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ABSTRACT
Actuarial practitioners now have access to multiple sources of insurance data corresponding to various
situations: multiple business lines, umbrella coverage, multiple hazards, and so on. Despite the wide use
and simple nature of single-target approaches, modeling these types of data may benefit from an approach
performing variable selection jointly across the sources. We propose a unified algorithm to perform sparse
learning of such fused insurance data under the Tweedie (compound Poisson) model. By integrating ideas
from multitask sparse learning and sparse Tweedie modeling, our algorithm produces flexible regularization
that balances predictor sparsity and between-sources sparsity. When applied to simulated and real data, our
approach clearly outperforms single-target modeling in both prediction and selection accuracy, notably
when the sources do not have exactly the same set of predictors. An efficient implementation of the
proposed algorithm is provided in our R package MStweedie, which is available at https://github.com/
fontaine618/MStweedie. Supplementary materials for this article are available online.
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1. Introduction

Insurance claim data are characterized by excess zeros, corre-
sponding to insurance policies without any claims, and highly
right-skewed positive values associated with nonzero claim
amounts, typically in monetary value. The modeling of insur-
ance claim data helps to predict the expected loss associated with
a portfolio of policies and is widely used for premium pricing.
As claim data reflect a unique mixed nature of distributions
with both discrete and continuous components, there are gen-
erally two popular modeling approaches. The first type consid-
ers a frequency-severity approach where claim frequency (i.e.,
whether a claim exists or not) and claim amount are modeled
separately (Yip and Yau 2005; Frees, Gao, and Rosenberg 2011;
Shi, Feng, and Ivantsova 2015), so that the two models need
to be used together for claim loss prediction. The second type
uses Tweedie’s compound Poisson model (or Tweedie model for
short; Tweedie 1984) that considers an inherent Poisson pro-
cess and models both components simultaneously. Our study
will focus on the second approach that draws upon Tweedie
distribution’s natural structure for claim data modeling (Smyth
and Jørgensen 2002; Frees, Meyers, and Cummings 2011; Zhang
2013; Shi, Feng, and Boucher 2016). It is also common practice
that insurers collect and maintain external information associ-
ated with insurance policies either directly from policy holders
or from third-party databases. Covariates generated from the
external information can be associated with the claim loss and
help improve the modeling process. Depending on the type
of insurance, this information may consist of policyholder’s
characteristics (demographics, employment status, experience,
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etc.) of the insured object characteristics (car type and usage,
property value, etc.) or of any other characteristic deemed rel-
evant.

Traditionally, actuarial practitioners adopt a single-target
approach that, for a given insurance product, assumes one pop-
ulation to be homogeneously characterized by some covariates
and aims to build a single Tweedie model solely from the prod-
uct’s sample data. Despite the wide use and simple nature of
this approach, practitioners now have access to multiple sources
of insurance data. For instance, many insurers have multiple
business lines such as the auto insurance and the property
insurance; in umbrella coverage, claim amounts are available
for multiple types of coverage and for different hazard causes of
the same coverage; multiple datasets can be accumulated for a
long period of time, during which business environment may
have changed significantly so that earlier-year and later-year
data sources may not be treated as one homogeneous population.
As a result, the modern multisource insurance data may not
be characterized well by a homogeneous model. With these
emerging multisource insurance data problems, much attention
has been drawn to addressing their modeling issues in statistics
and actuarial science. Both the frequency-severity and Tweedie
model approaches have been investigated in the context of mul-
tivariate regressions to model the multiple responses simultane-
ously (see Frees, Lee, and Yang 2016; Shi 2016 and references
therein).

Variable selection is one of the most important tasks in
building transparent and interpretable models for claim loss
prediction. Large-scale high-dimensional sparse modeling is

© 2019 American Statistical Association and the American Society for Quality
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commonly encountered as hundreds of covariates are often
considered as candidate variables while only a few of them
are believed to be associated with the claim loss or can be
used in the final model production. Under the single popu-
lation setting, efficient variable selection approaches designed
for the Tweedie model have been developed via a shrinkage-
type approach (see Qian, Yang, and Zou 2016 and references
therein). The increasingly prevalent multisource data scenarios
coupled with high dimensionality and large data scale pose
new challenges to actuarial practitioners. To our knowledge,
the corresponding variable selection issues for multisource
Tweedie models have not been studied in the literature. On
the one hand, simply treating all different data sources as if
they were from one population is problematic due to severe
model misspecification. On the other hand, it may not be ideal
either to perform variable selection separately on each indi-
vidual data source because it often results in a loss of estima-
tion efficiency. In the aforementioned multiline, multitype, or
multiyear scenarios, the different data sources often contain
similar types of covariates and some (or all) of them can be
relevant across some (or all) data sources, even if different data
come from totally different sets of customers. For example, both
auto and property insurance contain geographical, credit, and
experience variables that may be important in both lines of
business. Therefore, a proper variable selection process should
ideally take advantage of the potential connections among
data sources as opposed to simply treating each data source
separately.

