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A. PROOFS

Proof of Proposition 1. We will prove this proposition by contradiction. Without loss of generality, let
{Y1,...,Y,_1} be the collection of all active response variables that are connected with a response that
has non-zero regression coefficients, and let Y, be a response which has regression coefficient zero and is
not connected with any of the responses that have non-zero regression coefficients. We will show that Y,,
is inactive.

Let e, € R" be a vector of zeros but having 1 at its uth element and let I'* = Q. I'. Since Y, has
regression coefficients zero, 5 = Q., 5, giving B = Q., B. Therefore

B=Q.,B C Q.,span(I') = span(I"*).

Because this Y, is not connected with any of the responses that have non-zero regression coefficients,
cov{Y,, (Y1,...,Yu—1)" | X} = 0,50 cov(Y,, T*"Y | X) = 0. Recall that cov(I'J Y, T"Y | X) = 0, so
cov(IJY,I*"Y | X) = 0. Notice that

span(I'™)* = span(Tg) 4 span(P,,T') = span(Ty) 4 span(e,),

where L denotes orthogonal complement of a subspace. If I is an orthogonal basis of span(I'*)~*, then
I'=F,I'+PF.,I. So

cov(ITY, T*"Y | X) = cov(I'"Pr,Y + TP, Y, T*"Y | X) = 0.

Therefore span(I'™*) is a reducing subspace of ¥ that contains B. As T* = Q. T, its dimension is smaller
or equal to span(T"). Since span(T") is the envelope subspace, span(I'*) = span(T"). This is because if
not, span(I'™) N span(T"), which has a smaller dimension than span(T’), is a reducing subspace of ¥ that
contains 3; and it contradicts the definition of the envelope subspace. Since span(I'*) = span(T"), the ith
row of I must be zero, and Y,, is an inactive response. O

Now we discuss about the relationship between the two statements: (a) Y¥; and Y are not connected and
(b) Y; and Y are independent given the rest of the responses and X. If we assume normality, (a) implies
(b), but (b) does not imply (a). If normality is not assumed, they do not imply each other.
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First we show that (b) does not imply (a). Statement (b) is based on the structure of X~ ': If ¥; and Y;

s are independent given the rest of the responses and X, then the (7, j)th element in X! is zero. On the

40

45

50

other hand, if Y; and Y; are connected is based on the structure of 3. A sparse ¥~ ! does not necessarily
imply a sparse Y. For example, suppose that Y5 and Y3 are independent given Y; and X, and
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and Y5 and Y3 are connected.
Now suppose that Y; and Y}; are not connected. Without loss of generality, we assume that Y7 and Y. are

not connected. For positive integers £ > 2and [ > 1,let Y5, ..., Y} be the responses that connect with Y7,
Yi+1,- .., Yr4 be the responses that neither connect with Y; nor connect with Y., and Yiyi41,..., Y1
be the responses that connect with Y,.. Then X has a block diagonal structure as follows:

o1 Ok 0 0 0 0

Okl - Okk 0 0 0 0

0 -+ 0 Orgtkt1 - Okt htl 0 . 0

= A

0 -+ 0 Oktikt+1 ** Oktl kit 0 e 0

0 --- 0 0 0 Oktl+1,k+l+1 " Ok4l+1,r

0 --- 0 0 0 Orkilsl - Oy

The inverse matrix £~ will preserve the block diagonal structure of 3, so the (1, 7)th element in £~ 1 is
0. Under the normality assumption, this implies Y] and Y, are independent given the rest of the responses
and X. If normality is not assumed, this does not imply the conditional independent of Y; and Y.

Proof of Theorem 2. To prove Theorem 2, denote the objective function in (6) by fob;(A). It is suffi-
cient to show that for any small € > 0, there exists a sufficiently large constant C', such that

limpr{ inf fobj(A4+n"Y2A) > fobj(A)} >1—e (A1)
n AERC—wxu || Allp=C " :

If (A1) is established, then there exists a local minimizer A of fobj with arbitrarily large probability
such that |A — A||p = O,(n~'/?). Therefore A is a \/n-consistent estimator of A. As Pr = G4 (I, +
ATA)_lGITL‘ is a function of A only,APf is a y/n-consistent estimator of Pr. As 3 = Pr[o1s, and B, is a
\/n-consistent estimator of (3, then [ is a y/n-consistent estimator of /3.
Now we only need to show (A1). We write
Fobj(A) = —210g |GEG a| + log |G TresGa| +10g | GRS Gal + > Asllaill2
i=1

= f1(A) + f2(A) + f3(A) + f4(A),
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say, and we first focus on f;(A) = —2log |GG 4|. Expand f1(A +n~'/2A), we have
~1/2 —12 3R 1,78 1
filA+n7PA) = fi1(A) +n7 7 df1 (A) + 57 dfi (A) + op(n7),

—A —A
where df; (A) and dfZ(A) are directional derivatives (Dattorro, 2005, p.706). 55
The first directional derivative is

A
zfl (A) = tr {%fl(A)TA} = —4tr{(l, + ATA)’lATA}.
The second directional derivative is
—A d T
df$ (A) = —4tr ({ﬂ tr{(L, + ATA)lATA}} A>
=4 tr[{ — A(I, + ATA) Y ATA + AT AT, + ATA) "+ A(, + ATA)—l}TA]

- 4tr{([u + AT A YATA + ATAY(L, + ATA)TATA — (I, + ATA)*lATA}.

(D)

Let

then
—A
dff (4)
- 4tr[(1u + ATA)LATA(L, + ATA)TATA
(L + ATA)LAT{A(L, + ATA)LAT — IT_U}A}
_ 4m~[(1u + ATA) PATA(L, + ATA) P ATA + (I, + AT A) T AT{GA(GEGA) G — IT}A*}
- 4tr{([u + AT A YATA(L, + ATA) PATA + (I, + ATA)"LAT(IT™ — IT)A*}
- 4m~{(1u + ATA)LATA(L, + ATA)TATA — (I, + ATA)”AIFOFSA*}.

—A —A
We substitute df; (A) and df(A) into the expansion for f1(A +n~1/2A) and get 60

FiA+n"Y2A) = f1(A) = —an Y240 {(I, + ATA) 7T ATAY
ton~! tr{([u + ATA)TATA(L, + ATA)TATA

(I + ATA)‘lAIPOPgA*}.
With fo(A) = log |G f]mSG Al the first directional derivative is
—A d T T 9 —1 T
dfs(A) = tr ﬂfg(A) A b =2tr{(GYX1esGA) T Gy Eres Ak}

Let X x, Yy and Xy x be the varAianceA matrix Qf X, the variance matrix of Y and the covariance matrix of
Y and X in population, and let X x, ¥y and X xy be the corresponding sample versions. Then by Cook
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& Setodji (2003),
n1/2(§yx — Zyx) = n_1/2(YZX — nzyx) —+ Op(n_1/2),
n'2(Ex - Xx) = n VAXTX - nEx) + Oy(n~13),
n2(Sy - By) = n VHYIY. - nBy) + Op(n/?),

s where Y, € R"*" is the centred data matrix of Y, whose ith row is (Y; — Y)?. Since f)res = iy —
SyxEy Exy and Byt - B3 = -2 Ex - )2 + 0, (n7h),

