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𝛽∗𝐸 𝜽∗⊤
1 𝜽∗⊤

2 … 𝜽∗⊤
𝑝 𝛾∗1𝐸 𝛾∗2𝐸 … 𝛾∗𝑝𝐸

𝝓∗⊤
1 𝝓∗⊤

2 𝝓∗⊤
3 … 𝝓∗⊤

𝑝+1 𝝓∗⊤
𝑝+2 𝝓∗⊤

𝑝+3 … 𝝓∗⊤
2𝑝+1

𝜆(1 − 𝛼)𝑤𝐸 𝜆(1 − 𝛼)𝑤2 𝜆(1 − 𝛼)𝑤3 … 𝜆(1 − 𝛼)𝑤𝑝+1 𝜆𝛼𝑤𝑝+2,𝐸 𝜆𝛼𝑤𝑝+3,𝐸 … 𝜆𝛼𝑤2𝑝+1,𝐸

𝜆1 𝜆2 𝜆3 … 𝜆𝑝+1 𝜆𝑝+2 𝜆𝑝+3 … 𝜆2𝑝+1

Table 4
Correspondence between parameters used to simplify the notation in the proofs. The first row shows the actual parameters
used in the loss function. The second row shows the corresponding parameters in the simplified notation. The third row
shows the actual tuning parameters used in the penalty function. The fourth row shows the corresponding tuning parameters
in the simplified notation. This correspondence greatly simplifies the notation used in the proofs.

A. Proofs
As shown in the main text, we simplified the notation to make the proofs easier to follow. We summarize the

original notation and the corresponding simplified notation in Table 4. This notation then allows us to write down the
sail estimates as

𝚽̂𝑛 = argmin
𝚽

𝑄𝑛(𝚽) = −𝐿𝑛(𝚽) + 𝑛𝜆𝑚
2𝑝+1
∑

𝑚=1

‖

‖

𝝓𝑚‖‖2 . (17)

A.1. Regularity Conditions
(C1) The observation {𝐕𝑖 ∶ 𝑖 = 1,… , 𝑛} are independent and identically distributed with a probability density

𝑓 (𝐕,𝚽), which has a common support. We assume the density 𝑓 satisfies the following equations:
𝐸𝚽

[

∇𝝓𝑗 log 𝑓 (𝑽 ,𝚽)
]

= 𝟎 for 𝑗 = 1,… , 2𝑝 + 1,

and

𝐈𝑗1𝑘1𝑗2𝑘2 (𝚽) = 𝐸𝚽

[

𝜕
𝜕𝜙𝑗1𝑘1

log 𝑓 (𝑉 ,𝚽) ⋅ 𝜕
𝜕𝜙𝑗2𝑘2

log 𝑓 (𝑉 ,𝚽)

]

= 𝐸𝚽

[

− 𝜕2

𝜕𝜙𝑗1𝑘1𝜙𝑗2𝑘2
log 𝑓 (𝑉 ,𝚽)

]

,

for any 𝑗1, 𝑗2 = 1,… , 2𝑝 + 1, and 𝑘1 = 1,… , 𝑝𝑗1, 𝑘2 = 1,… , 𝑝𝑗2, where 𝑗1, 𝑗2 are the index of group, 𝑘1, 𝑘2 be
the index of elements within the corresponding group, 𝑝𝑗1 , 𝑝𝑗2 are the group size of 𝑗1, 𝑗2 respectively.

(C2) The Fisher information matrix

𝐈 (𝚽) = 𝐸
[

( 𝜕
𝜕𝚽

log 𝑓 (𝑉 ,𝚽)
)( 𝜕

𝜕𝚽
log 𝑓 (𝑉 ,𝚽)

)⊤]

,

is finite and positive definite at 𝚽 = 𝚽∗.
(C3) There exists an open set 𝜔 of Ω that contains the true parameter point 𝚽∗ such that for almost all 𝐕 the density

𝑓 (𝐕,𝚽) admits all third derivatives 𝜕3𝑓 (𝐕,𝚽)
𝜕𝜙𝑗1𝑘1𝜕𝜙𝑗2𝑘2𝜕𝜙𝑗3𝑘3

for all 𝚽 in 𝜔 and any 𝑗1, 𝑗2, 𝑗3 = 1,… , 2𝑝 + 1, and
𝑘1 = 1,… , 𝑝𝑗1, 𝑘2 = 1,… , 𝑝𝑗2 and 𝑘3 = 1,… , 𝑝𝑗3. Furthermore, there exist functions 𝑀𝑗1𝑘1𝑗2𝑘2𝑗3𝑘3 such that

|

|

|

|

|

𝜕3

𝜕𝜙𝑗1𝑘1𝜕𝜙𝑗2𝑘2𝜕𝜙𝑗3𝑘3
log 𝑓 (𝐕,𝚽)

|

|

|

|

|

≤𝑀𝑗1𝑘1𝑗2𝑘2𝑗3𝑘3 (𝐕) for all 𝚽 ∈ 𝜔,

and 𝑚𝑗1𝑘1𝑗2𝑘2𝑗3𝑘3 = 𝐸𝚽∗ [𝑀𝑗1𝑘1𝑗2𝑘2𝑗3𝑘3 (𝐕)] <∞.
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A.2. Lemma 1 proof
Let 𝜂𝑛 = 1

√

𝑛
+ 𝑎𝑛 and {𝚽∗ + 𝜂𝑛𝜹 ∶ ‖𝜹‖2 ≤ 𝐶} be the ball around 𝚽∗ for 𝜹 ∈ ℝ𝑑 , where 𝑑 is the dimension of the

design matrix and 𝐶 is some constant. Under the regularity assumptions, we show that there exists a local minimizer
𝚽̂𝑛 of 𝑄𝑛(𝚽) such that ‖𝚽̂𝑛 − 𝚽∗

‖2 = 𝑂𝑝(
1
√

𝑛
). For this proof, we adopt the approaches outlined in (Fan and Li,

2001; Choi et al., 2010; Nardi et al., 2008; Wang et al., 2007) and extend it to our situation. Let 𝜂𝑛 = 1
√

𝑛
+ 𝑎𝑛 and

{𝚽∗ + 𝜂𝑛𝜹 ∶ ‖𝜹‖2 ≤ 𝐶} be the ball around 𝚽∗ for 𝜹 = (𝐮⊤1 ,𝐮
⊤
2 , ,… ,𝐮⊤𝑝+1,𝐮

⊤
𝑝+2,… ,𝐮⊤2𝑝+1)

⊤ ∈ ℝ𝑑 , where 𝑑 is the
dimension of the design matrix and 𝐶 is some constant. The objective function is given by

𝑄𝑛(𝚽) = −𝐿𝑛(𝚽) + 𝑛𝜆𝑚
2𝑝+1
∑

𝑚=1

‖

‖

𝝓𝑚‖‖2 .

Define
𝐷𝑛(𝜹) ≡ 𝑄𝑛(𝚽∗ + 𝜂𝑛𝜹) −𝑄𝑛(𝚽∗).

Then for 𝜹 that satisfies ‖𝜹‖2 = 𝐶 , we have

𝐷𝑛(𝜹) = −𝐿𝑛(𝚽∗ + 𝜂𝑛𝜹) + 𝐿𝑛(𝚽∗) + 𝑛
2𝑝+1
∑

𝑚=1
𝜆𝑚(‖𝜽∗𝑚 + 𝜂𝑛𝐮𝑚‖2 − ‖𝜽∗𝑚‖2)

(𝑎)
≥ −𝐿𝑛(𝚽∗ + 𝜂𝑛𝜹) + 𝐿𝑛(𝚽∗) + 𝑛

∑

𝑚∈1

𝜆𝑚(‖𝜽∗𝑚 + 𝜂𝑛𝐮𝑚‖2 − ‖𝜽∗𝑚‖2)

+ 𝑛
∑

𝑚∈2

𝜆𝑚(‖𝜽∗𝑚 + 𝜂𝑛𝐮𝑚‖2 − ‖𝜽∗𝑚‖2)

(𝑏)
≥ −𝐿𝑛(𝚽∗ + 𝜂𝑛𝜹) + 𝐿𝑛(𝚽∗) − 𝑛𝜂𝑛

∑

𝑚∈1

𝜆𝑚‖𝐮𝑚‖2 − 𝑛𝜂𝑛
∑

𝑚∈2

𝜆𝑚‖𝐮𝑚‖2

(𝑐)
≥ −𝐿𝑛(𝚽∗ + 𝜂𝑛𝜹) + 𝐿𝑛(𝚽∗) − 𝑛𝜂2𝑛

∑

𝑚∈1

‖𝐮𝑚‖2 − 𝑛𝜂2𝑛
∑

𝑚∈2

‖𝐮𝑚‖2

≥ −𝐿𝑛(𝚽∗ + 𝜂𝑛𝜹) + 𝐿𝑛(𝚽∗) − 𝑛𝜂2𝑛(|1| + |2|)𝐶
(𝑑)
= −[∇𝐿𝑛(𝚽∗)]⊤(𝜂𝑛𝜹) −

1
2
(𝜂𝑛𝜹)⊤[∇2𝐿𝑛(𝚽∗)](𝜂𝑛𝜹)(1 + 𝑜(1))