In this article, we augment the multisource claim data anal-
ysis through an integrated shrinkage-based Tweedie modeling
approach that fuses different data sources to find commonly
shared relevant covariates. To insure our method is plausible,
we will assume that the different sources have some (if not
all) covariates in common. At the same time, our method
retains the ability to recover model structures and covariates
unique to individual data sources. In particular, we impose a
composite adaptive lasso-type penalty (Tibshirani 1996; Zou
2006; Simon et al. 2013) in the composite Tweedie model to
obtain both common and source-specific variables simultane-
ously. We study several different candidate penalty terms for our
multisource data setting and devise a new algorithm (named
MStweedie) to efficiently solve the corresponding optimization
problems in a unified fashion. Our proposal is closely related
to the celebrated multitask lasso in Lounici et al. (2011) that
intends to uncover shared information across different tasks
while achieving improved estimation, selection and prediction
efficiency compared to independent variable selection (Obozin-
ski, Wainwright, and Jordan 2008; Lounici et al. 2009; Huang
and Zhang 2010; Lounici et al. 2011) under least square settings.
Different from the existing multitask learning and related stud-
ies that mainly focused on the least squares (see, e.g., Jenatton
et al. 2010; Morales, Micchelli, and Pontil 2010; Kim and Xing
2012) or classification (see, e.g., Zhang et al. 2008; Friedman,
Hastie, and Tibshirani 2010; Obozinski, Taskar, and Jordan
2010; Vincent and Hansen 2014; Qian et al. 2019) setting, our
proposal solves the important challenges posed by the semi-
continuous, highly right-skewed claim data with excess zeros
which cannot be efficiently modeled by a Gaussian or logit
distribution. In particular, we show that the MStweedie algo-

rithm is theoretically guaranteed to converge to the optimiza-
tion target with at least linear rate, and is practically flexible
to handle source-specific missing covariates. In addition, we
implement our proposal in an efficient and user-friendly R
package called MStweedie (standing for multisource Tweedie
modeling), which is available at https://github.com/fontaine618/
MStweedie.

The article is organized as follows. In Section 2, we intro-
duce the sparse Tweedie model for multisource claim data and
derive a general objective function. Section 3 develops a uni-
fied algorithm to efficiently optimize that objective. Section 4
provides the details of implementation and tuning parameter
selection for the proposed algorithm. In Section 5, we compare
the performance of our proposal to other existing methods in
a series of numerical experiments on both simulated and real
data. Section 6 concludes the article. The technical proofs are
relegated to the appendix (supplementary materials).

2. Methodology

2.1. Tweedie’s Compound Poisson Model

The Tweedie model is closely related to the exponential disper-
sion models (EDM; Jørgensen 1987)

fY(y|θ , φ) = a(y, φ) exp
{yθ − κ(θ)

φ

}
,

parameterized by the natural parameter θ and dispersion param-
eter φ, where κ(·) is the cumulant function and a(·) is the
normalizing function. Both a(·) and κ(·) are known functions.
It can be shown that Y has mean µ ≡ E(Y) = κ̇(θ) and variance
var(Y) = φκ̈(θ), where κ̇(θ) and κ̈(θ) denote the first and
second derivatives of κ(θ), respectively. In this article, we are
primarily interested in the Tweedie EDMs, a class of EDMs that
have the mean-variance relationship var(Y) = φµρ , where ρ is
the power parameter. Such mean-variance relation gives

θ =
{

µ1−ρ

1−ρ , ρ ̸= 1
log µ, ρ = 1

and κ(θ) =
{

µ2−ρ

2−ρ , ρ ̸= 2
log µ, ρ = 2

. (1)

In particular, when ρ ∈ (1, 2), the Tweedie EDMs correspond to
a family of distributions called the compound Poisson distribu-
tions. In the sequel, we briefly discuss the compound Poisson
distributions and their connection to the Tweedie EDMs. A
compound Poisson random variable can be written as the sum
of a (random) Poisson number of Gamma random variables.
Specifically, let Z1, Z2, . . . , ZN be N iid random variables from
Gamma(α, γ ), where N follows Poisson(λ). We assume that the
Zi’s are independent of N. Then the sum of the Zi’s

