
Biostatistics, 2023, 00, 1–15
https://doi.org/10.1093/biostatistics/kxad022
Article C

Variable selection in high dimensions for
discrete-outcome individualized treatment rules:

Reducing severity of depression symptoms
Erica E. M. Moodie 1, ∗, Zeyu Bian1, Janie Coulombe2, Yi Lian1, Archer Y.

Yang3, Susan M. Shortreed4,5

1McGill University, Department of Epidemiology & Biostatistics, 2001McGill College Ave, Suite 1200,
Montreal, QC Canada H3A 1G1

2Université de Montréal, Department of Mathematics & Statistics, Pavillon André-Aisenstadt, Montréal, QC
Canada H3C 3J7

3McGill University, Department of Mathematics & Statistics, 805 Sherbrooke Street West Montreal, QC
Canada H3A 0B9

4Kaiser Permanente Washington Health Research Institute, 1730Minor Ave, Suite 1600, Seattle, WA 98101
5University of Washington, Department of Biostatistics, 1705 NE Pacific St, Seattle, WA 98195
∗To whom correspondence should be addressed: Erica E. M. Moodie. Email: erica.moodie@mcgill.ca

ABSTR ACT
Despite growing interest in estimating individualized treatment rules, little attention has been given the
binary outcome setting. Estimation is challenging with nonlinear link functions, especially when variable
selection is needed. We use a new computational approach to solve a recently proposed doubly robust
regularized estimating equation to accomplish this difficult task in a case study of depression treatment.We
demonstrate an application of this new approach in combination with a weighted and penalized estimating
equation to this challenging binary outcome setting.We demonstrate the double robustness of the method
and its effectiveness for variable selection. The work is motivated by and applied to an analysis of treatment
for unipolar depression using a population of patients treated at Kaiser Permanente Washington.

KEYWORDS: Adaptive treatment strategies; Antidepressant treatment; Estimating equations; Precision
medicine; Regularization.

1. IN TRODUCTION
Many mental illnesses are only partially understood, and treatment can involve considerable trial
and error to find the therapy (type, dose, or schedule) that works best for a given patient. Treatment
adjustment can occur because mental illness diagnoses are often difficult and based on multiple
symptoms that may represent a single illness with a heterogeneous presentation or an illness with
several subtypes. Treatment of depression often requires adjustment because individual patients
may respond to identical treatments in different ways. This variation motivates the quest for
individualized treatment rules (ITRs) (Simon, 2001; Chakraborty, 2011; Coulombe and others,
2021), which uses their demographic, clinical, or other characteristics to better guide treatment
choices that meet their needs (Murphy, 2003; Robins, 2004; Chakraborty andMoodie, 2013).
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2 · E. E. M. Moodie and others

Herein,we focus on ITR(i.e., a single treatment decision) estimation rather than adaptive treatment
strategies which consider sequences of decisions.
The statistical literature on ITRs is growing at a fast pace. However, a majority of the

developments focus on the continuous-valued outcome setting, where the linear link function
is the natural modeling choice. The binary outcome setting, in which non-linear links are common,
has received far less attention, in spite of the ubiquity of binary outcomes in much of the
medical and epidemiological literature in which ITRs might relevantly be applied. This may be
explained in part by the fact that estimation is more challenging with discrete outcomes, where
simple weighted regression can no longer be employed to achieve a doubly robust estimator
(Tchetgen Tchetgen and others, 2010; Zetterqvist and Sjölander, 2015; Bian and others, 2022).
Penalization has been used in ITRs (and their sequential counterparts) for continuous outcomes

by several authors, first in the the context of singly robust methods Qian andMurphy (2011);
Lu and others (2013); Goldberg and others (2013); Song and others (2015); Jeng and others (2018)
andmore recently within doubly robust approaches (Shi and others, 2018; Zhang and Zhang, 2018;
Bian and others, 2021). There has been little consideration of the estimation of ITRs for discrete
outcomes in a high-dimensional setting. Recently, Bian and others (2022) proposed a penalization
approach for adoubly robust ITRestimationprocedure in adiscrete-outcome setting.The approach
is promising, but computationally challenging and limited by the requirement of a good initial
estimate for the treatment rule parameters. As well-behaved initial estimatesmay be difficult to find,
particularly in small samples or when there are few outcomes (e.g., the number of “successes” in
the binary outcome is small), Bian and others’s approach may require unsatisfying, but pragmatic,
solutions such as a “manual” pre-selection of candidate tailoring variables. In this work, we aim
to address this limitation by deploying a new computational approach to solving Bian and others’s
proposed doubly robust regularized estimating equation (REE).
This work was motivated by the question of how to choose between two antidepressant drug

classes for patients initiating antidepressant medication. In a main analysis, we focus on the
choice between selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine
reuptake inhibitors (SNRIs) to minimize the risk of a patient having severe depression symptoms
in the 1 year followingmedication initiation, defined as a response of 15 or greater on the nine-item
patient health questionnaire (PHQ) (Kroenke and others, 2010). We conducted the study using
data from Kaiser Permanente Washington (KPWA), a large, non-profit health care organization
in Washington state.
This article is organized as follows. Section 2 details notation and assumptions, then provides a

brief review of existing approaches to variable selection for ITRs before describing our approach.
We explore the performance of our proposed approach via simulation in Section 3, before address-
ing, in Section 4, ourmotivating research question.We conclude with limitations and directions for
future investigations in Section 5.

