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SUMMARY

The envelope model allows efficient estimation in multivariate linear regression. In this paper,
we propose the sparse envelope model, which is motivated by applications where some response
variables are invariant with respect to changes of the predictors and have zero regression coef-
ficients. The envelope estimator is consistent but not sparse, and in many situations it is impor-
tant to identify the response variables for which the regression coefficients are zero. The sparse
envelope model performs variable selection on the responses and preserves the efficiency gains
offered by the envelope model. Response variable selection arises naturally in many applications,
but has not been studied as thoroughly as predictor variable selection. In this paper, we discuss
response variable selection in both the standard multivariate linear regression and the envelope
contexts. In response variable selection, even if a response has zero coefficients, it should still be
retained to improve the estimation efficiency of the nonzero coefficients. This is different from
the practice in predictor variable selection. We establish consistency and the oracle property and
obtain the asymptotic distribution of the sparse envelope estimator.

Some key words: Canonical correlation; Dimension reduction; Envelope model; Grassmann manifold; Oracle property.

1. INTRODUCTION

1·1. Background

Throughout the paper, we consider multivariate linear regression

Y = α + β(X − μX )+ ε, (1)

where Y ∈R
r is a multivariate response vector and X ∈R

p denotes the vector of random predic-
tors with mean μX ∈R

p and covariance matrix �X ∈R
p×p. The error vector ε ∈R

r has mean
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zero and positive-definite covariance matrix � ∈R
r×r , and is independent of the predictor vector

X . The intercept α ∈R
r and regression coefficients β ∈R

r×p are unknown parameters.
The standard approach estimates each row of β separately by regressing the corresponding

element of Y on X , and relationships among the elements of Y are not used. The envelope model
(Cook et al., 2010) makes use of the stochastic relationships among the elements of Y , and identi-
fies a part of the response that is immaterial to changes in X . Excluding this immaterial part in the
estimation of β leads to gains in efficiency. Building on the development in Cook et al. (2010),
several papers have applied the idea of enveloping to more general contexts, and have proposed
new models to achieve even greater gains in efficiency; see, e.g., Su & Cook (2011), Cook & Su
(2013), and Cook & Zhang (2015). Moreover, a connection between the envelope model and par-
tial least squares that has allowed for a new understanding of the working mechanism of partial
least squares was established by Cook et al. (2013).

Compared to predictor variable selection, the literature on response variable selection is lim-
ited. Response variable selection is motivated by applications in which some response variables
do not depend on any of the predictors and have zero regression coefficients. For example, the
expression levels for some genes of the fission yeast Schizosaccharomyces pombe show little
variation in a cell cycle, while the expression levels for other genes have large variation; see
§ 3·2. Finding inactive response variables can lead to more interpretable results and also improve
estimation efficiency; see § 2·5. The standard procedure for identifying inactive responses is
to evaluate, for i = 1, . . . , r , whether Yi depends on X via the F test, adjusting for multiple
testing (see, e.g., Benjamini & Yekutieli 2001). However, since the relationship between the
response variables is not used, this procedure is not efficient, as is demonstrated in the simulations
in § 3·1.

In this paper, we develop a sparse envelope model that performs response variable selection
efficiently under the envelope model. We also discuss issues in response variable selection, espe-
cially how to use the inactive responses to improve estimation efficiency for nonzero regression
coefficients. Our theoretical discussion addresses both large-sample and high-dimensional sce-
narios. Throughout the paper, we assume that the number of predictors p is fixed and smaller
than the sample size n. If p is large, we can apply a standard approach such as the lasso to reduce
p before applying our method.

We use PA to indicate the projection matrix onto A or span(A) if A is a subspace or a matrix,
and let Q A = I − PA. The symbol∼ stands for equality in distribution. If V1 and V2 are random
variables, V1 ⊥⊥ V2 indicates that they are independent. The L2-norm of a vector v is denoted by
‖v‖2. For a matrix M , we use ‖M‖ for its spectral norm and ‖M‖F for its Frobenius norm. The
operator vec stacks a matrix into a vector columnwise. The Kronecker product for matrices A
and B is indicated by A ⊗ B. A notation table is provided in the Supplementary Material.

1·2. Envelopes

Let (�, �0) ∈R
r×r be an orthogonal matrix. Then Y can be decomposed into two parts,

P�Y and Q�Y . We assume that these satisfy the conditions (i) Q�Y | X ∼ Q�Y and
(ii) cov(P�Y, Q�Y | X)= 0. Condition (i) implies that the distribution of Q�Y does not depend
on X . So Q�Y does not carry any information about β. Condition (ii) implies that Q�Y does not
carry any information about β through its conditional correlation with P�Y . Together these con-
ditions imply that Q�Y does not carry any information about β directly or indirectly, and there-
fore Q�Y is immaterial to the regression. Thus we call P�Y and Q�Y the material part and imma-
terial part, respectively. Cook et al. (2010) showed that (i) and (ii) are equivalent to the following
conditions: (a) B⊆ span(�), where B= span(β), and (b) � =�1 +�2 = P��P� + Q��Q� .
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When (b) holds, span(�) is a reducing subspace of � (Conway, 2013, § 2.3). The �-envelope of
B, denoted by E�(B), is defined as the smallest reducing subspace of � that contains B (Cook
et al., 2010). Consequently, E�(B) decomposes � into variation related to the material and imma-
terial parts of Y : �1 = var(P�Y | X) and �2 = var(Q�Y ). We call (1) an envelope model when
conditions (a) and (b) are imposed. Because β is related only to the material variation, the decom-
position of � suggests that excluding the immaterial information makes estimation of β more
efficient. In particular, massive efficiency gains can be obtained when ‖�2‖	 ‖�1‖. Based on
(a) and (b), the coordinate form of the envelope model is

