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Abstract: Effectmodification occurswhen the effect of a treatment on an outcomediffersaccording to the level
of some pre-treatment variable (the effect modifier). Assessing an effect modifier is not a straight-forward task
even for a subject matter expert. In this paper, we propose a two-stageprocedure to automatically selecteffect
modifying variables in a Marginal Structural Model (MSM) with a single time point exposure based on
the two nuisance quantities (the conditionaloutcome expectation and propensity score). We highlight the
performance of our proposal in a simulation study. Finally, to illustrate tractability of our proposed methods,
we apply them to analyze a set of pregnancy data. We estimate the conditional expected difference in the
counterfactual birth weight if all women were exposed to inhaled corticosteroids during pregnancy versus
the counterfactual birthweight if all womenwere not, using data from asthmamedications during pregnancy.

Keywords: adaptive LASSO; doubly robust; effect modification; selective inference.

1 Introduction
Effect modification occurs when the effect of a treatment on an outcome differs according to the level of
some pre-treatment variables (the effect modifier, EM). Detecting variables that are EMs is not a straight-
forward task even for a subject matter expert. A natural way to assess effect modification in experimental
and observational studies is to perform subgroup analysis, in which observations are stratified based on the
potential EMs after which stratum-specific estimates are calculated, though this becomes infeasible with a
greater number of potential effectmodifiers. One can also include the interaction terms between the treatment
and the potential EMs in an outcome regression analysis. With observational data however, this approach
does not target a parameter of a marginal structural model (MSM) unless a correct model for the outcome
conditional on confounders, treatments, and EMs is specified. In contrast, MSMs can provide a summary
of how effect modification occurs in the absence of confounding. Different methods for the estimation of
effect modification have been proposed recently. For example, Green and Kern [1] used Bayesian Additive
Regression Trees (BART) [2] to model the conditional average treatment effects (CATE). Imai and Ratkovic
[3] studied EM selection by adapting the support vector machine classifier. Nie and Wager [4] developed a
two-step algorithm for heterogeneous treatment effect estimation using the marginal effects and treatment
propensities. Lue et al. [5], used dimension reduction techniques to learn heterogeneity by estimating a lower
dimensional linear combination of the covariates that is sufficient to model the regression causal effects.
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Wager and Athey [6] proposed a nonparametric approach for estimating heterogeneous treatment effects
using a random forest algorithm [7]. Powers et al. [8], developed an algorithm for heterogeneous treatment
effect estimation by adapting the multivariate adaptive regression splines [9]. Zhao et al. [10] introduced
an algorithm based on a semiparametric model that selects the EMs by using Robinson’s transformation
[11] and Least Absolute Shrinkage and Selection Operator (LASSO). Doubly robust semiparametric methods
such as Targeted Minimum Loss-Based Estimation (TMLE) [12, 13], which is closely related to previously
existing methods [14, 15] have been proposed. The term doubly robust comes from the fact that the method
requires both the estimation of the treatment model and the outcome expectation conditional on treatment
and covariates, where only one of which needs to be correctly modeled to allow for consistent estima-
tion of the parameter of interest. However, in a situation where one nuisance parameter is inconsistently
estimated, the asymptotic linearity is affected [16]. Lee et al. [17] developed a doubly robust estimator of
the CATE along with a uniform confidence band. Rosenblum and van der Laan [13] developed TMLE for
MSMs, which can be used to model effect modification, in non-longitudinal settings. Zheng et al. [18] devel-
oped TMLE for MSMs with counterfactual covariates in longitudinal settings. Most recently, Kennedy [19]
analyzed a version of the pseudo-outcome regression method for CATE estimation and derives model-free
error bounds.

In this paper as in [10], we focus on the selection of pre-treatment EMs in a linear MSM for the CATE with
a single treatment time-point. Thus, we consider modifiers of the additive effect of a treatment on the mean
outcome. We use a component of the efficient influence function of the ATE along with the Adaptive LASSO
(Zou, 2006) to select EMs. To the best of our knowledge, our paper is one of the first along with [19, 20] to
investigate and apply a doubly robust two-stage regularization for a CATE model. Our estimation approach
can be carried out with standard software implementations, is doubly robust (unlike [10]), can accommodate
adaptive methods to estimate the nuisance quantities, and produces estimates of the parameters of an easily
interpretable model. A two-stage procedure is thus proposed. First, we estimate two nuisance quantities (the
conditional outcome expectation and treatment model) and plug these quantities into a specific function
to create a pseudo outcome as developed in [21–23]. Second, we take the pseudo outcome and apply the
adaptive LASSO [24] to select the EMs and estimate the MSM coefficients. We then apply post-selection
inference in order to produce interpretable confidence intervals after the EM selection by adaptive LASSO.We
perform simulation studies in order to verify the performance (selection, estimation, double robustness, and
post-selection inference) of the proposed method.

The remainderof thisarticle isorganizedas follows. InSection2,weuse thepotentialoutcomes framework
to define the target causal parameter of interest and describe our proposed estimation approach. In Section 3,
we conduct a simulation study to verify the performance (selection, MSM coefficient estimation, and double
robustness) of the proposedmethod in both low and high dimensional settings. We present an analysis of the
safety of asthma medications during pregnancy in Section 4. A discussion is provided in Section 5.

2 Methods
In this section, we present our development of the methodology for the selection of the EMs.

2.1 The framework

The observed data, {(W i,Ai,Yi)}ni=1, are comprised of independent and identically distributed samples of O = (W,A,Y) ∼ P0,
whereW is the baseline covariates of a patient, A is the binary treatment which equals 1 if the patient received treatment and 0
otherwise, and Y is the observed outcome (binary or continuous). Let V represent the subset of the variables inW that represents
the potential EMs of interest. We use Oi = (W i,Ai,Yi) to represent the ith observation of the data. In order to define the target
parameter, we use the counterfactual framework of Rubin [25]. Let Ya denote the potential (or counterfactual) outcome that would
have occurred under the treatment value A = a. In this paper, we focus on marginal models for the CATE. If we assume that we
observe Y = Ya when A = a (consistency [26], no interference, positivity and no unmeasured confounders [27]), the CATE can be
defined and identified nonparametrically as:
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𝜓0(V) = E0{Y1 − Y0|V}
= EW|V{E0(Y|A = 1,W)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Q̄0(1,W)

− E0(Y|A = 0,W)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Q̄0(0,W)

|V}

= EW|V{Q̄0(1,W)− Q̄0(0,W)|V} (1)

where E0 is the expectation with respect to the outcome and EW|V is the expectation conditional on the baseline covariates. In
this work, we choose to model the CATE using a linear regressionmodel defined as �̃�0(V) = 𝛽0 + VT𝜷V where the relevant subset
of V will be selected using adaptive LASSO [24]. Our goal here is to identify the true EMs among the set V, and estimate their
associated coefficients. One could use non-linear models or machine learning methods to estimate �̃�0(V), which is important
when the goal is prediction [37] (e.g. for personalized medicine). However, if interpretation of the coefficient associated with each
V (s) is important, it may be beneficial to use a linear model rather than a black box approach [28].