2. M ETHODS
Our data are from n independent individuals indexed by i. LetXi ∈ R

p be a vector of pre-treatment
covariates. We focus on a setting in which both treatment and outcome are binary, with Ai ∈
{0, 1} and Yi ∈ {0, 1}, where Yi = 1 represents the observation of an event such as worsening
of symptoms beyond a given threshold or hospitalization within 1 year of diagnosis and Yi = 0
indicates censoring at or before the end of follow-up. We define the counterfactual event indicator
Ya

i as the potential outcome if, possibly contrary to fact, an individual received treatment a ∈ {0, 1}.
Unless specified otherwise, uppercase, lowercase, and bold denote random variables, realizations of
random variables, and vectors, respectively.
An ITR is a decision rule d(X) : X → {0, 1} that takes as arguments pre-treatment covariates and

returns a recommended treatment. For an optimal ITR, the decision rule dopt(x) := dopt(X = x)

minimizes the proportion of the population expected to experience a negative outcome, as in
our example of experiencing severe symptoms. (Alternatively, an optimal ITR may maximize the
proportion expected to experience a positive outcome.) We suppose the axiom of consistency
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Reducing severity of depression symptoms · 3

linking counterfactual to actual outcomes, and assume (i) no interference; (ii) no unmeasured
confounding (Robins, 2000); and (iii) positivity.
Linking this notation toourmotivating example,we takeY to be an indicator of having a recorded

PHQ response higher than 15 within 1 year of treatment initiation (excluding the PHQ score
measured at treatment initiation), A to be a binary treatment indicator which, in our setting, takes
values in {0,1} where both levels are drug classes (e.g., SSRI or SNRI), and X to denote a vector of
covariates that may predict patient depression severity andmay alsomodify the effect of treatment.
This treatment effect moderation is modeled through an interaction between the treatment and
covariates, X, which can be captured in a statistical regression model, e.g., via interaction terms
included on the linear predictor scale in a generalized linear model. The covariates X include
demographic, clinical (e.g., PHQ score at treatment initiation), and other health-related (e.g., body
mass index) information.
We assume the following semiparametric regression model describes the relationship between

Y and (X,A): logit
(
E(Ya|X = x)

) = logit
(
E(Y |X = x,A = a)

) = f0(x) + γ (x, a;ψ) , where f0 is
an unknown baseline function and γ is the blip function (Robins, 2004) characterizing the impact
of treatment on the outcome as a contrast on the scale of the linear predictor. We assume that
functional formof γ is known, and that it is indexed by a finite-dimensional parameter of interestψ ,
which we call the blip parameter. The optimal ITR can be obtained by simply optimizing the blip
function, e.g., dopt(x) = argmina γ (x, a;ψ) for cases that aim to minimize a negative outcome, as
in our setting.

2.1. Doubly robust estimation methods for binary outcomes
Doubly robust estimation of ITRs for binary outcomes has been studied in Tchetgen Tchetgen and
others (2010) and Bian and others (2022). The method of Bian and others (2022) incorporated a
penalization framework for simultaneous variable selection and ITR estimation: the estimation
problem is reformulated as an iteratively reweighted generalized linear model, which reduces the
computational challenge to solving a minimization problem. Below, we describe the estimation
methods proposed in Tchetgen Tchetgen and others (2010) and Bian and others (2022).
For binary outcomes modeled via a logit link, the blip parameter can be estimated by solving the

following A-learning estimating equation:

U1(ψ) = 1
n

n∑
i=1

xi(ai − π̂∗
i )

(
yi − expit(f (xi; β̂) + γ (xi, ai;ψ))

)
, (2.1)

where f (x;β) is the posited baselinemodel (not necessarily identical to f0), β̂ is a plug-in estimator,
and, for expit(t) = exp(t)

1+exp(t) and u(x;φ),

π̂∗ =
(
1 + (1 − expit(u(x; φ̂))expit(f (x; β̂))

expit(u(x; φ̂))expit(f (x; β̂) + γ (x, 0;ψ))

)−1

,

is the nuisance treatment model of E(A|X, Y = 0). Note that u(x;φ) is not a (typical) propensity
score, but rather a model for the conditional probability of receiving treatment among patients who
do not experience the outcome. The resulting estimator is consistent for ψ when at least one of
E(Y |X,A = 0) or E(A|X, Y = 0) is correctly specified (Tchetgen Tchetgen and others, 2010).
To introduce sparsity in estimating the blip parameter ψ , it is tempting to directly use a

regularized A-learning approach that penalizes the estimating function U1(ψ). Specifically, ψ can
be estimated by solving the REE (Fu, 2003; Johnson and others, 2008; Wang and others, 2012):
0 ∈ U1(ψ) + ∂�λ(ψ), where �λ(·) : Rp → R is a convex sparsity-inducing penalty function,
e.g., the LASSO penalty �λ(ψ) = λ‖ψ‖1 (Tibshirani, 1996), and λ is the corresponding tuning
parameter that controls the amount of regularization. ∂�λ(β) is the subdifferential of �λ, i.e.,
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4 · E. E. M. Moodie and others

the set of all subgradients of �λ(·) at β . For �λ(·), the subgradient of �λ(·) at β is defined as a
vector g ∈ R

p satisfying �λ(β
′) ≥ �λ(β) + g�(β ′ − β) for all β ′. Note that the REE is defined

as 0 ∈ U1(ψ) + ∂�λ(ψ) instead of 0 = U1(ψ) + ∂�λ(ψ), since the subgradient might not be
unique.
Regularized A-learning via REE has not been explored in previous work on ITRs, largely due to

the computational burden in solving a REE, particularly in high dimensions (Johnson and others,
2008; Wang and others, 2012). Furthermore, selecting the tuning parameter in an ITR context can
be difficult because of the potential for model misspecification.
An alternative approach to introducing sparsity was given by Bian and others (2022), who

proposed another doubly robust estimating function for binary outcomes:

U2(β ,ψ) =
n∑

i=1

(
aixi
xi

)
|ai − π̂∗

i | (yi − expit(xT
i β + γ (xi, a;ψ))

)
.