Y = α + �η(X − μX )+ ε, � =�1 +�2 = ���T + �0�0�
T
0, (2)

where β = �η, � ∈R
r×u is an orthogonal basis for E�(B), �0 is a completion of �, and u is the

dimension of E�(B). The matrix η ∈R
u×p holds the coordinates of β relative to �, and � ∈R

u×u

and �0 ∈R
(r−u)×(r−u) are positive definite. If u = r , then E�(B)=R

r , which implies that there
is no immaterial information and the envelope model reduces to the standard model.

To estimate the envelope E�(B), Cook et al. (2010) solved the manifold optimization problem

Ê�(B)= arg min
span(�)∈G(r,u)

{log |�T�̂res�| + log |�T�̂−1
Y �|} (3)

where |·| denotes determinant, G(r, u) denotes an r × u Grassmann manifold, which is the set of
all u-dimensional subspaces in an r -dimensional space. The matrix �̂Y is the sample covariance
matrix of Y and �̂res denotes the sample covariance matrix of the residuals from the regression of
Y on X . As the search of E�(B) is on G(r, u), (3) is a Grassmann manifold optimization problem.
The objective function is nonconvex. Tools for solving nonconvex optimization problems on
manifolds, especially when r is large, are quite limited. Cook et al. (2016) addressed this by
converting (3) to a non-Grassmann manifold optimization, which is faster and more reliable in
such cases. Without loss of generality, we assume that �1, the submatrix that consists of the first
u rows of �, is nonsingular. Then

� =
(

�1
�2

)
=
(

Iu

A

)
�1 ≡G A�1,

where A= �2�
−1
1 . Notice that A depends on � only through span(�): for an orthogonal matrix

O ∈R
u×u , if �∗ = �O , then �∗1 = �1O , �∗2 = �2O , and A∗ = �2O O−1�−1

1 = A. Because A is
unconstrained, (3) can be converted to the non-Grassmann optimization

Â= arg min
A∈R(r−u)×u

{−2 log |GT
AG A| + log |G A�̂resG A| + log |G A�̂−1

Y G A|}. (4)

Cook et al. (2015) developed an effective algorithm and a good starting value for solving (4).
Once we have Â, Ê�(B)= span(Ĝ A), and the envelope estimator of β is β̂env = PÊ β̂ols, where

β̂ols is the ordinary least squares estimator of β and E�(B) is abbreviated as E if it appears in
subscripts. Cook et al. (2010) showed that β̂env is asymptotically at least as efficient as β̂ols.
A more detailed review of envelope models can be found in Cook & Su (2013, § 2).
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2. SPARSE ENVELOPE MODEL

2·1. Response variable selection

In some cases, certain response variables are immaterial to X , i.e., the corresponding rows of
� consist of zeros. We call such response variables inactive. We call a response variable active
if its corresponding row in � is nonzero. Since different orthogonal bases of a subspace have
the same row-wise sparsity pattern, the active and inactive responses are invariant under col-
umn transformation of �. Because β = �η, the regression coefficients of the inactive responses
are zero. However, an active response may also have zero regression coefficients. Proposition 1
characterizes the active responses, and shows their relationship to responses that have nonzero
regression coefficients.

In preparation, we use the covariance graph model (Cox & Wermuth, 1993) to represent the
structure of �. The covariance graph model was recently used in Chen et al. (2012) to construct
a graph-guided fused lasso penalty for predictor variable selection. Let G = (V, E) be an undi-
rected graph with vertices V = {1, . . . , r} and an edge set E consisting of all pairs (i, j) for which
the (i, j)th element in � is nonzero. The response variables Yi and Y j are said to be connected
if there is a sequence of edges in the graph connecting vertices i and j .

PROPOSITION 1. If the regression coefficients of an active response are all zero, then the
response must be connected with a response that has nonzero regression coefficients.

Proposition 1 indicates that if an active response has zero regression coefficients, it still offers
information in estimating the nonzero regression coefficients. This is a new feature of response
variable selection. In predictor variable selection, if a predictor has zero regression coefficients,
it offers no information in estimating any nonzero regression coefficients. More discussion on
Proposition 1 is in the Supplementary Material.

In this paper, we are not trying to identify the responses that have zero regression coefficients
and those that have nonzero regression coefficients; rather we are interested in identifying the
active and inactive responses, i.e., whether or not a response contributes to the material part.

2·2. Formulation

We use YA and YI to denote the active and inactive responses. The subscripts A and I are
used if a quantity is associated with the active or inactive responses. Without loss of generality,
let Y = (Y T

A, Y T
I )T, and let q denote the dimension of YA (q � r ). Thus YA ∈R

q and YI ∈R
r−q .

Then � and �0 should have the structure.