2.2 Adaptive LASSO

The adaptive LASSO [24] is an extension of the traditional LASSO of Tibshirani [29] that uses coefficient specific weights. Zou [24]
showed that the adaptive LASSO estimator has the oracle property which roughly means that the algorithm identifies the right
subset of variables (consistencyof variable selection) and that the coefficient estimators of the selectedvariables are asymptotically
normal. In a prediction (non-causal) setting, let Y be an observed outcome and V a set of covariates. Under the linear model, we
can select predictors of Y by solving the equation below:

argmin
𝛼′ ,𝜷′

n∑
i=1

(
Y − 𝛼′ − VT

i 𝜷
′)2 + 𝜆

p∑
j=1
�̂� j|𝛽′j| (2)

where 𝜷 ′ =
(
𝛽
′
1 ,… , 𝛽

′
p

)
, �̂� j = 1∕|�̃�′j|𝛾 , for some 𝛾 > 0 and �̃�′j is a

√
n-consistent estimator of 𝛽′j. The selected variables are the

positions of the non-zero entries of the solution of (2).When the sample size grows, theweights associatedwith the zero-coefficient
predictors tend to infinity, while the weights corresponding to true predictors converge to a constant. Thus, true-zero coefficients
are less likely to be selected by the adaptive LASSO than by the standard LASSO, which does not have the oracle property [24].

2.3 Highly adaptive LASSO (HAL)

Assume E(Y|V) a regression function where Y is the observed outcome and V is the set of covariates. Consider a map of V onto a
set of binary indicator basis functions. For example, if V is scalar, we generate for an observation 𝑣, 𝝓∗(𝑣) = (𝜙∗

1 (𝑣),… , 𝜙
∗
n(𝑣))

T,
where𝜙∗

i (𝑣) = I(𝑣 ≥ Vi), for i = 1,… , n.With twodimensions,V = (V (1)
,V (2))T,weneed to include the secondorderbasis functions

𝝓
∗
i (𝒗) = I(𝑣1 ≥ V (1)

i , 𝑣2 ≥ V (2)
i ), for i = 1,… , n. TheHALestimator [30] is obtainedbyfittingaL1-penalized regressionof theoutcome

Y on these basis functions, with the optimal L1-norm chosen via cross-validation. The HAL estimator of the regression function
E(Y|V) converges to the true regression function in L2-norm no slower than n−1∕4 regardless of the dimension of V, under the
assumption that the regression function has bounded variation norm.

2.4 Selective inference

Let 𝜷 ′ be the solution of (2) and 𝜷 ′
M̂
the non-zero subvector of 𝜷 ′ where M̂ ⊆ {1,… , p} corresponds to the positions of the non-zero

entries. Suppose that we are interested in making inference for 𝜷 ′
M̂
in the prediction model of Section 2.2. A naive way to obtain

inference after selecting the covariates in themodel is the standard hypothesis tests for linear regression that treatM, representing
the non-zero entries of 𝜷 ′ and thus the true model, as known. It is easy to see that 𝜷 ′ depends on the selectedmodel M̂. Therefore,
Lee et al. [31] studied the conditional distribution𝜷 ′

M|{M̂ = M} and showed that this conditional distribution is a truncatednormal
Gaussian. They constructed a pivotal statistic for 𝜷 ′

M̂
which can be used for hypothesis testing and therefore by test inversion,

to construct a confidence interval. Let F(y; 𝜇, 𝜎2, l, u) be the CDF of a normal N(𝜇, 𝜎2) truncated to the interval [l, u], ej the unit

vector for the jth coordinate so that
(
�̂�
′
M

)
j
= 𝜂TMY, 𝜂M =

[(
VT

MVM
)−1 VT

M

]T
e j and 𝜎2∗ = 𝜎2𝜂TM𝜂M . In the linear regression setting

where Y ∼ N
(
𝜇, 𝜎

2In
)
, Lee et al. [31] showed that F(

(
�̂�
′
M

)
j
;
(
𝛽
′
M
)
j, 𝜎

2
∗, 𝜈

−
, 𝜈

+)|{M̂ = M} ∼ Unif(0, 1), where [𝜈−, 𝜈+] is defined in

[31] as a function of Y and the modelM. By inverting the hypothesis testing, we can find a (1− 𝛼) confidence interval for
(
�̂�
′
M

)
j
,

conditional on M̂ = M, by finding [L∗,U∗] such that
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F(
(
�̂�
′
M̂

)
j
; L∗, 𝜎2

∗, 𝜈
−
, 𝜈

+)|{M̂ = M} = 1− 𝛼∕2

and
F(
(
�̂�
′
M̂

)
j
;U∗

, 𝜎
2
∗, 𝜈

−
, 𝜈

+)|{M̂ = M} = 𝛼∕2

In this next section, we will explain how this result is applied in our setting.

2.5 The model

2.5.1 Model definition: Let𝜓0(V) = E0{Y1 − Y0|V}be theCATE.Denote Q̄0(a,W) = E0(Y|A = a,W), the outcomeexpectation,
and g0(a|W) = P(A = a|W) as the propensity score. We suggest to use the doubly robust and efficient loss-function proposed by
van der Laan [21], inspired by Rubin and van der Laan [32], LQ0 ,g0 (𝜓)(O) = (D(Q̄0, g0)(O)− 𝜓0(V))2 where

D(Q̄0, g0)(O) =
2A− 1
g0(A|W)

(Y − Q̄0(A,W))+ Q̄0(1,W)− Q̄0(0,W) (3)

is indexed by the nuisance parameters (Q̄0; g0). A similar pseudo-outcome is also used in Zhao et al. [22] for estimating optimal
individualized treatment rules and Kennedy et al. [23] for the estimation of continuous treatment effects.

The next lemma shows that if one of the two nuisance quantities are consistent, the CATE can be obtained by the conditional
expectation of the estimated pseudo-outcome.

Lemma 1. Let ‖ f‖22,P0 = ∫ f (z)2dP0(z) denote the L2(P) norm. Suppose either Q̄n converges to Q̄0 or gn converges to g0 in the sense
that E‖Q̄n − Q̄0‖2 = o(1) or E‖gn − g0‖2 = o(1) (not necessarily both). Then E(D(Q̄n, gn)(O)|V)→𝜓0(V) as n→∞.

