR information up to the discharge time of the
irst inpatient stay to predict the time lapse the patient survived since

http://mimic.physionet.org
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the ICU discharge. To refine our dataset for more accurate predictions,
we specifically filtered out patients whose discharge date from their
first inpatient admission coincided with their date of death. The final
dataset consisted of 1458 patients, of which 1168 were used for training
the model and 290 for testing. Among these patients, there are 55,529
unique features among five EHR types including clinical notes (47,383),
ICD-9 codes (3293), lab tests (588), prescriptions (3444), and DRG
codes (821).

3.5. Evaluation

To evaluate the MixEHR-SurG’s ability of predicting patient survival
time, we utilized dynamic area under the ROC (AUC) curve [30–32],
a modification of the traditional ROC curve particularly suited for
survival data analysis. Dynamic AUC extends the concept of AUC to
survival data by defining time-dependent sensitivity (true positive rate)
and specificity (true negative rate). In this context, cumulative cases
include individuals who experienced an event by or before a specific
time {𝑗 ∣ 𝑇𝑗 ≤ 𝑡, 𝑗 = 1,… , 𝑃 }, while cumulative controls are those for
whom the event occurs after this time {𝑗 ∣ 𝑇𝑗 > 𝑡, 𝑗 = 1,… , 𝑃 }. The
orresponding cumulative/dynamic AUC evaluates the model’s ability
o distinguish between subjects who experienced an event by a given
ime

(

𝑇𝑗 ≤ 𝑡
)

and those who experienced it later
(

𝑇𝑗 > 𝑡
)

.
Given an estimated risk ratio ĤR𝑗 for the 𝑗th individual, the cumu-

lative/dynamic AUC at time 𝑡 is defined as:

ÂUC(𝑡) =

∑𝑃
𝑖=1

∑𝑃
𝑗=1 𝐼

(

𝑇𝑗 > 𝑡
)

𝐼
(

𝑇𝑖 ≤ 𝑡
)

𝐼
(

ĤR𝑗 ≤ ĤR𝑖

)

(

∑𝑃
𝑗=1 𝐼

(

𝑇𝑖 > 𝑡
)

)(

∑𝑃
𝑗=1 𝐼

(

𝑇𝑖 ≤ 𝑡
)

)

uilding on this, we define a sequence of time points and calculate
he cumulative/dynamic AUC at each point in this series, thereby
onstructing the Dynamic AUC curve.

. Results

.1. Simulation

MixEHR-SurG demonstrates high sensitivity and specificity in de-
ecting the 50 true survival-associated phenotypes out of the 450
henotypes (Fig. 3a,b; Supplementary Section S5). Notably, the true
ffect size is 6, and the model estimates is between 2 and 3, which is
ue to the L1/2-regularization (i.e., elastic net) on 𝐰 via the regular-
zed Cox regression (Supplementary Section S4). We then evaluated
ixEHR-SurG in terms of predicting survival times in comparison to

ipeline approach that ran MixEHR-G followed by Cox regression. This
omparison was made using dynamic AUC curves (Fig. 3c), which pro-
ide a nuanced measure of sensitivity and specificity over time for sur-
ival data. MixEHR-SurG slightly improved over MixEHR-G with mean
UC of 0.89 versus mean AUC of 0.88, respectively. To assess whether

he improvement is statistically significant, we repeated the simulations
0 times and computed the Wilcoxon signed-rank test, which yielded
𝑝-value of 0.0488 (Supplementary Fig. S1). We conducted another

imulation closely based on the real-world MIMIC-III and CHD datasets
Methods 3.2). As expected, we observed lower AUCs but the relative
erformance between MixEHR-SurG and Coxnet-MixEHR-G are similar
Supplementary Fig. S2).