Y =
{

0 if N = 0,
Z1 + Z2 + · · · + ZN if N = 1, 2, . . . (2)

follows the compound Poisson distribution

fY(y|λ, α, γ ) = P(N = 0)δ0(y) +
∞∑

j=1
P(N = j)fY|N=j(y)

= e−λδ0(y) +
∞∑

j=1

λjyjα−1e−λ−y/γ

j!γ jα)(jα)
,
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where δ0 is the Dirac delta mass at zero, fY|N=j(·) is the condi-
tional density of Y given N = j, and )(·) is the gamma function.
The compound Poisson distributions fit into a special class of
Tweedie EDMs with ρ ∈ (1, 2). To see this, we reparameterize
(λ, γ , α) by

λ = 1
φ

µ2−ρ

2 − ρ
, α = 2 − ρ

ρ − 1
, and γ = φ(ρ − 1)µρ−1.

The compound Poisson model will then have the form

log fY(y|µ, φ, ρ) = 1
φ

(
y µ1−ρ

1 − ρ
− µ2−ρ

2 − ρ

)
+ log aρ(y, φ), (3)

where

aρ(y, φ) =
{

1
y
∑∞

j=1
yjα

j!(ρ−1)jαφj(α+1))(jα)
if y > 0,

1 if y = 0.

It can be directly seen that (3) belongs to the Tweedie EDMs.
As a result, for the rest of this article, we simply refer to (3)
as Tweedie’s compound Poisson model (or the Tweedie model),
and denote it by Tw(µ, φ, ρ), where 1 < ρ < 2.

This equivalence provides a very intuitive justification for the
use of the Tweedie distribution in modeling insurance claim
data: the random variable N corresponds to the number of
claims during the exposure period, Z1, . . . , ZN correspond to
the claim amounts, and Y = ∑N

j=1 Zj then corresponds to the
aggregate claim amount. The case Y = 0 represents the absence
of claims during the exposure period and is a frequent situation
for this type of data.

2.2. A Sparse Tweedie Modeling Framework for
Multisource Claim Data

Suppose the claim data consist of K data sources (possibly from
different policy products), and each data source k (1 ≤ k ≤ K)
has nk policies. Given any policy i in data source k, assume

exposure is w(k)
i . For data source k, denote by Ỹ(k)

i = ∑N(k)
i

j=1 Z(k)
i,j

the corresponding claim loss, where N(k)
i is the claim frequency

and the Z(k)
i,j ’s are the claim severity. The goal is to model the

pure premium Y(k)
i = Ỹ(k)

i /w(k)
i . Here, the exposure is a

known measure of certain risk in force (e.g., the exposure of a
personal auto insurance can be the policy duration) so that in
the Tweedie model, we assume N(k)

i ∼ Poisson(λ
(k)
i w(k)

i ) and
Ỹ(k)

i,j | N(k)
i ∼ Gamma(α, γ (k)

i ), where λ
(k)
i represents a policy-

specific parameter for the expected claim frequency under unit
exposure, γ

(k)
i is a policy-specific parameter for claim severity,

and α is a known scalar (Dunn and Smyth 2005). Further
assume a mean-variance relation var(Y∗(k)

i ) = φ(k){E(Y∗(k)
i )}ρ ,

where Y∗(k)
i is the pure premium under unit exposure (that is,

w(k)
i = 1) and φ(k) is the source-specific dispersion. Then we

have Y(k)
i ∼ Tw(µ

(k)
i , φ(k)/w(k)

i , ρ) with µ
(k)
i = E(Y(k)

i ) (Smyth
and Jørgensen 2002; Yang, Qian, and Zou 2018).

Suppose that each policy i in data source k has p covariates
x(k)

i = (x(k)
i1 , . . . , x(k)

ip )⊤ . For brevity, we assume these covariates
are of the same type with equal dimension across different data

sources, but as will be discussed in our numerical studies, we can
generalize this setting to handle possibly unequal dimension sce-
narios. We adopt the commonly used multiplicative logarithmic
link

log µ
(k)
i = η

(k)
i = β

(k)
0 + x(k)⊤

i β(k),

where β(k) = (β
(k)
1 , . . . , β(k)

p )⊤ with β
(k)
j being the jth element

of β(k), j = 1, . . . , p. Let β0 = (β
(1)
0 , . . . , β(K)