This estimating function was inspired by the form of U1(ψ) and the dynamic weighted ordinary
least squares estimator (Wallace andMoodie, 2015).Thismethod is doubly robust if the variables in
the blip function are contained in the baseline function, with the advantage that this approachmore
easily accommodates variable selection, as we describe below. Bian and others (2022) demonstrate
that the problem of solving the REEU2(β ,ψ) can be reformulated into aminimization framework.
In fact, solving the following ITR REE using U2 via

0 ∈ U2(β ,ψ) + ∂�λ(β ,ψ) (2.2)

is asymptotically equivalent to solving a penalized weighted general linear model given an appro-
priate initial estimator ψ̂ ini; we refer to this as the penalized doubly robust (PDR) approach. The
use of ∈ indicates that the solution to this estimating equation is unique only if the subgradient is
unique. A solution to (2.2) can be approximated by the following minimization problem:

(β̂
PDR, ψ̂PDR

) = argmin
β,ψ

( n∑
i=1

|ai − π̂∗
i | L(yi, xi, ai;β ,ψ) + �λ(β ,ψ)

)
, (2.3)

where L(· ;β ,ψ) is the loss function of the logistic regression. Tuning parameter selection for
ITRs can be based directly on this objective function, i.e., the best model is selected so that
Lλ

n(β̂ , ψ̂) + κnsλ is the smallest among the candidate models, where Lλ
n(β̂ , ψ̂) = ∑n

i=1 |ai −
π̂∗

i | L(yi, xi, ai; β̂ , ψ̂), κn is some positive sequence, and sλ is the number of nonzero components
in the model for a given λ. We follow Fan and Tang (2013) and set κn = (

log(log n)
)
log p, as this

can achieve model selection consistency in a high-dimensional setting. Hereafter, we refer to this
tuning parameter selection approach as weighted information criterion (WIC).
This promising new approach has a limitation: It relies on a well-behaved initial blip parameter

estimate, ψ̂ ini, which may be difficult to obtain in small sample sizes. Indeed, in the case study of
Bian and others (2022), the set of candidate tailoring rules was restricted to only eight variables due
to difficulty in achieving convergence. Reducing the number of variables prior to regularization to
ensure convergence of the estimators is not ideal when the goal is data-driven selection.

2.2. Computational approach
We propose a new approach for estimating a sparse blip function orψ . The approach is based on a
formulation of regularized A-learning (RAL) as a fixed-point problem inspired by Yang and others
(2021) and Lian (2022), which we refer to as the RALF estimator (i.e., the F indicates a fixed-
point RAL). This formulation can be solved using a fixed-point algorithm with Type-I Anderson
Acceleration (AA) (Anderson, 1965). The Type-I variant (Fang and Saad, 2009) outperforms
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Reducing severity of depression symptoms · 5

the original AA (Anderson, 1965) but can be very unstable. To address this, Zhang and others
(2020) recently proposed a stabilized Type-I AA and established that it possesses the global
convergence property. We employ a Type-I AA algorithm to solve the REE by leveraging the
framework introduced by Yang and others (2021), which transformsREE problems into fixed-point
problems. The algorithm is computationally very efficient, scales to high-dimensional data, and the
performance of RALF does not rely on a good initial estimators as required by PDR.
We choose smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) as the penalty func-

tion for RALF since the resulting coefficients are nearly unbiased (Fan and Li, 2001; Fan and Peng,
2004) and, unlike LASSO, model selection consistency of SCAD does not require the restricted
irrepresentable or the mutual incoherence condition (Fan and Lv, 2011). The RALF estimator
ψ̂

RALF using SCAD is defined as the solution to the following REE:

0 ∈ U1(ψ̂
RALF

) + ∂C�λ(ψ̂
RALF

), (2.4)

where U1(·) is the unregularized A-learning equation (2.1). The SCAD penalty �λ(·) with regu-
larization parameter λ has the following form:

�λ(ψ) =
p∑

j=1
ρλ(ψj), where ρλ(ψj) =

⎧⎪⎨⎪⎩
λ|ψj|, if |ψj| ≤ λ,
−(ψ2

j −2bλ|ψj|+λ2)

2(b−1)
, if λ < |ψj| ≤ bλ,

(b + 1)λ2/2, if |ψj| > bλ,

for eachψj ∈ ψ with j = 1, . . . , p being the indices, and some b > 2. The unknown parameter b can
be chosen using cross-validation, but computation can be expensive.We set b = 3.7 as suggested by
Fan and Li (2001), who showed that this choice gives good practical performance. Note that the
regular subdifferential does not exist for the nonconvex SCADpenalty function; thus, we adopt the
Clarke (1990) subdifferential of the SCAD penalty, denoted by ∂C�λ(·)

(∂C�(ψ))j = ∂Cρλ(ψj) =
{

ρ′
λ(ψj)sgn(ψj), ψj 
= 0,

[−λ, λ], ψj = 0
, (2.5)

whereρ′
λ(t) = λI(|t| < λ) + (bλ−|t|)+

(b−1)
I(|t| ≥ λ). By the derivation in Yang and others (2021), solv-

ing the REE in (2.4) is equivalent to solving the following fixed-point problem

ψ̂
RALF = f (ψ̂RALF

), where f (ψ) = Tτλ(ψ − τU1(ψ)) (2.6)

for sufficiently small τ > 0, with the SCAD thresholding operator Tτλ(·) defined as