Sies = OBy — Sy +3y) — Oyx — Syx + EYX)(E}l -3+ E}l)(ixy —Yxv +Zxv)

=X+ n1/2{ —n VAYIX - nZyx) 25 Exy + 0720y xy D (XX - nEy ) S Sxy

—n T2y xR (XY, - nExy) + nV2(YEY. - nEY)} +0,(n7")

=S+ n V3T, + Top + Tsn + Tap) + Op(n7),

where by the central limit theorem, each element in 11,,, T, T3, and T}, converges in distribution to a
normal random variable which has mean 0. As

(G 51esGa) " = (G2GA) " — (GLEGA) NG SeesGa — GLEGA) (GREGA) ™ + Op(n 1)

= (GL2GA) " =0 VHGEEGA) T G (T + Ton 4 Tsn + Tun)GA(GLEG ) !
—i—Op(n*l),

—Z*

dfs (T") can be expanded as
2t1{ (G, SresGa) 1 G Sres AL}
= 260 {(GT G 4) " IGLEA, )} + 201/ tr{(GQEGA)*G;(TM + Top + Tap + Tan) A,
~(GAZGA) GA(Tun + Ton + o + T1a)Ga(GEEGA) T GATAL} + Oy(n )
= 2tr{ (I, + ATA)LGLAY + 201/ tr[(G;zGA)*G;(TM + Ton + Ty + Tan) {1,
~Gal, + ATA)TIGRIAL] + 0y(n7Y)
= 2tr{(L, + ATA)TTATAY + 207 2 40 { (GREGA) T G4 (T30 + Tun)Tol g ALY + Oy(n 1)
= 2tr{(L, + ATA)TTATAY + 207 2 4 { D1 Q70T Ty, + Tun)Tolg AL} + Oy (n71).
70 The second equality is because I' = G 4I'1, so
ITGLGAT 1 =1 =171, + ATAT =1=1,+ATA= (7)) "' (1) ' = (I, + ATA) ' =TT,
and
(G52GA) T G = {(TTTY™SITT V(I )™S = T Q10T = TW TGS = (1, + ATA) G,
Using the Cauchy—Schwarz inequality for matrix trace (Magnus & Neudecker, 2007, p.227),

tr{T1Q ™ 'T" (T + Tun ) Lol AL}

< AL FIT1 QT (T, + Tun)Tol'S ||
= |A|p|T1 Q7 T (T + Tun)Tol| -
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The second directional derivative of f5 is

—A d . N T
df2(A) = 2tr ([ﬂtr{(GgEresGA)_lGIlEresA*}} A)
= 2tr{(G:r4irCsGA)71A:£ircsA*
_(GziresGA)_l(GziresA* + A}:iresGA)(GziresGA)_leiresA*}
= 2tr{(GL2GA) TIATEA, — (G EGA) T HGLEA, + ATSGA)(GLEGA) LG EA, )
+0,(n~Y?)
—9 tr[ — (Lo + ATA)'GEAL (I, + ATA) G A,
HELSG ) TATS{ T, — GA(ngaA)*ng}A*} +0,(n"1/?)
- m[ —(Iy + ATA)TATA(I, + AT A)"TATA
H{OTYTNT AT — Ga(L, + ATA) T GR YA, } +0,(n~Y2)

=2tr{ — (I, + ATA)TTATA(L, + ATA) TP ATA + T1Q7 ' TTATST TG ALY + Oy (n?)
=2tr{ — (L + ATA) T ATA(L, + ATA) T ATA + QT ITTAITOQIG AT} + Op(n~'/3).

A —A
Substitute dfs (A) and dfZ(A) into the expansion for fo(A +n~1/2A), we get
f2(A+n"2A) = fo(A)
=20 V2 4 {(L, + ATA)TTATAY + 20 e {T QT (T, + Tap )Tl G AL
+n e { = (Lo + ATA) TTATAIL, + ATA)TTATA + QT ITTATT0Q T AT ) + 0p(n 1)
> 2n 2 e {(I, + ATA)TTATAY = 207 YA p|IT1 Q7 T (Tay + Tan)Toll F
+n e { = (L + ATA) TTATA(L, + ATA)TTATA + QTITTATToQ TG AT ) + op(n ).
Since that f3 has similar structure as f2, the derivation above can be applied parallel to fa, just with Zrcs 75

replaced X5 LLet Ty, = —n— Y 22 (YTY nEy)E . By the central limit theorem, 7%,, converges
in distributlon to a normal random Varlable with mean 0. After some straightforward algebra, we have

f3(A4+n"Y2A) — f3(A)

=20 V2t {(I, + ATA)TTATAY + 20 Lt T (Q 4+ nExn™) T T, Dol R AL}
+n e — (L, + ATA)TTATAL, + ATA)TTATA + (Q+ nExn ") ITATToQy 'TEALT }
+Op(”_1)

> o V2 tr{ (I, + ATA)TTATAY — 207 Y| Al p||T1(Q 4+ nEx 0™ )T 5,0 ||
+n e = (L, + ATA) TTATA(L, + ATA)TTATA + (2 + nExn")ITATD0 Qg 'TEALT, }
+op(nh).

Now we expand f4(A) = >°1_ " \i||ail|2. Let 67 be the ith row of A, then

q—u

S (Al + 02612 = Al

=1

Fa(A+n720) = fu(A)

Y

1 _ _

> _E(q —u)n 1/2)‘max,n Iniax (Hai”2 1H5iH2) {1 + Op(l)}
1 _ _

= o ) A max (5 600) (1 4 0p(1))
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The second inequality is based on Taylor expansion at a;. As n1/2/\maX7n —0asn— oo, n{fi(A+
oo n/2A) — f4(A)} = 0,(1). Collecting all the results so far

fobj(A+n"2A) = fopi(A)
> —2n" M| A p||IT1 Q7 T (Tsn 4 Tun)Lollr — 207 H|A[| pIT1(Q + nXxn™ )T T5nLol

ot tr{Q—lrfAIFOQOFgA*Fl F(Q+ Sy )T ATT Qs TEA, T,
2T+ AT A ATTOTEAL ) — 217 (g — u)n A mass (il 161]2) + 0p ().
Notice that
tr{Q‘ll“fAIPOQOPgA*Fl (4 nSxn")TTATT oy 'TEAT — 2(1, + ATA)‘lAIFOFgA*}

= tr{Q*FfAfI‘OQOI‘(T)A*Fl +(Q+ nSxn™)ITATT Oy 'TEA, T — 2F{A$FOF5A*F1}

vec(TFAI)T(Q@ Q' + Q7@ Qy — 21, @ Iy + 12x0" @ Qp 1) vee(TFALTY)
vee(TgALT) " K vec(TALT)
> m||T5AT 1,

where m is the smallest eigenvalue of K. The matrix K appears in (5.7) in Cook et al. (2010), by Shapiro
(1986), K is a positive definite matrix and m > 0. Since

