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The Tweedie GLM is a widely used method for predicting insurance premiums. However, the structure
of the logarithmic mean is restricted to a linear form in the Tweedie GLM, which can be too rigid for
many applications. As a better alternative, we propose a gradient tree-boosting algorithm and apply it to
Tweedie compound Poisson models for pure premiums. We use a profile likelihood approach to estimate
the index and dispersion parameters. Our method is capable of fitting a flexible nonlinear Tweedie model
and capturing complex interactions among predictors. A simulation study confirms the excellent prediction
performance of our method. As an application, we apply our method to an auto-insurance claim data and
show that the new method is superior to the existing methods in the sense that it generates more accurate
premium predictions, thus helping solve the adverse selection issue. We have implemented our method in
a user-friendly R package that also includes a nice visualization tool for interpreting the fitted model.

KEY WORDS: Claim frequency and severity gradient boosting; Insurance claims data; Ratemaking; Zero
inflation.

1. INTRODUCTION

One of the most important problems in insurance business
is to set the premium for the customers (policyholders). In a
competitive market, it is advantageous for the insurer to charge a
fair premium according to the expected loss of the policyholder.
In personal car insurance, for instance, if an insurance company
charges too much for old drivers and charges too little for young
drivers, then the old drivers will switch to its competitors, and the
remaining policies for the young drivers would be underpriced.
This results in the adverse selection issue (Dionne, Gouriéroux,
and Vanasse 2001): the insurer loses profitable policies and is
left with bad risks, resulting in economic loss both ways.

To appropriately set the premiums for the insurer’s customers,
one crucial task is to predict the size of actual (currently unfore-
seeable) claims. In this article, we will focus on modeling claim
loss, although other ingredients such as safety loadings, ad-
ministrative costs, cost of capital, and profit are also important
factors for setting the premium. One difficulty in modeling the
claims is that the distribution is usually highly right-skewed,
mixed with a point mass at zero. Such type of data cannot be
transformed to normality by power transformation, and spe-
cial treatment on zero claims is often required. As an example,
Figure 1 shows the histogram of an auto insurance claim data
(Yip and Yau 2005), in which there are 6290 policy records with
zero claims and 4006 policy records with positive losses.

The need for predictive models emerges from the fact that the
expected loss is highly dependent on the characteristics of an
individual policy such as age and motor vehicle record points of
the policyholder, population density of the policyholder’s res-

idential area, and age and model of the vehicle. Traditional
methods used generalized linear models (GLM; Nelder and
Wedderburn 1972) for modeling the claim size (e.g., Renshaw
1994; Haberman and Renshaw 1996). However, the authors of
the above papers performed their analyses on a subset of the
policies, which have at least one claim. Alternative approaches
have employed Tobit models by treating zero outcomes as cen-
sored below some cutoff points (Van de Ven and van Praag
1981; Showers and Shotick 1994), but these approaches rely
on a normality assumption of the latent response. Alternatively,
Jørgensen and de Souza (1994) and Smyth and Jørgensen (2002)
used GLMs with a Tweedie distributed outcome to simultane-
ously model frequency and severity of insurance claims. They
assume Poisson arrival of claims and gamma distributed amount
for individual claims so that the size of the total claim amount
follows a Tweedie compound Poisson distribution. Due to its
ability to simultaneously model the zeros and the continuous
positive outcomes, the Tweedie GLM has been a widely used
method in actuarial studies (Mildenhall 1999; Murphy, Brock-
man, and Lee 2000; Peters, Shevchenko, and Wüthrich 2008).

Despite of the popularity of the Tweedie GLM, a major limi-
tation is that the structure of the logarithmic mean is restricted
to a linear form, which can be too rigid for real applications. In
auto insurance, for example, it is known that the risk does not
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Figure 1. Histogram of the auto-insurance claim data as analyzed by Yip and Yau (2005). It shows that there are 6290 policy records with
zero total claims per policy year, while the remaining 4006 policy records have positive losses.

monotonically decrease as age increases (Anstey et al. 2005).
Although nonlinearity may be modeled by adding splines
(Zhang 2011), low-degree splines are often inadequate to cap-
ture the nonlinearity in the data, while high-degree splines often
result in the overfitting issue that produces unstable estimates.
Generalized additive models (GAM; Hastie and Tibshirani
1990; Wood 2006) overcome the restrictive linear assumption
of GLMs and can model the continuous variables by smooth
functions estimated from data. The structure of the model, how-
ever, has to be determined a priori. That is, one has to specify
the main effects and interaction effects to be used in the model.
As a result, misspecification of nonignorable effects is likely to
adversely affect prediction accuracy.

In this article, we aim to model the insurance claim size by a
nonparametric Tweedie compound Poisson model and propose
a gradient tree-boosting algorithm (TDboost henceforth) to fit
this model. We also implemented the proposed method as an
easy-to-use R package, which is publicly available.

Gradient boosting is one of the most successful machine
learning algorithms for nonparametric regression and classifica-
tion. Boosting adaptively combines a large number of relatively
simple prediction models called base learners into an ensem-
ble learner to achieve high-prediction performance. The seminal
work on the boosting algorithm called AdaBoost (Freund and
Schapire 1997) was originally proposed for classification prob-
lems. Later Breiman (1998) and Breiman (1999) pointed out
an important connection between the AdaBoost algorithm and
a functional gradient descent algorithm. Friedman, Hastie, and
Tibshirani (2000) and Hastie, Tibshirani, and Friedman (2009)
developed a statistical view of boosting and proposed gradient
boosting methods for both classification and regression. There
is a large body of literature on boosting. We refer interested
readers to Bühlmann and Hothorn (2007) for a comprehensive
review of boosting algorithms.

The TDboost model is motivated by the proven success of
boosting in machine learning for classification and regression
problems (Friedman 2001, 2002; Hastie, Tibshirani, and Fried-
man 2009). Its advantages are threefold. First, the model struc-
ture of TDboost is learned from data and not predetermined,
thereby avoiding an explicit model specification. Nonlinearities,
discontinuities, complex and higher order interactions are natu-
rally incorporated into the model to reduce the potential mod-
eling bias and to produce high predictive performance, which
enables TDboost to serve as a benchmark model in scoring in-

surance policies, guiding pricing practice, and facilitating mar-
keting efforts. Feature selection is performed as an integral part
of the procedure. In addition, TDboost handles the predictor
and response variables of any type without the need for trans-
formation, and it is highly robust to outliers. Missing values in
the predictors are managed almost without loss of information
(Elith, Leathwick, and Hastie 2008). All these properties make
TDboost a more attractive tool for insurance premium mod-
eling. On the other hand, we acknowledge that its results are
not as straightforward as those from the Tweedie GLM model.
Nevertheless, TDboost does not have to be regarded as a black
box. It can provide interpretable results, by means of the partial
dependence plots, and relative importance of the predictors.