Tτλ(t) =

⎧⎪⎨⎪⎩
Sτλ(t), |t| ≤ 2τλ,
b−1
b−2 S

τ bλ
b−1

(t) 2τλ < |t| ≤ τbλ,

t |t| > τbλ,

where Sc(t) = sgn(t)max(|t| − c, 0) is the soft-thresholding operator for some c > 0. The algorith-
mic parameter τ plays a role similar to the step sizes in optimization algorithms, although it is not
formally defined as such by Yang and others (2021). A larger τ usually leads to more aggressive
updates, but increases the change that the algorithm diverges. The best choice of τ is highly
dependent on the REE, but there is currently no effective data-driven method (e.g., linesearch) to
determine an adaptive “step size.” For the RALF algorithm, we start with τ = 1 and decrease its
value until the algorithm converges.
RALF is summarized in Algorithm 1. As detailed in the Supplementary Materials, our approach

avoids expensive computation of the estimating function gradient and its inverse, significantly
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Algorithm 1: The RALF algorithm.
Input: Estimating function U1(ψ) in (2.1), maximummemory m, parameter τ .
Output: ψ̂

RALF

1 Initialize k = 0,ψ (0) = 0p;
2 Set fixed-point problem f (ψ) according to (2.6);
3 repeat
4 Choose the memory size mk = min(m, k);
5 Compute g(k−mk+r) = ψ (k−mk+r) − f (ψ (k−mk+r)) for r = 0, . . . ,mk;
6 Compute V k and Sk using (A.3);
7 Updateψ (k+1) using (A.2);
8 k := k + 1;
9 until convergence;

10 ψ̂
RALF = ψ (k).

reducing the computation burden of the method. Thus, RALF’s fixed-point-based algorithm for
solving general REEs provides higher estimation accuracy, computational efficiency, and scalability
over existing algorithms.

3. SI MUL ATIONS
The aim of this numerical study was to evaluate variable selection in the context of ITR estimation
for a binary outcome that has many potential tailoring variables but only a few that genuinely
assist in assigning treatment. As the double robustness property under differentmodel specification
settings of PDR and A-learning was examined in Bian and others (2022) with a moderate sample
size (500 and 1000), here we focus on a small sample size of 200 with p = 40, 80, or 120
tailoring variables. Throughout, we consider the challenging scenario in which the baseline model
is misspecified while the treatment model is correctly specified. The blip function is also correctly
specified in terms of functional form but includes many unnecessary covariates.
Previous work showed that bias in parameter estimates following selection via penalization

is reduced by refitting (e.g., Bian and others, 2021; Wu and others, 2022): That is, in a “refitting
procedure,” after the variable selection is performed, the blip parameters are re-estimated by
solving the unpenalized estimating equation using only the selected tailoring variables. Hence,
the refitted RALF estimator can be a natural choice of the initial estimator. Nevertheless, as
noted above, in small sample sizes, an unpenalized estimator is difficult to obtain; indeed, in
the simulations, we found that even the calculation of a refitted estimator could fail to converge
using the R package rootSolve. Therefore, we simply used the RALF as the initial estimator
for PDR.
We focus on the performance of ITR parameter estimators found via RALF and PDR

(Bian and others, 2022) as measured by estimation error, the estimated decision rules, and the
resulting population outcomes (value function). In our simulations, we consider two approaches
for selecting the tuning parameter λ: BIC and the WIC proposed in Bian and others (2022).
The data generation procedure is as follows: (Step 1) Generate p independent multivariate

normal covariates X1, ...,Xp with mean 0.6 and unit variance. (Step 2) Set the baseline model to
be f (x;β) = −1.2 − 1.5x1 − 1.2x2 + 2 sin(x1) + 2 sin(2x2) + 2 cos(x1 − x2). (Step 3) Set the
blip function to be γ (x, a;ψ) = a(ψ0 + ψ1x1) for ψ0 = 1.2, and ψ1 = −2.2. (Step 4) Set the
nuisance treatment model to be E(A|Y = 0,X = x) = expit(−1.2 − 1.5x1 − 1.2x2 + 2 sin(x1) +
2 sin(2x2) + 2 cos(x1 − x2)) and marginalize it over Y to obtain the propensity score model
E(A|X = x) and generate the observed treatment according to E(A|X = x). (Step 5) Generate
the outcome Y ∼ Bernoulli(expit(f (x;β) + γ (x, a;ψ))). Under this data generation procedure,
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Reducing severity of depression symptoms · 7

Figure 1. Estimates of blip parameters using RALF and PDR with sample size 200 (400 simulations) for
p = 40, 80, and 120 as indicated. The true value is represented by the dashed horizontal line.