− 𝑛𝜂2𝑛(|1| + |2|)𝐶. (18)
Inequality (a) is by the fact that ∑𝑚∉1

‖𝝓∗
𝑚‖2 = 0 and ∑

𝑚∉2
‖𝝓∗

𝑚‖2 = 0. Inequality (b) is due to the reverse triangle
inequality ‖𝑎‖2 − ‖𝑏‖2 ≥ −‖𝑎 − 𝑏‖2. Inequality (c) is by 𝜆𝑚 ≤ 𝑎𝑛 ≤ 𝜂𝑛 for 𝑚 ∈ 1 and 𝑚 ∈ 2 . Equality (d) is by
the standard argument on the Taylor expansion of the loss function:

𝐿𝑛(𝚽∗ + 𝜂𝑛𝜹) = 𝐿𝑛(𝚽∗ + 𝜂𝑛 ⋅ 𝟎) + 𝜂𝑛∇𝐿𝑛(𝚽∗ + 𝜂𝑛 ⋅ 𝟎)⊤(𝜹 − 𝟎)

+ 1
2
(𝜹 − 𝟎)⊤∇2𝐿𝑛(𝚽∗ + 𝜂𝑛 ⋅ 𝟎)(𝜹 − 𝟎){1 + 𝑜(1)}

= 𝐿𝑛(𝚽∗) + 𝜂𝑛∇𝐿𝑛(𝚽∗)⊤𝜹 + 1
2
𝜹⊤∇2𝐿𝑛(𝚽∗)𝜹𝜂2𝑛{1 + 𝑜(1)}.

We split (18) into three parts:
𝐷1 = −

[

∇𝐿𝑛
(

𝚽∗)]T (𝜂𝑛𝜹
)

𝐷2 = −1
2
(

𝜂𝑛𝜹
)⊤ [∇2𝐿𝑛

(

𝚽∗)] (𝜂𝑛𝜹
)

(1 + 𝑜(1))

𝐷3 = −𝑛𝜂2𝑛(|1| + |2|)𝐶.
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Then
𝐷1 = −𝜂𝑛

[

∇𝐿𝑛
(

𝚽∗)]⊤ 𝜹

= −
√

𝑛𝜂𝑛

(

1
√

𝑛
∇𝐿𝑛

(

𝚽∗)
)⊤

𝜹

= −
√

𝑛𝜂𝑛

(

√

𝑛1
𝑛

𝑛
∑

𝑖=1
∇ log𝑓

(

𝑽 𝑖,𝚽
)

|

|

|𝚽=𝚽∗

)⊤

𝜹

= −
√

𝑛𝜂𝑛

(

√

𝑛

[

1
𝑛

𝑛
∑

𝑖=1
∇ log𝑓

(

𝑽 𝑖,𝚽
)

|

|

|𝚽=𝚽∗ − 𝟎
])⊤

𝜹

= −
√

𝑛𝜂𝑛

(

√

𝑛

[

1
𝑛

𝑛
∑

𝑖=1
∇ log𝑓

(

𝑽 𝑖,𝚽
)

|

|

|𝚽=𝚽∗ − 𝐸𝚽∗∇𝐿
(

𝚽∗)
])⊤

𝜹

= −
√

𝑛𝜂𝑛𝑂𝑃 (1) 𝜹
= −𝑂𝑃

(

𝑛𝜂2𝑛
)

𝜹. (19)
The last equation is by 𝑎𝑛 = 𝑜( 1

√

𝑛
) and

𝑂𝑃 (𝑛𝜂2𝑛) = 𝑂𝑃 (𝑛(𝑛−1∕2 + 𝑎𝑛)2) = 𝑂𝑃 (1 + 2𝑛1∕2𝑎𝑛 + 𝑛𝑎2𝑛))

= 𝑂𝑃 (1 + 𝑛1∕2𝑎𝑛 + (𝑛1∕2𝑎𝑛)2) = 𝑂𝑃 (1 + 𝑛1∕2𝑎𝑛 + 𝑜(1))

= 𝑂𝑝(𝑛1∕2(𝑛−1∕2 + 𝑎𝑛)) = 𝑂𝑝(𝑛1∕2𝜂𝑛),

and
𝐷2 =

1
2
𝑛𝜂2𝑛

{

𝜹⊤
[

−1
𝑛
∇2𝐿𝑛

(

𝚽∗)
]

𝜹
}

(

1 + 𝑜𝑝(1)
)

= 1
2
𝑛𝜂2𝑛

{

𝜹⊤
[

𝐈
(

𝚽∗)] 𝜹
} (

1 + 𝑜𝑝(1)
) (by the weak law of large numbers)

= 𝑂𝑝(𝑛𝜂2𝑛‖𝜹‖
2
2). (20)

Combining (19) and (20) with (18) gives:
𝐷𝑛(𝜹) ≥ 𝐷1 +𝐷2 +𝐷3

= −𝑂𝑃
(

𝑛𝜂2𝑛
)

𝜹 + 𝑂𝑝(𝑛𝜂2𝑛‖𝜹‖
2
2) − 𝑛𝜂

2
𝑛(|1| + |2|)𝐶.

We can see that the first term 𝐷1 is linear in 𝜹 and the second term 𝐷2 is quadratic in 𝜹. We can conclude that for a
large enough constant 𝐶 = ‖𝜹‖2, 𝐷2 dominates 𝐷1 and 𝐷3. Note that this is a positive term since 𝐼(𝚽) is positive
definite at 𝚽 = 𝚽∗ by regularity condition (C2). Therefore, for each 𝜀 > 0, there exists a large enough constant 𝐶 such
that, for large enough 𝑛

𝑃
{

inf
‖𝜹‖2=𝐶

𝐷𝑛 (𝜹) > 0
}

≥ 1 − 𝜀.

This implies with probability at least 1 − 𝜀 that the empirical likelihood 𝑄𝑛 has a local minimizer in the ball
{𝚽∗ + 𝜂𝑛𝜹 ∶ ‖𝜹‖2 ≤ 𝐶} (since 𝑄𝑛 is bounded and {𝚽∗ + 𝛼𝑛𝜹 ∶ ‖𝜹‖2 ≤ 𝐶} is closed). In other words, there
exists a local solution 𝚽̂𝑛 such that ‖𝚽̂𝑛 − 𝚽∗

‖ ≤ 𝜂𝑛‖𝜹‖2 ≤ 𝜂𝑛𝐶 = 𝑂𝑃 (𝜂𝑛) = 𝑂𝑃 (
1
√

𝑛
+ 𝑎𝑛) = 𝑂𝑝(

1
√

𝑛
), since

𝑎𝑛 = 𝑜( 1
√

𝑛
). Hence, ‖‖

‖

𝚽̂𝑛 −𝚽∗‖
‖

‖2
= 𝑂𝑃

(

1
√

𝑛

)

.□
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A.3. Theorem 1 proof
We first consider consistency for the main effects 𝑃

(

𝚽̂𝑐
1
= 𝟎

)

→ 1. Following (Fan and Li, 2001; Choi et al.,
2010), it is sufficient to show that for all 𝑚 ∈ 𝑐

1, 𝑃
(

𝝓̂𝑚 = 𝟎
)

→ 1, which implies that 𝑃
(

𝚽̂𝑐
1
= 𝟎

)

→ 1, i.e., the
√

𝑛-consistent estimate 𝚽̂ has oracle property 𝝓̂𝑚 = 𝟎 if 𝝓∗
𝑚 = 𝟎. Denote

𝝓̂𝑚 = (𝜙̂𝑚1,… , 𝜙̂𝑚𝑝𝑚 ),

where 𝑝𝑚 is the group size of 𝝓̂𝑚. Let 𝜙̂𝑚𝑘 be the 𝑘-th entry of 𝝓̂𝑚. Note that if 𝝓̂𝑚 ≠ 𝟎, then 𝜙̂𝑚𝑘 ≠ 0 for 𝑘 = 1,… , 𝑝𝑚,
then penalty function ‖𝝓̂𝑚‖2 becomes differentiable. Therefore𝜙𝑚𝑘 for 𝑘 = 1,… , 𝑝𝑚 must satisfy the following normal
equation

𝜕𝑄𝑛
(

𝚽̂𝑛

)

𝜕𝜙𝑚𝑘
= −

𝜕𝐿𝑛
(

𝚽̂𝑛

)