The remainder of this article is organized as follows. We
briefly review the gradient boosting algorithm and the Tweedie
compound Poisson model in Sections 2 and 3, respectively. We
present the main methodological development with implemen-
tation details in Section 4. In Section 5, we use simulation to
show the high-predictive accuracy of TDboost. As an applica-
tion, we apply TDboost to analyze an auto-insurance claim data
in Section 6.

2. GRADIENT BOOSTING

Gradient boosting (Friedman 2001) is a recursive, nonpara-
metric machine learning algorithm that has been successfully
used in many areas. It shows remarkable flexibility in solving
different loss functions. By combining a large number of base
learners, it can handle higher order interactions and produce
highly complex functional forms. It provides high-prediction
accuracy and often outperforms many competing methods, such
as linear regression/classification, bagging (Breiman 1996),
splines, and CART (Breiman et al. 1984).

To keep the article self-contained, we briefly explain the gen-
eral procedures for the gradient boosting. Let x = (x1, . . . , xp)ᵀ

be a p-dimensional column vector for the predictor variables and
y be the one-dimensional response variable. The goal is to es-
timate the optimal prediction function F̃ (·) that maps x to y by
minimizing the expected value of a loss function�(·, ·) over the
function class F :

F̃ (·) = arg min
F (·)∈F

Ey,x[�(y, F (x))],



458 Journal of Business & Economic Statistics, July 2018

where � is assumed to be differentiable with respect to F.
Given the observed data {yi, xi}ni=1, where xi = (xi1, . . . , xip)ᵀ,
estimation of F̃ (·) can be done by minimizing the empirical risk
function

min
F (·)∈F

1

n

n∑
i=1

�(yi, F (xi)). (1)

For the gradient boosting, each candidate function F ∈ F is
assumed to be an ensemble of M base learners

F (x) = F [0] +
M∑
m=1

β[m]h(x; ξ [m]), (2)

where h(x; ξ [m]) usually belongs to a class of some simple func-
tions of x called base learners (e.g., regression/decision tree)
with the parameter ξ [m] (m = 1, 2, . . . ,M). F [0] is a constant
scalar and β[m] is the expansion coefficient. Note that differing
from the usual structure of an additive model, there is no restric-
tion on the number of predictors to be included in each h(·), and
consequently, high-order interactions can be easily considered
using this setting.

A forward stagewise algorithm is adopted to approximate the
minimizer of (1), which builds up the components β[m]h(x; ξ [m])
(m = 1, 2, . . . ,M) sequentially through a gradient-descent-like
approach. At each iteration stage m (m = 1, 2, . . .), suppose that
the current estimate for F̃ (·) is F̂ [m−1](·). To update the estimate
from F̂ [m−1](·) to F̂ [m](·), the gradient boosting fits a negative
gradient vector (as the working response) to the predictors using
a base learner h(x; ξ [m]). This fitted h(x; ξ [m]) can be viewed as
an approximation of the negative gradient. Subsequently, the
expansion coefficient β[m] can then be determined by a line
search minimization with the empirical risk function, and the
estimation of F̃ (x) for the next stage becomes

F̂ [m](x) := F̂ [m−1](x) + νβ[m]h(x; ξ [m]), (3)

where 0 < ν ≤ 1 is the shrinkage factor (Friedman 2001) that
controls the update step size. A small ν imposes more shrinkage,
while ν = 1 gives complete negative gradient steps. Friedman
(2001) has found that the shrinkage factor reduces overfitting
and improves the predictive accuracy.

3. COMPOUND POISSON DISTRIBUTION AND
TWEEDIE MODEL

In insurance premium prediction problems, the total claim
amount for a covered risk usually has a continuous distribution
on positive values, except for the possibility of being exact
zero when the claim does not occur. One standard approach
in actuarial science in modeling such data is using Tweedie
compound Poisson models, which we briefly introduce in this
section.

Let N be a Poisson random variable denoted by Pois(λ),
and let Z̃d ’s (d = 0, 1, . . . , N) be iid gamma random variables
denoted by Gamma(α, γ ) with mean αγ and variance αγ 2.
Assume N is independent of Z̃d ’s. Define a random variable Z
by

Z =
{

0 if N = 0
Z̃1 + Z̃2 + · · · + Z̃N if N = 1, 2, . . .

. (4)

Thus, Z is the Poisson sum of independent Gamma random
variables. In insurance applications, one can view Z as the total
claim amount, N as the number of reported claims and Z̃d ’s as
the insurance payment for the dth claim. The resulting distri-
bution of Z is referred to as the compound Poisson distribution
(Jørgensen and de Souza 1994; Smyth and Jørgensen 2002),
which is known to be closely connected to exponential disper-
sion models (EDM; Jørgensen 1987). Note that the distribution
of Z has a probability mass at zero: Pr(Z = 0) = exp(−λ). Then
based on that Z conditional onN = j is Gamma(jα, γ ), the dis-
tribution function of Z can be written as

fZ(z|λ, α, γ ) = Pr(N = 0)d0(z) +
∞∑
j=1

Pr(N = j )fZ|N=j (z)

= exp(−λ)d0(z) +
∞∑
j=1

λje−λ

j !

zjα−1e−z/γ

γ jα�(jα)
,

where d0 is the Dirac delta function at zero and fZ|N=j is the
conditional density of Z givenN = j . Smyth (1996) pointed out
that the compound Poisson distribution belongs to a special class
of EDMs known as Tweedie models (Tweedie 1984), which are
defined by the form

fZ(z|θ, φ) = a(z, φ) exp
{zθ − κ(θ )

φ

}
, (5)

where a(·) is a normalizing function, κ(·) is called the cumulant
function, and both a(·) and κ(·) are known. The parameter θ is in
R and the dispersion parameter φ is in R

+. For Tweedie models
the mean E(Z) ≡ μ = κ̇(θ ) and the variance var(Z) = φκ̈(θ ),
where κ̇(θ ) and κ̈(θ ) are the first and second derivatives of κ(θ ),
respectively. Tweedie models have the power mean–variance
relationship var(Z) = φμρ for some index parameter ρ. Such
mean–variance relation gives

θ =
{
μ1−ρ
1−ρ , ρ �= 1

logμ, ρ = 1
, κ(θ ) =

{
μ2−ρ
2−ρ , ρ �= 2

logμ, ρ = 2
. (6)

One can show that the compound Poisson distribution belongs
to the class of Tweedie models. Indeed, if we reparameterize
(λ, α, γ ) by

λ = 1

φ

μ2−ρ

2 − ρ
, α = 2 − ρ

ρ − 1
, γ = φ(ρ − 1)μρ−1, (7)

the compound Poisson model will have the form of a Tweedie
model with 1 < ρ < 2 andμ > 0. As a result, for the rest of this
article, we only consider the model (4), and simply refer to (4)
as the Tweedie model (or Tweedie compound Poisson model),
denoted by Tw(μ, φ, ρ), where 1 < ρ < 2 and μ > 0.