The preceding lemma shows that the pseudo-outcome we propose for the CATE is doubly-robust in the sense that if at least
one nuisance estimator (Q̄n or gn) converges to the correct function, but not necessarily both, then a regression of the pseudo-
outcome onto the effect modifiers will be consistent for the CATE. Adding and subtracting the true CATE is the key idea to prove
Lemma 1. Then, the regression function of the pseudo-outcome on V can be split into two terms: the true CATE and a second term
that is a function of both Q̄n − Q̄0 and gn − g0. See the Appendix for the Proof of Lemma 1.

Suppose that an investigator would like to identify the true EMs amongst multiple suspected effect modifying variables
V = (V (1)

,… ,V (p)). As described above, to accomplish this we use a linearmodel for the CATEwith correspondingMSMdefined as
�̃�0(V) = 𝛽0 + VT𝜷V under a least squared error loss function.We then use the adaptive LASSO estimator [24] to select amongst the
V ( j)s. More specifically, as suggested by Rubin and van der Laan [33], we penalize the aforementioned loss function LQ̄0 ,g0 by the
adaptive LASSO penalty. Let Dn = D(Q̄n, gn)(O) be the estimated pseudo outcome. The parameters of the MSM 𝜷 = (𝛽0, 𝛽1,… , 𝛽p)
are estimated by minimizing the risk function below:

𝜷 = argmin
𝛽

n∑
i=1

(Di,n − �̃�0(V i))2 + 𝜆
p∑
j=1
�̂� j|𝛽 j| (4)

where �̂� j = 1∕|�̃� j|𝛾 , for some 𝛾 > 0 and �̃� j is a
√
n-consistent estimator of 𝛽 j.

An optimal method would possess the oracle property, able to select the appropriate variables and unbiasedly estimate the
selected parameters. Let A be the set of true variables in the model and A∗

n be the set selected using adaptive LASSO.

Lemma 2. Let Dn = D(Q̄n, gn) be the estimated pseudo-outcome conditional on the estimated nuisance functions. Assume E(Dn|V) =
𝛽0 + VT𝜷V and |A| = p0 < p. Suppose that𝜆∕

√
n→ 0and𝜆n(𝛾−1)∕2 →∞. Also, assumeDn is obtainedby cross-fitingand is consistent

in the sense that it belongs to a shrinking neighborhood of D0 as given in Assumption 3.5 in Semenova and Chernozhukov (2020) [20].
The proposed estimator 𝜷 inherits the adaptive LASSO oracle properties, i.e.
– Consistency in variable selection (i.e. identifies the right subset model):

lim
n→∞

P
(
A∗
n = A

)
= 1.

– Asymptotic normality (i.e. has the optimal estimation rate):
√
n(𝜷A − 𝜷A)→ dN(0,Σ∗), where Σ∗ is the covariance matrix

knowing the true subset model and 𝜷A is the coefficient estimates resulting from the Adaptive LASSO regression of Dn on V.

As a consequence, our proposed estimator is able to select the correct subset of EMs and produce an unbiased estimate of the
MSM coefficients in large samples. This relies on convergence of Dn to D0 which can result from correct specification of the models
for gn and/or Q̄n [20]. See the Appendix for the Proof of Lemma 2.
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2.5.2 Estimation: In this paragraph, we describe how our proposal can be easily implemented in a two-stage procedure. In
the first stage, we construct the pseudo-outcome function by producing estimates Q̄n(a,W) and gn(a|W) of the two nuisance
quantities and plugging them into D. Machine Learning (ML) methods are often recommended [13] for estimating Q̄n and gn. In
the second stage, we run the adaptive LASSO regression of the estimated pseudo-outcome D(Q̄n, gn)(O) on the set V . The selected
EMs correspond to the non-zero coefficients of the adaptive LASSO regression.

The proposed algorithm for estimating the parameters in the CATE model with a given value of 𝜆 is as follows:

Algorithm 1: Effect modifiers adaptive LASSO algorithm.

1: Estimate the outcome expectation Q̄n(a,W ) = Ê(Y|A = a,W ) for each subject.
2: Obtain the estimated propensity score gn(a|W ) = P̂(A = a|W ) for each subject.
3: Construct an estimate of the doubly robust function Dn by plugging in the estimated Q̄n and gn.
4: Select the effect modifiers by following steps (a)–(d) below:

(a) Run a linear regression of Dn on V as the set of covariates. Obtain �̃� j, the estimated coefficient of V ( j), j = 1, . . . , p.
(b) Define the weights �̂� j = 1

|�̃� j |𝛾 , j = 1, . . . , p for some 𝛾 > 0.
(c) Run a LASSO regression of Dn on V with �̂� j as the penalty factor associated with V ( j) with a given 𝜆.
(d) The non-zero coefficients of the solution of the adaptive LASSO regression {�̂� j}

p
j=1 are the selected effect modifiers.

5: The final estimate of the CATE is 𝜓n(V ) = 𝛽0 +
∑p

j=1V
( j)
�̂� j.

For the adaptive LASSO tuning parameters, we choose 𝛾 = 1 (Nonnegative Garotte Problem [34]) and𝜆 is selected using cross-
validation as suggested by Zou [24]. The traditional cross-validation minimizes the prediction error knowing the true outcome. In
our setting, the Adaptive LASSO is run with the estimated pseudo-outcome as the “true” outcome. We conjecture that if the two
nuisance parameters are consistently estimated at fast enough rates, we should be able to use the estimated pseudo-outcome to
find an optimal tuning parameter. This conjecture agrees with recent results fromKennedy (2020) [19]. Naive inference by ignoring
the EM selection would result in incorrect confidence intervals. Zhao et al. [10] showed that when the outcome is observed with
error, the selective pivotal statistic proposed by Lee et al. [31] is still asymptotically valid. Thus we apply their methodology which
is expected to produce valid asymptotic results as long as Q̄n is consistent and both Q̄n and gn converge faster than at a n1∕4 rate
in the l2 norm [35]. In order to construct a selective 95%-confidence intervals for the selected submodel, we use the R package
selectiveInference [36] for post-selection inference. The estimated 𝜎2 used in the package is the variance of the residual from
fitting the full model in 4(a).