� =
(

�A
0

)
, �0 =

(
�A,0 0

0 Ir−q

)
R ≡ �̃0 R, (5)

where �A ∈R
q×u is a semi-orthogonal matrix, �A,0 ∈R

q×(q−u) is its completion, and R ∈
R

(r−u)×(r−u) is an orthogonal matrix. Since �TY = �T
AYA, the inactive responses do not appear

in the material part. Because β = �η, we have β = (βT
A, 0)T, where βA = �Aη ∈R

q×p and the
zero matrix has dimension (r − q)× p. The completion of � has the general form �0 = �̃0 R,
where �̃0 ∈R

r×(r−u) is a completion with a block-diagonal structure, and R represents a rotation
of the orthogonal basis. Because �̃0 ∈R

r×(r−u) has a simple block-diagonal structure, it will be
convenient to use it in some of our later development. From the structure of �̃0, it is easy to
see that the immaterial part �̃T

0Y = ((�T
A,0YA)T, Y T

I )T has two parts, one from the immaterial
information of the active responses �T

A,0YA, and the other from the inactive responses YI .
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Sparse envelope model 583

We call (2) the sparse envelope model if � and �0 have the structures given by (5). We require
u � q because the dimension of �T

AYA should be at most the dimension of YA. When u = q,
there is no immaterial information in the active responses, and �A = Iq . Therefore, up to an
orthogonal transformation, �TY = YA and �T

0Y = YI , and � has a block-diagonal structure. If
q = r , there are no inactive responses and all rows in � are nonzero. The sparse envelope model
is then equivalent to the envelope model.

2·3. Response variable selection via penalized likelihood

Since � =G A�1, a row in � is zero if and only if the corresponding row in A is zero. To
induce row-wise sparsity in A, we add a group lasso penalty (Yuan & Lin, 2006) to (4), so that
the optimization problem becomes

Â= arg min
A∈R(r−u)×u

{
−2 log |GT

AG A| + log |GT
A�̂resG A| + log |GT

A�̂−1
Y G A| +

r−u∑
i=1

λi‖ai‖2
}

, (6)

where aT
i denotes the i th row of A and the λi are tuning parameters.

We choose this penalty function for the following reasons. First, it treats each row of � as a
group, so the sparsity is row-wise instead of element-wise. This fits the response variable selec-
tion context: ‖ai‖2 = 0 means the (i + u)th row of � is zero, so the (i + u)th response is inac-
tive. Second, it is invariant under a change of basis. Since A depends on � only through its span,∑r−u

i=1 λi‖ai‖2 is unchanged if a different orthogonal basis of E�(B) is used. Third, the estimator
(6) has the desirable features of

√
n-consistency, asymptotic normality and selection consistency,

and has an optimal estimation rate; see § 2·5. Finally, its numerical performance is substantially
better than the performance of some alternatives, in particular the method that involves applying
F tests to each row of β̂ols, or hard-thresholding the envelope estimator; see § 3·1.

When r tends to infinity with n, we denote r by rn . If rn > n, both �̂Y and �̂res are singular,
which is problematic because the objective function in (6) depends on �̂−1

Y and the optimization
algorithm used to solve (6) requires �̂−1

res ; see § 2·4. We can resolve these issues by obtaining
estimators for �−1

Y and �−1 directly using methods like sparse permutation invariant covariance
estimation (Rothman et al., 2008), lasso penalized D-trace estimation (Zhang & Zou, 2014), or
convex pseudolikelihood-based partial correlation graph estimation (Khare et al., 2015). Among
these methods, sparse permutation invariant covariance estimation is the only one that does not
require a sparsity structure for the target parameter in order to establish the consistency of its
estimator. Cook et al. (2012) used this method to estimate a target parameter which is not nec-
essarily sparse, and their numerical experiments showed that the estimator is very stable. In the
sparse envelope model, �−1

Y and �−1 may not contain zero elements. We then use sparse per-
mutation invariant covariance estimators of �−1

Y and �−1, and denote them by �̂−1
Y,sp and �̂−1

res,sp.

Then �̂Y,sp and �̂res,sp are obtained by taking the inverses of �̂−1
Y,sp and �̂−1

res,sp. Replacing �̂res

and �̂−1
Y by �̂res,sp and �̂−1

Y,sp in (6), the optimization problem is

Â= arg min
A∈R(rn−u)×u

{
−2 log |GT

AG A| + log |GT
A�̂res,spG A| + log |GT

A�̂−1
Y,spG A| +

rn−u∑
i=1

λi‖ai‖2
}

.

(7)

Optimization of (6) and (7) is discussed in § 2·4. After we have Â, an orthogonal basis of
span(Ĝ A) is used to form �̂, and �̂0 is taken as a completion of �̂. The sparse envelope estimators

 at M
cG

ill U
niversity L

ibraries on Septem
ber 3, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


584 Z. SU, G. ZHU, X. CHEN AND Y. YANG

of β and � are

β̂ = P
�̂
β̂ols, �̂ = P

�̂
�̂res P

�̂
+ Q

�̂
�̂Y Q

�̂
.

The estimators for the constituent parameters are η̂= �̂Tβ̂ols, �̂= �̂T�̂res�̂ and �̂0 = �̂T
0�̂Y �̂0.

The sparse envelope estimators have the same form as the envelope estimators, except that �̂ and
�̂0 have the special structures specified in (5).

2·4. Algorithm

We first discuss the algorithm for solving (6). Since selection of r − u tuning parameters can
be computationally intensive, we use the idea of the adaptive lasso (Zou, 2006) and set λi = λωi ,
where the ωi are adaptive weights. Then the optimization becomes

Â= arg min
A∈R(r−u)×u

{
−2 log |GT

AG A| + log |GT
A�̂resG A| + log |GT

A�̂−1
Y G A| + λ

r−u∑
i=1

ωi‖ai‖2
}

.