It is straightforward to show that the log-likelihood of the
Tweedie model is

log fZ(z|μ, φ, ρ) = 1

φ

(
z
μ1−ρ

1 − ρ
− μ2−ρ

2 − ρ

)
+ log a(z, φ, ρ),

(8)
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where the normalizing function a(·) can be written as

a(z, φ, ρ)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
z

∞∑
t=1
Wt (z, φ, ρ)

= 1
z

∞∑
t=1

ztα

(ρ − 1)tαφt(1+α)(2 − ρ)t t!�(tα)
for z > 0

1 for z = 0

,

and α = (2 − ρ)/(ρ − 1) and
∑∞

t=1Wt is an example of
Wright’s generalized Bessel function (Tweedie 1984).

4. OUR PROPOSAL

In this section, we propose to integrate the Tweedie model to
the tree-based gradient boosting algorithm to predict insurance
claim size. Specifically, our discussion focuses on modeling the
personal car insurance as an illustrating example (see Section 6
for a real data analysis), since our modeling strategy is easily
extended to other lines of nonlife insurance business.

Given an auto-insurance policy i, let Ni be the number of
claims (known as the claim frequency) and Z̃di be the size of
each claim observed for di = 1, . . . , Ni . Let wi be the policy
duration, that is, the length of time that the policy remains in
force. Then, Zi = ∑Ni

di=1 Z̃di is the total claim amount. In the
following, we are interested in modeling the ratio between the
total claim and the duration Yi = Zi/wi , a key quantity known
as the pure premium (Ohlsson and Johansson 2010).

Following the settings of the compound Poisson model, we
assume Ni is Poisson distributed, and its mean λiwi has a
multiplicative relation with the duration wi , where λi is a
policy-specific parameter representing the expected claim fre-
quency under unit duration. Conditional on Ni , assume Zdi ’s
(di = 1, . . . , Ni) are iid Gamma(α, γi), where γi is a policy-
specific parameter that determines claim severity, and α is
a constant. Furthermore, we assume that under unit duration
(i.e., wi = 1), the mean–variance relation of a policy satis-
fies var(Y ∗

i ) = φ[E(Y ∗
i )]ρ for all policies, where Y ∗

i is the
pure premium under unit duration, φ is a constant, and ρ =
(α + 2)/(α + 1). Then, it is known that Yi ∼ Tw(μi, φ/wi, ρ),
the details of which are provided in Appendix A.

Then, we consider a portfolio of policies {(yi, xi , wi)}ni=1 from
n independent insurance contracts, where for the ith contract,
yi is the policy pure premium, xi is a vector of explanatory
variables that characterize the policyholder and the risk being
insured (e.g., house, vehicle), and wi is the duration. Assume
that the expected pure premium μi is determined by a predictor
function F : R

p → R of xi :

log{μi} = log{E(Yi |xi)} = F (xi). (9)

In this article, we do not impose a linear or other parametric form
restriction on F (·). Given the flexibility of F (·), we call such
setting as the boosted Tweedie model (as opposed to the Tweedie
GLM). Given {(yi, xi , wi)}ni=1, the log-likelihood function can

be written as


(
F (·), φ, ρ|{yi, xi , wi}ni=1

) =
n∑
i=1

log fY (yi |μi, φ/wi, ρ),

=
n∑
i=1

wi

φ

(
yi
μ

1−ρ
i

1 − ρ
− μ

2−ρ
i

2 − ρ

)
+ log a(yi, φ/wi, ρ). (10)

4.1 Estimating F (·) via TDboost

We estimate the predictor function F (·) by integrating the
boosted Tweedie model into the tree-based gradient boosting
algorithm. To develop the idea, we assume that φ and ρ are
given for the time being. The joint estimation of F (·), φ, and ρ
will be studied in Section 4.2.

Given ρ and φ, we replace the general objective function in
(1) by the negative log-likelihood derived in (10), and target
the minimizer function F ∗(·) over a class F of base learner
functions in the form of (2). That is, we intend to estimate

F ∗(x) = argmin
F∈F

{− 
(
F (·), φ, ρ|{yi, xi , wi}ni=1

)}
= argmin

F∈F

n∑
i=1

�(yi, F (xi)|ρ), (11)

where

�(yi, F (xi)|ρ)

= wi

{
− yi exp[(1 − ρ)F (xi)]

1 − ρ
+ exp[(2 − ρ)F (xi)]

2 − ρ

}
.

Note that in contrast to (11), the function class targeted by
Tweedie GLM (Smyth 1996) is restricted to a collection of
linear functions of x.

We propose to apply the forward stagewise algorithm de-
scribed in Section 2 for solving (11). The initial estimate of
F ∗(·) is chosen as a constant function that minimizes the nega-
tive log-likelihood:

F̂ [0] = argmin
η

n∑
i=1

�(yi, η | ρ)

= log

(∑n
i=1wiyi∑n
i=1wi

)
.

This corresponds to the best estimate of F without any covari-
ates. Let F̂ [m−1] be the current estimate before the mth iteration.
At the mth step, we fit a base learner h(x; ξ [m]) via

ξ̂
[m] = argmin

ξ [m]

n∑
i=1

[
u

[m]
i − h(xi ; ξ

[m])
]2
, (12)

where (u[m]
1 , . . . , u[m]

n )ᵀ is the current negative gradient of �(· |
ρ), that is,
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u
[m]
i = −∂�(yi, F (xi) | ρ)

∂F (xi)

∣∣∣∣
F (xi )=F̂ [m−1](xi )

(13)

= wi
{−yi exp

[
(1 − ρ)F̂ [m−1](xi)

]
+ exp

[
(2 − ρ)F̂ [m−1](xi)

]}
, (14)

and use an L-terminal node regression tree

h(x; ξ [m]) =
L∑
l=1

u
[m]
l I

(
x ∈ R[m]

l

)
(15)

with parameters ξ [m] = {R[m]
l , u

[m]
l }Ll=1 as the base learner. To

find R[m]
l and u[m]

l , we use a fast top-down “best-fit” algorithm
with a least-squares splitting criterion (Friedman, Hastie, and
Tibshirani 2000) to find the splitting variables and correspond-
ing split locations that determine the fitted terminal regions
{R̂[m]

l }Ll=1. Note that estimating the R[m]
l entails estimating the

u
[m]
l as the mean falling in each region:

ū
[m]
l = meani:xi∈R̂[m]

l

(
u

[m]
i

)
l = 1, . . . , L.