3 Simulation study

3.1 Data generation and parameter estimation
Toevaluate theperformanceof theproposedmethod infinite samples,we conducteda simulation studyunder
four scenarios.We simulated dataO = (W,A,Y) representing baseline covariatesW, a binary exposureA, and
a continuous outcome Y. The baseline covariatesW include three confounders (X,V (1)

,V (2)), one instrument
Z (pure cause of treatment), and two pure causes of the outcome (V (3)

,V (4)). All covariates were generated
independently with the Bernoulli distribution with success probability p: X ∼ B(p = 0.4), V (1) ∼ B(p = 0.5),
V (2) ∼ B(p = 0.6), V (3) ∼ B(p = 0.5), V (4) ∼ B(p = 0.7) and Z ∼ B(p = 0.45).

We varied the strength of the relationship between covariates, outcome and treatment across three low-
dimensional scenarios. In the first, we used an outcomemodel where the covariates were strongly predictive,
and a treatment model where the covariates were weakly predictive. The treatment mechanism g0 was set as
a Bernoulli with the probability generated linearly in the three confounder variables and single instrument,

P0(A = 1|X) = expit{0.5Z − 0.2X + 0.3V (1)1+ 0.4V (2)}

where expit(x) = 1∕{1+ exp(−x)}. The observed continuous outcome Y was linearly generated as:

Y = 1+ A− 0.5X + 2V (1) + V (2) + V (3) − 0.2V (4) + 4V (1)V (2)V (3) + A(0.5V (1) + V (3))+ N(0, 1)
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The effect modification arises due to interaction between treatment and covariates.
The second scenario has the same data generation except that the coefficient of the interaction term

V (1)V (2)V (3) is 0 instead of 4. In the third scenario, we use an outcome model where the covariates are weakly
predictive, and a treatment model where the covariates are strongly predictive. We focus here on the first
scenario and describe all other simulations settings and results in the Appendix.

We thus have two EMs (V (1)
,V (3)), where the first is a confounder and the second is a pure cause of the

outcome. In practice, we are not aware of the true data generating mechanism. So we have a potential set
of EMs: V = (V (1)

,V (2)
,V (3)

,V (4)). Let 𝜓0(V) = EP0 (Y
1 − Y0|V) be the true (nonparametric) CATE, which we

model as an MSM: �̃�0(V) = 𝛽0 + 𝛽1V (1) + 𝛽2V (2) + 𝛽3V (3) + 𝛽4V (4). Our goal here is to identify among the set
V, the true EMs and estimate their associated coefficients. Given the data generated, the true values of the
coefficients are𝜷

𝑣
= (0.5,0, 1,0).We set n = 1000 and then 10 000.We also add a smaller sample size n = 100

with results in the appendix.
To evaluate the performance of ourmethod in high-dimensional settings,we also extend the first scenario

by adding 50 pure binary noise covariates (unrelated to treatment or outcome) to our set of covariates, which
are included as potential confounders and EMs. The true values of the coefficients in the MSM are thus
𝜷
𝑣
= (0.5,0, 1,0,… ,0).
Under each low-dimensional scenario, we tested our proposed method under four different implementa-

tions:
(1) Qcgc: Both of the models for Q̄ and g are correctly specified using generalized linear models (GLMs).
(2) Qc: Only the GLM for Q̄ is correctly specified. g is misspecified using a logistic regression of treatment A

on variable X.
(3) gc: Only the GLM for g is correctly specified. Q̄ is misspecified using a GLM of treatment Y on variables

A and V (3).
(4) HAL: Both Q̄ and g are estimated using the Highly Adaptive LASSO (HAL) [30, 37]. We use the package

default setting.

For comparison, we also tested two implementations of a linear regression model for the outcome to directly
assess effect modification:
(5) NLin: Linear regression with main terms (treatment and all covariates) and interactions between

treatment and covariates. Only first-order interactions were included.
(6) CLin: Linear regression with a correctly specified outcome model.

Standard confidence intervals are presented for the linear model case and, in our summary, a p-value of less
than 0.05 is used as a criterion for a variable to be selected.

In the higher dimensional scenario, only HAL was used to estimate Q̄ and g.

3.2 Simulation results
For each scenario, we produced boxplots of the MSM coefficient estimates. We also present the percent
selection, the coverageproportionof the confidence intervals and the false coverage rate inorder to summarize
the average performance of each estimator and implementation. The percent selection for our LASSOmethod
was obtained as the percentage of estimated coefficients that are non-zero throughout the 1000 generated
datasets, and for the linear regression, the percentage of p-values <0.05. The coverage for each true effect
modifier was obtained as the number of times the true model was selected and the corresponding confidence
intervals contained the true coefficients, divided by the number of times the true model was selected. For
the linear regression, the percent coverage was instead calculated for each coefficient and defined as the
proportion of the confidence intervals that contained the true coefficient throughout the 1000 generated
datasets. The false coverage rate (FCR) for our LASSO model was obtained as the number of non-covering
confidence intervals among the selected coefficients, divided by the number of the selected coefficients
throughout the 1000 generated datasets [31].
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For the first low-dimensional scenario, Figures 1 and 2 contain the boxplots of the MSM coefficient
estimates for the true EMs V (1)

,V3 and non-EMs (V (2)
,V (4)), respectively. Table 1 (in the Appendix) contains

the numerical results. As shown in the first two boxplots in Figures 1 and 2, the implementations (1) Qcgc and
(2) Qc performed very well. We obtained unbiased estimates and confidence interval coverage that tended
to be around 95% as sample size increased as shown in Figure 5. The FCR was close to the optimal 0.05.
In the third boxplot, corresponding to implementation (3) gc, where only the propensity score was correctly
specified, the estimator was more biased for both sample sizes but had higher coverage rates and lower FCR.
In the fourth boxplot where the estimator was implementedwithHAL, the estimator performedwell across all
measures. Overall, as shown in Figure 5, the percent coverage of the true EMsV (1)

,V3 was around the nominal
95% as sample size increased or when at least the outcomemodel was correclty specified ormachine learning
methods were used to estimate both nuisance parameters. In all implementations the true effect-modifiers
(V (1)

,V (3)) were selected around 100 percent of the time except when only the propensity score was correctly
specified for the smaller sample size (gc). The percent selection of variables that are not effect-modifiers
(V (2)

,V (4)) was around 20% for n = 1000. In implementations (1), (2), and (4), the percentage was almost
halved for n = 10,000. The FCRwas controlled around the nominal 0.05 level in all situations evenwhen only
one nuisance model was correctly specified. This supports the double robustness of the proposed estimator
and the appropriateness of the post-selection confidence intervals. In implementation (5) NLin, the naive
linear model with a misspecified term performed poorly, even when increasing the sample size. On the other
hand, when the linear model was correctly specified in implementation (6) CLin, the coefficient estimates
were unbiased on average and the coverage was near-optimal. For the two other data generating scenarios
described atmore length in theAppendix, the results (Tables 2 and 3) look similar to those in the first scenario.