approximately 50% of patients receive treatment A = 1 and the marginal mean of the outcome
Y is 0.51.
In all scenarios, we posited a linear baseline model. Hence, the baseline model was greatly

misspecified (sin and cos functions omitted). Figure 1 and Table 1 summarize the estimators of
the blip parameters ψ0 and ψ1, the error rate in the estimated treatment rule, the value (expected
outcome under the estimated regime), and the false negative rate and false positive rate using RALF
and PDRwith tuning parameter selected by BIC andWIC. The value was estimated using a testing
set of size 10 000.
In general, PDR outperformed RALF with respect to bias in blip parameter estimation, variable

selection results, and ITR performance (error rate and value function), especially in the large p
setting. This result is expected as PDR used the RALF estimator as an initial estimator. Both RALF
and PDR achieved better performance when the tuning parameter was selected by WIC, as this
led to lower bias in estimating blip parameters, a lower error rate, and a higher value function.
Additionally, withWIC, both approaches achieved better variable selection results as demonstrated
by a much lower false-negative rate at the cost of only a slight increase in the false-positive rate.
This result is especially evident in the high-dimensional setting. For p = 120, the false-negative rate
for RALF using WIC was only 13.50%, just over half the rate observed when using BIC, while the
false-positive rate stayed low at 1.44%.Having a selectionmethod with a lower false-negative rate is
of particular importance in medical research, to avoid missing important sources of heterogeneity
that might improve patient outcomes if considered during treatment decision-making. The best
performance was attained by PDR combined with WIC.
This simulation illustrates that WIC outperforms BIC for selecting tuning parameters for ITRs.

The simulation also demonstrated that when the initial estimator is obtained from RALF, PDR
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8 · E. E. M. Moodie and others

Table 1. Simulation results comparing RALF and PDR for a sample size of 200 with p = 40, 80, and 120
using 400 iterations

RALF (BIC) RALF (WIC) PDR (BIC) PDR (WIC)

p=40
Value 54.06 54.46 55.32 55.28
ER (%) 25.31 23.76 19.11 19.41
FN (%) 11.62 7.37 5.00 3.37
FP (%) 5.02 9.21 0.60 2.17

p=80
Value 51.15 51.71 52.80 53.28
ER (%) 41.23 38.38 32.03 29.54
FN (%) 30.25 23.12 15.62 8.25
FP (%) 2.03 3.82 0.16 0.48

p=120
Value 52.06 53.88 54.70 54.94
ER (%) 35.24 26.17 21.56 20.52
FN (%) 25.00 13.50 8.88 5.37
FP (%) 0.46 1.44 0.34 0.57

Notes: We report the estimated value and error rate (ER), i.e., the proportion of times the estimated optimal recommended
treatment is different from the true optimal treatment. Additionally, we report the false-negative (FN) rate, i.e., the proportion
of times a true tailoring variable is not selected, and false-positive (FP) rate, i.e., the proportion of times a spurious variable is
selected as a tailoring variable. For comparison, the value function of the true optimal ITR is 68; the value function of the strategies
“always treat” and “never treat” is 49 and 48, respectively.

performance is still excellent in the challenging scenario of a small sample size and severely
misspecified baseline model.

4. INDIVIDUA LIZING TR E ATM EN T TO R EDUCE THE R ISK OF
SEVER E DEPR ESSION S YM P TOMS

Treatment individualization can be used to optimize outcomes and be applied to treatment classes
in addition to specificmedications. For unipolar depression, SSRIs are currently the recommended
first-line treatment (Bauer and others, 2013), although this medication class contains several dif-
ferent drugs and other medication classes are also commonly used. Individuals often vary in their
response to different antidepressant drug classes, and modest evidence supports using patient
characteristics to tailor the choice of an antidepressant drug class to improve patient mental health
outcomes (Green and others, 2017). Our main analysis focuses on the choice between SSRIs and
SNRIs to minimize the risk of a patient having severe depression symptoms in the 1 year following
medication initiation, defined as a response of 15 or greater on the PHQ, a patient-reported
outcome that measures depression symptom severity with a maximum of 27, with higher scores
corresponding to greater severity (Kroenke and others, 2001). In secondary analyses, we compare
other drug classes. A brief outline on the cohort creation, covariates considered, is provided below,
with further details in the Supplementary Materials.

4.1. Case study: Methods
4.1.1. Cohort construction and setting

Our study included all KPWApatients aged 13 years and older initiating antidepressantmedication
treatment between 2008 and 2018 who had a diagnosis of depression in the year prior to or within
15 days of treatment initiation, at least 12 months of health system enrollment prior to initiation,
and no antidepressant medication fills in the 12 months prior to the initiating prescription. Some
patients hadmultiple treatment initiation episodes over the study yearsmeeting our criteria; for our
analyses, we retained the first observed treatment episode for each patient.
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4.1.2. Covariates, potential tailoring variables, outcome definitions
Demographic information was extracted from health records data on all patients. Data included
age, sex (male or female), self-reported race and ethnicity, insurance type, and neighborhood
educational attainment, level of poverty, and rurality score. General medication and mental health
information at the time of treatment initiation was extracted from health records. We gathered
information on the mental health diagnoses in the past year. We collected the number of suicide
attempts and the number of psychiatric hospitalizations in the 6 months prior to treatment ini-
tiation. Baseline depression symptom severity was measured using the PHQ recorded closest to
treatment initiation looking back up to 15 days and forward up to 3 days, to allow for data lags. All
these covariates were considered potential tailoring variables and were used in the propensity score
to account for potential confounding. We also added the calendar year of treatment initiation as a
potential confounder in the treatment model.
At KPWA, the PHQ, a patient-reported outcome, is recommended for diagnosing depression

and monitoring depression symptoms while on treatment. Longitudinal PHQ information and
mental heath outcomes, i.e., psychiatric hospitalization and in- or outpatient visits for self-harm,
were collected during the year following medication initiation. We defined the binary outcome of
severe depression symptoms as a PHQ score in the health record that was greater than or equal to
15 (Kroenke and others, 2010) at any point in the first 12 months of follow-up, excluding the PHQ
measured at treatment initiation.