Once the base learner h(x; ξ [m]) has been estimated, the opti-
mal value of the expansion coefficient β[m] is determined by a
line search

β[m] = argmin
β

n∑
i=1

�
(
yi, F̂

[m−1](xi) + βh
(

xi ; ξ̂
[m]
)

| ρ
)

= argmin
β

n∑
i=1

�

(
yi, F̂

[m−1](xi)

+ β

L∑
l=1

ū
[m]
l I

(
xi ∈ R̂[m]

l

)
| ρ
)
. (16)

The regression tree (15) predicts a constant value ū[m]
l within

each region R̂[m]
l , so we can solve (16) by a separate line search

performed within each respective region R̂[m]
l . The problem (16)

reduces to finding a best constant η[m]
l to improve the current

estimate in each region R̂[m]
l based on the following criterion:

η̂
[m]
l = argmin

η

∑
i:xi∈R̂[m]

l

�
(
yi, F̂

[m−1](xi) + η | ρ) ,
l = 1, . . . , L, (17)

where the solution is given by

η̂
[m]
l = log

{∑
i:xi∈R̂[m]

l
wiyi exp[(1 − ρ)F̂ [m−1](xi)]∑

i:xi∈R̂[m]
l
wi exp[(2 − ρ)F̂ [m−1](xi)]

}
,

l = 1, . . . , L. (18)

Having found the parameters {η̂[m]
l }Ll=1, we then update the

current estimate F̂ [m−1](x) in each corresponding region

F̂ [m](x) = F̂ [m−1](x) + νη̂
[m]
l I (x ∈ R̂[m]

l ), l = 1, . . . , L,

(19)

where 0 < ν ≤ 1 is the shrinkage factor. Following (Friedman
2001), we set ν = 0.005 in our implementation. More discus-
sions on the choice of tuning parameters are in Section 4.4.

In summary, the complete TDboost algorithm is shown in
Algorithm 1. The boosting step is repeated M times and we
report F̂ [M](x) as the final estimate.

Algorithm 1. TDboost

1. Initialize F̂ [0]

F̂ [0] = log

(∑n
i=1wiyi∑n
i=1wi

)
.

2. For m = 1, . . . ,M repeatedly do steps 2(a)–2(d)
2. (a). Compute the negative gradient (u[m]

1 , . . . , u[m]
n )ᵀ

u
[m]
i = wi

{− yi exp[(1 − ρ)F̂ [m−1](xi)]

+ exp[(2 − ρ)F̂ [m−1](xi)]
}

i = 1, . . . , n.

2. (b). Fit the negative gradient vector (u[m]
1 , . . . , u[m]

n )ᵀ to
(x1, . . . , xn)ᵀ by an L-terminal node regression tree,
where xi = (xi1, . . . , xip)ᵀ for i = 1, . . . , n, giving
us the partitions {R̂[m]

l }Ll=1.
2. (c). Compute the optimal terminal node predictions η[m]

l

for each region R̂[m]
l , l = 1, 2, . . . , L

η̂
[m]
l = log

{∑
i:xi∈R̂[m]

l
wiyi exp[(1 − ρ)F̂ [m−1](xi)]∑

i:xi∈R̂[m]
l
wi exp[(2 − ρ)F̂ [m−1](xi)]

}
.

2. (d). Update F̂ [m](x) for each region R̂[m]
l , l = 1, 2, . . . , L

F̂ [m](x) = F̂ [m−1](x) + νη̂
[m]
l I (x ∈ R̂[m]

l )

l = 1, 2, . . . , L.

3. Report F̂ [M](x) as the final estimate.

4.2 Estimating (ρ, φ) via Profile Likelihood

Following Dunn and Smyth (2005), we use the profile like-
lihood to estimate the dispersion φ and the index param-
eter ρ, which jointly determine the mean–variance relation
var(Yi) = φμ

ρ

i /wi of the pure premium. We exploit the fact
that in Tweedie models the estimation of μ depends only on ρ:
given a fixed ρ, the mean estimate μ∗(ρ) can be solved in (11)
without knowing φ. Then conditional on this ρ and the corre-
sponding μ∗(ρ), we maximize the log-likelihood function with
respect to φ by

φ∗(ρ) = argmax
φ

{
(μ∗(ρ), φ, ρ)

}
, (20)

which is a univariate optimization problem that can be solved
using a combination of golden section search and successive
parabolic interpolation (Brent 2013). In such a way, we have
determined the corresponding (μ∗(ρ), φ∗(ρ)) for each fixed ρ.
Then, we acquire the estimate of ρ by maximizing the profile
likelihood with respect to 50 equally spaced values {ρ1, . . . , ρ50}
on (0, 1):

ρ∗ = argmax
ρ∈{ρ1,...,ρ50}

{
(μ∗(ρ), φ∗(ρ), ρ)

}
. (21)

Finally, we apply ρ∗ in (11) and (20) to obtain the corresponding
estimates μ∗(ρ∗) and φ∗(ρ∗). Some additional computational
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issues for evaluating the log-likelihood functions in (20) and
(21) are discussed in Appendix B.

4.3 Model Interpretation

Compared to other nonparametric statistical learning methods
such as neural networks and kernel machines, our new estimator
provides interpretable results. In this section, we discuss some
ways for model interpretation after fitting the boosted Tweedie
model.

4.3.1 Marginal Effects of Predictors. The main effects and
interaction effects of the variables in the boosted Tweedie model
can be extracted easily. In our estimate we can control the or-
der of interactions by choosing the tree size L (the number of
terminal nodes) and the number p of predictors. A tree with L ter-
minal nodes produces a function approximation of p predictors
with interaction order of at most min(L− 1, p). For example, a
stump (L = 2) produces an additive TDboost model with only
the main effects of the predictors, since it is a function based
on a single splitting variable in each tree. Setting L = 3 allows
both main effects and second-order interactions.