Table 4 in the Appendix contains the results with the small sample size n = 100. The performance of
the proposed methods decreased across all measures except for V (3) where there was a higher coverage rate
when Q̄ and g were correctly specified or estimated with HAL. The results of the high-dimensional setting are
presented in Figures 3 and 4. Q̄ and g were estimated with HAL. The estimates were taken over 100 generated
datasets and look similar to Figures 1 and 2 for the covariates V = (V (1)

,V (2)
,V (3)

,V (4)) in common. For the
noise covariate coefficients, the estimates, given in the density plot of Figure 4, were unbiased for 0. The
noise covariates had a low percent selection (see Table 5). Using median statistics, the noise covariates were
selected around 14% of the time and that proportion decreased to 13% as we increased the sample size. The
FCR exceeded the nominal 5% level and was around 15%.

In summary, Table 1 demonstrates that in low-dimensional settings, the proposed algorithm is able to
produce unbiased estimates and control the FCR around the nominal level. In contrast, Table 5 demonstrates
that in the context of high-dimensional covariates withmany candidate EMs, the FCR is generallymuch larger
than the nominal level. Similar results were obtained by Zhao et al. ([10], Figure 2). In addition, at least some
non-EMs were always selected by the algorithm at the sample sizes investigated.

4 Data analysis: asthma medication during pregnancy

4.1 Data
Our data were obtained from a cohort (Firoozi et al. [38]) of deliveries of pregnant women with asthma
in order to study the effect of using inhaled corticosteroids (ICS) during pregnancy on birth weight. The
population of interest is pregnant women with mild asthma and a singleton delivery in Québec, Canada
between 1998 and 2008, aged ≤45 years. For simplicity, We considered only the first delivery for each woman
in this period. Asthma severity was defined according to an index that is based on the Canadian Asthma
Consensus Guidelines (Cossette et al. [39]). A total of 4707 pregnancies in our database fell into this category.
ICS exposurewas classified in two categories: “use”(awomanwhofilled at least one prescription of ICSduring
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Figure 4: Illustrations for high-dimensional setting. Box plots of the MSM coefficients estimates over 100 simulations for the 50
noise covariates (for both n = 1000 and n = 10,000). The true values of the coefficients are (0,… ,0).

pregnancy) and “no use”(a woman who did not fill any prescription of ICS during pregnancy). The outcome
of interest is birth weight (continuous in kilograms). We identified a variety of maternal baseline variables.
These potential confounders measured in the year before pregnancy include demographic characteristics
(e.g. income security provider and place of residence), chronic diseases (e.g. hypertension and diabetes) and
variables related to asthma (e.g. at least one hospitalization for asthma, at least one emergency department
visit for asthma, and oral corticosteroids).We also included the cumulative daily dose of ICS in the year before
pregnancy and sex of the newborn as potential confounders. A full list of measured potential confounders
can be found in Table 6 in the Appendix. As we do not knowwhich variables are effect modifiers, we included
a wide range of variables in the set V, 22 variables in all. Specifically, these variables were: In the year
before pregnancy: at least one dose of inhaled short-acting 𝛽2-agonists (SABA) taken per week, medication
for epilepsy, use of warfarin, use of beta blockers, asthma exacerbation, oral SABA use, oral corticosteroids,
leukoteriene-receptor antagonists, intranasal corticosteroids, at least one hospitalization for asthma, at least
one emergency department visit for asthma, and welfare recipient; At the start of the pregnancy: chronic
obstructive disease, cyanotic heart disease, obesity, uterine disorder, antiphospholipid syndrome, sex of the
newborn, rural/non-rural residence indicator, hypertension, diabetes, and chromosomal anomalies.

For our pregnancy cohort, the average treatment effect is the expected difference in themean counterfac-
tual birth weight if all women were exposed to ICS during pregnancy versus the counterfactual birth weight
if all women were not [40]. The target parameters are the coefficients 𝛽 j, j = 1,… , 22 of the MSM defined as:
�̃�0(V) = 𝛽0 +

∑22
j=1V ( j)

𝛽 j, with V = (V (1)
,… ,V (22)) the set of potential EMs. Taking the sex of the newborn

as an EM for example (V (j) = sex), 𝛽 j is the difference in the CATE for women having male versus female
children.

4.2 Results
Baseline characteristics of the pregnancy cohort are presented in Table 6. We first implemented a standard
linear regression with main terms for all potential confounders and interaction terms between the treatment
and the set V . The estimates of the coefficients of the interaction terms are given in Table 7. A variable was
considered to be selected as an EM in the standard linear regression if the coefficient of the interaction term
between that variableand the treatmenthadap-value<0.05.Thismodel concluded that leukoteriene-receptor
antagonists and chromosomal anomalies are EMs. In addition, we implemented our LASSO methods using
HAL for the estimation of the outcome expectation and propensity score. All of the covariates were included
in the propensity score model as well as in the outcome model. Due to larger weights, a 5% truncation for the
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values of gnwasused. The selected coefficients of theMSMand their estimated values are presented in Table 8.
Three covariates (leukoteriene-receptor antagonists, warfarin one year before pregnancy, and chromosomal
anomalies) were selected using the adaptive LASSO and two of them were significant (leukoteriene-receptor
antagonists and chromosomal anomalies) using post-selection inference. Leukoteriene-receptor antagonists
and chromosomal anomalies were thus selected as EMs in the association of taking ICS during pregnancy
on birth weight. Although the naive linear model and our algorithm generate very similar sets of EMs, the
coefficients of the selected EMs are different (compare Table 7 with Table 8). For example, the estimated
coefficient of leukoteriene-receptor antagonist is around−0.17 in the adaptive LASSOwhile it is−0.365 using
the linear model.

5 Discussion
In this paper, we proposed a doubly robust estimator for selecting effect modifiers (EMs) in an MSM for the
CATE. We used the post selection inference method of Lee et al. [31] to produce post-selection confidence
intervals.

Through simulation studies, we studied the performance of the proposed estimator. As well, we showed
that our proposed estimator is doubly robust and performswell in a high dimensional setting but had a higher
FCR along with an over-selection of non-EMs. We observed a slower convergence of our estimator when the
outcome expectation model was misspecified. Work by Ju et al. [42] suggests that better performance might
be obtained by incorporating outcome-inverse weighting in the penalty term when using HAL to estimate
the propensity score. We also illustrated that the post-selection confidence interval produces good coverage
proportions for the selected EMs. In a high dimensional case, we confirmed the observation of Zhao et al. [10]
concerning the FCR which exceeded the nominal level in the presence of many noise covariates. Debiased
Lasso [41] could be consideredhere in ahighdimensional case as proposed in Zhao et al. (2017). In general, the
overall performance of our estimator improved with the sample size. However, the blind usage of traditional
methods like a regression with main terms and interactions between treatment and potential effect modifiers
may produce biased results.