𝜕𝜙𝑚𝑘
+ 𝑛𝜆𝑚

𝜙̂𝑚𝑘
‖𝝓̂𝑚‖2

= −
𝜕𝐿𝑛

(

𝚽∗)

𝜕𝜙𝑚𝑘
−

2𝑝+1
∑

𝑗1=1

𝑝𝑗1
∑

𝑘1=1

𝜕2𝐿𝑛
(

𝚽∗)

𝜕𝜙𝑚𝑘𝜕𝜙𝑗1𝑘1

(

𝜙̂𝑗1𝑘1 − 𝜙
∗
𝑗1𝑘1

)

− 1
2

2𝑝+1
∑

𝑗1=1

𝑝𝑗1
∑

𝑘1=1

2𝑝+1
∑

𝑗2=1

𝑝𝑗2
∑

𝑘2=1

𝜕3𝐿𝑛(𝚽̃)
𝜕𝜙𝑚𝑘𝜕𝜙𝑗1𝑘1𝜕𝜙𝑗2𝑘2

(

𝜙̂𝑗1𝑘1 − 𝜙
∗
𝑗1𝑘1

)(

𝜙̂𝑗2𝑘2 − 𝜙
∗
𝑗2𝑘2

)

+ 𝑛𝜆𝑚
𝜙̂𝑚𝑘

‖𝝓̂𝑚‖2
≜ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 = 0,

where 𝚽̃ lies between 𝚽̂𝑛 and 𝚽∗. By the regularity conditions and Lemma (1) that ‖‖
‖

𝚽̂𝑛 −𝚽∗‖
‖

‖2
= 𝑂𝑃

(

1
√

𝑛

)

, the
first term is of the order 𝑂𝑝(

√

𝑛)

𝐼1 = −
𝜕𝐿𝑛

(

𝚽̂𝑛

)

𝜕𝜙𝑚𝑘
= −

√

𝑛
√

𝑛1
𝑛

𝜕𝐿𝑛
(

𝚽̂𝑛

)

𝜕𝜙𝑚𝑘
=
√

𝑛𝑂𝑝(1) = 𝑂𝑝(
√

𝑛).

Then the second is of the order 𝑂𝑃
(

1
√

𝑛

)

and the third term is of the order 𝑂𝑃
(

1
𝑛

)

. Hence

𝜕𝑄𝑛
(

𝚽̂𝑛

)

𝜕𝚽𝑚
=
√

𝑛

{

𝑂𝑝(1) +
√

𝑛𝜆𝑚
𝜙̂𝑚𝑘

‖𝝓̂𝑚‖2

}

. (21)

As √𝑛𝜆𝑚 ≥
√

𝑛𝑏𝑛 → ∞ for 𝑚 ∈ 𝑐
1 from the assumption, therefore we know that 𝐼4 dominates 𝐼1, 𝐼2 and 𝐼3 in (21)

with probability tending to one. This means that (21) cannot be true as long as the sample size is sufficiently large. As
a result, we can conclude that with probability tending to one, the estimate 𝝓̂𝑚 = (𝜙̂𝑚1,… , 𝜙̂𝑚𝑝𝑚 ) must be in a position
where 𝝓̂𝑚 is not differentiable. Hence 𝝓̂𝑚 = 𝟎 for all 𝑚 ∈ 𝑐

1. Hence 𝑃
(

𝚽̂𝑐
1
= 𝟎

)

→ 1. This completes the proof.
Next, we prove that for the interactions 𝑃

(

𝚽̂𝑐
2
= 𝟎

)

→ 1. For 𝑚 ∈ 𝑐
2 s.t. 𝝓∗

𝑚 = 𝛾∗𝑗𝐸 = 0 but 𝛽𝐸 ≠ 0 and 𝜽∗𝑗 ≠

𝟎 (1 ≤ 𝑗 ≤ 𝑝), we can prove 𝑃
(

𝚽̂𝑐
2
= 𝟎

)

→ 1 by a similar reasoning, which further implies that 𝑃 (𝛾̂𝑗𝐸 = 0) → 0.
For 𝑚 ∈ 𝑐

2 such that 𝝓∗
𝑚 = 𝛾∗𝑗𝐸 = 0 and either 𝛽𝐸 = 0 or 𝜽∗𝑗 = 𝟎 (1 ≤ 𝑗 ≤ 𝑝): without loss of generality, assume

that 𝜽∗𝑗 = 𝟎. Notice that 𝜽̂𝑗 = 𝟎 implies 𝛾̂𝑗𝐸 = 0, since if 𝛾̂𝑗𝐸 ≠ 0, the value of the loss function does not change
but the value of the penalty function will increase. Because we already prove 𝑃

(

𝚽̂𝑐
1
= 𝟎

)

→ 1, therefore we get
𝑃
(

𝚽̂𝑐
2
= 𝟎

)

→ 1 as well for this case. □
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A.4. Theorem 2 proof
By Lemma 1 and Theorem 1, there exists a 𝚽̂ that is a √

𝑛-consistent local minimizer of 𝑄(𝚽), therefore
‖

‖

‖

𝚽̂ −𝚽∗

‖

‖

‖2
= 𝑂𝑃

(

1
√

𝑛

)

and 𝑃
(

𝚽̂𝑐 = 𝟎
)

→ 1. Thus satisfies (with probability tending to 1):

𝜕𝑄𝑛
(

𝚽
)

𝜕𝚽𝑚

|

|

|

|

|𝚽=
⎛

⎜

⎜

⎝

𝚽̂
0

⎞

⎟

⎟

⎠

= 0, ∀𝑚 ∈ , (22)

that is
𝜕𝑄𝑛

(

𝚽
)

𝜕𝚽𝑚

|

|

|

|

|𝚽=𝚽̂

= 0, ∀𝑚 ∈ , (23)

where
𝑄𝑛(𝚽) = −𝐿𝑛(𝚽) + 𝑛

∑

𝑚∈1

𝜆𝑚 ‖

‖

𝝓𝑚‖‖2 + 𝑛
∑

𝑚∈2

𝜆𝑚 ‖

‖

𝝓𝑚‖‖2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≜𝑛𝑃 (𝚽)

= −𝐿𝑛(𝚽) + 𝑛𝑃 (𝚽). (24)
From (23) and (24) we have

∇𝑄𝑛
(

𝚽̂

)

= −∇𝐿𝑛
(

𝚽̂

)

+ 𝑛∇𝑃
(

𝚽̂

)

= 𝟎, (25)
with probability tending to 1.

Denote 𝚺 = diag{𝑜𝑝(1),… , 𝑜𝑝(1)}. We then expand −∇𝐿𝑛
(

𝚽
) at 𝚽 = 𝚽∗

 in (25):
−∇𝐿𝑛

(

𝚽̂

)

= −∇𝐿𝑛
(

𝚽∗

)

−
[

∇2
𝐿𝑛

(

𝚽∗

)

+ 𝚺
]

(

𝚽̂ −𝚽∗


)

=
√

𝑛

[

− 1
√

𝑛
∇𝐿𝑛

(

𝚽∗

)

+
(

−1
𝑛
∇2
𝐿𝑛

(

𝚽∗

)

− 𝚺
)

√

𝑛
(

𝚽̂ −𝚽∗


)

]

=
√

𝑛

[

− 1
√

𝑛
∇𝐿𝑛

(

𝚽∗

)

+
(

𝐈
(

𝚽∗

)

− 𝚺
)
√

𝑛
(

𝚽̂ −𝚽∗


)

]

.

The third line follows by
1
𝑛
∇2
𝐿𝑛

(

𝚽∗

)

= 𝐸
{

∇2
𝐿

(

𝚽∗

)}

+ 𝚺 = −𝐈
(

𝚽∗

)

+ 𝚺.

Denote

𝐛 = (𝜆𝑚sgn (𝛽∗𝑚
)

, 𝜆𝑚
𝜽∗𝑚

‖𝜽∗𝑚‖2

⊤

, 𝜆𝑚 sgn(𝛾∗𝑚𝐸))
⊤, 𝑚 ∈ .

We also expand 𝑛∇𝑃
(

𝚽
) at 𝚽 = 𝚽∗

 in (25):
𝑛∇𝑃

(

𝚽̂

)

= 𝑛
[

𝐛 + 𝚺
(

𝚽̂ −𝚽∗


)]

.