.2. Application to the CHD dataset

We evaluated the survival models on CHD patient survival time
redictions after their initial HF hospitalization. MixEHR-SurG con-
erred the highest mean AUC (0.645) compared to MixEHR-G with
he Coxnet pipeline (0.623), MixEHR-Surv (0.576), and MixEHR with
he Coxnet pipeline (0.556) and DeepSurv (0.64) (Fig. 4). To further
scertain the benefit of joint topic inference and survival regression,
6

e sampled from the test patients with replacement 10,000 times and
calculated the difference of the mean AUCs for each bootstrap between
MixEHR-SurG and MixEHR-G+Coxnet: 𝛥AUC = AUC(MixEHR-SurG)
- AUC(MixEHR-G+Coxnet). We used the 10,000 𝛥AUCs to construct
an empirical distribution of the performance difference between the
two methods. The 75% confidence intervals (CIs) of the empirical
distribution is [0.00364 0.0370], corresponding to the 12.5% quantile
and 87.5% quantile of the empirical 𝛥AUC distribution, respectively.
Furthermore, 9260 out of the 10,000 bootstrap 𝛥AUC are positive,
which is statistically significant at the 𝑝-value < 2.5e−324 based on
one-sided Binomial test with the null hypothesis being at the equal
chance of producing positive and negative 𝛥AUC over the 10,000
bootstrap samples.

Based on the Cox regression learned simultaneously by MixEHR-
SurG, we identified the most predictive phenotypes of the post-HF
survival time (Fig. 5a). Among these phenotypes, nonrheumatic pul-
monary valve disorder (NPVD) (395.4) is the most prominent pheno-
type. Indeed, the CHD subjects who exhibit high topic proportion for
NPVD tend to have much shorter survival time compared to the rest of
the CHD subjects (Fig. 5b; S6). We then obtained the 𝑝-values and con-
fidence intervals of the six phenotypes selected for their large absolute
value of 𝑤𝑘, through a Cox proportional hazards model [12]. Based
on the results (Fig. 5c), it is evident that ‘‘Nonrheumatic pulmonary
valve disorders’’, ‘‘Postoperative shock’’, and ‘‘Cardiogenic shock’’ have
emerged as significant factors contributing to the occurrence of mortal-
ity. These phenotypes are characterized by substantial positive coeffi-
cients and statistically significant 𝑝-values, underscoring their strong as-
sociation with increased risk. Interestingly, ‘‘Complication due to other
implant and internal device’’ (859.0) is associated with longer survival
time, which perhaps imply the deficiency of healthcare among those
high risk patient group. We then examined the underlying top ICD9
codes under the predictive phenotype topics (Fig. 5d). In particular,
topic for NPVD includes several cardiac-related ICD codes with pul-
monary valve disorders being the most prominent one as expected. Phe-
notype topics ‘‘Postoperative shock’’ (958.1) and‘‘Cardiogenic shock’’
(797.1) were also associated with the relevant ICD-9 codes, implying
high topic coherence. The 3 negative topics are not heart-specific
but nonetheless semantically coherent. We further validated the topic
coherence based on the mutual information (MI) between the top ICD
codes for the top 6 survival phenotype topics (Supplementary Fig. S4).
Indeed, we observe a clear 5 × 5 block pattern corresponding to the top
5 ICD codes for the corresponding phenotype topic along the diagonal
of the MI matrix. Furthermore, the top ICD codes that are not part
of the PheCode definition exhibit high MI with the PheCode-defining
ICD code, implying that they are not only related to the phenotype but
also co-occur with the PheCode-defining ICD code in the actual patient
records. This also suggests that MixEHR-SurG does not completely rely
on the PheCode guide not also driven by the CHD data in characterizing
the phenotype topic distributions.

4.3. Application to MIMIC-III dataset

We then benchmarked each method on the mortality prediction
using the MIMIC-III dataset (Supplementary Fig. S5). Among the four
model variants, MixEHR-SurG achieved the highest mean AUC (0.54),
closely followed by the Coxnet-MixEHR-G pipeline (0.53). MixEHR-
Surv and the Coxnet-MixEHR pipeline conferred mean AUCs of 0.48
and 0.39, respectively. Moreover, MixEHR-SurG significantly outper-
formed the runner up baseline MixEHR-G+Coxnet with the 75% CI esti-
mated from 10,000 bootstrap equal to [0.000913, 0.0360]
(Supplementary Fig. S3b), and 8967 out of the 10,000 bootstrap 𝛥AUC
= AUC(MixEHR-SurG) - AUC(MixEHR-G+Coxnet) being positive (𝑝-
value <2.5e−324 based on one-sided Binomial test rejecting the null
hypothesis at the equal chance of getting positive and negative 𝛥AUC).