We also show theoretically that our estimator is doubly robust and also inherits the oracle properties of
the adaptive LASSO. Linearity and sparsity are assumptions of Lemma 2 and theymay be restrictive. However,
by modeling the conditional average treatment effect on the linear scale, we are investigating effect modi-
fication on the absolute scale (difference between means) which is recommended [43]. If the linear model
is too restrictive for some applications, we could increase the model capacity by adding higher order terms
and interaction terms. Another option could be to use non-linear models or machine learning methods to
model the pseudo-outcome �̃�0(V). Because of the difficulty for stakeholders to interpret a black-boxmarginal
model [28], this approach may not be desireable when the goal is to discover effect modifiers and fit an inter-
pretable model. Machine learning approaches may be more appropriate when the goal is identifying optimal
treatment rules.

Inourapplication, the results suggest that leukoteriene-receptorantagonistsandchromosomalanomalies
may modify the effect of ICS during pregnancy on birth weight for women with mild asthma. The estimated
CATE is 0.18 lower for women taking leukoteriene-receptor antagonists. As leukoteriene-receptor antagonists
are an addition to ICS, we can suppose that it is a marker for more severe asthma. In the presence of a
chromosomal anomaly, the effect of ICS was estimated to be 0.78 lower. The linear regression with standard
significance testing suggested the same but with different coefficient estimates. Such discrepancymay be due
to the fact that the naive model doesn’t target MSM parameters and thus may not be able to model effect
modification in the absence of confounding. In this finite sample setting, the regularization may possibly
have shrunk the coefficient values relative to the truth. Our results point to the importance of using robust
methodologies for selecting effect modifiers in well-defined causal models for estimating the conditional
treatment effect.
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Appendix
In the Appendix, we give the numerical results of the simulation study, the baseline characteristics of our
pregnancy data, the results of our application and the proofs of the two lemmas (Table 9).
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Table 1: Simulation results (Data generating scenario 1).

Coef EM n= 1000 n = 10,000

𝜷V %sel %Cov FCR 𝜷V %sel %Cov FCR

(1) Q̄ & gmodel are correctly specified
V1 T 0.46 98 96 5 0.49 100 95 6
V2 F 0.00 21 0.00 12
V3 T 0.98 100 95 0.99 100 95
V4 F 0.00 21 0.00 13

(2) Q̄model is correctly specified

V1 T 0.46 99 96 6 0.49 100 95 6
V2 F 0.00 21 0.00 11
V3 T 0.98 100 94 0.99 100 96
V4 F 0.00 19 0.00 12

(3) gmodel is correctly specified
V1 T 0.31 55 95 2 0.47 99 100 2
V2 F 0.01 19 0.00 14
V3 T 0.83 92 100 0.99 100 99
V4 F 0.00 26 0.00 22

(4) Q̄ & gmodel are estimated using HAL
V1 T 0.46 99 95 6 0.49 100 95 6
V2 F 0.00 21 0.00 12
V3 T 0.98 100 94 1.00 100 95
V4 F 0.00 22 0.00 13

(5) Naive linear model

V1 T 0.69 95 83 19 0.69 100 11 65
V2 F 0.15 12 88 0.15 67 33
V3 T 1.35 100 56 1.36 100 0
V4 F 0.01 37 96 0.00 47 95

(6) Linear model correctly specified

V1 T 0.50 97 96 5 0.50 100 95 4
V2 F 0.00 6 94 0.00 5 95
V3 T 1.00 100 95 1.00 100 95
V4 F 0.00 4 96 0.00 4 96

Estimates taken over 1000 generated datasets. �̂�V : average estimated value of the coefficients of the MSM, %Cov: percent
coverage of the selective confidence interval × 100 (Standard CI for the linear model case), %sel: percent selection of variables
× 100, FCR: False coverage rate × 100, EM: T (variable is an effect-modifier) and F (variable is not an effect-modifier). The true
values of the coefficients are 𝛽V = (0.5, 0, 1, 0).

Proof of Lemma 1. Denote Q̄n (respectively gn) an estimator of Q̄ (respectively g). We have:

EP0 (D(Q̄n, gn)|V)

= EP0

{
2A− 1
gn(A|W) (Y − Q̄n(A,W))+ Q̄n(1,W)− Q̄n(0,W)|V

}

= EP0

{
2A− 1
gn(A|W)Y − Q̄n(A,W)|V

}
+ EP0{Q̄n(1,W)− Q̄n(0,W)|V} + 𝜓0(V)− 𝜓0(V)
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Table 2: Simulation results (Data generating scenario 2).

Coef EM n = 1000 n= 10,000

𝜷V %sel %Cov FCR 𝜷V %sel %Cov FCR

(1) Q & gmodel are correctly specified
V1 T 0.47 99 96 5 0.49 100 95 5
V2 F 0.00 20 0.00 13
V3 T 0.98 100 95 1.00 100 95
V4 F 0.00 23 0.00 12

(2) Qmodel is correctly specified

V1 T 0.47 99 97 5 0.49 100 94 6
V2 F 0.00 20 0.00 11
V3 T 0.99 100 95 1.00 100 95
V4 F 0.00 21. 0.00 11

(3) gmodel is correctly specified
V1 T 0.32 55 99 2 0.47 99 99 2
V2 F 0.01 19 0.00 14
V3 T 0.85 94 98 0.99 100 99
V4 F −0.01 24 0.00 21

(4) Q & gmodel are estimated using HAL
V1 T 0.47 98 97 5 0.49 100 95 7
V2 F 0.00 22 0.00 12
V3 T 0.98 100 94 1.00 100 95
V4 F 0.00 22 0.00 12

(6) Linear model correctly specified

V1 T 0.50 89 96 5 0.50 100 95 5
V2 F 0.00 6 94 0.00 6 94
V3 T 1.00 100 94 1.00 100 95
V4 F 0.00 4 97 0.00 4 96

Estimates taken over 1000 generated datasets. �̂�V : coefficients of the MSM, Cov: percent coverage of the selective confidence
interval × 100, %sel: percent selection of variables × 100, FCR: False coverage rate × 100, EM: T (variable is an effect-modifier)
and F (variable is not an effect-modifier). The true values of the coefficients are 𝛽V = (0.5, 0, 1, 0).