Due to the fact that √

𝑛𝜆𝑚 ≤
√

𝑛𝑎𝑛 → 0 for 𝑚 ∈  and 𝜃∗𝑚𝑘
‖𝜽∗𝑚‖2

≤ 1 for any 1 ≤ 𝑘 ≤ 𝑝𝑚, we know that
√

𝑛𝐛 = (𝑜𝑝(1),… , 𝑜𝑝(1))⊤. Thus,

∇𝑄𝑛
(

𝚽̂

)

=
√

𝑛

[

− 1
√

𝑛
∇𝐿𝑛

(

𝚽∗

)

+
(

𝐈
(

𝚽∗

)

+ 𝚺
)
√

𝑛
(

𝚽̂ −𝚽∗


)

]
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+
√

𝑛
[

√

𝑛𝐛 + 𝚺
√

𝑛
(

𝚽̂ −𝚽∗


)]

=
√

𝑛

[

− 1
√

𝑛
∇𝐿𝑛

(

𝚽∗

)

+
√

𝑛𝐛 +
(

𝐈
(

𝚽∗

)

+ 𝚺
)
√

𝑛
(

𝚽̂ −𝚽∗


)

]

= 𝟎,

and
(

𝐈
(

𝚽∗

)

+ 𝚺
)
√

𝑛(𝚽̂ −𝚽∗
) =

√

𝑛1
𝑛

𝑛
∑

𝑖=1
∇ log 𝑓

(

𝑽 𝑖,𝚽∗

)

+ 𝑜𝑝(1).

Therefore, by the central limit theorem, we know that
√

𝑛

[

1
𝑛

𝑛
∑

𝑖=1
∇ log 𝑓 (𝑉𝑖,𝚽∗

)

]

→ 𝑁(𝟎, 𝐈(𝚽∗
)).

Hence,
√

𝑛
(

𝚽̂ −𝚽∗


) 𝑑
→ 𝑁

(

𝟎, 𝐈−1
(

𝚽∗

))

.

□

B. Algorithm Details
In this section we provide more specific details about the algorithms used to solve the sail objective function. We

assume that 𝑌 , 𝚿𝑗 , 𝑋𝐸 and 𝑋𝐸◦𝚿𝑗 have been centered by their sample means 𝑌 , 𝚿𝑗 , 𝑋𝐸 , and 𝑋𝐸◦𝚿𝑗 , respectively.
Here, 𝚿𝑗 ∈ ℝ𝑚𝑗 and 𝑋𝐸◦𝚿𝑗 ∈ ℝ𝑚𝑗 represent the column means of 𝚿𝑗 and 𝑋𝐸◦𝚿𝑗 , respectively. Since the intercept
(𝛽0) is not penalized and all variables have been centered, we can omit it from the loss function and compute it once
the algorithm has converged for all other parameters. The strong heredity sail model with least-squares loss has the
form

𝑌 =
𝑝
∑

𝑗=1
𝚿𝑗𝜽𝑗 + 𝛽𝐸𝑋𝐸 +

𝑝
∑

𝑗=1
𝛾𝑗𝛽𝐸(𝑋𝐸◦𝚿𝑗)𝜽𝑗 , (26)

and the objective function is given by

𝑄(𝚽) = 1
2𝑛

‖

‖

‖

𝑌 − 𝑌 ‖‖
‖

2

2
+ 𝜆(1 − 𝛼)

(

𝑤𝐸||𝛽𝐸|| +
𝑝
∑

𝑗=1
𝑤𝑗

‖

‖

‖

𝜽𝑗
‖

‖

‖2

)

+ 𝜆𝛼
𝑝
∑

𝑗=1
𝑤𝑗𝐸

|

|

|

𝛾𝑗
|

|

|

. (27)

Solving (27) in a blockwise manner allows us to leverage computationally fast algorithms for 𝓁1 and 𝓁2 norm
penalized regression. Denote the 𝑛-dimensional residual column vector 𝑅 = 𝑌 − 𝑌 . The subgradient equations are
given by

𝜕𝑄
𝜕𝛽𝐸

= −1
𝑛

(

𝑋𝐸 +
𝑝
∑

𝑗=1
𝛾𝑗(𝑋𝐸◦𝚿𝑗)𝜽𝑗

)⊤

𝑅 + 𝜆(1 − 𝛼)𝑤𝐸𝑠1 = 0 (28)
𝜕𝑄
𝜕𝜽𝑗

= −1
𝑛
(

𝚿𝑗 + 𝛾𝑗𝛽𝐸(𝑋𝐸◦𝚿𝑗)
)⊤𝑅 + 𝜆(1 − 𝛼)𝑤𝑗𝑠2 = 𝟎 (29)

and
𝜕𝑄
𝜕𝛾𝑗

= −1
𝑛
(

𝛽𝐸(𝑋𝐸◦𝚿𝑗)𝜽𝑗
)⊤𝑅 + 𝜆𝛼𝑤𝑗𝐸𝑠3 = 0, (30)
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where 𝑠1 is in the subgradient of the 𝓁1 norm:

𝑠1 ∈

{

sign (𝛽𝐸
) if 𝛽𝐸 ≠ 0

[−1, 1] if 𝛽𝐸 = 0,

𝑠2 is in the subgradient of the 𝓁2 norm:

𝑠2 ∈

⎧

⎪

⎨

⎪

⎩

𝜽𝑗
‖

‖

‖

𝜽𝑗
‖

‖

‖2

if 𝜽𝑗 ≠ 𝟎

𝑢 ∈ ℝ𝑚𝑗 ∶ ‖𝑢‖2 ≤ 1 if 𝜽𝑗 = 𝟎,

and 𝑠3 is in the subgradient of the 𝓁1 norm:

𝑠3 ∈

{

sign (𝛾𝑗
) if 𝛾𝑗 ≠ 0

[−1, 1] if 𝛾𝑗 = 0.

Define the partial residuals, without the 𝑗th predictor for 𝑗 = 1,… , 𝑝, as
𝑅(−𝑗) = 𝑌 −

∑

𝓁≠𝑗
𝚿𝓁𝜽𝓁 − 𝛽𝐸𝑋𝐸 −

∑

𝓁≠𝑗
𝛾𝓁𝛽𝐸(𝑋𝐸◦𝚿𝓁)𝜽𝓁 ,

the partial residual without 𝑋𝐸 as

𝑅(−𝐸) = 𝑌 −
𝑝
∑

𝑗=1
𝚿𝑗𝜽𝑗 ,

and the partial residual without the 𝑗th interaction for 𝑗 = 1,… , 𝑝, as

𝑅(−𝑗𝐸) = 𝑌 −
𝑝
∑

𝑗=1
𝚿𝑗𝜽𝑗 − 𝛽𝐸𝑋𝐸 −

∑

𝓁≠𝑗
𝛾𝓁𝛽𝐸(𝑋𝐸◦𝚿𝓁)𝜽𝓁 .

From the subgradient equations (28)–(30) we see that

𝛽𝐸 =
𝑆
(

1
𝑛⋅𝑤𝐸

(

𝑋𝐸 +
∑𝑝
𝑗=1 𝛾̂𝑗(𝑋𝐸◦𝚿𝑗)𝜽̂𝑗

)⊤
𝑅(−𝐸), 𝜆(1 − 𝛼)

)

(

𝑋𝐸 +
∑𝑝
𝑗=1 𝛾̂𝑗(𝑋𝐸◦𝚿𝑗)𝜽̂𝑗

)⊤ (
𝑋𝐸 +

∑𝑝
𝑗=1 𝛾̂𝑗(𝑋𝐸◦𝚿𝑗)𝜽̂𝑗

)

(31)

𝜆(1 − 𝛼)𝑤𝑗
𝜽𝑗

‖

‖

‖

𝜽𝑗
‖

‖

‖2

= 1
𝑛
(

𝚿𝑗 + 𝛾𝑗𝛽𝐸(𝑋𝐸◦𝚿𝑗)
)⊤𝑅(−𝑗) (32)

𝛾̂𝑗 =
𝑆
(

1
𝑛⋅𝑤𝑗𝐸

(

𝛽𝐸(𝑋𝐸◦𝚿𝑗)𝜽𝑗
)⊤𝑅(−𝑗𝐸), 𝜆𝛼

)

(

𝛽𝐸(𝑋𝐸◦𝚿𝑗)𝜽𝑗
)⊤ (𝛽𝐸(𝑋𝐸◦𝚿𝑗)𝜽𝑗

)

, (33)

where 𝑆(𝑥, 𝑡) = sign(𝑥)(|𝑥|− 𝑡) is the soft-thresholding operator. Given these estimates, the intercept can be computed
using the following equation:

𝛽0 = 𝑌 −
𝑝
∑

𝑗=1
𝚿𝑗 𝜽̂𝑗 − 𝛽𝐸𝑋𝐸 −

𝑝
∑

𝑗=1
𝛾̂𝑗𝛽𝐸(𝑋𝐸◦𝚿𝑗)𝜽̂𝑗 . (34)

We see from (31) that there is a closed form solution for 𝛽𝐸 . From (33), each 𝛾𝑗 also has a closed form solution and
can be solved efficiently for 𝑗 = 1,… , 𝑝 using a coordinate descent procedure (Friedman et al., 2010). Since there
is no closed form solution for 𝛽𝑗 , we use a quadratic majorization technique (Yang and Zou, 2015) to solve (32).
Furthermore, we update each 𝜽𝑗 in a coordinate wise fashion and leverage this to implement further computational
speedups which are detailed in Supplemental Section B.2. From these estimates, we compute the interaction effects
using the reparametrizations presented in Table 1, e.g., 𝝉̂𝑗 = 𝛾̂𝑗𝛽𝐸 𝜽̂𝑗 , 𝑗 = 1,… , 𝑝 for the strong heredity sail model.
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B.1. Least-Squares sail with Strong Heredity
A more detailed algorithm for fitting the least-squares sail model with strong heredity is given in Algorithm 3.