(8)

The optimization problem in (8) is nonconvex and the objective function is nondifferentiable
due to the group lasso penalty. Blockwise coordinate descent algorithms have been very suc-
cessful in solving a wide class of group lasso penalized high-dimensional learning problems
(Friedman et al., 2008; Simon et al., 2013; Yang & Zou, 2015). Cook et al. (2015) used a
blockwise coordinate descent algorithm to optimize the envelope objective function (4), and the
method worked well. Here we develop a fast blockwise coordinate descent algorithm for effi-
ciently solving (8). Our algorithm cyclically updates each row of A, such that after each operation
the objective function (8) strictly decreases. Let A−i ∈R

(r−u−1)×u be the submatrix of A with
row aT

i removed. Without loss of generality, we consider the case where aT
i is the last row of A.

Form the partitions

G A =
(

Iu

A

)
=
(

G
aT

i

)
, �̂res =

(
U11 U12
U21 U22

)
, �̂−1

Y =
(

V11 V12
V21 V22

)
.

Let L(A)=−2 log |GT
AG A| + log |GT

A�̂resG A| + log |GT
A�̂−1

Y G A|. We can write L(A) in terms
of ai up to a constant while holding all the other rows of A at their current value Ã−i : we have

L(ai | Ã−i )=−2 log(1+ aT
i B1ai )+ log{1+ (ai + v2)

T B2(ai + v2)}
+ log{1+ (ai + v3)

T B3(ai + v3)} + const, (9)

where v2 =U−1
22 GTU12, v3 = V−1

22 GTV12, B1 = (Iu + AT
−i A−i )

−1, B2 =U22(GTU11G −
U−1

22 GTU12U21G)−1 and B3 = V22(GTV11G − V−1
22 GTV12V21G)−1. Within the blockwise

coordinate descent loops, we need to solve the optimization problem

âi = arg min
ai

L(ai | Ã−i )+ λωi‖ai‖2. (10)

Unfortunately, there is no closed-form solution to (10), so we apply the majorization-
minimization principle (Wu & Lange, 2010; Lange et al., 2000; Hunter & Lange, 2004; Zhou
& Lange, 2010) within the blockwise coordinate descent loop by iteratively minimizing a func-
tion that majorizes the objective function in (9). The majorization function Q(ai ) is equal to
L(ai | Ã−i ) at the current value ãi and lies strictly above L(ai | Ã−i ) when ai |= ãi . Specifically,
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Sparse envelope model 585

the majorization function Q(ai ) has the form

Q(ai )= L(ãi | Ã−i )+ (ai − ãi )
T dL(ai | Ã−i )

dai

∣∣∣∣∣
ai=ãi

+ 0·5δi (ai − ãi )
T(ai − ãi ),

where

dL(ai | Ã−i )

dai

∣∣∣∣∣
ai=ãi

= −4B1ãi

1+ ãT
i B1ãi

+ 2B2(ãi + v2)

1+ (ãi + v2)T B2(ãi + v2)
+ 2B3(ãi + v3)

1+ (ãi + v3)T B3(ãi + v3)
,

δi = (1+ ε∗){4γmax(B1)+ 2γmax(B2)+ 2γmax(B3)}, and γmax(·) denotes the largest eigenvalue
of the corresponding matrix. We must have ε∗ > 0 such that Q(ai ) > L(ai | Ã−i ) holds for any
ai |= ãi . In this article we set ε∗ = 10−6. Then instead of minimizing (10) we solve

min
ai
{Q(ai )+ λωi‖ai‖2}. (11)

The solution to (11) has a simple closed-form expression. Algorithm 1 summarizes our blockwise
coordinate descent algorithm. It takes O(u3 + ru) flops to compute δi , and each update of ãi to
ãi,new takes O(u2) flops. The starting value can be taken as the envelope estimator of A, which
is the minimizer of (4).

Algorithm 1. The blockwise coordinate descent algorithm for solving (8).

Initialize Ã
Repeat until convergence of Ã

For i = 1 to i = r − u
δi← (1+ ε∗){4γmax(B1)+ 2γmax(B2)+ 2γmax(B3)}
Repeat until convergence of ãi

ãi,new← 1

δi

{
δi ãi − dL(ai | Ã−i )

dai

∣∣∣
ai=ãi

}⎧⎪⎪⎨
⎪⎪⎩1− λωi∥∥δi ãi−

dL(ai | Ã−i )

dai

∣∣
ai=ãi

∥∥
2

⎫⎪⎪⎬
⎪⎪⎭
+

ãi← ãi,new

Output Ã

Theorem 1 shows that Algorithm 1 has a descent property and the updates converge to a sta-
tionary point of the objective function in (8); see the Supplementary Material.