4.1.3. Case study: Statistical analyses
Using the first imputed dataset, we summarized baseline characteristics of the study cohort strat-
ified by the initiating treatment. The propensity score model was estimated using logistic regres-
sion using all confounding variables listed in Section 4.1.2. Overlap weights were computed as
a function of the propensity score. The standardized mean differences (SMDs) were computed
before and after weighting to assess balance across treatment groups in potential confounders at
initiation.
We implemented both PDR and RALF approaches to variable selection to estimate an ITR to

minimize severe depression symptoms in the year after treatment initiation. As WIC led to better
performance in the simulation study, it was used as the criterion to select the tuning parameter. We
report the proportion of nonzero coefficients in the blip function using PDR and RALF.

4.1.4. Addressing missing data
We used multiple imputation to replace missing values in all baseline and longitudinal variables. In
addition to the covariates listed above, we used and imputed missing values for longitudinal height
and weight and PHQ after the original antidepressant initiation. We used the mice package in R
version 4.0.4 to create 25 completed datasets, with all missing values imputed.
For imputation, we treated the first eight items of the PHQ score (PHQ8), as a depressive

symptom severity measure ranging from 0 to 24 with 24 indicating worse symptoms, and the
ninth item (referred to as PHQ item 9), ranging from 0 to 3, as a measure of suicidal ideation. We
used the norm option in mice to impute missing values in the variable PHQ8 and polytomous
logistic regression to impute values in PHQ item 9. We used predictive mean matching to impute
missing weight values, which generally provided better results than the norm option. For the
remaining variables, we used logistic regression for binary and unordered categorical variables and
proportional odds model regression for ordinal variables.

4.2. Case study: Results
Our study included 73 103 patients with 82 129 episodes of antidepressant initiation. Of the 73 103
episodes, 56 876 (78%) corresponded to initiation of an SSRI, 4056 (5.5%) to an SNRI, and the
remainder to other drugs not considered in the primary analysis. We observed considerable differ-
ences in several baseline covariates between patients who initiated SSRIs or SNRIs (Table 2). The
most notable differences were found in age, use of tobacco products, insurance type, neighborhood
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Table 2. Baseline characteristics of the cohort of new users of antidepressants stratified by drug class
before and after re-weighting data with overlap weights for confounding, KPWA, 2008–2018

No weighting Overlap weighting

Treatment Treatment
SNRI SSRI SMD SNRI SSRI SMD

Covariates†

Age‡ 49.1 (16.1) 43.6 (20.0) 0.30 48.8 (16.2) 48.8 (19.6) < 0.01
Male 1215 (30.0) 18687 (32.9) 0.06 1108 (30.3) 1108 (30.3) < 0.01
Race and ethnicity 0.13 0.06
American Indian/Alaska Native 112 (2.8) 1296 (2.3) 101 (2.8) 92 (2.5)
Asian 131 (3.2) 3224 (5.7) 122 (3.3) 138 (3.8)
Black/African American 147 (3.6) 2417 (4.2) 134 (3.6) 145 (3.9)
Native Hawaiian/Pacific Islander 38 (0.9) 734 (1.3) 35 (0.9) 42 (1.1)
Hispanic 257 (6.3) 3519 (6.2) 234 (6.4) 198 (5.4)
White 3313 (81.7) 44947 (79.0) 2986 (81.5) 3006 (82.0)
Other race 58 (1.4) 739 (1.3) 53 (1.4) 44 (1.2)

Height‡ (inches) 66.4 (3.9) 66.0 (4.1) 0.11 66.4 (3.9) 66.4 (4.0) < 0.01
Weight‡ (pounds) 192.6 (54.9) 180.2 (51.5) 0.23 191.5 (54.3) 191.5 (56.3) < 0.01
Use of tobacco products§ 591 (14.6) 6595 (11.6) 0.09 524 (14.3) 524 (14.3) < 0.01
Charlson score‡ 0.8 (1.5) 0.6 (1.3) 0.15 0.8 (1.5) 0.8 (1.6) < 0.01
Rurality score‡ 2.6 (1.2) 2.4 (1.2) 0.17 2.6 (1.2) 2.6 (1.3) < 0.01
Insurance type 0.14 0.11
Commercial 2900 (71.5) 42633 (75.0) 2632 (71.8) 2593 (70.8)
Medicaid 13 (0.3) 592 (1.0) 12 (0.3) 33 (0.9)
Medicare 867 (21.4) 9743 (17.1) 766 (20.9) 840 (22.9)
Private 276 (6.8) 3908 (6.9) 255 (6.9) 198 (5.4)