Algorithm 3 Blockwise Coordinate Descent for Least-Squares sail with Strong Heredity
1: function sail(𝑿, 𝑌 ,𝑋𝐸 , basis, 𝜆, 𝛼, 𝑤𝑗 , 𝑤𝐸 , 𝑤𝑗𝐸 , 𝜖) ⊳ Algorithm for solving (27)
2: 𝚿𝑗 ← basis(𝑋𝑗), 𝚿̃𝑗 ← 𝑋𝐸◦𝚿𝑗 for 𝑗 = 1,… , 𝑝
3: Center all variables by their sample means
4: Initialize: 𝛽(0)𝐸 = 𝜽(0)

𝑗 = 𝛾 (0)𝑗 ← 0 for 𝑗 = 1,… , 𝑝.
5: Set iteration counter 𝑘← 0
6: 𝑅∗ ← 𝑌 − 𝛽(𝑘)𝐸 𝑋𝐸 −

∑

𝑗(𝚿𝑗 + 𝛾
(𝑘)
𝑗 𝛽(𝑘)𝐸 𝚿̃𝑗)𝜽

(𝑘)
𝑗

7: repeat
8: ∙ To update 𝜸 = (𝛾1,… , 𝛾𝑝)
9: 𝑋𝑗 ← 𝛽(𝑘)𝐸 𝚿̃𝑗𝜽

(𝑘)
𝑗 for 𝑗 = 1,… , 𝑝

10: 𝑅← 𝑅∗ +
∑𝑝

𝑗=1 𝛾
(𝑘)
𝑗 𝑋𝑗

11:

𝜸(𝑘)(𝑛𝑒𝑤) ← argmin
𝜸

1
2𝑛

‖

‖

‖

‖

‖

‖

𝑅 −
∑

𝑗
𝛾𝑗𝑋𝑗

‖

‖

‖

‖

‖

‖

2

2

+ 𝜆𝛼
∑

𝑗
𝑤𝑗𝐸

|

|

|

𝛾𝑗
|

|

|

12: Δ =
∑

𝑗(𝛾
(𝑘)
𝑗 − 𝛾 (𝑘)(𝑛𝑒𝑤)𝑗 )𝑋𝑗

13: 𝑅∗ ← 𝑅∗ + Δ
14: ∙ To update 𝜽 = (𝜽1,… ,𝜽𝑝)
15: 𝑋𝑗 ← 𝚿𝑗 + 𝛾

(𝑘)
𝑗 𝛽(𝑘)𝐸 𝚿̃𝑗 for 𝑗 = 1,… , 𝑝

16: for 𝑗 = 1,… , 𝑝 do
17: 𝑅← 𝑅∗ +𝑋𝑗𝜽

(𝑘)
𝑗

18:

𝜽(𝑘)(𝑛𝑒𝑤)
𝑗 ← argmin

𝜽𝑗

1
2𝑛

‖

‖

‖

𝑅 −𝑋𝑗𝜽𝑗
‖

‖

‖

2

2
+ 𝜆(1 − 𝛼)𝑤𝑗

‖

‖

‖

𝜃𝑗
‖

‖

‖2

19: Δ = 𝑋𝑗(𝜽
(𝑘)
𝑗 − 𝜽(𝑘)(𝑛𝑒𝑤)

𝑗 )
20: 𝑅∗ ← 𝑅∗ + Δ
21: ∙ To update 𝛽𝐸
22: 𝑋𝐸 ← 𝑋𝐸 +

∑

𝑗 𝛾
(𝑘)
𝑗 𝚿̃𝑗𝜽

(𝑘)
𝑗

23: 𝑅← 𝑅∗ + 𝛽(𝑘)𝐸 𝑋𝐸
24:

𝛽(𝑘)(𝑛𝑒𝑤)𝐸 ←
1

𝑋⊤
𝐸𝑋𝐸

𝑆
(

1
𝑛 ⋅𝑤𝐸

𝑋⊤
𝐸𝑅, 𝜆(1 − 𝛼)

)

⊳ 𝑆(𝑥, 𝑡) = sign(𝑥)(|𝑥| − 𝑡)+
25: Δ = (𝛽(𝑘)𝐸 − 𝛽(𝑘)(𝑛𝑒𝑤)𝐸 )𝑋𝐸
26: 𝑅∗ ← 𝑅∗ + Δ
27: 𝑘 ← 𝑘 + 1
28:
29: until convergence criterion is satisfied: ||

|

𝑄(𝚽(𝑘−1)) −𝑄(𝚽(𝑘))||
|

∕𝑄(𝚽(𝑘−1)) < 𝜖
30: Compute the intercept 𝛽0
31: 𝛽0 ← 𝑌 −

∑𝑝
𝑗=1 𝚿𝑗 𝜽̂𝑗 − 𝛽𝐸𝑋𝐸 −

∑𝑝
𝑗=1 𝛾̂𝑗𝛽𝐸(𝑋𝐸◦𝚿𝑗)𝜽̂𝑗
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B.2. Details on Update for 𝜽
Here we discuss a computational speedup in the updates for the 𝜽 parameter. The partial residual (𝑅𝑠) used for

updating 𝜽𝑠 (𝑠 ∈ 1,… , 𝑝) at the 𝑘th iteration is given by
𝑅𝑠 = 𝑌 − 𝑌 (𝑘)

(−𝑠), (35)

where 𝑌 (𝑘)
(−𝑠) is the fitted value at the 𝑘th iteration excluding the contribution from 𝚿𝑠:

𝑌 (𝑘)
(−𝑠) = 𝛽(𝑘)𝐸 𝑋𝐸 +

∑

𝓁≠𝑠
𝚿𝓁𝜽

(𝑘)
𝓁 +

∑

𝓁≠𝑠
𝛾 (𝑘)𝓁 𝛽(𝑘)𝐸 𝚿̃𝓁𝜽

(𝑘)
𝓁 . (36)

Using (36), (35) can be re-written as

𝑅𝑠 = 𝑌 − 𝛽(𝑘)𝐸 𝑋𝐸 −
𝑝
∑

𝑗=1
(𝚿𝑗 + 𝛾

(𝑘)
𝑗 𝛽(𝑘)𝐸 𝚿̃𝑗)𝜽

(𝑘)
𝑗 + (𝚿𝑠 + 𝛾 (𝑘)𝑠 𝛽(𝑘)𝐸 𝚿̃𝑠)𝜽(𝑘)𝑠

= 𝑅∗ + (𝚿𝑠 + 𝛾 (𝑘)𝑠 𝛽(𝑘)𝐸 𝚿̃𝑠)𝜽(𝑘)𝑠 , (37)
where

𝑅∗ = 𝑌 − 𝛽(𝑘)𝐸 𝑋𝐸 −
𝑝
∑

𝑗=1
(𝚿𝑗 + 𝛾

(𝑘)
𝑗 𝛽(𝑘)𝐸 𝚿̃𝑗)𝜽

(𝑘)
𝑗 . (38)

Denote 𝜽(𝑘)(new)
𝑠 the solution for predictor 𝑠 at the 𝑘th iteration, given by:

𝜽(𝑘)(𝑛𝑒𝑤)𝑠 = argmin
𝜽𝑗

1
2𝑛

‖

‖

‖

𝑅𝑠 − (𝚿𝑠 + 𝛾 (𝑘)𝑠 𝛽(𝑘)𝐸 𝚿̃𝑠)𝜽𝑗
‖

‖

‖

2

2
+ 𝜆(1 − 𝛼)𝑤𝑠

‖

‖

‖

𝜃𝑗
‖

‖

‖2
. (39)

Now we want to update the parameters for the next predictor 𝜽𝑠+1 (𝑠 + 1 ∈ 1,… , 𝑝) at the 𝑘th iteration. The partial
residual used to update 𝜽𝑠+1 is given by