ITGAT | = tr(TFANTTAT)
= tr{IJA (I, + ATA)'ATT}
= tr{A, (I, + A"A)"LAT(I, — TT")}
= tr[(I, + ATA) T AL — Ga(I, + ATA) ' GLIA,]
= tr[(I, + ATA) AT, — A(L, + ATA)LAT}A]
= tr{(I, + ATA)"'AT(I, + ATA)"'A}
= vec(A)"{(I, + ATA) ' @ (I, + ATA) "'} vec(A)
> mg| A%,
where my is the smallest eigenvalue of (I, + AT A)~!, we have
tr{Q_lI‘fAIFoQoFSA*F1 + (Q+nExn")ITATToQ 'THA T — 2(1, + ATA)‘lAIFOFgA*}
> mmd || A3

ss Then the terms with order ||A[|%. dominate the terms with order || A|| . When ||A| p = C for sufficiently
large C, the conclusion (A1) follows. ]

Proof of Theorem 3. We will prove this theorem by contradiction. Suppose that ||@;||2 > 0 fori = ¢ +

1 —w,...,r —u. The first derivative of f,y; with respect to a; should be 0 evaluated at the local minimum
@;. The derivative of foh; withrespecttoa] (i =¢+1—u,...,r —u)is
afObi T T A4\—1 TH TN -1 To—1 To—1 -1 )‘iaiT

a; ail|2

90 Wwhere e; be the ith column of I,.. Then
~ ~ o~ ~ o~ o~~~ ~ ~ o~ o~ ~ a¥
—4eTGa(L, + ATA) ™ 426780 G A (G EresGa) T+ 26755 Ga (GRS Ga) ™ + A”f—H =0.
aif|2
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Because ires, f)y and A are v/n-consistent estimators of ¥, ¥y and A, ¥ = T'QI'" + T'oQpI'§ and By =
L+ nZxn™)I'T 4+ ToQlg,
—4eTG ALy + AT A) 7 4 26T 510G (G SresGa) F + 2675 G (G5 Ga)

= —4efGa(I, + ATA) ™ 4+ 2eTRGA(GE2G ) + 2678 GA (GRS GA) L + 0, (n1?)

= —4al (I, + ATA) ™ 4+ 2eTG (L, + ATA) ™ 427G A(T, + ATA) "L+ 0,(n~Y?)

= —4al (I, + ATA) ™t +2aF (I, + ATA) "L + 247 (I, + ATA) "t + 0, (n~/?)

= O;D(”_l/z)-

~ ~ ~ ~ ~ ~

Then n'/? {—4egéA(Iu FATA) T 4 26780 GA (G SresGa) L + 2e32;1GA(é;2;1GA)—1} -
Op(1).
On the other hand, let m be the element in a, that has the largest absolute value, then |m/|/||a;]|2 > /u,

where | - | denotes absolute value. Because we have nt/ 2)\min,n — o0, there is at least one element in
n'/2)\;al /| ai||2 that tends to infinity. With (A2), this is a contradiction of

nt/? {_4egéA(1u + ATA) T 4+ 26780 GaA (G 5resGa) T + 275 G A (GRS G A) ™ } = 0,(1).

Therefore fori =q¢+ 1 —wu,...,r — u, a; = 0 with probability tending to 1. (]

Proof of Proposition 2 and Proposition 3. For the proof of Proposition 3, the derivation of the max-
imum likelihood estimator of Sp and its asymptotic variance under model (13) follows from standard
theory on regression. Now we start to proof Proposition 2. We need to justify the results for model (12).
First we derive the maximum likelihood estimator of Sp. As Y = (Y75, YJ)", we can partition the centred
matrix Y, accordingly into Y. = (Y., p, Y. s). We also partition the matrix >~ !into

-1 _ M, M,
vy )

The log likelihood function under model (12) is

n(r +p)
2

1
-5 tr{(Yep — 1na™ —XBE,Ye 5)X (Ve p — lna — XBh, Yo 5) ).

n n 1 _
l=— log(2m) — B log |Xx| — 5 log|X| — 5 tr{(X — Lopux) S5 (X = Loux)™}

It is easy to show that iy = X, f]X = (X = 1oux)"(X = 1,ux)/n, and @ = Y. Substituting these es-
timates in, the partially maximized log likelihood is

- _wlog@w) - Zlog[Sx| - 22 - Dlog Y]
1 _
_§tr{(YC,D_XcﬁE)7Yc,S)Z 1( c,D — cﬂDv ) }
__nr+p) S
= 5 log(2m) — S log[Ex| — — — S log |3

1
—5 tr{(Yc,D — XcﬁE)Ml (YC,D - XcﬁE)T + 2(YC,D - Xﬁ};)MgYZS + YC,SM3Yg)S}'

Take the derivative of [ with respect to 5p and X, we get

ol
3~ = ~Mi(BpX; - Y p)Xe — MpY X,
9fp

ol 1

52_52 +2E ( CﬁDv )(cD— CﬂDa cS)E_l-

95

100
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Set the derivatives to 0 and we get BD =Y pXe (XTX.)~t — M_lMgYasxc(XgXC)*l = BDonS —

EDSES Bsolb and E——( e,D — cBDu e,s)"(Ye,p — cﬁDa Y. s). Since Bg =0, 252551,
where S5 5 1s the sample covariance matrix of YS. We can build an equation with ¥ pg. Notice that

b = c, c c,
DS n( p —XeBp) Yes
1 PR
= E(YC,D - Xcﬁ}))ols + XczDszslﬁS,ols)TYc,S
1 A
= E(QXCYC,D + PxY. 55, 'Shs)" Yo 5.

Solve for fJDs, we get
Sps =Y pQx. Yes(YEgQx Ysc) ' Sg".

Substitute it into 3p, we get Sp = p,o1s — Bp|sBs,01s, Where Bpjs = Y7 pQx, Ve 5(V7 ¢Qx, Yo 5)7"
contains the coefficients from the regression of Rp on Rg.

To compute the asymptotic variance of the maximum likelihood estimators, we compute the Fisher
information matrix for { vec(Sp)™, vech(X)"}, where vech is the operator that stacks the lower trian-
gle of a symmetric matrix into a vector column-wise. For an a X a symmetric matrix M, let C; and
E, be the contraction matrix and expansion matrix that connect the vec operator and vech operator:
vech(M) = C, vec(M) and vec(M) = E, vech(M). After some straightforward algebra, the Fisher in-
formation matrix J is

Yx ® (Ep — Epsts'Ehe) 0
0 IEN (S @S YH)ET

The inverse of the upper left block of .J relates to the asymptotic variance of vec( B p). Therefore

n'/?{vec(Bp.1) — vec(Bp)} — N(0,5%' © ps)

in distribution as n — oo. O

Proof of Proposition 4 and Proposition 5. The proof of Proposition 5 follows from the standard theory
of the envelope model in Cook et al. (2010).

We now prove Proposition 4. The derivation of the maximum likelihood estimator of 3 4 is similar to
the derivation of the maximum likelihood estimator of 8 under the envelope model in Cook et al. (2010).