= 𝜓0(V)+ EP0
[
{Q̄n(1,W)− Q̄n(0,W)} − {Q̄0(1,W)− Q̄0(0,W)}|V]

+ EP0

{
2A− 1
gn(A|W)

(Y − Q̄n(A,W))|V
}

= 𝜓0(V)+ ∫W

(
{Q̄n(1,W)− Q̄n(0,W)} − {Q̄0(1,W)− Q̄0(0,W)}

+ P0(1|W)
gn(1|W)

{
Q̄0(1,W)− Q̄n(1,W)

}
− P0(0|W)

gn(0|W)
{
Q̄0(0,W)− Q̄n(0,W)

})
dP0(W|V)

= 𝜓0(V)+ ∫W

[(
P0(1|W)
gn(1|W)

− 1
){

Q̄0(1,W)− Q̄n(1,W)
}

+
(
P0(0|W)
gn(0|W) − 1

){
Q̄0(0,W)− Q̄n(0,W)

}]
dP0(W|V)

Then EP0 (D(Q̄n, gn)|V)→ 𝜓0(V) if gn(A|W) or Q̄n(A,W) is consistently estimated.
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Table 3: Simulation results (Data generating scenario 3).

Coef EM n = 1000 n = 10,000

𝜷V %sel %Cov FCR 𝜷V %sel %Cov FCR

(1) Q & gmodel are correctly specified
V1 T 0.44 94 97 5 0.49 100 96 5
V2 F 0.00 23 0.00 16
V3 T 0.97 100 95 1.00 100 97
V4 F 0.00 23 0.00 17

(2) Qmodel is correctly specified

V1 T 0.45 96 97 6 0.50 100 94 7
V2 F 0.00 20 0.00 13
V3 T 0.98 100 93 1.00 100 95
V4 F 0.00 22 0.00 12

(3) gmodel is correctly specified
V1 T 0.34 74 100 3 0.49 100 100 4
V2 F 0.01 23 0.00 18
V3 T 0.91 99 97 0.99 100 96
V4 F 0.00 25 0.00 24

(4) Q & gmodel are estimated using HAL
V1 T 0.45 95 95 6 0.49 100 95 5
V2 F 0.00 24 0.00 16
V3 T 0.98 100 94 1.00 100 96
V4 F 0.00 23 0.00 16

(5) Naive linear model

V1 T 0.60 89 93 10 0.59 100 63 43
V2 F 0.10 76 92 0.10 35 65
V3 T 1.21 100 81 1.21 100 58
V4 F 0.01 38 96 −0.00 44 96

(6) Linear model correctly specified

V1 T 0.50 98 96 5 0.50 100 95 5
V2 F 0.00 4 96 0.00 5 95
V3 T 1.00 100 95 1.00 100 95
V4 F 0.00 5 95 0.00 5 95

Estimates taken over 1000 generated datasets. �̂�V : coefficients of the MSM, Cov: percent coverage of the selective confidence
interval × 100, %sel: percent selection of variables × 100, FCR: False coverage rate × 100, EM: T (variable is an effect-modifier)
and F (variable is not an effect-modifier). The true values of the coefficients are 𝛽V = (0.5, 0, 1, 0).

Proof of Lemma 2. Let Dn = D(Q̄n, gn) (respectively D0 = D(Q̄0, g0)) represent the estimated pseudo function
(respectively the true pseudo-outcome). Ourmethodminimizes the expected risk function belowwith respect
to 𝛽:

⎧⎪⎨⎪⎩

(
Dn −

∑
j
V ( j)

𝛽 j

)2

+ 𝜆
p∑
j=1
�̂� j|𝛽 j|

⎫⎪⎬⎪⎭
where �̂� j = 1∕|�̃� j|𝛾 , j = 1,… , p, for some 𝛾 > 0.
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Table 4: Simulation results for smaller sample size (n = 100).

Coef EM Scenario 1 Scenario 2 Scenario 3

𝜷V %sel Cov FCR 𝜷V %sel Cov FCR 𝜷V %sel Cov FCR

(1) Q & gmodel are correctly specified
V1 T 0.39 52 87 8 0.34 49 88 9 0.30 41 89 10
V2 F −0.01 22 −0.01 25 0.02 24
V3 T 0.85 86 94 0.78 80 96 0.78 71 93
V4 F 0.01 28. 0.00 25 0.00 24

(2) Qmodel is correctly specified

V1 T 0.38 53 91 7 0.36 50 88 8 0.29 41 89 10
V2 F −0.03 27 0.00 21 0.01 20
V3 T 0.83 85 98 0.79 8 97 0.76 72 93
V4 F −0.02 25 0.00 27 0.00 21

(3) gmodel is correctly specified
V1 T 0.24 20 97 9 0.24 25 98 6 0.26 25 91 9
V2 F 0.04 16 0.04 1 0.04 26
V3 T 0.51 29 90 0.59 45 95 0.68 47 88
V4 F 0.01 21 0.02 23 0.00 25

(4) Q & gmodel are estimated using HAL
V1 T 0.39 54 83 10 0.36 51 85 9 0.32 45 79 11
V2 F 0.00 30 0.01 27 0.00 27
V3 T 0.84 87 96 0.79 81 96 0.80 82 95
V4 F 0.00 27 0.01 27 −0.02 24

Estimates taken over 500 generated datasets. �̂�V : coefficients of the MSM, Cov: percent coverage of the selective confidence
interval × 100, %sel: percent selection of variables × 100, FCR: False coverage rate × 100, EM: T (variable is an effect-modifier)
and F (variable is not an effect-modifier). The true values of the coefficients are 𝛽V = (0.5, 0, 1, 0).

Table 5: Simulation results (Data generating scenario 1 with 50 noise covariates).

Coef EM n = 1000 n = 10,000

𝜷V %sel %Cov FCR 𝜷V %sel %Cov FCR

(1) Estimates related to the potential EM that are not noise covariates

V1 T 0.43 100 100 15 0.48 100 100 15
V2 F 0.00 14 0.00 15
V3 T 0.95 100 91 0.99 100 90
V4 F 0.01 15 0.00 14

(2) Summary of the 50 potential EM that are noise covariates

Min −0.01 7.0 0.00 5
Q1 0.00 12 0.00 11
Median 0.00 14 0.00 13
Q3 0.00 16 0.00 15
Max 0.01 23 0.00 22

Estimates taken over 100 generated datasets. 𝜷V : coefficients of the MSM, Cov: percent coverage of the selective confidence
interval, %sel: percent selection of variables, FCR: False coverage rate, EM: T (variable is an effect-modifier) and F (variable is
not an effect-modifier). The true values of the coefficients are 𝛽V = (0.5, 0, 1, 0, . . . , 0).
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Table 6: Baseline Characteristics of mothers in the cohort extraction (N = 4707).