𝑅𝑠+1 = 𝑅∗ + (𝚿𝑠+1 + 𝛾
(𝑘)
𝑠+1𝛽

(𝑘)
𝐸 𝚿̃𝑠+1)𝜽

(𝑘)
𝑠+1 + (𝚿𝑠 + 𝛾 (𝑘)𝑠 𝛽(𝑘)𝐸 𝚿̃𝑠)(𝜽(𝑘)𝑠 − 𝜽(𝑘)(𝑛𝑒𝑤)𝑠 ), (40)

where 𝑅∗ is given by (38), 𝜽(𝑘)𝑠 is the parameter value prior to the update, and 𝜽(𝑘)(𝑛𝑒𝑤)𝑠 is the updated value given
by (39). Taking the difference between (37) and (40) gives

Δ = 𝑅𝑡 − 𝑅𝑠
= (𝚿𝑡 + 𝛾

(𝑘)
𝑡 𝛽(𝑘)𝐸 𝚿̃𝑡)𝜽

(𝑘)
𝑡 + (𝚿𝑠 + 𝛾 (𝑘)𝑠 𝛽(𝑘)𝐸 𝚿̃𝑠)(𝜽(𝑘)𝑠 − 𝜽(𝑘)(𝑛𝑒𝑤)𝑠 ) − (𝚿𝑠 + 𝛾 (𝑘)𝑠 𝛽(𝑘)𝐸 𝚿̃𝑠)𝜽(𝑘)𝑠

= (𝚿𝑡 + 𝛾
(𝑘)
𝑡 𝛽(𝑘)𝐸 𝚿̃𝑡)𝜽

(𝑘)
𝑡 − (𝚿𝑠 + 𝛾 (𝑘)𝑠 𝛽(𝑘)𝐸 𝚿̃𝑠)𝜽(𝑘)(𝑛𝑒𝑤)𝑠 . (41)

Therefore 𝑅𝑡 = 𝑅𝑠 + Δ, and the partial residual for updating the next predictor can be computed by updating the
previous partial residual by Δ, given by (41). This formulation can lead to computational speedups especially when
Δ = 0, meaning the partial residual does not need to be re-calculated.
B.3. Maximum penalty parameter (𝜆𝑚𝑎𝑥) for strong heredity

The subgradient equations (28)–(30) can be used to determine the largest value of 𝜆 such that all coefficients are
0. From the subgradient Equation (28), we see that 𝛽𝐸 = 0 is a solution if

1
𝑤𝐸

|

|

|

|

|

|

1
𝑛

(

𝑋𝐸 +
𝑝
∑

𝑗=1
𝛾𝑗(𝑋𝐸◦𝚿𝑗)𝜽𝑗

)⊤

𝑅(−𝐸)

|

|

|

|

|

|

≤ 𝜆(1 − 𝛼). (42)

From the subgradient Equation (29), we see that 𝜽𝑗 = 𝟎 is a solution if
1
𝑤𝑗

‖

‖

‖

‖

1
𝑛
(

𝚿𝑗 + 𝛾𝑗𝛽𝐸(𝑋𝐸◦𝚿𝑗)
)⊤𝑅(−𝑗)

‖

‖

‖

‖2
≤ 𝜆(1 − 𝛼). (43)
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From the subgradient Equation (30), we see that 𝛾𝑗 = 0 is a solution if
1
𝑤𝑗𝐸

|

|

|

|

1
𝑛
(

𝛽𝐸(𝑋𝐸◦𝚿𝑗)𝜽𝑗
)⊤𝑅(−𝑗𝐸)

|

|

|

|

≤ 𝜆𝛼. (44)

Due to the strong heredity property, the parameter vector (𝛽𝐸 ,𝜽1,… ,𝜽𝑝, 𝛾1,… , 𝛾𝑝) will be entirely equal to 𝟎 if
(𝛽𝐸 ,𝜽1,… ,𝜽𝑝) = 𝟎. Therefore, the smallest value of 𝜆 for which the entire parameter vector (excluding the intercept)
is 𝟎 is:

𝜆𝑚𝑎𝑥 =
1

𝑛(1 − 𝛼)
max

⎧

⎪

⎨

⎪

⎩

1
𝑤𝐸

(

𝑋𝐸 +
𝑝
∑

𝑗=1
𝛾𝑗(𝑋𝐸◦𝚿𝑗)𝜽𝑗

)⊤

𝑅(−𝐸),

max
𝑗

1
𝑤𝑗

‖

‖

‖

(

𝚿𝑗 + 𝛾𝑗𝛽𝐸(𝑋𝐸◦𝚿𝑗)
)⊤𝑅(−𝑗)

‖

‖

‖2

}

, (45)

which reduces to

𝜆𝑚𝑎𝑥 =
1

𝑛(1 − 𝛼)
max

{

1
𝑤𝐸

(

𝑋𝐸
)⊤𝑅(−𝐸),max

𝑗
1
𝑤𝑗

‖

‖

‖

(

𝚿𝑗
)⊤𝑅(−𝑗)

‖

‖

‖2

}

.

B.4. Least-Squares sail with Weak Heredity
We assume the same centering constraints as in Section B.1. The least-squares sail model with weak heredity has

the form

𝑌 =
𝑝
∑

𝑗=1
𝚿𝑗𝜽𝑗 + 𝛽𝐸𝑋𝐸 +

𝑝
∑

𝑗=1
𝛾𝑗(𝑋𝐸◦𝚿𝑗)(𝛽𝐸 ⋅ 𝟏𝑚𝑗 + 𝜽𝑗). (46)

The objective function is given by

𝑄(𝚽) = 1
2𝑛

‖

‖

‖

𝑌 − 𝑌 ‖‖
‖

2

2
+ 𝜆(1 − 𝛼)

(

𝑤𝐸||𝛽𝐸|| +
𝑝
∑

𝑗=1
𝑤𝑗

‖

‖

‖

𝜽𝑗
‖

‖

‖2

)

+ 𝜆𝛼
𝑝
∑

𝑗=1
𝑤𝑗𝐸

|

|

|

𝛾𝑗
|

|

|

. (47)

Denote the 𝑛-dimensional residual column vector 𝑅 = 𝑌 − 𝑌 . The subgradient equations are given by

𝜕𝑄
𝜕𝛽𝐸

= −1
𝑛

(

𝑋𝐸 +
𝑝
∑

𝑗=1
𝛾𝑗(𝑋𝐸◦𝚿𝑗)𝟏𝑚𝑗

)⊤

𝑅 + 𝜆(1 − 𝛼)𝑤𝐸𝑠1 = 0 (48)
𝜕𝑄
𝜕𝜽𝑗

= −1
𝑛
(

𝚿𝑗 + 𝛾𝑗(𝑋𝐸◦𝚿𝑗)
)⊤𝑅 + 𝜆(1 − 𝛼)𝑤𝑗𝑠2 = 𝟎 (49)

𝜕𝑄
𝜕𝛾𝑗

= −1
𝑛

(

(𝑋𝐸◦𝚿𝑗)(𝛽𝐸 ⋅ 𝟏𝑚𝑗 + 𝜽𝑗)
)⊤

𝑅 + 𝜆𝛼𝑤𝑗𝐸𝑠3 = 0, (50)

where 𝑠1 is in the subgradient of the 𝓁1 norm:

𝑠1 ∈

{

sign (𝛽𝐸
) if 𝛽𝐸 ≠ 0

[−1, 1] if 𝛽𝐸 = 0,

𝑠2 is in the subgradient of the 𝓁2 norm:

𝑠2 ∈

⎧

⎪

⎨

⎪

⎩

𝜽𝑗
‖

‖

‖

𝜽𝑗
‖

‖

‖2

if 𝜽𝑗 ≠ 𝟎

𝑢 ∈ ℝ𝑚𝑗 ∶ ‖𝑢‖2 ≤ 1 if 𝜽𝑗 = 𝟎,
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and 𝑠3 is in the subgradient of the 𝓁1 norm:

𝑠3 ∈

{

sign (𝛾𝑗
) if 𝛾𝑗 ≠ 0

[−1, 1] if 𝛾𝑗 = 0.

Define the partial residuals, without the 𝑗th predictor for 𝑗 = 1,… , 𝑝, as
𝑅(−𝑗) = 𝑌 −

∑

𝓁≠𝑗
𝚿𝓁𝜽𝓁 − 𝛽𝐸𝑋𝐸 −

∑

𝓁≠𝑗
𝛾𝓁(𝑋𝐸◦𝚿𝓁)(𝛽𝐸 ⋅ 𝟏𝑚𝓁

+ 𝜽𝓁),

the partial residual without 𝑋𝐸 as

𝑅(−𝐸) = 𝑌 −
𝑝
∑

𝑗=1
𝚿𝑗𝜽𝑗 −

𝑝
∑

𝑗=1
𝛾𝑗(𝑋𝐸◦𝚿𝑗)𝜽𝑗 ,

and the partial residual without the 𝑗th interaction for 𝑗 = 1,… , 𝑝

𝑅(−𝑗𝐸) = 𝑌 −
𝑝
∑

𝑗=1
𝚿𝑗𝜽𝑗 − 𝛽𝐸𝑋𝐸 −

∑

𝓁≠𝑗
𝛾𝓁(𝑋𝐸◦𝚿𝓁)(𝛽𝐸 ⋅ 𝟏𝑚𝓁

+ 𝜽𝓁).