To derive the asymptotic variance, we apply Proposition 4-1 in Shapiro (1986), as there is overpa-
rameterization in the oracle envelope model. First we check the assumptions in Proposition 4-1. We
will match our notations with Shapiro’s. Shapiro’s z is our { vec(j. 41)", vech(S1)7}7, where 3 is
the estimator under the oracle model (12). Using techniques similar to those in the proof of Theorem
2 in Su & Cook (2012), we can verify that when the errors have finite fourth moments, = is asymp-
totically normally distributed. Shapiro’s & is our { vec(84)", vech(X)"}". Let | be the log-likelihood
function in (A3) and let [,,,x be its maximum value. We define the minimum discrepancy function as
SMDF = lmax — [. Since fyipr is derived from the normal likelihood function, it satisfies the four condi-
tions in Section 3 of Shapiro (1986). Our { vec(n)™, vec(I" 4)", vech(Q)™, vech(Q2o)" }" is Shapiro’s 6.
Therefore the function g that connects £ and 6: £ = g(0) is twice differentiable. All the assumptions in
Proposition 4-1 are satisfied. Let io be the estimator of X under the oracle envelope model (14), then
n'/2[{ vec(Ba.0)", vech(S0)*}" — { vec(B4)T, vech(X)™}] is asymptotically normally distributed
with zero mean and some covariance matrix. So far in this proof, we did not use the normality of the
errors, but just require that the errors have finite fourth moments.

Using the normality of the errors gives us closed-form expressions for the asymptotic variance of
vec( B 4.0)- Proposition 4-1 indicates that the asymptotic variance has the form H(H*JH)'H™, where {
denotes Moore—Penrose inverse, J is the Fisher information displayed at the end of the proof for Proposi-
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tion 2, and H is the Jacobian matrix 9¢/0"6

I I, @I 4 n"® I, 0 0
o 0 2C(I;TQ-ToQIT D)L C.TT)E, C.(To@T)Er—y )’

where L = (K ,,0)" € R™*% and K, € R1"* is a commutation matrix (Magnus & Neudecker,
1979). After some algebra similar to that in S4 in the supplementary materials of Cook et al. (2010), we
can get the closed-form for the asymptotic variance of vec(8.4.0):

n1/2{vec(§,47o) — vec(Ba)} — N(0,Vo)
in distribution, where Vo = X' @ T4QTY + (1" @ T 40)T(n ® o) and T'=n¥xn™ @ 6207.34|I +

Q® ngw + Q' ®@Qo4 — 2L, @ Iy

Note: We ignored 11y, o and X x in J and H matrices. This does not affect the results because they are
not involved in the parameterization of § and ¥, and their maximum likelihood estimates are asymptoti-
cally independent of the estimates of 5 and 3. (]

Proof of Theorem 4. Let A A denote the nonzero rows in the sparse envelope estimator E, and /Alo de-
note the nonzero rows in the oracle envelope estimator. As Pr = G4 (G4 G A)*l % for a sequence a,, =
o(n=1/2),if Ay = Ao + Op(ay), then Ps = Ps_ + Op(ay). Therefore B—po= (P — Pfo)gols =
(Pr— Pz_)(Bois = B) + (Pr — Ps,_)B = Op(an)op(1) + Op(an) = Op(an). So n*/2(3— ) =0 in
probability. By Slutsky’s theorem n!/2(3 — 3) has the same asymptotic distribution as n/2(3o — ).
From the proof of Proposition 4, we know that /2 (30 — /) is asymptotically normally distributed with
zero mean if the errors have finite fourth moment, and we can obtain the closed-form of the asymp-
totic variance if normality is assumed. Therefore the conclusion of Theorem 4 follows if we can prove
Aq = Ao+ Oy(ay) for a, = o(n=1/2). Since n*/*A\pax.n — 0, Amax.n = o(n~'/2). For simplicity, we
just take a, = (n7Y2A\pax ) /2.

Let B be a (¢ — u) x u matrix, and

Define

q—u
fobi,A(B) = —21log |GEGp| +10g |GEEy, x G| +1og |GE (551 G| + Z Aillbill2,
=1

where b; is the ith row of B. Because of the selection consistency of the sparse envelope model, A A=
argmingep—wxu fobj,A(B). Then it is enough to show that for arbitrarily small ¢ > 0, there exists a
sufficiently large constant C', such that

lim pr { inf fobj,A(A\O + anA) > fobj,A(A\O)} >1—e. (A3)
n A€R-w)Xu || Al p=C

If (A3) holds, Ay = Ao + O,(an) for a, = o(n~/2). Now we show (A3). Similar to the proof of
Theorem 2, we expand fobj)A(A\O + a,A) and compute fobj)_A(A\O +apnA) — fobj)_A(A\O). We di-
vide fobj,a(B) into four parts according to the three additions: fobj, 4(B) = f1,.4(B) + f2,4(B) +
f3.4(B) + fa,4(B). The first directional derivatives of f1 4(B), f2,4(B) and f5 4(B) at Ap are

Al
B=4,

A

—A
FraAo) = (S ha®],_ A} dfaatio) = w{ L faalB)"

B:,ZOA}'

—A

BoaAo0) = tr{ 2 Fs A(B)"
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Since Ao is a minimizer of fi_4(B) 4 fa.4(B) + f3.4(B).

b haB)| B =0

d
— B
dB fl)A( ) B:A\o dB B=Aop B=Ao

—A —A —A
Then df1, 4(Ao) + df2.4(Ao) + dfs a(Ao) = 0. R
The calculations on the second directional derivatives of f1, 4(B), f2,4(B) and f3 4(B) at Ao and the
expansion of f 4(B) are parallel to those in Theorem 2. Assembling all those terms together, we have

Fobja(A0 + anA) — fonja(Ao)
> a2 tr{Q*1FfAfAFA70(~207AFJT47OA*AI‘1 + (2 S x g TT AL 4085 Yy T 0 AT

_ 1 _
—2(I, + AﬁAA) 1AIA1—‘A,0FJT470A*A} — Ean(q — U) Amax,n max (||ai|\2 1||61-||2) + op(afl),

where A 4 € R(4~")*% contains the nonzero rows in A and A, 4 = (Ouxu, AT)" € R7*%, Based on the
definition of a,,, we have Ayax,n = 0p(ay). So the second term is dominated by the first term. Then (A3)
is established if we can show that the trace in the first term is positive. We have

tr{Q’lFTA AT 40920 AT oA AT + (Q 4+ 7S xn™ ) TTAT LT 4000 T 0Au TS

0,A|Z
=21, + AGAL) T AT 40T oA a )
= vee(I o AuaT) {7 @ Qo+ (24 nExn™) @ Oy Y 7 — 20, @ Iy } veo(T gAuaT)

> vec(I‘JTLLOA*AFl)T{Q*l ® 507,4 +(Q+n2xn")® QO_EA -2, ®Iq—u} vec(I' gAsal'y)
> m| T 0AvalT|lF

> mmg | Al

where my is the smallest elgenvalue of (I, + A% A4)~", and m is the smallest eigenvalue of 27! ®
QO,A +(Q+n2xn")® Q —2I, ®1;_,, whichis a positive definite matrix by Shapiro (1986). The
derivation of the last mequahty is the same as the derivation of a similar inequality at the end of the proof
of Theorem 2. 0

Proof of Theorem 5. First, we show that
||Ere:a Sp 71HF = OP[{(TH =+ 81) log T"/n}l/Q]a (A4)
=55 = B3 lr = Opl{(ra + s2) log ra/n} /7). (AS)