THEOREM 1. After updating ãi , if ãi,new |= ãi , the objective function in (10) strictly decreases
after updating the block:

L(ãi,new | Ã−i )+ λωi‖ãi,new‖2 < L(ãi )+ λωi‖ãi‖2.
If the solution stays unchanged after each blockwise coordinate update, i.e., ãi,new = ãi for
all i , then this solution satisfies the Karush–Kuhn–Tucker conditions, and this indicates that
the algorithm has converged to a stationary point.
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We solve the adaptive group lasso problem (8) by applying Algorithm 1 in a two-stage pro-
cedure. In the first stage, we set all ωi to 1 in Algorithm 1 and obtain the group lasso esti-
mator Âstage1. In the second stage, we set weights ωi = ‖âi,stage1‖ν2 and obtain the weighted
group lasso estimator Â. If ‖âi,stage1‖ = 0, we exclude ai in the second stage and set âi = 0.
The parameter ν can be selected by crossvalidation. Based on the discussion in Zou (2006),
it is sufficient to choose ν from a small candidate set like {0·5, 1, 2, 4}. To choose the tuning
parameter λ, we use the Bayesian information criterion. For a fixed λ, the criterion is defined
as −2lλ + (qλ − u)u log n, where lλ is the loglikelihood given λ and qλ is the number of active
responses given λ. We choose the λ that minimizes the criterion. This criterion is used in Chen
et al. (2010) and its consistency is proved in Zou & Chen (2012). We use the warm-start trick
of Friedman et al. (2010) to compute the solution paths along a sequence of K values of λ, with
log λ equally spaced between log λmax and log λmin. The solution Â(λk) computed at λk is used as
the initial value for computing the solution for λk+1 in Algorithm 1. An expression for the small-
est λ that yields the null model is given in the Supplementary Material. Since the sparse envelope
estimator is asymptotically equivalent to the maximum likelihood estimator of the oracle enve-
lope model, see § 2·5, we can use likelihood-based procedures such as the Akaike information
criterion, the Bayesian information criterion or likelihood ratio testing to select u. We compare
the performance of these procedures in the Supplementary Material.

Solving (7) follows the same procedure as solving (6). For choosing λ and u we prefer cross-
validation over the Bayesian information criterion and other likelihood-based procedures because
these require the sample size to be at least moderately large in order to give good performance.

2·5. Theoretical properties of the sparse envelope estimator

Theorems 2–4 give results regarding consistency and oracle properties of the sparse envelope
estimator in the large-sample case, i.e., when r is fixed and n tends to infinity. Theorems 5 and 6
address selection consistency and the convergence rate when both rn and n tend to infinity.

If S is a subspace and Ŝ is an estimator of S, we say that Ŝ is a
√

n-consistent estimator
of S if PŜ is a

√
n-consistent estimator of PS . Let λmax,n =max(λ1, . . . , λq−u) and λmin,n =

min(λq−u+1, . . . , λr−u) at sample size n.

THEOREM 2. Assume that the sparse envelope model (2) and (5) holds, the errors ε are inde-
pendent and have finite fourth moment, and n1/2λmax,n→ 0 as n tends to infinity. Then there
exists a local minimizer Â of (6), such that P

�̂
is a
√

n-consistent estimator of P� and β̂ is a√
n-consistent estimator of β.

Theorem 2 implies that although the objective function for the sparse envelope estimator is
based on a normal likelihood, normality is not required to establish

√
n-consistency of Ê�(B) and

β̂. Theorem 3 concerns selection consistency and states that the sparse envelope model identifies
the inactive responses with probability tending to 1.

THEOREM 3. Assume that the conditions in Theorem 2 hold, and that n1/2λmin,n→∞. Then
pr(âi = 0)→ 1 for i = q − u + 1, . . . , r − u.

An oracle estimator must consistently select the active responses and estimate them with an
optimal rate. While the oracle property is well studied in predictor variable selection (Fan & Li,
2001; Zou, 2006), it has not been studied in response variable selection. Therefore we first discuss
how to define the oracle model for response variable selection under the standard model (1) and
then define the oracle envelope model.
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Because the definitions of active and inactive responses rely on the envelope construction, we
introduce some new definitions for the standard model. Under the standard model (1), we call a
response variable dynamic if its regression coefficients are not zero. We call a response variable
static if its regression coefficients are zero. Let d denote the number of dynamic responses, and
let YD ∈R

d and YS ∈R
r−d denote the dynamic and static responses. The subscript D or S is

attached to a quantity if it is associated with the dynamic or static responses. Without loss of
generality, let Y = (Y T

D, Y T
S )T. Then β ∈R

r×p has the structure β = (βT
D, 0)T, where βD ∈R

d×p

contains the regression coefficients for the dynamic responses. The oracle model is defined by(
YD

YS

)
= α +

(
βD

0

)
(X − μX )+ ε, var(ε)=� =

(
�D �DS

�T
DS �S

)
, (12)

where α ∈R
r , βD ∈R

d×p with d now known, and the partition of � corresponds to the allocation
of YD and YS . The oracle model includes the static responses YS . This is in contrast to the oracle
model for predictor variable selection, where predictors which are inactive are not included in
the model. Since YS may be correlated with YD , including this information can improve the
efficiency in estimating βD . Excluding YS leads to the model

YD = αD + βD(X − μX )+ εD, (13)

where αD and εD are the first d elements of α and ε in (12). We call (13) the dynamic model
because it includes only the dynamic responses. It is tempting to view (13) rather than (12) as the
target model for oracle estimation, but we do not do so because (13) ignores information available
from YS which may be used to devise a more efficient estimator in the current context. To compare
models (13) and (12), we assume normality of the error distributions in Propositions 2 and 3 in
order to get an explicit form for the asymptotic variance. Let β̂D,ols and β̂S,ols be the ordinary
least squares estimators of the coefficients from the regression of YD on X and the regression of
YS on X respectively, and let RD and RS be the residuals from the regression of YD on X and the
regression of YS on X respectively. Define �D|S =�D −�DS�

−1
S �SD .

