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Part A: A property of Tweedie distributions

For completeness, we give here a known result of the Tweedie distribution and its detailed

proof.

Proposition 1. Let Zi =
∑Ni

di=1 Z̃di is the total claim amount. Let Yi = Zi/wi, where ωi is

the duration. Assume Ni is Poisson distributed Pois(λiwi). Conditional on Ni, assume Zdi’s

(di = 1, . . . , Ni) are i.i.d. Gamma(α, γi). Assume that under unit duration (i.e., wi = 1),

the mean-variance relation satisfies V ar(Y ∗i ) = φ[E(Y ∗i )]ρ, where Y ∗i is the pure premium

under unit duration, φ is a constant, and ρ = (α + 2)/(α + 1). Then for the pure premium

Yi under duration ωi

Yi ∼ Tw(µi, φ/wi, ρ).

Proof. Note that under unit duration wi = 1,

µ∗i := E(Y ∗i ) = E(E(Y ∗i |Ni)) = λiαγi,

V ar(Y ∗i ) = E(V ar(Y ∗i |Ni)) + V ar(E(Y ∗i |Ni)) = λiαγ
2
i + λiα

2γ2i .
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Similarly, under any duration wi,

µi := E(Yi) =
1

wi
E(Zi) = λiαγi,

V ar(Yi) =
1

w2
i

V ar(Zi) = (λiαγ
2
i + λiα

2γ2i )/wi.

As a result, we can obtain the mean-variance relation for the pure premium Yi that

V ar(Yi) =
1

wi
V ar(Y ∗i ) =

φ

wi
(µ∗i )

ρ =
φ

wi
µρi , (1)

where the second equation follows by

V ar(Y ∗i ) = φ[E(Y ∗i )]ρ. (2)

By the scale-invariance property of Tweedie distribution, the proof is complete.

Part B: Computational issues for profile likelihood

There are some computational issues, which must be taken care of when evaluating the log-

likelihood functions in (20) and (21) of Section 4.2: since in general there are no closed forms

for Tweedie densities, in likelihood evaluation one must deal with an infinite summation in

the normalizing function a(y, φ, ρ) = 1
y

∑∞
t=1Wt. For numerical evaluation of Tweedie densi-

ties, Dunn and Smyth (2005) proposed a series expansions approach, which sums an infinite

series arising from a Taylor expansion of the characteristic function. Alternatively, Dunn

and Smyth (2008) developed a Fourier inversion approach, which consists of an inversion of

the characteristic function based on numerical integration methods for oscillating functions.

These two numerical methods turn out to be complementary since each has advantages un-

der a certain situation: when only considering the case 1 < ρ < 2, the series approach

performs very well for small y but gradually loses computational efficiency as y increases,

whereas the inversion approach performs very well for large y but gradually fails to provide

accurate results as y decreases. Hence the inversion approach is preferred for large y and

the series approach for small y. Dunn and Smyth (2008) provided a simple guideline to

choose between the two methods. In this paper we use their R package “tweedie” (avail-

able at http://cran.r-project.org/web/packages/tweedie/index.html) for evaluating
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Tweedie densities in our profile likelihood computation. For further details regarding their

algorithms, the reader may refer to Dunn and Smyth (2005, 2008).

Part C: Bias-adjusted variable importance measure

Following Sandri and Zuccolotto (2008) and Sandri and Zuccolotto (2010), we compute the

biased-adjusted VI measure for each explanatory variable in the following way:

(1) For s = 1, . . . , S, repeat steps (2)–(4).

(2) Generate a matrix zs by randomly permutating (without replacement) the n rows of

the design matrix x, while keeping the order of columns unchanged.

(3) Create an n× 2p matrix x̃s = [x, zs] by binding zs with x matrix by column.

(4) Use the data {y, x̃s} to fit the model, and compute VI measures IsXj
for Xj and IsZs

j

for Zs
j , where Zs

j (jth column of Zs) is the pseudo-predictor corresponding to Xj.

(5) Compute the VI measure IXj
as the average of IsXj

and the baseline IZj
as the average

of IsZs
j

IXj
=

1

S

S∑
s=1

IsXj
IZj

=
1

S

S∑
s=1

IsZs
j
. (3)

(6) Report the adjusted VI measure as IadjXj
= IXj

− IZj
for the variable Xj.

The basic idea of the above algorithm is the following: the permutation breaks the

association between the response variable Y and each pseudo-predictor Zs
j , but still preserves

the association between Zs
j and Zs

k (k 6= j); since Zs
j is re-shuffled from Xj, Z

s
j has the same

number of possible splits as the corresponding predictor Xj and has approximately the

same probability of being selected in split nodes. Therefore, IZj
can be viewed as a bias

approximation of the importance of Xj.

Part D: Descriptive statistics for real data

The descriptive statistics of Yip and Yau (2005) data used in Section 6 are provided in Table

A1, A2 and A3.
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Total Claim Amount % obs. % of total sum Mean Median

0 61.1 0 0 0
(0, 10000] 29.6 36.0 4902 4842
(10000, 50000] 9.1 61.5 27144 27679
> 50000 0.2 2.5 52157 51986

Table A1: Description of the individual total claim amount in the last five years.

AGE HOMEKIDS BLUEBOOK KIDSDRIV
Min. 16.00 0.0000 1500 0.0000
1st Qu. 39.00 0.0000 9200 0.0000
Median 45.00 0.0000 14405 0.0000
Mean 44.84 0.7199 15666 0.1694
3rd Qu. 51.00 1.0000 20900 0.0000
Max. 81.00 5.0000 69740 4.0000

NPOLICY RETAINED TRAVTIME MVR PTS
Min. 1.000 1.000 5.00 0.000
1st Qu. 1.000 1.000 22.00 0.000
Median 1.000 4.000 33.00 1.000
Mean 1.695 5.328 33.42 1.709
3rd Qu. 2.000 7.000 44.00 3.000
Max. 9.000 25.000 142.00 13.000

Table A2: Descriptive statistics for the continuous variables in the claim history data set in
Section 6.