Because that Y is sub-gaussian plus a constant and the residuals are not independent, Y and the residuals
do not satisfy the assumptions required for establishing the consistency of the sparse permutation invariant
covariance estimator. However the sparse permutation invariant covariance estimator depends on the data
only through a bound of the sample covariance matrix. Therefore as long as we can show that
max [Sy,ij — Sy,i5| < Oy {log(ra)/n}'/?, max|Ereij — Sijl < Cres{log(ra)/n}? (A6)
B 2,7
for some Cy > 0, Cies > 0, (A4) and (A5) hold.
We begin by showing (A6). Let W be an m-dimensional random vector with mean py and covariance

matrix Yy, and W — pyy follow a sub-gaussian distribution. Suppose Wi, ..., W, are n independent
and identically distributed samples of W, then W = Z?:l W; and

1 & 1 & _ _
==Y (W =W)(Wy =W —Z Wi = pw ) (Wi — pw)" = (W — pw ) (W — pw )™
k=1 k=1

3
3
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S0
2

From Ravikumar et al. (2011), there exists positive constants C;, such that for 6 € (0, b1),

pr(|Swi; — Swiijl > 0) < pr U{ Z Wi — pw) (Wi — MW)T},, — Yw,ij
k=1

)

- - . 5
+pr U{(W = pw ) (W — pw) }ij > 5}
< C) exp(—Cand?) 4 C3 exp(—Cynd?)

where | - | denotes absolute value. Let § = Cs{log(m)/n}!/? for some Cs > 0. Using the union sum
inequality, as n — oo, we have with probability tending to 1,

max |y, — Swii;| < Co{log(m)/n}'/?,
]

where Cj is a positive number.

Now we take W = (X", e™)", then W is a p + r,, dimensional random vector with mean (% ,0")",
where the 0 is an 7, dlmensmnal vector. It has a block diagonal covariance matrix with diagonal blocks
being ¥ x and X. Then by the preceding conclusion, we can find constant Cj such that max;_; |EW” —

Swiij| < Co{log(ry, + p)/n}/2. Since p is fixed, we can find Cf such that max; ; |ZWM Y| <
Ci{log(r,)/n}"/?. Then

max [Sxi; — Sx,ij| < Cg{log(r,)/n}?,
2,7
max [S.,;j — Xij] < Cg{log(rn)/n}'/?,
7,7

max[Sox. 5| < G {log(ra)/n}* 2

Since f)y = BfJXBT + ig + BfJXa + iaXﬁT, we have
max [Sy,;j — Ly.i;| < Cy {log(ry)/n}/?,
]
for some Cy > 0. R
As E1res - E - EEXE EXE’
i1res Y= (iaX - EEX)EgglzXa + Eax(i}l - Eggl)EXa + Eanggl(iXe - EXE)
+(25X - EEX)(E;(l - E;(I)EXE + EEX(E;(I - E;(l)(EXa - EXE)
+(Eex — Zex)2x (Exe — Bxe) + (Sex — Bex) (% — U5 (Exe — Ixe)
13, - %

Using the fact that for A € R%>*92, B € R%2%% || AB|| nax < da||Allmax|| Bl max> Where || - ||max is the
matrix max norm, we have

max |Ereb ii — Sij] < Cresflog(rn)/n}/?,

7‘)

for some Cles > 0. Therefore (A4) and (A5) hold.
We denote the objective function in (7) as fonj 2. Let a, = {(rn + s) logr,/ n}l/ 2. Theorem 5 holds
if for arbitrarily small € > 0, there exists a sufficiently large constant C, such that

lim pr{ inf fobj2(A+ anA) > fobj_rg(A)} >1—e (A7)
n AeRa—w)xu ||Al|p=C

195

200

205



12 Z. Su, G. ZHU, X. CHEN AND Y. YANG

Following the techniques and notations in the proof of Theorem 2, we expand fopj2(A + apA) —
fopj2(A) and get

fobj,2(A+ anA) — fobj2(A)
> 2a, tr[(GREGA) T G (Bres,sp — 2)Aw + (G4 ZresspGa) ! — (GREGA) T IGLZA,
+{( Té&ires,SPGA)_l - (GZEGA)_l}G,TLX(ires,Sp - E)A* + (GBE;,]épGA)_lGZ(i;;p - El_/l)A*
H(GASy 4 Ga) ! = (GRYY'Ga) 1 IGAE A,
H(GAE,Ga) 7 = (GAXy1Ga) IGL (S, — Sy )AL
+a2 tr{Q—lr}AgrogorgA*rl +(Q+ ") ITATT Q5 'TTA, T,
1
—2(Lu + ATA)”AIFOFSA*} = 5n(¢ ~ #)Amax,n max (lailly H18:ll2) + op(az).
210 Notice that

Sressp — 2 =3(E2 L -2 S 4+ 0,(EL,, — 27,

res,sp res,sp
Let || - || be the spectral norm of a matrix. For two matrices A € R%*9 and B € R%*% || AB|p <
IA[II1 B[ So

HE( rcssp )EHF < HEH Hzrcssp 1||F < k2||2rcs Sp 1HF7

and ||Syessp — || 7 = Op[{(rn + ) log r,/n}1/2]. Then

[(GEEGA) T Ch(Sressp — )AL 2 =R Al RIS = =R I(GEDGA) | Gal -

res.sp
Now
(G SresspGa) ™! — (GR2G )1
= —(G2GA) (G S resspGa — GEEGA)(GRECA) ! + 0y (G S res.spGa — GLEGA)
—(GAXGa)” 1G£(§res s — D)GA(GREGA) ! + 0p[{(rn + 51) log r, /n} /]
—(GREGA) T GRS(Srh o — BTH)BGA(GEEGA) ! + 0p[{(rn + 1) logr /n} /7]
215 SO

[{(G,Téx/\reb prA)_l - (GBEGA)_l}GZEA*]
—u 2R Al Fl| S5k o — STHIEN(GREGA) |G allp-

res,sp

Apply these inequalities to the terms in the first four lines in fobj 2(A + anA) — fobj,2(A), then

fobj2(A+ anA )_foij(A)
> 2Mya, || Al p|[Eret p — 7 I + 2Moan|A ]| F[1 555, — S5 I F

a2 tr{QflrfA”:rOQOrgA*rl +(Q+ pSxy)ITATT Oy 'TTA, T,

. 1 .
—2(L, + ATA) T AITOTEAL | = 5000 = W _max_ (lall3 10]12) + op(a),

where M = —2u!/2k?||(GL2GA) " ||Gallr and My = —2[(G453'Ga) " ||||GallF. Because
Amax,n = 0[{(rn + 8)logry, /n}/? = 0,(ay) and

tr{Q”FfA:fFOQOFSA*Fl +(Q+ nSxn™)TTATT Qg 'TTEA T — 2(1, + ATA)*lAIFOFgA*}

> m|| A,
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for some m > 0 by Theorem 2, the second order term of || A|| p dominates the first order term of ||A||# in
fobj2(A =+ anA) — fonia(A). Therefore (A7) holds, and || A — A|| g = Op[{(rn + ) logry/n}'/2]. As
Pr = Ga(I, + ATA)~*G7 is a simple and continuous function of A, then ||Px — Pr||p = Op[{(rn +
s)logr, /n}'/?).

Since

Bols - B - iin;(l - EEXE;(l = (isX - EEX)E;(I + EEX(E;(l - 2;(1)7
there exists a constant C,,; such that

max B, ij = Bij] < Cors{log(rn)/n}'/.