PROPOSITION 2. Assume that the oracle model (12) holds and that the errors are normally
distributed. The maximum likelihood estimator of βD under the oracle model is β̂D,1 = β̂D,ols −
β̂D|Sβ̂S,ols, where β̂D|S is the ordinary least squares estimator of the coefficients from the regres-
sion of RD on RS; and as n→∞,

√
n{vec(β̂D,1)− vec(βD)} is asymptotically normally dis-

tributed with mean zero and covariance matrix V1 =�−1
X ⊗�D|S.

PROPOSITION 3. Under the conditions in Proposition 2, the maximum likelihood estimator of
βD under the dynamic model (13) is β̂D,2 = β̂D,ols; and as n→∞,

√
n{vec(β̂D,2)− vec(βD)}

is asymptotically normally distributed with mean zero and covariance matrix V2 =�−1
X ⊗�D.

COROLLARY 1. Under the conditions in Proposition 2,

V2 − V1 =�−1
X ⊗�

1/2
D ρ�

1/2
D ,

where ρ =�
−1/2
D �DS�

−1
S �SD�

−1/2
D . The eigenvalues of ρ are the squared canonical correla-

tions between YD and YS.

Corollary 1 quantifies the efficiency gains obtained by including YS . The result states that
the stronger the correlation between YD and YS , the greater the variance reduction obtained by
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including YS . When YD and YS are uncorrelated, β̂D,1 and β̂D,2 have the same asymptotic vari-
ance. In that case, we can ignore YS , since it does not carry information on βD through YD .

Under the envelope model, the inactive response contains information on βA through its
covariance with the active response. We then define the oracle envelope model as(

YA
YI

)
= α + �η(X − μX )+ ε, � = ���T + �0�0�

T
0, � =

(
�A
0

)
. (14)

The oracle envelope model (14) appears similar to the sparse envelope model (2) and (5), but
in (14) we know q and which rows in � consist of only zeros. We attach a subscript O if an
estimator is the oracle envelope estimator. Let �̂YA|X ∈R

q×q be the sample covariance matrix
of the residuals from the regression of YA on X , and let (�̂−1

Y )A ∈R
q×q be the q × q upper left

block of �̂−1
Y . Let �̃0 = �̃T

0��̃0. Based on the structure of �̃0, we partition �̃0 into

�̃0 =
(

�̃0,A �̃0,AI
�̃T

0,AI �̃0,I

)
, �̃0,A ∈R

(q−u)×(q−u), �̃0,I ∈R
(r−q)×(r−q).

Let �̃0,A|I = �̃0,A − �̃0,AI�̃−1
0,I�̃0,IA. Proposition 4 gives the maximum likelihood estimator

β̂A,O and its asymptotic distribution.

PROPOSITION 4. Assume that the oracle envelope model (14) holds and the errors are nor-
mally distributed. Then the maximum likelihood estimator of βA under the oracle model is
β̂A,O = P

�̂A,O
β̂A,ols, where

span(�̂A,O)= arg min
span(G)∈G(q,u)

log |GT�̂YA|X G| + log |GT(�̂−1
Y )AG|.

Additionally, as n→∞,
√

n{vec(β̂A,O)− vec(βA)} is asymptotically normally distributed with
mean zero and covariance matrix VO =�−1

X ⊗ �A��T
A + (ηT ⊗ �A,0)T−1(η ⊗ �T

A,0), where

T = η�XηT ⊗ �̃−1
0,A|I +�⊗ �̃−1

0,A|I +�−1 ⊗ �̃0,A − 2Iu ⊗ Iq−u.

From Proposition 4, we see that YI appears in the objective function for span(�̂A,O), and
therefore affects β̂A,O . We now define the active envelope model, which contains only the active
responses:

YA = αA + �Aη(X − μX )+ εA, �A = �A��T
A + �A,0�̃0,A�T

A,0. (15)

PROPOSITION 5. Assume that the conditions in Proposition 4 hold. Then the maximum likeli-
hood estimator of βA under the active envelope model is β̂A,2 = P

�̂A,2
β̂A,ols, where

span(�̂A,2)= arg min
span(G)∈G(q,u)

log |GT�̂YA|X G| + log |GT�̂−1
YAG|.

Additionally, as n→∞,
√

n{vec(β̂A,2)− vec(βA)} is asymptotically normally distributed with
mean zero and covariance matrix V3 =�−1

X ⊗ �A��T
A + (ηT ⊗ �A,0)T−1

2 (η ⊗ �T
A,0), where

T2 = η�XηT ⊗ �̃−1
0,A +�⊗ �̃−1

0,A +�−1 ⊗ �̃0,A − 2Iu ⊗ Iq−u.

 at M
cG

ill U
niversity L

ibraries on Septem
ber 3, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


Sparse envelope model 589

Comparing VO and V3, we see that because �̃−1
0,A|I � �̃−1

0,A, T−1
2 � T−1, the oracle envelope

model (14) is more efficient than the active envelope model (15) in estimating βA. Therefore in
the envelope context, including YI also improves efficiency.

We now return to the discussion of the theoretical properties of the sparse envelope estimator.

THEOREM 4. Assume that the conditions in Theorem 3 hold. Then as n→∞,
√

n{vec(β̂A)−
vec(βA)} is asymptotically normally distributed with mean zero and asymptotic variance equal
to that of β̂A,O. If we further assume that the errors are normally distributed, then the asymptotic
variance V is given in closed form as V =�−1

X ⊗ �A��T
A + (ηT ⊗ �A,0)T−1(η ⊗ �T

A,0), where

T = η�XηT ⊗ �̃−1
0,A|I +�⊗ �̃−1

0,A|I +�−1 ⊗ �̃0,A − 2Iu ⊗ Iq−u.