Nbhd educational attainment 1508 (37.2) 18406 (32.4) 0.10 1349 (36.8) 1349 (36.8) < 0.01
Nbhd poverty level 180 (4.4) 2410 (4.2) 0.01 161 (4.4) 161 (4.4) < 0.01
Nbhd income level 201 (5.0) 2634 (4.6) 0.02 179 (4.9) 179 (4.9) < 0.01
Anxiety disorder 1211 (29.9) 13400 (23.6) 0.14 1062 (29.0) 1062 (29.0) < 0.01
Mental health/substance use¶ 407 (10.0) 3572 (6.3) 0.14 346 (9.5) 346 (9.5) < 0.01
Prior mental health inpatient stay‡,‖ 0.0 (0.1) 0.0 (0.1) 0.02 0.0 (0.1) 0.0 (0.1) < 0.01
Prior suicide attempts‡,‖ 0.1 (0.3) 0.0 (0.3) 0.07 0.1 (0.3) 0.1 (0.3) < 0.01
Prior antidepressant med use‡,# 0.9 (1.3) 0.4 (0.8) 0.45 0.8 (1.2) 0.8 (1.2) < 0.01
Any prior psychotherapy visit§ 980 (24.2) 13672 (24.0) < 0.01 873 (23.8) 873 (23.8) < 0.01
PHQmeasured at intiation‡‡ 1422 (35.1) 25086 (44.1) 0.19 1300 (35.5) 1300 (35.5) < 0.01
Prior PHQmeasurements§ 0.6 (1.8) 0.4 (1.3) 0.11 0.5 (1.6) 0.5 (1.8) < 0.01
Total score PHQ item 1–8‡ 14.3 (5.3) 14.6 (5.1) 0.05 14.3 (5.3) 14.3 (5.2) < 0.01
PHQ item 9‡ 0.5 (0.9) 0.6 (0.9) 0.06 0.5 (0.9) 0.5 (0.9) < 0.01
†Frequencies (%) presented, unless otherwise stated.
‡Mean (standard deviation). Rural score defined between 1 and 6, with 6 indicating most rural. PHQ items 1–8 total score ranges
from 0 to 24, with 24 indicating most severe symptoms. PHQ item 9 ranges between 0 and 3, with 3 the highest level of recurrent
suicidal ideation (nearly every day) in the past two weeks.
§In the year prior to cohort entry.
¶Includes diagnosis for autism spectrum disorder, obsessive compulsive disorder, personality disorder, post-traumatic stress
disorder, alcohol-use disorder, opioid-use disorder, or sedative-use disorder.
‖In the 6 months prior to cohort entry.
#In the 5 years prior to cohort entry.
‡‡Within cohort entry minus 15 days and cohort entry plus 3 days. Not imputed.

education, prevalence of anxiety and other psychiatric disorders, and having a PHQ measured at
treatment initiation. The overlap weights were highly effective in balancing covariates across the
SSRI and SNRI initiators (Table 2). The only two variables for which a difference remained after
re-weighting were race and ethnicity and insurance type, with SMDs of 0.06 and 0.11, respectively.
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Figure 2. Distribution across the 25 imputed datasets of the coefficient estimates for the intercept and
patients’ weight. These were the only nonzero blip coefficients among the 23 potential effect modifiers in
comparisons of SSRI and SNRI to minimize the risk of severe depression symptoms as measured by PHQ
greater than 15. RALF, fixed-point regularized A-learning; PDR, penalized doubly robust. The first term
of the Y-axis labels corresponds to the effect modifier for which nonnull coefficient(s) were found.

Over the 25 imputed datasets, 46 814 of the SSRI initiation episodes were followed by severe
depressive symptoms (PHQ ≥ 15) in the following year, on average, for a crude risk of 82.3%.
Among SSRI initiators with severe depression symptoms recorded in the following year, the mean
time from treatment initiation until the first recorded severe symptoms was 4.4 months (standard
deviation [SD] 2.8) and the mean time from treatment initiation until the last recorded severe
symptoms was 8.4 months (SD 2.6).
Across the 25 imputed datasets, among the patients who initiated SNRIs, 3441 were followed

by severe depressive symptoms, for a crude risk of 84.8%. Among patients who initiated SNRIs
and had severe depression symptoms recorded in the following year, themean time from treatment
initiation until the first recorded severe symptomswas 4.1months (SD2.8) and themean time from
treatment initiation until the last recorded severe symptoms was 8.5 months (SD 2.6).
The RALF variable selection approach consistently retained more tailoring variables than the

PDR approach. RALF consistently retained the intercept coefficient in the blip, and retained both
age and weight in 2 of the 25 imputed datasets. The PDR approach, in contrast, retained the blip
intercept coefficientmost of the time but never retained tailoring variables for any of the 25 datasets
(Figure 2). Given that none of the tailoring variables were statistically significant more than twice
out of the 25 imputed datasets, the coefficients of tailoring variables were not statistically significant
when combined across the 25 imputed datasets (except for the intercept, results not shown).
A comparison of the optimal treatment decisions across some of the largest treatment groups, e.g.,
SSRI versus SNRI, revealed that the models fit under both the RALF and PDR approaches led to a
100% agreement in optimal treatment decisions; for this reason, we do not show the comparison of
optimal treatment decisions across fitting methods in these instances. In general, cross-validation
could be used to compare the optimal treatment decisions under both approaches in a testing set
after fitting the models on a training set.
Results for the other pairwise comparisons of drug classes and the outcomeofmore severe symp-

toms similarly indicated no evidence that treatment tailoring improves outcomes (Supplementary
Materials). Results were similar across all pairwise comparisons, with the PDR approach returning
more conservative results and RALF retaining one or two tailoring variables in a small number of
datasets. Results for other types of outcomes (severe depression outcomes, weight gain of 10%
between months 1 and 12, treatment failure defined as the addition of a second antidepressant
medication or the use of antipsychotic drugs, and remission defined as a baseline PHQ8 ≥ 10 and
a 9-item PHQ ≤ 10 after 1 year) were similar (results not shown).