Nonetheless, the absolute AUC level is lower than the CHD data,
which may be due to the smaller sample size and more diverse causes

of death. In addition, the relationship between patient data and survival
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Fig. 3. Simulation Results for MixEHR-SurG. (a) Scatter plot comparing the estimated coefficients 𝐰 (in green) with their true values (in blue). (b) ROC curve for predicting zero
coefficients. (c) Dynamic AUC curves to evaluate survival time prediction. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
outcomes in MIMIC-III is influenced by the dataset’s heterogeneity and
the emergency nature of many admissions, where acute conditions can
overshadow chronic illness history in predicting mortality. The CHD
dataset, by contrast, lends itself to more accurate predictions due to the
focused nature of the cohort. Patients with CHD often have extensive
medical histories and a narrower range of complications, providing a
stronger and more direct signal for predicting mortality.

We then sought to identify phenotype topics that are indicative of
the short-term mortality based on the Cox regression coefficients that
were jointly fit with the EHR data by our MixEHR-SurG (Fig. 6a). The
most prominent phenotype topic is ‘‘Cerebral laceration and contusion
(816.0)’’, which also separates patients into high and low risk groups
(Fig. 6b). We subsequently assessed the 𝑝-values and confidence inter-
vals of six phenotypes with the largest absolute values of 𝑤𝑘, through
a Cox proportional hazards model [12] (Fig. 6c). The results con-
firm the significance of ‘‘Cerebral laceration and contusion’’, ‘‘Cerebral
edema and compression of brain’’ and ‘‘Dysthymic disorder’’. Specif-
ically, ‘‘Cerebral laceration and contusion’’ and ‘‘Cerebral edema and
compression of brain’’ show a positive correlation with an increased
risk of mortality, while ‘‘Dysthymic disorder’’ indicates a negative
correlation, suggesting a potential protective effect against mortality.
Indeed, traumatic brain injuries often lead to servere morbidity and
ultimately death. Conversely, MixEHR-SurG reveals conditions such as
‘‘Retinoschisis and retinal cysts’’ and ‘‘Dysthymic disorder’’ with large
negative survival coefficients, suggesting a low immediate threat to life.
Retinoschisis and retinal cysts typically do not directly impact survival
7

unless complicated by additional factors, and ‘‘Dysthymic disorder’’
while affecting quality of life, generally does not shorten life expectancy
in the absence of other comorbid conditions.

We further performed Kaplan–Meier (KM) survival analysis and
computed the p-values using one-sided log-rank tests for the top ICD
codes under the top 6 survival phenotype topics (Supplementary Fig.
S6a). We observe that the top codes associated with the first three
phenotypes, which have higher survival coefficients, display significant
marginal effects of increased hazard risks. Conversely, the top codes
linked to the last three phenotypes exhibit significant marginal effects
of reduced hazard risks. These findings confirm that our model can
effectively pinpoint terms with substantial impacts on survival. Some
ICD-9 codes, such as ’8080 Closed fracture of acetabulum’ and ’72889
Disorder of muscle, ligament, and fascia’, are not significant by them-
selves but contribute in aggregate to the survival phenotype suhc as
‘816.0’. Under the topics of traumatic brain injuries, namely ‘‘816.0:
Cerebral laceration and contusion’’ and ‘‘348.2: Cerebral edema and
compression of brain’’, the top ICD codes are semantically coherent
(Fig. 6d). Quantitatively, we computed the mutual information (MI)
between the top ICD codes (Supplementary Fig. S6b). As expected, the
top codes under the same phenotype topic exhibit high MI, implying a
high topic coherence. This may not be surprising as some of the ICD
codes were used to define the PheCode, which were then used to build
the topic prior.