Theorem 4 indicates that the sparse envelope estimator is asymptotically normal, and has the
asymptotic distribution we would have if we knew in advance which responses are active and
which are inactive. The optimal estimation rate asserted in Theorem 4 combined with selection
consistency shows that the sparse envelope estimator has the oracle property: the sparse envelope
model selects the inactive responses with probability tending to unity and estimates the coeffi-
cients for the active responses as efficiently as does the oracle envelope model.

Now we discuss the convergence rate and selection consistency of the sparse envelope estima-
tor when rn tends to infinity with n. We first make a few assumptions about the true model.

Assumption 1. There exist positive constants k̄ and k such that γmax(�) � k̄ and γmin(�) � k,
where γmax(�) and γmin(�) are the largest and smallest eigenvalues of �.

Assumption 2. The samples of ε are independent and identically sampled from a sub-
Gaussian distribution, i.e., E{exp(tT

1ε)}� exp(c1tT
1�t1) for some constant c1 > 0 and every

t1 ∈R
rn . Samples of X are independent and identically distributed, and X − μX follows a sub-

Gaussian distribution, i.e., E[exp{tT
2 (X − μX )}] � exp(c2tT

2�X t2) for some constant c2 > 0 and
every t2 ∈R

p.

Let s1 and s2 denote the number of nonzero elements in the lower triangular parts, not including
the diagonal elements, of �−1 and �−1

Y respectively, and let s =max{s1, s2}.

THEOREM 5. Assume that the sparse envelope model (2) and condition (5) hold. Under
Assumptions 1 and 2, if λmax,n = o[{(rn + s) log rn/n}1/2], then as n→∞, there exists a solu-
tion Â of the optimization problem (7) such that ‖ Â − A‖F = Op[{(rn + s) log rn/n}1/2], and
the sparse envelope estimator β̂ has the property that ‖β̂ − β‖F = Op[{(rn + s) log rn/n}1/2].

Inspection of the proof of Theorem 5 reveals that the convergence rate of the sparse envelope
estimator is limited by the convergence rate of �̂−1

Y,sp and �̂−1
res,sp. If we have a different inverse

covariance matrix estimator that converges at a faster rate, then the convergence rate of the sparse
envelope estimator can be improved. Assumptions 1 and 2 are required for the consistency of
�̂−1

Y,sp and �̂−1
res,sp. We relaxed the normality assumption in Rothman et al. (2008) to the sub-

Gaussian assumption based on the work in Ravikumar et al. (2011).

THEOREM 6. Suppose the assumptions in Theorem 5 hold, {(rn + s) log rn/n}1/2→ 0 as n
tends to infinity, and {(rn + s) log rn/n}1/2 = o(λmin,n). Then pr(âi |= 0)→ 1 for i = 1, . . . , q −
u, and pr(âi = 0)→ 1 for i = q − u + 1, . . . , rn − u.
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Fig. 1. Comparison of the standard deviations for the sparse envelope estimator (solid),
active envelope estimator (dash-dotted), oracle envelope estimator (dashed) and stan-
dard estimator (dotted). The horizontal lines mark the asymptotic standard deviation
of the corresponding estimators. The solid line with asterisks marks the bootstrap stan-

dard deviations.

Theorem 6 establishes selection consistency of the sparse envelope estimator. When rn tends
to infinity with n, the sparse envelope estimator still identifies active and inactive responses with
probability tending to unity.

3. SIMULATIONS AND DATA ANALYSIS

3·1. Simulations

We report the results of two simulation studies, one in the large-sample setting and one in
the high-dimensional setting. In the first, we fixed p= 2, r = 10, q = 4 and u = 2. The matrix
(�A, �A,0) was obtained by orthogonalizing a q × q matrix of independent uniform (0, 1) vari-
ates. Then we added 0 and 1 following the structure in (5) to get � and �0. We took �= 9Iu ,
and the eigenvalues of �0 varied from 0·67 to 28·33. The canonical correlation between �T

0YA
and YI was 0·9. The elements in X and η were generated from independent N (0, 4) ran-
dom variables. We varied the sample size from 25 to 1000, and generated 200 replications
for each sample size. For each replication, we fit the standard model (1), the sparse envelope
models (2) and (5), the oracle envelope model (14) and the active envelope model (15), and
obtained their estimators of β. The estimation standard deviation for each element in β was
calculated from the 200 estimators. For each sample size, the bootstrap standard deviation was
obtained by computing the standard deviations from 200 bootstrap samples. The results for a
randomly chosen element in β are plotted in Fig. 1. For better visibility, only the asymptotic
standard deviation of the standard model is displayed. In all cases, the standard deviations are
multiplied by

√
n.

Figure 1 shows that the sparse envelope estimator is more efficient than the standard estima-
tor and the active envelope estimator for all sample sizes. The ratio of the asymptotic standard
deviation of the standard estimator to that of the sparse envelope estimator is 2·71, and for the
active envelope estimator versus the sparse envelope estimator comparison, the ratio is 1·73. The
difference between the sparse envelope estimator and the oracle envelope estimator becomes
quite small for sample sizes bigger than 100, which is consistent with the optimal estimation
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Table 1. Average true positive rate (%), true negative rate (%) and accuracy (%) of the sparse
envelope estimator, hard-thresholding estimator and F test

Sparse envelope Hard thresholding F test
n TPR TNR Accu. TPR TNR Accu. TPR TNR Accu.