Because || Bots — Bl 7 < (070)"/?[|Bots — Bllmax. then
18 = Blle < (P = Pr)Bossll e + [Pr(Bots = B)lle < (P = Pr)Botsll e + [1Boss — Bll -
Therefore the sparse envelope estimator B converges to 3 with rate {(r,, + s)logr,/n}/2. O
Proof of Theorem 6. Let
5= _min_fail: >0,

then § is the smallest norm of the non-sparse rows in A. Since ||3 — || p = Opl{(rn + s)logr,/n}'/?,
and {(r,, + s)logr,/n}'/? — 0,then ||3 — B||r < /2 with probability tending to 1. This implies ||a; —

ailla < d/2fori=1,...,r,.Fori=1,...,q,|a;|2 > |laill2 — §/2 > 0. Therefore the sparse envelope
estimator identifies the nonzero rows with probability tending to 1.
For a;,i=q—u+1,...,r, — u, suppose a; 7 0, taking the derivative of f,,j» with respect to a;

and evaluate at a;, we have

—4efGA(Lu+ ATA) ™" + 26 Ve 5pG A (GAresspGa) TH + 267 5L Ga(GEEyE Ga) ™t
ar
iT=7 =0.
@i |2

Because —4e7G 4 (I, + ATA) ™1 + 2eTXG A(GLEG )7 + 2eF 53 GA(GL S5 G a) ™ = 0, we have

+A

| = 4€fGa(Lu+ AT A) ™" + 26 Sres 5pG A (G SresspGa) " + 26780 L Ga(GLELL Ga) | r
= Op[{(7n + 5) logrn, /n}*/?).
But

‘ A

Since { (7, + s)log 7, /n}/? = 0(Amin.n), this is a contradiction. Therefore we have pr(a; = 0) — 1 for
i=q—u+1,...,r —u. (I

ar
7 /\Z H = )\z > )\min n-
[aill2 117 ’

B. CONVERGENCE ANALYSIS OF ALGORITHM 1

In this section, we prove the strict descent property of our blockwise coordinate descent algorithm. The
proof relies on the following two lemmas.
LEMMA B1. The loss function L(a; | E_i) as defined in (9) has a bounded second derivative
d? ~
WL(CLJA,J - j {47max(B1) + 27max(B2) + 2”)/max(B3)} I;

where I € R"*" and My < My means that My — M; is a semi-positive definite matrix.
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LEMMA B2. One can find a quadratic majorization function Q) for the loss function L(a; | g_l) in
9),1.e.,

ai a;=a;

such that Q(a;) = L(a; | A_;) when a; = @; and Q(a;) > L(a; | A_;) when a; # a,.

Proof of Lemma B1. The second derivative of L(a; | A_;) is

C;J—;L(aiﬂ_i) = —AT, + 2T, + 273,
where
T = (14 ajBra;) By — 213101'&331 , (A2)
(14 afBia;)
{1+ (a; +v2)"Ba(a; +v2)} By — 2Bs(a; 4 v2)(a; 4+ v2)" By
N {1+ (ai +v2)" Ba(a; + v2)}
~ {1+ (a; +v3)"Bs(a; + vs3)} B3 — 2B3(a; 4+ v3)(a; + v3)" B3
a {1+ (ai + v3)*Bs(a; + v3)}> '
We only prove that T defined in (A2) can be bounded as—7ymax(B1)I < T1 = Ymax(B1)I, since the
proofs for bounding 75 and 7% are very similar. We write 77 as

1/2 1/2 51/2 1/2 1/2 1/2
(1+ a’Bya;) By — 2Bya;a™B, b1 {(Ha?Bl B, ai)1_2B1 aia; By }Bl

T

)

13

= 2 = 2
(1 + al-TBlai) (1 + a;-fBlai)
(A3)
Replace x = B;/zai in (A3), we get
T — B%/Q {1+ 2"2)I — 2xa:T}B%/2.
(14 27z)
We now prove that
T _ T
2 (1+z%x)I zzmr oy
(1+z"x)
Denote z = z/||z|| and denote M = (2"2)I — zz". Tt is easy to see that 0 < M < I. As
T T
()l = o = ol (e o) = P,
3 1 (6 B
we have (z"x)I — zz™ > 0. Then
(I+a2"x)] —2z2™ = (1 +2"x)] — 2(x"2)] = (1 —2"z)] = — (1 +2"x)I. (A4)
We also have
(142 2)] —2z2™ 2 (1 4+ a"x)l. (A5)

Therefore combining (A4), (AS)and 1 + 2"z > 1, we have

(14 2"2)I — 2z2™
—I= =<1
- (1+ z7x)? -

Therefore

—Ymax(B1)I X —=B1 =11 = B1 = Ymax(B1)I.
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Similarly we can prove that —Vmax(B2)l = T2 < Ymax(B2)I, and —Ymax(B3)I = T35 < Ymax(B3)I.
Hence the lemma is proved. O

Proof of Lemma B2. For any a; and a, let d; = a; — a; and define g(t) = L(a} +td; | A_;) such
that

9(0) = L(aj | A—y), g(1) = L(a; | A_y).

By Taylor expansion, there exists a b € (0, 1) such that

9(1) = g(0) + g'(0) + 1/29" (b). (A6)
By Lemma B1,
d? ~
g"(b) = dde—asz(ai | A—;) ai:aj-i—bdidi
< {4Ymax(B1) + 2Vmax(B2) + 2Vmax(Bs3) } d; d;
< §,d"d;, (A7)

where §; = (1 + £*){4Ymax(B1) + 2Ymax(B2) + 2Vmax(B3)} and £* > 0. When d; # 0 the inequality
in (A7) strictly holds. Plugging (A7) into (A6) gives (Al). ]

Proof of Theorem 1. By Lemma C2, after updating a; using

} - — i . (A)
a;=a; Héiai—%L(a”A_i) 2)

. 1 - d ~
Qi new = 5 {51'@1' — dTLiL(aiVLi)

we have
L(ai,ncw | Aifz) + AWich\ii,ncwHQ S Q(ai,ncw) + )\wiHai,ncw”Q
< Q@) + Awillai|2
= L(?iz) + /\wl||2il|\2

Moreover, if a;(new) # a;, then the first inequality becomes

L(ai,new | Av—i) + /\Wi”ai,newHZ < Q(ai,new) + /\WiHai,newH2'

Therefore, the objective function strictly decreases after updating all blocks in a cycle, unless the solution
stays unchanged after each blockwise coordinate update. If this is the case, we can show that the solution
must satisfy the Karush—Kuhn—Tucker conditions, which indicates that the algorithm has converged to the
stationary point. To see this, if @; new = a; for all 7, then by (A8) we have

} 1— )\wi
a;=a; H&l?iz — diL(al|Av_z) .l

s a;=a;

~ 1 ~ d ~
a; = 5_1 {61'(% — dTl,iL(a”A_i)

if

L(a;|A_;)

> Awi,
2

d
0;a; —
T da

7 a;=0a;

and a; = 0 otherwise. By straightforward algebra we obtain the Karush—Kuhn—Tucker conditions:

d ~ a;
L(a;|A_; + Aw; - = 0, a; # 0,
dai ( | ) a;=a; HCL1||2 75
d ~ ~
L(CL1|A,Z) S )\wi, a; = O,
dai aizﬁi 2
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where ¢ = 1, ..., — u. Therefore, if the objective function stays unchanged after a cycle, the solution
satisfies the Karush—Kuhn-Tucker conditions and necessarily converges to the stationary point of the
problem. U