AREA MARRIED REVOKED GENDER

Rural: 20.2% No: 39.9% No: 87.8% F: 53.8%

Urban: 79.8% Yes: 60.1% Yes: 12.2% M: 46.2%

CAR USE MAX EDUC CAR TYPE JOBCLASS

Private: 63.2% <High School: 14.6% Panel Truck: 8.3% Blue Collar: 22.2%

Commercial: 36.8% Bachelors: 27.3% Pickup: 17.3% Clerical: 15.5%

High School: 28.7% Sedan: 26.2% Professional: 13.6%

Masters: 20.2% Sports Car: 11.4% Manager: 12.2%

PhD: 9.2% SUV: 27.9% Lawyer: 10.0%

Van: 8.9% Student: 8.7%

(Other): 17.8%

Table A3: Descriptive statistics for the categorical variables in the claim history data set in
Section 6.
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Part E: Identifying important interactions

In this section, we demonstrate that the nonparametric approach described in this paper can

serve as an important complement to the traditional GLM model in insurance rating. Even

under strict circumstances that the final model must have a GLM structure, our approach can

still be quite helpful due to its ability to automatically identify additional information such

as important interactions. It is often challenging for a GLM approach alone to capture such

information, especially if many explanatory variables are discrete (which is quite common for

insurance data sets). For example, if there are eight discrete explanatory variables each with

eight different values, there are
(
8
2

)
× 7× 7 = 1372 possible two-way interaction terms. Even

for data sets with millions of observations, it is in general not practical to fit simultaneously

all interaction terms in a GLM model.

We continue using the real data example in Section 6. Suppose one builds a TGLM model

with all main effects and applies the stepwise selection for variable selection (the p-values for

entering and removal of an variable are set to be 0.05 and 0.10, respectively). The resulting

model TGLM1 is showed in Table A4.

We next show that TDboost can provide insights into the structure of interaction terms,

which can be subsequently integrated into TGLM1. Elith et al. (2008) proposed a relative

importance measure to quantify magnitudes of fitted interaction effects. By adopting this

method for TDboost, we can calculate the relative importance of two-way interactions for

all possible pairs of predictors in TGLM1. Table A5 provides a summary list of 10 two-

way interactions with the highest relative importance. To improve TGLM1, we then add

to TGLM1 the two strongest interactions MVR PTS:AREA and REVOKED:AREA, which

account for approximately 88.33% of the total relative importance. We denote the adjusted

model with interactions as TGLM2. Table A4 suggests that both interactions in TGLM2

are significant at 0.05 significance level.

To compare TGLM1 and TGLM2, we use the Gini index as the criterion. As shown

in Table A6, we find that the maximal Gini index is 9.751 when using TGLM1 as the

base premium, and -2.172 when using TGLM2. Therefore, TGLM2 is more favorable than

TGLM1. We also compare the TGLM2 model against the TGLM1 model using the likelihood

ratio test and get the same conclusion (χ2 = 371.79, df = 2, p ≈ 0). Therefore, with the

help of TDboost, the overall model performance is improved under a GLM model structure.
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Variable
TGLM1 TGLM2

Estimate Std.Error Estimate Std.Error

Intercept -2.93** 0.20 -4.61** 0.54
KIDSDRIV 0.10** 0.04 0.10** 0.05
REVOKED 1.54** 0.06 2.47** 0.44
MVR PTS 0.20** 0.01 0.58** 0.07
MARRIED -0.17** 0.04 -0.17** 0.05
AREA 1.22** 0.07 2.12** 0.27
CAR TYPE 2 -0.08 0.10 -0.07 0.11
CAR TYPE 3 -0.07 0.10 -0.07 0.11
CAR TYPE 4 0.22* 0.11 0.23* 0.12
CAR TYPE 5 0.09 0.10 0.10 0.11
CAR TYPE 6 0.13 0.11 0.13 0.12
JOBCLASS 2 -0.17 0.11 -0.17 0.12
JOBCLASS 3 -0.07 0.12 -0.07 0.13
JOBCLASS 4 -0.47** 0.17 -0.49** 0.19
JOBCLASS 5 -0.07 0.13 -0.06 0.15
JOBCLASS 6 -0.42** 0.13 -0.43** 0.14
JOBCLASS 7 -0.26** 0.12 -0.27** 0.13
JOBCLASS 8 -0.21* 0.11 -0.21* 0.12
JOBCLASS 9 0.05 0.13 0.02 0.14
MVR PTS:AREA -0.20** 0.03
REVOKED:AREA -0.49** 0.23

Note. * p < 0.10; ** p < 0.05.

Table A4: TGLM1 and TGLM2 model coefficient estimates.

Variable 1 Variable 2 Importance

1 AREA MVR PTS 73.66
2 AREA REVOKED 14.67
3 AREA CAR TYPE 7.34
4 MVR PTS REVOKED 6.80
5 CAR TYPE REVOKED 2.49

Table A5: Summary of the top 10 most important two-way interactions in the TDboost
model in the automobile claims data example.

Competing Premium

Base Premium TGLM1 TGLM2

TGLM1 0 9.751 (0.213)
TGLM2 -2.172 (0.260) 0

Table A6: The averaged Gini indices and standard errors for TGLM1 and TGLM2 in the
auto insurance claim data example based on 20 random splits.
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