Following Friedman (2001) we use the so-called partial de-
pendence plots to visualize the main effects and interaction
effects. Given the training data {yi, xi}ni=1, with a p-dimensional
input vector x = (x1, x2, . . . , xp)ᵀ, let zs be a subset of size
s, such that zs = {z1, . . . , zs} ⊂ {x1, . . . , xp}. For example, to
study the main effect of the variable j, we set the subset
zs = {zj }, and to study the second order interaction of vari-
ables i and j, we set zs = {zi, zj }. Let z\s be the complement
set of zs , such that z\s ∪ zs = {x1, . . . , xp}. Let the prediction
F̂ (zs |z\s) be a function of the subset zs conditioned on specific
values of z\s . The partial dependence of F̂ (x) on zs then can be
formulated as F̂ (zs |z\s) averaged over the marginal density of
the complement subset z\s

F̂s(zs) =
∫
F̂ (zs |z\s)p\s(z\s)dz\s , (22)

where p\s(z\s) = ∫
p(x)dzs is the marginal density of z\s . We

estimate (22) by

F̄s(zs) = 1

n

n∑
i=1

F̂ (zs |z\s,i), (23)

where {z\s,i}ni=1 are evaluated at the training data. We then plot
F̄s(zs) against zs . We have included the partial dependence plot
function in our R package “TDboost.” We will demonstrate this
functionality in Section 6.

4.3.2 Variable Importance. In many applications, identi-
fying relevant predictors of the model in the context of tree-
based ensemble methods is of interest. The TDboost model
defines a variable importance measure for each candidate pre-
dictor Xj in the set X = {X1, . . . , Xp} in terms of predic-
tion/explanation of the response Y . The major advantage of this
variable selection procedure, as compared to univariate screen-
ing methods, is that the approach considers the impact of each
individual predictor as well as multivariate interactions among
predictors simultaneously.

We start by defining the variable importance (VI henceforth)
measure in the context of a single tree. First introduced by

Breiman et al. (1984), the VI measure IXj (Tm) of the variable
Xj in a single tree Tm is defined as the total heterogeneity
reduction of the response variable Y produced byXj , which can
be estimated by adding up all the decreases in the squared error
reductions δ̂l obtained in all L− 1 internal nodes when Xj is
chosen as the splitting variable. Denote v(Xj ) = l the event that
Xj is selected as the splitting variable in the internal node l, and
let Ijl = I (v(Xj ) = l). Then

IXj (Tm) =
L−1∑
l=1

δ̂lIj l, (24)

where δ̂l is defined as the squared error difference between the
constant fit and the two subregion fits (the sub-region fits are
achieved by splitting the region associated with the internal node
l into the left and right regions). Friedman (2001) extended the
VI measure IXj for the boosting model with a combination of
M regression trees, by averaging (24) over {T1, . . . , TM}:

IXj = 1

M

M∑
m=1

IXj (Tm). (25)

Despite of the wide use of the VI measure, Breiman et al.
(1984) and White and Liu (1994) among others have pointed
out that the VI measures (24) and (25) are biased: even ifXj is a
noninformative variable to Y (not correlated to Y), Xj may still
be selected as a splitting variable, hence the VI measure of Xj
is nonzero by Eq. (25). Following Sandri and Zuccolotto (2008)
and Sandri and Zuccolotto (2010) to avoid the variable selection
bias, in this article we compute an adjusted VI measure for each
explanatory variable by permutating eachXj , the computational
details are provided in Appendix C.

4.4 Implementation

We have implemented our proposed method in an R
package “TDboost,” which is publicly available from the
Comprehensive R Archive Network at http://cran.r-project.
org/web/packages/TDboost/index.html. Here, we discuss the
choice of three meta parameters in Algorithm 1: L (the size
of the trees), ν (the shrinkage factor), and M (the number of
boosting steps).

To avoid overfitting and improve out-of-sample predictions,
the boosting procedure can be regularized by limiting the num-
ber of boosting iterations M (early stopping; Zhang and Yu 2005)
and the shrinkage factor ν. Empirical evidence (Friedman 2001;
Bühlmann and Hothorn 2007; Ridgeway 2007) showed that
the predictive accuracy is almost always better with a smaller
shrinkage factor at the cost of more computing time. However,
smaller values of ν usually requires a larger number of boosting
iterations M and hence induces more computing time (Friedman
2001). We choose a “sufficiently small” ν = 0.005 throughout
and determine M by the data.

The value L should reflect the true interaction order in the
underlying model, but we almost never have such prior knowl-
edge. Therefore, we choose the optimal M and L using K-fold
cross-validation, starting with a fixed value of L. The data are
split into K roughly equal-sized folds. Let an index function
π (i) : {1, . . . , n} �→ {1, . . . , K} indicate the fold to which ob-

http://cran.r-project.org/web/packages/TDboost/index.html
http://cran.r-project.org/web/packages/TDboost/index.html
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servation i is allocated. Each time, we remove the kth fold of the
data (k = 1, 2, . . . , K), and train the model using the remain-
ing K − 1 folds. Denoting by F̂ [M]

−k (x) the resulting model, we
compute the validation loss by predicting on each kth fold of
the data removed:

CV(M,L) = 1

n

n∑
i=1

�
(
yi, F̂

[M]
−π(i)(xi ;L) | ρ

)
. (26)

We select the optimal M at which the minimum validation loss
is reached

M̂L = argmin
M

CV(M,L).

If we need to select L too, then we repeat the whole process
for several L (e.g., L = 2, 3, 4, 5) and choose the one with the
smallest minimum generalization error

L̂ = argmin
L

CV(L, M̂L).

For a given ν, fitting trees with higher L leads to smaller M being
required to reach the minimum error.

5. SIMULATION STUDIES

In this section, we compare TDboost with the Tweedie
GLM model (TGLM: Jørgensen and de Souza 1994) and
the Tweedie GAM model in terms of the function estima-
tion performance. The Tweedie GAM model was proposed
by Wood (2001), which is based on a penalized regression
spline approach with automatic smoothness selection. There
is an R package “MGCV” accompanying the work, available at
http://cran.r-project.org/web/packages/mgcv/index.html. In all
numerical examples below using the TDboost model, five-fold
cross-validation is adopted for selecting the optimal (M,L) pair,
while the shrinkage factor ν is set to its default value of 0.005.

5.1 Case I

In this simulation study, we demonstrate that TDboost is well
suited to fit target functions that are nonlinear or involve complex
interactions. We consider two true target functions:

• Model 1 (Discontinuous function): The target function is
discontinuous as defined by F (x) = 0.5I (x > 0.5). We as-
sume x ∼ Unif(0, 1), and y ∼ Tw(μ, φ, ρ) with ρ = 1.5
and φ = 0.5.

• Model 2 (Complex interaction): The target function has
two hills and two valleys:

F (x1, x2) = e−5(1−x1)2+x2
2 + e−5x2

1 +(1−x2)2
,

which corresponds to a common scenario where the effect
of one variable changes depending on the effect of another.
We assume x1, x2 ∼ Unif(0, 1), and y ∼ Tw(μ, φ, ρ) with
ρ = 1.5 and φ = 0.5.