25 92·6 81·0 33·5 75·4 97·9 30·5 51·7 99·8 0·0
50 97·0 90·5 69·0 85·0 99·0 52·5 61·6 99·5 2·0
75 98·6 95·9 85·5 90·5 99·8 70·0 70·6 99·5 13·5
100 99·8 98·3 94·5 96·9 99·9 89·0 77·8 99·4 23·5
150 100·0 99·3 96·0 99·2 100·0 97·0 84·6 99·6 39·0
200 100·0 100·0 100·0 100·0 100·0 100·0 91·6 99·7 64·5
TPR, true positive rate; TNR, true negative rate; Accu., accuracy.

Table 2. Average true positive rate (%), true negative rate (%) and accuracy (%) of the sparse
envelope estimator, hard-thresholding estimator and F test in the high-dimensional setting

Sparse envelope Hard thresholding F test
n TPR TNR Accu. TPR TNR Accu. TPR TNR Accu.

50 78·5 99·1 6·5 53·4 100·0 0·0 35·2 100·0 0·0
100 91·6 99·9 54·5 62·6 100·0 0·0 55·9 100·0 0·0
150 98·0 100·0 91·5 81·0 100·0 2·0 71·2 100·0 0·0
200 99·8 100·0 98·0 86·6 100·0 12·0 85·2 100·0 10·0
250 99·8 100·0 98·5 89·6 100·0 19·0 95·1 100·0 48·0
300 100·0 100·0 100·0 91·8 100·0 28·0 98·4 100·0 79·0

rate described in Theorem 4. The bootstrap standard deviation is a good estimator of the actual
standard deviation. In order to evaluate the variable selection performance of the sparse envelope
model, we considered the true positive rate c1/q, where c1 is the number of active responses
correctly chosen; the true negative rate c2/(r − q), where c2 is the number of inactive responses
correctly chosen; and the accuracy, which is an integer taking value 0 or 1, with 1 indicating
that both the active and inactive responses are correctly chosen and 0 otherwise. The average
of each quantity is given in Table 1. The accuracy tends to 1 as n increases, which confirms
the selection consistency stated in Theorem 3. For comparison, we applied a hard-thresholding
on the envelope estimator of � to select the active responses, with the threshold chosen by
crossvalidation. We also performed an F test on each row of β̂ols with adjustments for multi-
ple testing. The sparse envelope estimator dominates these two estimators for all sample sizes in
this case.

Now we consider the high-dimensional scenario. We set r = 1000, q = 10, p= 5, u = 2 and
varied n from 50 to 300. The first q/2 rows in �A were {(2/q)1/2, 0}T and the remaining q/2 rows
in �A were {0, (2/q)1/2}T. Then we used the structure in (5) to construct � and �0. The elements
in η were independent N (0, 9) random variables, �=0·04Iu and �0 was a block-diagonal matrix
with the upper left block being 25Iq−u and the lower right block being 4Ir−q . The elements
in X were independent N (0, 1) random variables. For each sample size, 200 replications were
generated. Table 2 shows that performance of the sparse envelope estimator is better than that of
the hard-thresholding estimator and F test in this scenario as well. A figure that describes the
convergence of ‖β̂ − β‖F is in the Supplementary Material.

Remark 1. The sparse envelope model also achieves efficiency gains when r < p < n, or with
weak signals; see the Supplementary Material.
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3·2. Data analysis

We illustrate the sparse envelope model using microarray time-course data on cell-cycle con-
trol in the fission yeast Schizosaccharomyces pombe. This dataset is analysed in Gilks et al.
(2005) using multivariate linear regression to study how gene expression levels change in a cell
cycle. The response variables are expression levels of genes. Among the 407 genes measured, 11
have missing values. We only used the genes with complete data, and this gave 396 responses,
which we log-transformed to reduce skewness. The predictors are ten equally-spaced time-points
of the cell cycle and the sample size is 177. We fit the sparse envelope model to the data, with
u = 2 suggested by crossvalidation. The model identified 25 inactive responses. This indicates
that the expression level of most genes varies in a cell cycle, but there are a few genes whose
intensities do not change in a cell cycle. Among the 25 inactive responses, gene cdc20 was also
identified by Gilks et al. (2005) to have “very little cell-cycle activity”. We estimated ‖β̂ols − β‖F

and ‖β̂ − β‖F by the average of 200 bootstrap samples. The ratio of the estimated ‖β̂ols − β‖F

to ‖β̂ − β‖F is 1·52, which shows a clear efficiency gain due to the sparse envelope model.

4. DISCUSSION

In this paper, the sparse envelope model is developed by assuming row-wise sparsity in �

under the envelope model. In ultrahigh-dimensional problems where rn	 n, we need to make
additional assumptions such as sparsity of � or �−1 in order to establish the consistency of the
sparse envelope model. The convergence rate of the sparse envelope estimator β̂ can be improved
to ‖β̂ − β‖F = Op{(log rn/n)1/2} if we assume the number of nonzero off-diagonal elements in
�−1 is fixed as n tends to infinity. It may also be of interest to study prediction performance
rather than estimation of parameters in ultrahigh-dimensional problems.

When the envelope structure does not hold, some preliminary numerical results show that the
envelope estimator may still have a smaller mean squared error than the standard estimator, as a
result of the bias-variance trade-off. The properties of the envelope estimator under this situation
are open.
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