Now we show a figure that empirically confirms the convergence of Algorithm 1. We used the following
settings to generate the figure. We set p = 5, «w = 2, n = 50 and r = 200. The first ¢/2 rows in I 4 were
{(2/¢)*/?,0}" and the remaining q/2 rows were {0, (2/¢)*/?}". Then we used the structure in (5) to
construct I' and I'y. The errors were generated from the multivariate normal distribution with mean 0 and
covariance matrix Y = I'QI'" + ToQoI'Y, where Q = I,, and €y was a block diagonal matrix with the
upper left block being 257,_,, and lower right block being 4I,_,. The elements in 1 were independent
N (0,4?) variates. The predictors X were normally distributed with mean 0 and covariance matrix Y x =
47, Figure 1 plotted the log of the objective value in (7) minus the optimal point versus the number of
iterations. We added 10~ to avoid taking logarithm of zero at the optimal point. For comparison, we
used a subgradient method rather than the majorization-minimization method to get the solution of (9).
We included a line for the subgradient method in the figure. The same convergence criterion and starting
value were used for Algorithm 1 and the subgradient method. Figure 1 shows that Algorithm 1 takes
less iterations to converge. The subgradient method is not a descent method, as the objective value is not
monotonically decreasing. On the other hand, the objective value strictly decreases with Algorithm 1,
which confirms Theorem 1.

log(objective value - optimal point + 1073)

0 5 10 15 20

Number of iterations

Fig. 1. Comparison of convergence for Algorithm 1 (solid) and the subgradient
method (dashed).

C. SIMULATIONS

In this section, we investigate the performance of the sparse envelope estimator under three cases: the
first has u < r < p < n, the second varies the signal level o x, and the third has different values of u, i.e.,
the dimension of the envelope subspace.

In the first case with u <7 <p <n, we set n =250, r =100, v =2 and ¢ = 5. The matrix
(T4,T40) was obtained by orthogonalizing a ¢ by ¢ matrix of independent uniform (0, 1) variates.
Then we used the structure in (5) to construct I and I'y. The elements in 1 were taken to be indepen-
dent normal variates with mean 0 and variance 0-16. The error covariance matrix X followed the structure
Y =TT + TxQeI'L, where Q = I,, and Qg was a block diagonal matrix with the upper left block be-
ing 91,_, and lower right block being 41, _,. The predictors X were normally distributed with mean 0
and covariance matrix Xy = 0% I,, where 0% =0-4. We varied p from 100 to 180. For each value of
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p, 200 replications were generated. The selection performance is summarized in Table 1. The standard
deviation of a randomly chosen element in (3 is displayed in Fig. 2. When r < p < n, the sparse envelope
model still gives substantial efficient gains compared to the standard model.

Table 1. Average true positive rate (%), true negative rate (%) and accuracy (%) of sparse
envelope estimator, hard thresholding estimator and F' test

sparse envelope hard thresholding F' test
p TPR. TNR. Accu. TPR. TN.R. Accu. TPR. TN.R. Accu
100 98-8 99-7 850 904 99-8 660 598 999 0-0
120 98-6 99-6  81-0 904 997 640 606 999 1-0
140 980 99-3 780 86-4 99-0 360 586 100-0 0-0
160 928 986 67-0 792 985 230 552 1000 1-0
180 822 98-1 490 404 99-3 20 492 100-0 0-0

0.6

0.5 —

0.4

0.3 —

Standard deviation

0.2 —

0.1 —

0.0 T T T T T
100 120 140 160 180

Fig. 2. Comparison of the standard deviations for sparse envelope estimator
(solid) and standard estimator (dashed).

In the second simulation, we varied the signal level ox and investigated the selection performance
and efficiency gains of the sparse envelope estimator. In the simulation that generated Table 1, we fixed
p = 160 and varied ox from 0-05 to 0-6. The selection performance is summarized in Table 2, and the
standard deviation of a randomly chosen element in 3 is displayed in Fig. 3. We notice that the sparse
envelope model is more advantageous when the signal is weak. When the signal is stronger, both the
sparse envelope estimator and the standard estimator improve. But for all signal levels, the sparse envelope
estimator is more efficient than the standard estimator.

In the third case, we set r = 100, ¢ = 24, p = 50, n = 200 and varied u« from 2 to 20. The matrix
(T4, T 4,0) was obtained by orthogonalizinga ¢ x ¢ matrix of independent standard normal variates. Then
we used the structure in (5) to construct I' and I'g. The elements in 77 were independent normal variates
with mean 0 and variance 0-25, and the error covariance matrix had the structure ¥ = I'QI'T + FOQOFOT
with Q = [, and Q¢ = 251,._,,. The predictors X were generated from a multivariate normal distribution
with mean 0 and covariance matrix I),. The selection performance under different « is summarized in
Table 3, and the standard deviation of a randomly chosen element in § is displayed in Fig. 4. We notice
that when u is small, there is a bigger immaterial part and therefore we expect a more substantial efficiency
gain by using the sparse envelope estimator.

305
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Table 2. Average true positive rate (%), true negative rate (%) and accuracy (%) of sparse
envelope estimator, hard thresholding estimator and I test

sparse envelope hard thresholding F' test
a§< TPR. TN.R. Accu. TPR. TNR. Accu. TPR. TN.R. Accu
0-05 546 96-1 0-0 258 98-7 0-0 2.2 100-0 0-0
0-1 70-6 96-2 100 464 98-1 5-0 17.6 ~ 100-0 0-0
0-2 852 977 390 656 98-1 14.0 302 100-0 0-0
03 87-8 979  48.0 726 98-1 20-0  44-8 100-0 0-0
0-4 92-8 98-6 67-0 794 985 23.0 552 1000 1-0
0-5 982 99-8 93.0 8§98 995 540 61.8 100-0 1-0
0-6 1000 100-0 100-0  98-0 999 880 650 100-0 3.0

0.8 —

0.6 —

Standard deviation

0.4 —

0.2 —

0.0 T T T T T T T
0.05 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 3. Comparison of the standard deviations for sparse envelope estimator
(solid) and standard estimator (dashed).