We generate n = 1000 observations for training and n′ =
1000 for testing, and fit the training data using TDboost,
MGCV, and TGLM. Since the true target functions are
known, we consider the mean absolute deviation (MAD) as

Table 1. The averaged MADs and the corresponding standard errors
based on 100 independent replications

Model TGLM MGCV TDboost

1 0.1102 (0.0006) 0.0752 (0.0016) 0.0595 (0.0021)
2 0.3516 (0.0009) 0.2511 (0.0004) 0.1034 (0.0008)

performance criteria,

MAD = 1

n′

n′∑
i=1

|F (xi) − F̂ (xi)|,

where both the true predictor function F (xi) and the predicted
function F̂ (xi) are evaluated on the test set. The resulting MADs
on the testing data are reported in Table 1, which are averaged
over 100 independent replications. The fitted functions from
Model 2 are plotted in Figure 2. In both cases, we find that
TDboost outperforms TGLM and MGCV in terms of the ability
to recover the true functions and gives the smallest prediction
errors.

5.2 Case II

The idea is to see the performance of the TDboost estimator
and MGCV estimator on a variety of very complicated, ran-
domly generated predictor functions, and study how the size of
the training set, distribution settings and other characteristics
of problems affect final performance of the two methods. We
use the “random function generator” (RFG) model by Friedman
(2001) in our simulation. The true target function F is randomly
generated as a linear expansion of functions {gk}20

k=1:

F (x) =
20∑
k=1

bkgk(zk). (27)

Here, each coefficient bk is a uniform random variable from
Unif[−1, 1]. Each gk(zk) is a function of zk , where zk is defined
as a pk-sized subset of the 10-dimensional variable x in the form

zk = {xψk(j )}pkj=1, (28)

where each ψk is an independent permutation of the in-
tegers {1, . . . , p}. The size pk is randomly selected by
min(�2.5 + rk� , p), where rk is generated from an exponential
distribution with mean 2. Hence, the expected order of interac-
tions presented in each gk(zk) is between four and five. Each
function gk(zk) is a pk-dimensional Gaussian function:

gk(zk) = exp
{
− 1

2
(zk − uk)ᵀVk(zk − uk)

}
, (29)

where each mean vector uk is randomly generated from
N(0, Ipk ). The pk × pk covariance matrix Vk is defined by

Vk = UkDkU
ᵀ
k , (30)

where Uk is a random orthonormal matrix, Dk =
diag{dk[1], . . . , dk[pk]}, and the square root of each diagonal el-
ement

√
dk[j ] is a uniform random variable from Unif[0.1, 2.0].

We generate data {yi, xi}ni=1 according to

yi ∼ Tw(μi, φ, ρ), xi ∼ N(0, Ip), i = 1, . . . , n, (31)

where μi = exp{F (xi)}.

http://cran.r-project.org/web/packages/mgcv/index.html
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Figure 2. Fitted curves that recover the target function defined in Model 2. The top left figure shows the true target function. The top right,
bottom left, and bottom right figures show the predictions on the testing data from TDboost, TGLM, and MGCV, respectively.

Setting I: when the index is known.. First, we study the
situation that the true index parameter ρ is known when fitting
models. We generate data according to the RFG model with
index parameter ρ̃ = 1.5 and the dispersion parameter φ̃ = 1 in
the true model. We set the number of predictors to bep = 10 and
generate n ∈ {1000, 2000, 5000} observations as training sets,
on which both MGCV and TDboost are fitted with ρ specified
to be the true value 1.5. An additional test set of n′ = 5000
observations was generated for evaluating the performance of
the final estimate.

Figure 3 shows simulation results for comparing the estima-
tion performance of MGCV and TDboost, when varying the
training sample size. The empirical distributions of the MADs
shown as box-plots are based on 100 independent replications.
We can see that in all of the cases, TDboost outperforms MGCV
in terms of prediction accuracy.

We also test estimation performance on μ when the index
parameter ρ is misspecified, that is, we use a guess value ρ
differing from the true value ρ̃ when fitting the TDboost model.
Because μ is statistically orthogonal to φ and ρ, meaning that
the off-diagonal elements of the Fisher information matrix are
zero (Jørgensen 1997), we expect μ̂ will vary very slowly as ρ
changes. Indeed, using the previous simulation data with the true
value ρ̃ = 1.5 and φ̃ = 1, we fitted TDboost models with nine
guess values of ρ ∈ {1.1, 1.2, . . . , 1.9}. The resulting MADs
are displayed in Figure 4, which shows the choice of the value
ρ has almost no significant effect on estimation accuracy of μ.

Setting II: using the estimated index. Next, we study the
situation that the true index parameter ρ is unknown, and we use
the estimated ρ obtained from the profile likelihood procedure
discussed in Section 4.2 for fitting the model. The same data
generation scheme is adopted as in Setting I, except now both
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Figure 3. Simulation results for Setting I: compare the estimation performance of MGCV and TDboost when varying the training sample size
and the dispersion parameter in the true model. Boxplots display empirical distributions of the MADs based on 100 independent replications.

MGCV and TDboost are fitted with ρ estimated by maximizing
the profile likelihood. Figure 5 shows simulation results for
comparing the estimation performance of MGCV and TDboost
in such setting. We can see that the results have no significant
difference to the results of Setting I: TDboost still outperforms
MGCV in terms of prediction accuracy when using the estimated
ρ instead of the true value.

Finally, we demonstrate our results from the estimation of
the dispersion φ and the index ρ by using the profile likelihood.
A total number of 200 sets of training samples are randomly
generated from a true model according to the setting (31) with
φ = 2 and ρ = 1.7, each sample having 2000 observations. We
fit the TDboost model on each sample and compute the esti-
mates φ∗ at each of the 50 equally spaced values {ρ1, . . . , ρ50}
on (1, 2). The (ρj , φ∗(ρj )) corresponding to the maximal pro-
file likelihood is the estimate of (ρ, φ). The estimation pro-

cess is repeated 200 times. The estimated indices have mean
ρ∗ = 1.68 and standard error SE(ρ∗) = 0.026, so the true value
ρ = 1.7 is within ρ∗ ± SE(ρ∗). The estimated dispersions have
mean φ∗ = 1.82 and standard error SE(φ∗) = 0.12. Figure 6
shows the profile likelihood function of ρ for a single run.