Characteristics No ICS ICS
N ( %) N ( %)

Cohort size 2272 (100) 2435 (100)
Age
<18 45 (1.9) 60 (2.4)
18–34 1958 (86.1) 2041 (83.8)
>34 269 (11.8) 334(13.7)

Sex of the newborn 1149 (51.0) 1271 (52.0)
Welfare recipient 1126 (50.0) 1429 (59.0)
Urban residence 476 (18.0) 407 (20.0)
Hypertension 61 (3.0) 83 (3.0)
Diabetes 73 (3.0) 81 (3.0)
COPD 28 (1.0) 56 (2.0)
Cyanotic heart disease 7 (0.0) 8 (0.0)
Antiphospholipid syndrome 12 (1.0) 13 (1.0)
Uterine disorder 264 (12.0) 331 (14.0)
Epilepsy 18 (1.0) 23 (1.0)
Obesity 87 (4.0) 127 (5.0)
Lupus 1 (0.0) 2 (0.0)
Collagenous vascular disease 6 (0.0) 6 (0.0)
Cushing’s syndrome 4 (0.0) 4 (0.0)
Oral corticosteroids one year before pregnancy 234 (10.0) 281(12.0)
Oral SABA use one year before pregnancy 16 (1.0) 8 (0.0)
At least one dose of inhaled SABA taken per week 1523 (67.0) 1332 (55.0)
HIV 3 (0.0) 1 (0.0)
Cytomegalovirus infection 3 (0.0) 12 (0.0)
Leukotriene-receptor antagonists 33 (1.0) 30 (1.0)
Theophylline use one year before pregnancy 0 (0.0) 0 (0.0)
Intranasal corticosteroids 243 (11.0) 318 (13.0)
Folic acid one year before pregnancy 18 (1.0) 43 (2.0)
Teratogens taken one year before 0 (0.0) 0 (0.0)
Medication for epilepsy one year before pregnancy 29 (1.0) 48 (2.0)
Warfarin one year before pregnancy 7(0.0) 10 (0.0)
Use of beta-bloqueur one year before pregnancy 19 (1.0) 26 (1.0)
Asthma exacerbation one year before pregnancy 377 (17.0) 411 (17.0)
Hospitalization for asthma 1079 (47.0) 809 (33.0)
Chromosomal anomalies 6 (0.0) 4 (0.0)
Cumulative dose of ICS in days (mean (SD)) 51.6 (72.8) 54.0 (85.8)
One year cumulative dose of ICS before pregnancy (mean (SD)) 151 (32.0) 101.5 (126.3)
At least one emergency department visit for asthma 260 (7.0) 265 (19.0)
At least one hospitalization for asthma 5 (0.0) 8 (1.0)

Let 𝜖n = Dn −
∑

j V
(j)βj be the residual of the penalized linear regression of Dn on V . The proof follows

essentially the one of Zou ([17]). We have to show that 𝜖TnV∕
√
n follows a normal distribution with mean zero

and a finite variance.
Indeed, one can write

𝜖n = (Dn − D0)+
(
D0 −

∑
j
V ( j)

𝛽 j

)
.

𝜖
T
nV∕

√
n =

√
nℙn(Dn − D0)TV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

R1

+
√
nℙn

(
D0 −

∑
j
V ( j)

𝛽 j

)T

V

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

R2

.
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Table 7: Estimates of the coefficients associated with interaction terms using the naive linear model (n = 4707).

Variables Estimate (𝜷 j) STD p-Value

Intercept 3.153
CS:At least one dose of inhaled SABA taken per week −0.002 0.039 0.940
CS:Leukotriene-receptor antagonists −0.365 0.142 0.010∗
CS:Intranasal corticosteroids 0.063 0.051 0.214
CS:Folic acid one year before pregnancy −0.129 0.159 0.415
CS:Medication for epilepsie −0.136 0.135 0.313
CS:Warfarin −0.386 0.277 0.164
CS:Beta-blockers −0.287 0.173 0.097
CS:Asthma exacerbation 0.062 0.069 0.368
CS:At least one hospitalization for asthma 0.017 0.036 0.624
CS:At least one emergency department visit for asthma 0.067 0.055 0.223
CS:COPD 0.141 0.130 0.280
CS:Cyanotic heart disease −0.345 0.292 0.237
CS:Oral corticosteroids one year before −0.081 0.081 0.319
CS:Obesity 0.053 0.080 0.508
CS:Uterine disorder −0.036 0.050 0.460
CS:Oral SABA use one year before −0.025 0.244 0.918
CS:Antiphospholipid syndrome 0.394 0.227 0.083
CS:Sex of new born −0.031 0.032 0.335
CS:Welfare recipient −0.043 0.033 0.1871
CS:Rural/non-rural residence indicator 0.021 0.042 0.602
CS:Hypertension 0.028 0.098 0.774
CS:Diabetes −0.105 0.092 0.255
CS:Chromosomal anomalies −1.230 0.361 0.0006∗
CS:Cytomegalovirus infection 0.146 0.360 0.683

Table 8: Estimates of the selected MSM coefficients using adaptive lasso (n = 4707) with 95% post selection interval for the
selected variables.

Variables Estimate (𝜷 j) CI Low CI up

High adaptive LASSO for Q & g
Intercept 0.018
Leukotriene-receptor antagonists∗ −0.177 −0.502 −0.031
Warfarin −0.146 −0.745 0.311
Chromosomal anomalies∗ −0.777 −1.420 −0.285
∗: means interval excluded the null value.

with ℙn denotes the empirical measure. 𝜖0 = D0 −
∑

j V
(j)βj is the residual of the penalized linear regression

of the oracle pseudo function D0 on V . Therefore, if we assume 1
nV

TV → C with C a positive definite matrix,

we have R2
d
←←←←←←←←←←→N(0, 𝜎2C).

One can write √
nℙn(Dn − D0)TV ≤

√
n‖ℙn(Dn − D0)TV‖

Semenova and Chernozhukov ([20]) showed in Lemma A.3, given their Assumption 3.5, is that
√
n‖ℙn(Dn − D0)TV‖ = o(1)

Therefore,
√
nℙn(Dn − D0)TV = o(1) which yields the result.
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Table 9: Computation time in seconds for the simulation (run on a single dataset) and application.

Methods n= 1000 n= 4707 n= 10,000

Low-dimensional

Parametric regression for Q & g 0.16s – 4.62s
Highly adaptive LASSO for Q & g 1.09s – 9.06s

High-dimensional

Highly adaptive LASSO for Q & g 49.75s – 600s

Data analysis

Highly adaptive LASSO for Q & g – 115.2s –
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