To gain further insights to these topics, we examined the top
EHR codes from non-ICD modality topics (Fig. 6e-I). In clinical notes
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Fig. 4. Dynamic AUC curves for predicting time to death in CHD patients. We built a series of time points starting from 20 and incrementing by 20 up to 755. For each of
these time points, we computed the cumulative AUC, which then formed the Dynamic AUC curve. The mean AUC over time for each method was indicated as dash lines and
in the bracket after each method in the legend. The compared methods are: Coxnet-MixEHR: A pipeline approach by training MixEHR first and then training a Cox elastic net
(Coxnet) using the topic mixture from MixEHR as the input features; MixEHR-Surv: MixEHR with the Cox supervision but without the phecode guided prior for the topic inference;
Coxnet-MixEHR-G: A pipeline approach by training MixEHR-G first and then training a Cox elastic net (Coxnet) using the topic mixture from MixEHR-G as the input features;
MixEHR-SurG: the proposed method in this paper; Coxnet-ICD9: Cox elastic net (Coxnet) using ICD9 code as input features; Coxnet-PheCode: Coxnet using PheCode as input
features; Coxnet-AutoEncoder: Coxnet using the output of an autoencoder as input features; DeepSurv-PheCode: Deep survival model using PheCode as input features.
(Fig. 6e), we identified top words related to mannitol, a diuretic used
to reduce intracranial pressure [33]. Mannitol is the treatment of
cerebral edema (accumulation of excessive fluid in the brain). The
fact that it is the top drug code for the top risk mortality phenotype
816.0 suggests the severity of the condition. Indeed, we also found
‘‘Osmolality, Measured’’ to be the top term under the laboratory modal-
ity and ‘‘Mannitol 20%’’ as the top term under the same topic from
prescription modality (Fig. 6I). In addition, the DRG (Diagnosis-Related
Group) topic modality exhibit strong connection with the ICD-modality
topic despite the fact that DRG codes are not part of the PheCode
definition. Most of these top codes also exhibit consistently significant
marginal effect size based on the KM test and coherence in terms of
mutual information (Supplementary Fig. S7, S8, S9, S10). Together,
these results showcases the MixEHR-SurG’s ability to harness non-ICD
modality to enrich the phenotyping, which is consistent to what we
observed in MixEHR-G [23].

Our results suggested that brain injuries are the strong mortality-
indicators and the topic coherence across modalities provide the fine-
grained markers for screening high-risk patients in the future.

5. Discussion

Effective utilization of EHR data holds the promise to automate phe-
notyping [3] and identifying prognosis markers [34]. MixEHR-SurG ex-
tends EHR topic modeling to survival topic model with the identifiable
topics by utilizing the patient survival time and PheCode definitions,
respectively. We demonstrated the utility of MixEHR-SurG via both
simulation and real-world EHR data including the Quebec CHD and
MIMIC-III datasets [29]. The results from these rigorous experiments
highlights our contribution in MixEHR-SurG as an effective approach
to identify clinically meaningful phenotypes that implicate mortality.
8

Despite this advance, there are several limitations in our method.
First, EHR data often contain hierarchical structures of phenotypes that
are yet to be unraveled. For instance, leveraging advanced hierarchical
topic modeling [35,36] could shed light on sub-phenotypes and their
interactions within broader disease categories. While we have har-
nessed cross-sectional data effectively, the longitudinal nature of EHRs,
characterized by patient trajectories and time-stamped health events,
presents an opportunity to explore temporal patterns and trends [37]
in future studies.

Although MixEHR-SurG showcases predictive prowess, it does not
have the same level of expressiveness as deep neural networks. The
integration of deep learning with topic model [38,39] could potentially
enhance predictive performance by capturing non-linear relationships
and complex interaction effects within EHR data [22,40–42]. Fur-
thermore, the challenge in distinguishing between high-mortality risk
phenotypes and confounding factors remains and calls for causality-
driven models [43–46]. Future study will be dedicated to not only
predict outcomes but also discern the underlying causal mechanisms,
offering a more granular understanding of patient risk profiles. Causal
inference that discern direct from indirect influences of phenotypes
on survival outcomes will bring a step closer to effective clinical
interventions.