6. APPLICATION: AUTOMOBILE CLAIMS

6.1 Dataset

We consider an auto-insurance claim dataset as analyzed in
Yip and Yau (2005) and Zhang and Yu (2005). The dataset
contains 10,296 driver vehicle records, each record including
an individual driver’s total claim amount (zi) in the last five
years (wi = 5) and 17 characteristics xi = (xi,1, . . . , xi,17) for
the driver and the insured vehicle. We want to predict the ex-

Figure 4. Simulation results for Setting I when the index is misspecified: the estimation performance of TDboost when varying the value of
the index parameter ρ ∈ {1.1, 1.2, . . . , 1.9}. In the true model ρ̃ = 1.5 and φ̃ = 1. Boxplots show empirical distributions of the MADs based on
200 independent replications.
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Figure 5. Simulation results for Setting II: compare the estimation performance of MGCV and TDboost when varying the training sam-
ple size and the dispersion parameter in the true model. Boxplots display empirical distributions of the MADs based on 100 independent
replications.

Figure 6. The curve represents the profile likelihood function of ρ from a single run. The dotted line shows the true value ρ = 1.7.
The solid line shows the estimated value ρ∗ = 1.68 corresponding to the maximum likelihood. The associated estimated dispersion is
φ∗ =1.89.

pected pure premium based on xi . Table 3 summarize the dataset.
The descriptive statistics of the data are provided in Appendix D.
The histogram of the total claim amounts in Figure 1 shows that
the empirical distribution of these values is highly skewed. We
find that approximately 61.1% of policyholders had no claims,
and approximately 29.6% of the policyholders had a positive
claim amount up to $10,000. Note that only 9.3% of the policy-
holders had a high claim amount above $10,000, but the sum of
their claim amount made up to 64% of the overall sum. Another
important feature of the data is that there are interactions among
explanatory variables. For example, from Table 2 we can see
that the marginal effect of the variable REVOKED on the total
claim amount is much greater for the policyholders living in the
urban area than those living in the rural area. The importance
of the interaction effects will be confirmed later in our data
analysis.

6.2 Models

We separate the entire dataset into a training set and a test-
ing set with equal size. Then, the TDboost model is fitted on
the training set and tuned with five-fold cross-validation. For
comparison, we also fit TGLM and MGCV, both of which are

Table 2. The averaged total claim amount for different categories of
the policyholders

AREA

Urban Rural

REVOKED No 3150.57 904.70
Yes 14551.62 7624.36

Difference 11401.05 6719.66
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Table 3. Explanatory variables in the claim history dataset. Type N
stands for numerical variable, Type C stands for categorical variable

ID Variable Type Description

1 AGE N Driver’s age
2 BLUEBOOK N Value of vehicle
3 HOMEKIDS N Number of children
4 KIDSDRIV N Number of driving children
5 MVR PTS N Motor vehicle record points
6 NPOLICY N Number of policies
7 RETAINED N Number of years as a

customer
8 TRAVTIME N Distance to work
9 AREA C Home/work area: Rural,

Urban
10 CAR USE C Vehicle use: Commercial,

Private
11 CAR TYPE C Type of vehicle: Panel

Truck, Pickup, Sedan,
Sports Car, SUV, Van

12 GENDER C Driver’s gender: F, M
13 JOBCLASS C Unknown, Blue Collar,

Clerical, Doctor, Home
Maker, Lawyer,
Manager, Professional,
Student

14 MAX EDUC C Education level: High
School or Below,
Bachelors, High School,
Masters, PhD

15 MARRIED C Married or not: Yes, No
16 REVOKED C Whether license revoked in

past 7 years: Yes, No

fitted using all the explanatory variables. In MGCV, the numer-
ical variables AGE, BLUEBOOK, HOMEKIDS, KIDSDRIV,
MVR PTS, NPOLICY, RETAINED, and TRAVTIME are mod-
eled by smooth terms represented using penalized regression
splines. We find the appropriate smoothness for each applicable

Table 4. The averaged Gini indices and standard errors in the
auto-insurance claim data example based on 20 random splits

Competing premium

Base premium TGLM MGCV TDboost
TGLM 0 7.833 (0.338) 15.528 (0.509)
MGCV 3.044 (0.610) 0 12.979 (0.473)
TDboost 4.000 (0.364) 3.540 (0.415) 0

model term using generalized cross-validation (GCV; Wahba
1990). For the TDboost model, it is not necessary to carry out
data transformation, since the tree-based boosting method can
automatically handle different types of data. For other mod-
els, we use logarithmic transformation on BLUEBOOK, that is,
log(BLUEBOOK), and scale all the numerical variables except
for HOMEKIDS, KIDSDRIV, MVR PTS, and NPOLICY to
have mean 0 and standard deviation 1. We also create dummy
variables for the categorical variables with more than two levels
(CAR TYPE, JOBCLASS, and MAX EDUC). For all models,
we use the profile likelihood method to estimate the dispersion
φ and the index ρ, which are in turn used in fitting the final
models.

6.3 Performance Comparison

To examine the performance of TGLM, MGCV, and TDboost,
after fitting on the training set, we predict the pure premium
P (x) = μ̂(x) by applying each model on the independent held-
out testing set. However, attention must be paid when measur-
ing the differences between predicted premiums P (x) and real
losses y on the testing data. The mean squared loss or mean ab-
solute loss is not appropriate here because the losses have high
proportions of zeros and are highly right skewed. Therefore,
an alternative statistical measure—the ordered Lorentz curve
and the associated Gini index—proposed by Frees, Meyers, and
Cummings (2011) are used for capturing the discrepancy be-
tween the premium and loss distributions. By calculating the

Figure 7. The ordered Lorentz curves for the auto-insurance claim data.



Yang et al.: Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models 467

Figure 8. The variable importance measures and baselines of 17 explanatory variables for modeling the pure premium.

Gini index, the performance of different predictive models can
be compared. Here, we only briefly explain the idea of the
ordered Lorentz curve (Frees, Meyers, and Cummings 2011,
2014). Let B(x) be the “base premium,” which is calculated us-

ing the existing premium prediction model, and let P (x) be the
“competing premium” calculated using an alternative premium
prediction model. In the ordered Lorentz curve, the distribution
of losses and the distribution of premiums are sorted based on

Figure 9. Marginal effects of four most significant explanatory variables on the pure premium.
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Figure 10. Four strong pairwise interactions.

the relative premium R(x) = P (x)/B(x). The ordered premium
distribution is

D̂P (s) =
∑n

i=1 B(xi)I (R(xi) ≤ s)∑n
i=1 B(xi)

,

and the ordered loss distribution is

D̂L(s) =
∑n

i=1 yiI (R(xi) ≤ s)∑n
i=1 yi

.