Table 3. Average true positive rate (%), true negative rate (%) and accuracy (%) of sparse
envelope estimator, hard thresholding estimator and I test

sparse envelope hard thresholding F' test
u T.PR. TN.R. Accu. TPR. TN.R. Accu. TPR. TN.R. Accu.
2 358 999 0-0 208 100-0 0-0 4-1  100-0 0-0
5 726 999 0-0 547 100-0 0-0 205 999 0-0
10 959 1000 275 882  100-0 0-0 651 99-7 0-0
15 99.9 1000 988 983 1000 588 94.-8 99.7 212
20 1000 1000 100-0 100-0 100-0 100-0 999 99-7 715

D. THE SMALLEST LAMBDA THAT YIELDS THE NULL MODEL

325 We define \* as the smallest A value such that all the elements in A are zero. By the Karush—Kuhn—
Tucker conditions of the optimization problem (8),

d ~ a;

L(a;|A_; + Aw; - NZ =0, a; 0,

da; (aild—) ai=a; llaill2 #
d ~ ~

L(ai|lA-;) < Aw;, a; =0,

dai a; =a; 2
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0.4 —

034 e

Standard deviation

0.0 T T T

Fig. 4. Comparison of the standard deviations for sparse envelope estimator
(solid) and standard estimator (dashed).

fori =1,...,r — u. Then we can find that

N d

N = i:lr,I.l.%,)f—u d_CLl-L(ai|A_i =0) wcol), Jw;,  w; # 0.
If M is an r X r symmetric matrix and U is a set such that U = {1,...,u}, let My y denote the up-
per left block of M that has dimension u X u, My +; denote the u x 1 vector that includes the first u
elements of the (u + ¢)th column, and M 1iv = Myyiuti — [T,uHM,}lUMUUH Then after some
straightforward calculations,
d a a a_ o
EL(ailA—i = 0) R = 2(Er‘eS)u-l-i,u-H’/(ElreS)quilU + Q(Eyl)u+i,u+i/(zyl)u+ilU —4.

Therefore we have

A= max
i=1,...,r—u

2(Eres)u-l-i,u-l—i/(Eres)u+i|U + 2(E;l)u+i,u+i/(z;f1)u+i\U - 4H2 /wi? W; 7é 0.

E. COMPARISON OF AKAIKE INFORMATION CRITERION, BAYESIAN INFORMATION CRITERION
AND LIKELIHOOD RATIO TESTING ON SELECTION OF u

The simulation settings are the same as those used in Fig. 1. We used the Akaike information criterion,
Bayesian information criterion and likelihood ratio testing with significance level a = 0.01 to select u.
For each sample size, 500 replications were generated. Results are summarised in Fig. 5. The selection
performances for all three criteria are quite close, with Bayesian information criterion slightly better for
larger sample sizes. This is because as n tends to infinity, Bayesian information criterion selects the true
dimension with probability approaching 1 while likelihood ratio testing selects the true dimension at the
nominal level 1 — «.. Akaike information criterion tends to select a larger dimension, because asymptot-
ically Akaike information criterion has positive probability in selecting a model that contains the true
model. A similar pattern is also observed in Su & Cook (2013) when comparing these three criteria. Since
Bayesian information criterion is quite stable with all sample sizes, we use it to select u for the data
analysis in Section 3-2.
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Fig. 5. Comparison of Akaike information criterion (dashed), Bayesian information

criterion (solid) and likelihood ratio testing (dotted) on selection of w. The horizontal

axis displays the sample size, and the vertical displays the fraction of the times that the
estimated w is equal to 2.

F. CONVERGENCE OF THE SPARSE ENVELOPE ESTIMATOR 3 IN HIGH DIMENSIONAL SCENARIO

The simulation settings used in Figure 6 are the same as those used in Table 2 of the paper. Because
Theorem 5 indicates ||B— Bllr = Op[{(rs + 8) logr, /n}/?], we plotted the average of [n/{(r, +
s)logr, Y2 B-8 ||F over 200 replications versus n. The bootstrap estimator of || B-B |7 is com-
puted based on the average of 200 bootstrap samples With each bootstrap sample, we obtalned the sparse
envelope estimator ﬁbooc and computed || ﬁbooc [3 |7 Flgure 6 indicates that || ﬂboot [3 |7 is a good

approximation to || — || . Figure 6 also shows that || 3 — 3]| is much smaller than || 315 — ]| . This
is a result of the efficiency gains from the envelope construction.

G. NOTATION TABLE

The notations in this table includes all the notation in the main text as well as those in the Supplementary
material.
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Fig. 6. Comparison of sparse envelope estimator (solid), bootstrap estimator (solid with
asterisks) and standard estimator (dashed).
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A=T,I!

the submatrix of A with row a; removed

the sub matrix of G 4 with row a; removed

G = (Iu’AT)T e Rrxu

loss function in the optimization of A

L(A) = ~210g |GG a| +10g| G SresGa| + log | G555 Gl
majorization function in the optimization of a;

predictors

responses

active response, i.e., the responses having non-zero rows in I'
inactive response, i.e., the responses having zero rows in I'
dynamic response, i.e., the responses having non-zero rows in
static response, i.e., the responses having zero rows in 3

the transpose of the ith row in A

number of dynamic responses

sample size

number of predictors

number of active responses

number of responses, when 7 increases with n, r is written as r,
number of active responses

number of inactive responses

number of dynamic responses

number of static responses

nonzero elements in the lower triangle (not including the diagonal elements) of >
nonzero elements in the lower triangle (not including the diagonal elements) of Z{,l

max{si, s2}

dimension of the envelope Ex(B)
intercept

regression coefficients
Ba=Tun

the nonzero coefficients in 3
sparse envelope estimator of 3
sparse envelope estimator of 54
active envelope estimator of 54
oracle envelope estimator of 54
ordinary least squares estimator of 5
span of 3

the envelope subspace
coordinates of 5 with respect to I'

r x u Grassmann manifold, i.e., the set of all u-dimensional subspaces in an r-dimensional space

largest eigenvalue of a matrix

smallest eigenvalue of a matrix

orthogonal basis of the envelope Ex;(B)

the non-zero rows in I

completion of I" 4

orthogonal basis of the orthogonal complement of Eyx;(B)

orthogonal basis of the orthogonal complement of Ex;(5) with a block diagonal structure

the first w rows in I
the last »r — w rows in I
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sparse envelope estimator of I’

sparse envelope estimator of I" 4
active envelope estimator of I 4
oracle envelope estimator of I' 4

tuning parameter in the optimization of a;, A; can be written as A; = A\w;, where ) is the
common tuning parameter and w;’s are the weights. In this paper, w; = 1/||a;%.

max(Ay, ..., A\j_y) at sample size n

min(Ag—y+1, .., Ar—y) at sample size n

coordinates of ¥ with respect to I

coordinates of ¥ with respect to I'y

coordinates of ¥ with respect to T

upper left block of €2, which has dimension (¢ — u) x (¢ — u)
upper right block of €y, which has dimension (¢ — u) x (r — q)
lower right block of 2, which has dimension (r — ¢) X (1 — q)
lower left block of £, which has dimension (r — ¢) x (g — )
Q0.4 — Q0,472 174

mean of the predictors X

variance of the error vector €

variance of the predictors X

variance of the responses Y

sample covariance matrix of X

sample covariance matrix of Y’

sparse permutation invariant covariance estimator of E;l
sample covariance matrix of the residuals from the regression of Y4 on X
the rows and columns in il;,l that have the same indices as Y4 in Y
sample covariance matrix of the residuals from the regression of Y on X
sparse permutation invariant covariance estimator of ¥ ;!

error vector

Kronecker product

V1 1L V5 means V7 and V5 are independent

equality in distribution

orthogonal complement

Moore—Penrose generalized inverse

spectral norm of a matrix

L5 norm of a vector

Frobenius norm of a matrix

projection matrix

I1-P

stack a matrix into a vector columnwise

stack the lower left triangle of a symmetric matrix into a vector

contraction matrix and expansion matrix: if M is an @ X a symmetric matrix,
vech(M) = Cy vec(M), vec(M) = E, vech(M)
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