In summary, MixEHR-SurG is a novel topic model that leverages
EHR data for both interpretive and predictive modeling of patient
survival outcomes. By successfully mapping EHR data to relevant phe-
notypes and delineating those with high mortality risks, MixEHR-
SurG serves as a prototype for future systems that could offer nuanced
insights into patient care. The current study lays the groundwork for
subsequent research that could incorporate hierarchical data structures
and temporal dynamics within EHRs [35–37], potentially utilizing ad-
vanced machine learning techniques such as deep learning and causal
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Fig. 5. Mortality-related phenotypes for CHD patients who experienced first heart failure hospitalization. (a) Bar plot of the survival regression coefficients 𝐰. The effect size
of the 10 most positive and the 10 most negative phenotypes are displyaed as barplot. The positive value refers to phenotypes that are associated with high risk of mortality
and the negative value refers to phenotypes associated with low mortality risk. The inset at the up-left corner contains the bar plot for all the estimated 𝑤𝑘 , 𝑘 = 1,… , 𝐾 ranked
from the largest value to the smallest value. The top 3 and bottom phenotypes were colored in blue and red, respectively. (b) The survival curves of patient with high and low
risk of nonrheumatic pulmonary valve disorder (NPVD) (395.4). Patients were divided into two groups based on their topic proportions. The red curve represents patients with a
higher topic proportion (top 30%) in NPVD as shown by a significantly steeper decline and lower survival probability over time. The green curve, representing patients with lower
topic proportions of NPVD phenotype, shows a more gradual decline, reflecting a comparatively lower risk of mortality. (c) Effect size of the mortality-related phenotypes. We
ran simple Cox regression per phenotype topic to obtain their marginal effect size and 95% confidence interval of the top 3 high risk and bottom 3 low risk mortality-associated
phenotypes as identified by MixEHR-SurG in panel (a). Points indicate the coefficient values, Error bars show the 95% confidence intervals, and colors represent the significance
levels of these coefficients. (d) Heatmap featuring the top ICD-9 codes from the three most positively predictive and three most negatively predictive phenotypes as determined
by from MixEHR-SurG. The intensity of the colors indicates the topic probability in under each topic. The magnitude of the Cox coefficients are displayed in the last row. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Mortality-related multi-modal phenotypes for the ICU patients from MIMIC-III dataset. (a) Bar plot of survival regression coefficients 𝐰. Inset in the upper-left corner that displays all
estimated coefficients 𝑤𝑘 for 𝑘 = 1,… , 𝐾, organized from the largest to the smallest. We highlighted the top 10 coefficients with the largest effect sizes of positive and negative values. The
positive coefficients are linked to phenotypes that elevate the risk of mortality, while the negative coefficients are associated with phenotypes that are predictive of lower mortality risk. The
blue and red color highlight the top 3 and bottom 3 phenotypes, respectively, that we analyzed in-depth below. (b) Survival curves delineating two patient groups based on their distribution
levels within the ‘‘Cerebral laceration and contusion’’ topic, which is the most significant predictor of high mortality risk. The red curve illustrates patients with a higher distribution in
this topic, exhibiting a more pronounced decline in survival; the green curve, indicative of patients with a lower distribution, depicts a more gradual decrease in survival, pointing to a
lower mortality risk. (c) Effect size of the mortality-related phenotypes. We ran simple Cox regression per phenotype topic to obtain their marginal effect size and 95% confidence interval
of the top 3 high risk and bottom 3 low risk mortality-associated phenotypes as identified by MixEHR-SurG in panel (a). Points indicate the coefficient values, Error bars show the 95%
confidence intervals, and colors represent the significance levels of these coefficients. (d)-(I) Heatmap showing the top ICD-9 codes, clinical note terms, CPT descriptors, medications, and lab
tests under the moratality-related phenotypes. The color gradation indicate the prevalence of each feature within each phenotype topic. The last row indicates the Cox regression coefficients.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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inference models [38,39,43–46]. Such developments could further re-
fine the precision of survival predictions and enhance the interpretabil-
ity of complex healthcare data, ultimately leading to more informed
and personalized medical decision-making. As the field advances, we
anticipate that the integration of these sophisticated methodologies will
yield models that not only predict but also disentangle the intricate
network of disease causality within patient health trajectories [47–49].
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