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxad022/7259205 by Stanford U

niversity Libraries user on 21 O
ctober 2023

https://academic.oup.com/aler/article-lookup/doi/10.1093/biostatistics/kxad022#supplementary-data
https://academic.oup.com/aler/article-lookup/doi/10.1093/biostatistics/kxad022#supplementary-data


12 · E. E. M. Moodie and others

5. DISCUSSION
In this work, we combined two recent advancements, a novel computational approach
(Yang and others, 2021) and a PDR method of estimating an optimal individualized treatment
strategy, to address the challenging question of how to select tailoring variables in the context
of optimizing a treatment choice for binary outcomes of interest (Tchetgen Tchetgen and others,
2010; Bian and others, 2022). This methodology was deployed to investigate the pressing question
of whether treatment response heterogeneity in unipolar depression may be explained by
demographic and clinical characteristics of individuals starting antidepressant therapy.
Given the large KPWA sample and the many comparisons we explored, our findings do not

support tailoring initial antidepressant therapy by medication class to minimize the risk of severe
depression symptoms. Tailoring at the level of specific antidepressant medications may be useful,
but tailoring bymedication class did not lead to bettermanagement of severe symptoms.Moreover,
exploratory analyses of outcomes including severe events (hospitalizations and suicide attempts)
and side effects (significant weight gain) failed to show any evidence of benefit to treatment
tailoring.
The approach we used relies on several assumptions to ensure consistent estimators of the

ITR (blip) parameters. Perhaps most fundamentally, the results of our data analysis depend on
the assumptions we have made about the missing data. Up to 90% of PHQ measurements were
missing for some months and had to be imputed. We addressed that by including many variables
in the imputation models including all the covariates, PHQmeasurements, and potential tailoring
variables considered in the analyticmodel.Wemust also assume that all potential confounders have
been measured without error. We included several measures of sociodemographic factors, physical
andmental health and, importantly, depression symptom severity at treatment initiation. Thus, the
assumption of no unmeasured confounders is strong but plausible, given our knowledge of KPWA
prescribing patterns and the low imbalance observed between the two treatment groups in our
main analysis, we are confident our analyses were not dramatically impacted by unmeasured con-
founding. We also assumed positivity. The medication classes considered in our primary analysis,
SSRIs and SNRIs, are prescribed fairly interchangeably for depression treatment, making it likely
that treatment positivity holds. Additionally, no estimated propensity scores of 0 or 1, or close to
these extreme values were observed.
Finally, we made no attempt to perform variable selection or complex model fitting in the

propensity score. All variables included in the propensity score are known to be related to mental
health and symptoms of depression. Given that the number of potential confounders is small
relative to the sample size, there was no need to perform selection. We acknowledge that high-
dimensional settings may require carefully selecting confounders for inclusion in the propen-
sity score. This can be done in a variety of ways, for example, using outcome-adaptive LASSO
(Shortreed and Ertefaie, 2017), an approach that has been successfully implemented in the con-
text of ITRs (Bian and others, 2023). Other machine-learning methods have also been suggested
as approaches to estimating the propensity score, however they are not without controversy
(Alam and others, 2019).
In this work, we focused on a settingwith only two treatment alternatives. It would be straightfor-

ward to extend thesemethods to allow formultiple treatments. Amultinomial logistic model rather
than binomial logistic regression can be used to fit the nuisance treatment model; although, as in
the algorithm outlined in Section 2.1, the treatment model used conditions on those for whom the
outcome takes value 0 (i.e., it is not a typical “propensity score” across thewhole population). A gen-
eralized propensity score for categorical treatments has previously been incorporated into a related,
weighted regression framework to estimating tailored treatment strategies (Schulz andMoodie,
2021), although to date it has only been implemented in a continuous outcome setting. However,
there is no conceptual or theoretical barrier to using a similar approach with suitable balancing
weights in the binary outcome estimating function U2(β ,ψ). Further, Bian and others (2022)
demonstrated a doubly robust estimation procedure with selection (not including the fixed-point
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approach described here) for count as well as binary outcomes. Extending the current work to
accommodate multi-valued (count) outcomes also would likely be straightforward.
An important but challenging consideration for future work is the extension of the proposed

estimation approach to treatment sequences, i.e., estimating adaptive treatment strategies. This
methodology is particularly difficult in the context of a binary outcome, as the typical backward-
induction approach to estimation requires using pseudo-outcomes computed by “scaling up”
the observed outcome by the estimated blip function for individuals whose observed later-stage
treatment is not concordant with the estimated optimal treatment. However, binary outcomes have
no obvious, valid ways to scale up a zero-outcome to create a meaningful pseudo-outcome for
recursive estimation, as this scaling is done on the multiplicative scale; and thus, zero outcomes
remainunchanged.This problemhas beendiscussedpreviously—thoughno formal or theoretically
validated solution has been proposed—byWallace and others (2019). A possible alternativemay be
to pursue a dynamic marginal structural-based approach to estimation (Murphy and others, 2001;
van der Laan and Petersen, 2007; Orellana and others, 2010; Shortreed andMoodie, 2012) for the
longitudinal treatment sequence context rather than the regression-based backward induction used
in methods such as dWOLS and g-estimation. Thus, although extending the estimation approach
to treatment sequences has statistical and computation hurdles that are not trivial, overcoming
these hurdles is critical for providing better, evidence-backed support for treatment decision-
making. Given that this study did not find evidence that tailoring initial antidepressant therapies
by medication class reduces risk of severe depression symptoms, the ability to estimate the optimal
second-line and subsequent treatments for depression becomes more important. The approach in
this study provides a foundation for investigating if factors such as timing and reasons for treatment
failure (e.g., side effects, lack of therapeutic effect) are useful for guiding decisions about the
sequence of depression treatment.

SOFT WA R E
Software in the form of R code is available online at https://github.com/ZeyuBian/Biostatistics_
Moodie_2023.
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