Two empirical distributions are based on the same sort order,
which makes it possible to compare the premium and loss dis-
tributions for the same policyholder group. The ordered Lorentz
curve is the graph of (D̂P (s), D̂L(s)). When the percentage of
losses equals the percentage of premiums for the insurer, the
curve results in a 45-degree line, known as “the line of equal-

ity.” Twice the area between the ordered Lorentz curve and the
line of equality measures the discrepancy between the premium
and loss distributions, and is defined as the Gini index. Curves
below the line of equality indicate that, given knowledge of
the relative premium, an insurer could identify the profitable
contracts, whose premiums are greater than losses. Therefore,
a larger Gini index (hence a larger area between the line of
equality and the curve below) would imply a more favorable
model.

Following Frees, Meyers, and Cummings (2014), we suc-
cessively specify the prediction from each model as the base
premium B(x) and use predictions from the remaining models
as the competing premium P (x) to compute the Gini indices.
The entire procedure of the data splitting and Gini index com-
putation are repeated 20 times, and a matrix of the averaged
Gini indices and standard errors is reported in Table 4. To pick
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the “best” model, we use a “minimax” strategy (Frees, Mey-
ers, and Cummings 2013) to select the base premium model
that are least vulnerable to competing premium models; that is,
we select the model that provides the smallest of the maximal
Gini indices, taken over competing premiums. We find that the
maximal Gini index is 15.528 when using B(x) = μ̂TGLM(x) as
the base premium, 12.979 when B(x) = μ̂MGCV(x), and 4.000
when B(x) = μ̂TDboost(x). Therefore, TDboost has the smallest
maximum Gini index at 4.000, hence is the least vulnerable to
alternative scores. Figure 7 also shows that when TGLM (or
MGCV) is selected as the base premium, the area between the
line of equality and the ordered Lorentz curve is larger when
choosing TDboost as the competing premium, indicating again
that the TDboost model represents the most favorable choice.

6.4 Interpreting the Results

Next, we focus on the analysis using the TDboost model.
There are several explanatory variables significantly related to
the pure premium. The VI measure and the baseline value of
each explanatory variable are shown in Figure 8. We find that
REVOKED, MVR PTS, AREA, and BLUEBOOK have high VI
measure scores (the vertical line), and their scores all surpass the
corresponding baselines (the horizontal line-length), indicating
that the importance of those explanatory variables is real. We
also find the variables AGE, JOBCLASS, CAR TYPE, NPOL-
ICY, MAX EDUC, MARRIED, KIDSDRIV, and CAR USE
have larger-than-baseline VI measure scores, but the absolute
scales are much less than aforementioned four variables. On the
other hand, although the VI measure of, for example, TRAV-
TIME is quite large, it does not significantly surpass the baseline
importance.

We now use the partial dependence plots to visualize the fit-
ted model. Figure 9 shows the main effects of four important
explanatory variables on the pure premium. We clearly see that
the strong nonlinear effects exist in predictors BLUEBOOK and
MVR PTS: for the policyholders whose vehicle values are be-
low 40 K, their pure premium is negatively associated with the
value of vehicle; after the value of vehicle passes 40 K, the pure
premium curve reaches a plateau; additionally, the pure pre-
mium is positively associated with motor vehicle record points
MVR PTS, but the pure premium curve reaches a plateau when
MVR PTS exceeds six. On the other hand, the partial depen-
dence plots suggest that a policyholder who lives in the urban
area (AREA=“URBAN”) or with driver’s license revoked (RE-
VOKED=“YES”) typically has relatively high pure premium.

In our model, the data-driven choice for the tree size isL = 7,
which means that our model includes higher order interactions.
In Figure 10, we visualize the effects of four important second
order interactions using the joint partial dependence plots. These
four interactions are AREA × MVR PTS, AREA × NPOLICY,
AREA × REVOKED, and AREA × TRAVTIME. These four
interactions all involve the variable AREA: we can see that
the marginal effects of MVR PTS, NPOLICY, REVOKED, and
TRAVTIME on the pure premium are greater for the policyhold-
ers living in the urban area (AREA=“URBAN”) than those liv-
ing in the rural area (AREA=“RURAL”). For example, a strong
AREA × MVR PTS interaction suggests that for the policy-

holders living in the rural area, motor vehicle record points of
the policyholders have a weaker positive marginal effect on the
expected pure premium than for the policyholders living in the
urban area.

7. CONCLUSIONS

The need for nonlinear risk factors as well as risk factor inter-
actions for modeling insurance claim sizes is well-recognized by
actuarial practitioners, but practical tools to study them are very
limited. In this article, relying on neither the linear assumption
nor a prespecified interaction structure, a flexible tree-based gra-
dient boosting method is designed for the Tweedie model. We
implement the proposed method in a user-friendly R package
“TDboost” that can make accurate insurance premium predic-
tions for complex datasets and serve as a convenient tool for ac-
tuarial practitioners to investigate the nonlinear and interaction
effects. In the context of personal auto insurance, we implicitly
use the policy duration as a volume measure (or exposure), and
demonstrate the favorable prediction performance of TDboost
for the pure premium. In cases that exposure measures other
than duration are used, which is common in commercial insur-
ance, we can extend the TDboost method to the corresponding
claim size by simply replacing the duration with any chosen
exposure measure.

TDboost can also be an important complement to the tra-
ditional GLM model in insurance rating. Even under the strict
circumstances that the regulators demand the final model to have
a GLM structure, our approach can still be quite helpful due to
its ability to extract additional information such as nonmono-
tonicity/nonlinearity and important interaction. In Appendix E,
we provide an additional real data analysis to demonstrate that
our method can provide insights into the structure of interac-
tion terms. After integrating the obtained information about the
interaction terms into the original GLM model, we can much en-
hance the overall accuracy of the insurance premium prediction
while maintaining a GLM model structure.

In addition, it is worth mentioning that the applications of the
proposed method can go beyond the insurance premium pre-
diction and be of interest to researchers in many other fields
including ecology (Foster and Bravington 2013), meteorology
(Dunn 2004), and political science (Lauderdale 2012). See, for
example, Dunn and Smyth (2005) and Qian, Yang, and Zou
(2016) for descriptions of the broad Tweedie distribution ap-
plications. The proposed method and the implementation tool
allow researchers in these related fields to venture outside the
Tweedie GLM modeling framework, build new flexible models
from nonparametric perspectives, and use the model interpreta-
tion tools demonstrated in our real data analysis to study their
own problems of interests.

SUPPLEMENTARY MATERIALS

The online supplementary materials contain:

– Part A: A Property of Tweedie Distributions
– Part B: Computational Issues for Profile Likelihood
– Part C: Bias-adjusted Variable Importance Measure
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– Part D: Descriptive Statistics for Real Data
– Part E: Identifying Important Interactions

[Received June 2014. Revised April 2016.]
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