From the subgradient Equation (48), we see that 𝛽𝐸 = 0 is a solution if

1
𝑤𝐸

|

|

|

|

|

|

1
𝑛

(

𝑋𝐸 +
𝑝
∑

𝑗=1
𝛾𝑗(𝑋𝐸◦𝚿𝑗)𝟏𝑚𝑗

)⊤

𝑅(−𝐸)

|

|

|

|

|

|

≤ 𝜆(1 − 𝛼) (51)

From the subgradient Equation (49), we see that 𝜽𝑗 = 𝟎 is a solution if
1
𝑤𝑗

‖

‖

‖

‖

1
𝑛
(

𝚿𝑗 + 𝛾𝑗(𝑋𝐸◦𝚿𝑗)
)⊤𝑅(−𝑗)

‖

‖

‖

‖2
≤ 𝜆(1 − 𝛼). (52)

From the subgradient Equation (50), we see that 𝛾𝑗 = 0 is a solution if
1
𝑤𝑗𝐸

|

|

|

|

1
𝑛

(

(𝑋𝐸◦𝚿𝑗)(𝛽𝐸 ⋅ 𝟏𝑚𝑗 + 𝜽𝑗)
)⊤

𝑅(−𝑗𝐸)
|

|

|

|

≤ 𝜆𝛼. (53)

From the subgradient equations we see that

𝛽𝐸 =
𝑆
(

1
𝑛⋅𝑤𝐸

(

𝑋𝐸 +
∑𝑝
𝑗=1 𝛾̂𝑗(𝑋𝐸◦𝚿𝑗)𝟏𝑚𝑗

)⊤
𝑅(−𝐸), 𝜆(1 − 𝛼)

)

(

𝑋𝐸 +
∑𝑝
𝑗=1 𝛾̂𝑗(𝑋𝐸◦𝚿𝑗)𝟏𝑚𝑗

)⊤ (
𝑋𝐸 +

∑𝑝
𝑗=1 𝛾̂𝑗(𝑋𝐸◦𝚿𝑗)𝟏𝑚𝑗

)

(54)

𝜆(1 − 𝛼)𝑤𝑗
𝜽𝑗

‖

‖

‖

𝜽𝑗
‖

‖

‖2

= 1
𝑛
(

𝚿𝑗 + 𝛾𝑗(𝑋𝐸◦𝚿𝑗)
)⊤𝑅(−𝑗) (55)

𝛾̂𝑗 =
𝑆
(

1
𝑛⋅𝑤𝑗𝐸

(

(𝑋𝐸◦𝚿𝑗)(𝛽𝐸 ⋅ 𝟏𝑚𝑗 + 𝜽𝑗)
)⊤

𝑅(−𝑗𝐸), 𝜆𝛼
)

(

(𝑋𝐸◦𝚿𝑗)(𝛽𝐸 ⋅ 𝟏𝑚𝑗 + 𝜽𝑗)
)⊤ (

(𝑋𝐸◦𝚿𝑗)(𝛽𝐸 ⋅ 𝟏𝑚𝑗 + 𝜽𝑗)
)

, (56)

where 𝑆(𝑥, 𝑡) = sign(𝑥)(|𝑥| − 𝑡) is the soft-thresholding operator. As was the case in the strong heredity sail model,
there is a closed form solution for 𝛽𝐸 , each 𝛾𝑗 also has a closed form solution and can be solved efficiently for
𝑗 = 1,… , 𝑝 using the coordinate descent procedure implemented in the glmnet package (Friedman et al., 2010),
while we use the quadratic majorization technique implemented in the gglasso package (Yang and Zou, 2015) to
solve (55). Algorithm 4 details the procedure used to fit the least-squares weak heredity sail model.
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Algorithm 4 Coordinate descent for least-squares sail with weak heredity
1: function sail(𝑿, 𝑌 ,𝑋𝐸 , basis, 𝜆, 𝛼, 𝑤𝑗 , 𝑤𝐸 , 𝑤𝑗𝐸 , 𝜖) ⊳ Algorithm for solving (47)
2: Ψ𝑗 ← basis(𝑋𝑗), Ψ̃𝑗 ← 𝑋𝐸◦Ψ𝑗 for 𝑗 = 1,… , 𝑝
3: Center all variables by their sample means
4: Initialize: 𝛽(0)𝐸 = 𝜽(0)

𝑗 = 𝛾 (0)𝑗 ← 0 for 𝑗 = 1,… , 𝑝.
5: Set iteration counter 𝑘← 0
6: 𝑅∗ ← 𝑌 − 𝛽(𝑘)𝐸 𝑋𝐸 −

∑

𝑗 𝚿𝑗𝜽
(𝑘)
𝑗 −

∑

𝑗 𝛾
(𝑘)
𝑗 𝚿̃𝑗(𝛽

(𝑘)
𝐸 ⋅ 𝟏𝑚𝑗 + 𝜽(𝑘)

𝑗 )
7: repeat
8: ∙ To update 𝜸 = (𝛾1,… , 𝛾𝑝)
9: 𝑋𝑗 ← 𝚿̃𝑗(𝛽

(𝑘)
𝐸 ⋅ 𝟏𝑚𝑗 + 𝜽(𝑘)

𝑗 ) for 𝑗 = 1,… , 𝑝
10: 𝑅← 𝑅∗ +

∑𝑝
𝑗=1 𝛾

(𝑘)
𝑗 𝑋𝑗

11:

𝜸(𝑘)(𝑛𝑒𝑤) ← argmin
𝜸

1
2𝑛

‖

‖

‖

‖

‖

‖

𝑅 −
∑

𝑗
𝛾𝑗𝑋𝑗

‖

‖

‖

‖

‖

‖

2

2

+ 𝜆𝛼
∑

𝑗
𝑤𝑗𝐸

|

|

|

𝛾𝑗
|

|

|

12: Δ =
∑

𝑗(𝛾
(𝑘)
𝑗 − 𝛾 (𝑘)(𝑛𝑒𝑤)𝑗 )𝑋𝑗

13: 𝑅∗ ← 𝑅∗ + Δ
14: ∙ To update 𝜽 = (𝜽1,… ,𝜽𝑝)
15: 𝑋𝑗 ← 𝚿𝑗 + 𝛾

(𝑘)
𝑗 𝚿̃𝑗 for 𝑗 = 1,… , 𝑝

16: for 𝑗 = 1,… , 𝑝 do
17: 𝑅← 𝑅∗ +𝑋𝑗𝜽

(𝑘)
𝑗

18:

𝜽(𝑘)(𝑛𝑒𝑤)
𝑗 ← argmin

𝜽𝑗

1
2𝑛

‖

‖

‖

𝑅 −𝑋𝑗𝜽𝑗
‖

‖

‖

2

2
+ 𝜆(1 − 𝛼)𝑤𝑗

‖

‖

‖

𝜃𝑗
‖

‖

‖2

19: Δ = 𝑋𝑗(𝜽
(𝑘)
𝑗 − 𝜽(𝑘)(𝑛𝑒𝑤)

𝑗 )
20: 𝑅∗ ← 𝑅∗ + Δ
21: ∙ To update 𝛽𝐸
22: 𝑋𝐸 ← 𝑋𝐸 +

∑

𝑗 𝛾
(𝑘)
𝑗 𝚿̃𝑗𝟏𝑚𝑗

23: 𝑅← 𝑅∗ + 𝛽(𝑘)𝐸 𝑋𝐸
24:

𝛽(𝑘)(𝑛𝑒𝑤)𝐸 ←
1

𝑋⊤
𝐸𝑋𝐸

𝑆
(

1
𝑛 ⋅𝑤𝐸

𝑋⊤
𝐸𝑅, 𝜆(1 − 𝛼)

)

⊳ 𝑆(𝑥, 𝑡) = sign(𝑥)(|𝑥| − 𝑡)+
25: Δ = (𝛽(𝑘)𝐸 − 𝛽(𝑘)(𝑛𝑒𝑤)𝐸 )𝑋𝐸
26: 𝑅∗ ← 𝑅∗ + Δ
27: 𝑘 ← 𝑘 + 1
28:
29: until convergence criterion is satisfied: ||

|

𝑄(𝚽(𝑘−1)) −𝑄(𝚽(𝑘))||
|

∕𝑄(𝚽(𝑘−1)) < 𝜖
30: Compute the intercept 𝛽0
31: 𝛽0 ← 𝑌 −

∑𝑝
𝑗=1 𝚿𝑗 𝜽̂𝑗 − 𝛽𝐸𝑋𝐸 −

∑𝑝
𝑗=1 𝛾̂𝑗𝛽𝐸(𝑋𝐸◦𝚿𝑗)𝜽̂𝑗

B.4.1. Maximum penalty parameter (𝜆𝑚𝑎𝑥) for weak heredity
The smallest value of 𝜆 for which the entire parameter vector (𝛽𝐸 ,𝜽1,… ,𝜽𝑝, 𝛾1,… , 𝛾𝑝) is 𝟎 is:

𝜆𝑚𝑎𝑥 =
1
𝑛
max

⎧

⎪

⎨

⎪

⎩

1
(1 − 𝛼)𝑤𝐸

(

𝑋𝐸 +
𝑝
∑

𝑗=1
𝛾𝑗(𝑋𝐸◦𝚿𝑗)𝟏𝑚𝑗

)⊤

𝑅(−𝐸),
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max
𝑗

1
(1 − 𝛼)𝑤𝑗

‖

‖

‖

(

𝚿𝑗 + 𝛾𝑗(𝑋𝐸◦𝚿𝑗)
)⊤𝑅(−𝑗)

‖

‖

‖2
,

max
𝑗

1
𝛼𝑤𝑗𝐸

(

(𝑋𝐸◦𝚿𝑗)(𝛽𝐸 ⋅ 𝟏𝑚𝑗 + 𝜽𝑗)
)⊤

𝑅(−𝑗𝐸)

}

, (57)

which reduces to

𝜆𝑚𝑎𝑥 =
1

𝑛(1 − 𝛼)
max

{

1
𝑤𝐸

(

𝑋𝐸
)⊤𝑅(−𝐸),max

𝑗
1
𝑤𝑗

‖

‖

‖

(

𝚿𝑗
)⊤𝑅(−𝑗)

‖

‖

‖2

}

.

This is the same 𝜆𝑚𝑎𝑥 as the least-squares strong heredity sail model.

C. Additional Simulation Results
We visually inspected whether our method could correctly capture the shape of the association between the

predictors and the response for both main and interaction effects. To do so, we plotted the true and predicted curves
for scenario 1a) only. Figure 5 shows each of the four main effects with the estimated curves from each of the 200
simulations along with the true curve. We can see the effect of the penalty on the parameters, i.e., decreasing prediction
variance at the cost of increased bias. This is particularly well illustrated in the bottom right panel where sail smooths
out the very wiggly component function 𝑓4(𝑥). Nevertheless, the primary shapes are clearly being captured.

To visualize the estimated interaction effects, we ordered the 200 simulation runs by the Euclidean distance between
the estimated and true regression functions. Following Radchenko and James 2010, we then identified the 25th, 50th,
and 75th best simulations and plotted, in Figures 6 and 7, the interaction effects of 𝑋𝐸 with 𝑓3(𝑋3) and 𝑓4(𝑋4),respectively. We see that sail does a good job at capturing the true interaction surface for 𝑋𝐸 ⋅ 𝑓3(𝑋3). Again, the
smoothing and shrinkage effect is apparent when looking at the interaction surfaces for 𝑋𝐸 ⋅ 𝑓4(𝑋4).In Figure 8 we visualize the variable selection results from 210 replications of the simulation study for strong
hierarchy sail using UpSet plots (Conway et al., 2017). Shown are the selected models and their frequencies. We can
see that the environment variable is always selected across all simulation scenarios and replications.
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Figure 5: True and estimated main effect component functions for scenario 1a). The estimated curves represent the results
from each one of the 200 replications conducted.
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Figure 6: True and estimated interaction effects for 𝑋𝐸 ⋅ 𝑓3(𝑋3) in simulation scenario 1a).
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Figure 7: True and estimated interaction effects for 𝑋𝐸 ⋅ 𝑓4(𝑋4) in simulation scenario 1a).
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(d) 2) Linear Effects
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Figure 8: Variable selection results from 210 replications of the simulation study for strong hierarchy sail visualized using
UpSet plots (Conway et al., 2017). Shown are the selected models and their frequencies. We can see that the environment
variable is always selected across all simulation scenarios and replications.
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D. Additional Results on PRS for Educational Attainment
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Figure 9: Estimated interaction effect identified by the weak heredity sail using cubic B-splines and 𝛼 = 0.1 for the Nurse
Family Partnership data for the 5 imputed datasets. Of the 189 subjects, 19 IQ scores were imputed using mice (Buuren
and Groothuis-Oudshoorn, 2010). The selected model, chosen via 10-fold cross-validation, contained three variables: the
main effects for the intervention and the PRS for educational attainment using genetic variants significant at the 0.0001
level, as well as their interaction.
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Figure 10: Coefficient estimates obtained by the weak heredity sail using cubic B-splines and 𝛼 = 0.1 for the Nurse Family
Partnership data for the 5 imputed datasets. Of the 189 subjects, 19 IQ scores were imputed using mice (Buuren and
Groothuis-Oudshoorn, 2010). The selected model, chosen via 10-fold cross-validation, contained three variables: the main
effects for the intervention and the PRS for educational attainment using genetic variants significant at the 0.0001 level,
as well as their interaction. This results was consistent across all 5 imputed datasets. The white boxes indicate a coefficient
estimate of 0.

E. Data Availability and Code to Reproduce Results
The R scripts used to simulate the data for the simulation studies in Section 4 are provided along with the code for

each of the methods being compared. The data used for the two real data analyses in Section 5 are publicly available. The
first dataset from the Nurse Family Partnership program is provided by one of the authors of the manuscript (David
Olds). The second dataset from the Study to Understand Prognoses Preferences Outcomes and Risks of Treatment
(SUPPORT) is publicly available from the Vanderbilt University Department of Biostatistics website.
E.1. Datasets

The datasets are available at https://github.com/sahirbhatnagar/sail/tree/master/manuscript/
raw_data

1. Nurse Family Partnership program data consists of three files. They are merged together using the script
https://github.com/sahirbhatnagar/sail/blob/master/manuscript/bin/PRS_bootstrap.R

• Gen_3PC_scores.txt
• IQ_and_mental_development_variables_for_Sahir_with_study_ID.txt
• NFP_170614_INFO08_nodup_hard09_noambi_GWAS_EduYears_Pooled_beta_withaf_5000pruned_noambi_16Jan2018.score

2. The SUPPORT data consists of a single file:
• https://github.com/sahirbhatnagar/sail/blob/master/manuscript/raw_data/support2.
csv
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All datasets are in .txt format. Code used to read in the datasets are provided in the section below. All output
from this project published online is available according to the conditions of the Creative Commons License (https:
//creativecommons.org/licenses/by-nc-sa/2.0/)
E.2. Code

The software which implements our algorithm is available in an R package published on CRAN (https://cran.
r-project.org/package=sail) version 0.1.0 with MIT license. The paper itself is written in knitr format, and
therefore includes both the code and text in the same .Rnw file.

The scripts and data used to produce the results in the manuscript are available at https://github.com/
sahirbhatnagar/sail/tree/master/manuscript.

The knitr file which contains both the main text and code is available at: https://github.com/sahirbhatnagar/
sail/blob/master/manuscript/source/sail_manuscript_v2.Rnw

The manuscript was compiled using R version 3.6.1 with knitr version 1.25.
The bootstrap analysis was run in parallel on a compute cluster with 40 cores. Though this is not necessary to

reproduce the results, it definitely speeds up the computation time.
E.2.1. Instructions for Use

All tables and figures from the paper can be reproduced by compiling the knitr file. The easiest way to reproduce
the results is to download the GitHub repository and compile the knitr file from within an R session as follows:

1. Download the GitHub repository https://github.com/sahirbhatnagar/sail/archive/master.zip
2. From within an R session, run the command: knitr::knit2pdf(’sail_manuscript_v2.Rnw’)
Note that to speed up compilation time, we have saved the simulation and bootstrap results in .RData files available

at https://github.com/sahirbhatnagar/sail/tree/master/manuscript/results. These .RData files are
called directly by the knitr file.

Note also that the R scripts used to generate the results are called from the knitr file using the ‘code externalization’
functionality of knitr (https://yihui.org/knitr/demo/externalization/). That is, the actual R code is stored
in R scripts and not within the knitr file. These R scripts are available at https://github.com/sahirbhatnagar/
sail/tree/master/manuscript/bin.

The expected run time to compile the manuscript is about 5 minutes on a standard desktop machine, assuming that
you are using the pre-run simulation and bootstrap results.
E.2.2. R Package Vignette

A website with two vignettes has been created for our sail package available at https://sahirbhatnagar.com/
sail/

The 2 vignettes are:
1. https://sahirbhatnagar.com/sail/articles/introduction-to-sail.html
2. https://sahirbhatnagar.com/sail/articles/user-defined-design.html
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