0 )⊤ , β j =
(β

(1)
j , . . . , β(K)

j )⊤ , and β = (β⊤
1 , . . . , β⊤

p )⊤ ∈ RpK be the
target coefficient parameters. Assume that only a small frac-
tion of the covariates in x(k)

i are relevant to y(k)
i so that many

elements in β(k) are zero. Given K sources of polices D(k) =
{(y(k)

i , x(k)
i , w(k)

i )}nk
i=1 for k = 1, . . . , K, the multisource data

setting naturally leads to a composite objective function

L(β0, β) =
K∏

k=1

nk∏

i=1
fY(y(k)

i | µ(k)
i , φ(k)/w(k)

i , ρ), (4)

which, assuming independence across different data sources,
becomes the likelihood function. When the independence
assumption is violated, (4) can still be viewed as a composite
marginal likelihood (Varin, Reid, and Firth 2011), the study of
which plays an important role in allowing feasible estimation
of marginal parameters (see, e.g., Chandler and Bate 2007; Shi
2016). Without loss of generality, we assume same dispersion
φ = φ(1) = · · · = φ(K) across all data sources (otherwise, we
can simply adjust w(k)

i ’s in (5) accordingly). Hence, we assume
common dispersion parameters between subjects; it does not
much affect the modeling of the mean since the two parameters,
µ and φ, are orthogonal to each other from the compound
Poisson-Gamma distribution (Shi 2016). Taking negative log-
arithm and omitting constant terms, we obtain the following
objective function (up to a dispersion scalar)

ℓ(β0, β) =
K∑

k=1

nk∑

i=1
w(k)

i

⎧
⎨

⎩−y(k)
i e(1−ρ)η

(k)
i

1 − ρ
+ e(2−ρ)η

(k)
i

2 − ρ

⎫
⎬

⎭ , (5)

which is the negative log-likelihood under the independence
assumption and is a convex objective.

To take advantage of the commonly shared relevant covari-
ates while recovering source-specific model structures, we con-
sider the composite penalty (Zhao, Rocha, and Yu 2009)

Pα(β) =
p∑

j=1
vj

[
(1 − α)||β j||q + α||β j||1

]

for some 0 ≤ α ≤ 1 and q ∈ {2, ∞}, where the vj’s are
the penalty weights. The first component in Pα(β) is aimed to
find common relevant covariates across data sources and the
second component is intended to deal with potential between-
source differences in sparsity and to find source-specific relevant
covariates. When α = 0, Pα(β) simplifies to the group lasso if
q = 2 (Yuan and Lin 2006), while it gives a different “group
discount” if q = ∞ as only the largest coefficient is penalized
(Obozinski, Taskar, and Jordan 2006). In both cases, when the
jth covariate is selected by the model, then it is selected for all
sources, which means that the coefficient β

(k)
j will be nonzero
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for all sources k = 1, . . . , K. When 0 < α < 1 and q = 2,
Pα (β) becomes the sparse group lasso (Simon et al. 2013). In
that case, when the jth feature is included in the model, the q-
norm of β j is still freed from zero, but each individual coefficient
are individually penalized so that some components of β j may
still remain zero even though other components will be nonzero;
selecting the jth feature only ensure that the coefficient for at
least one (but not necessarily all) source is nonzero. The use of
the penalty weights is motivated from the adaptive Lasso (Zou
2006) for improved variable selection performance. Our integral
approach to sparse Tweedie modeling for multisource data aims
to solve the regularized objective

f ∗ = min
β0,β

f (β0, β), f (β0, β) = ℓ(β0, β) + λPα(β), (6)

where λ > 0 is the tuning parameter. We call (6) the L1/Lq(α)

regularization, and when α = 0, we simply call it L1/Lq
regularization (q = 2 or ∞).

As in most multitask learning algorithms, our proposed
approach has a single-task reinterpretation. Indeed, similar
to Turlach, Venables, and Wright (2005), we can model the
response y(k)

i through the equivalent log-link for the mean

log µ
(k)
i =

K∑

l=1
I (l = k)β

(k)
0 +

[
I (l = k) x(k)

i

]⊤
β(k) = x̃(k)⊤

i β ,

where

x̃(k)⊤
i =

⎛

⎜⎝0, 0⊤
K , . . . , 1, x(k)⊤

i︸︷︷︸
position k+1

, . . . , 0, 0⊤
K

⎞

⎟⎠ ,

β⊤ =
(
β

(1)
0 , β(1)⊤ , . . . , β(k)

0 , β(k)⊤ , . . . , β(K)
0 , β(K)⊤

)
.

Hence, our model can be seen has a single-source Tweedie
model with K·p features (plus the K intercepts) where a response
y(k)

i has nonzero features only for the group of feature related to
the kth source. The penalty Pα (β) then correspond to a sparse
group Lasso penalty where the groups are defined by grouping
a feature across sources. The novelty of our algorithm is actually
to profit from the specific structure of the groups and dummy
variables to improve the efficiency of the algorithm. Fitting a
single Tweedie with such a description of the groups would
be inefficient computationally since a large proportion of the
entries of the design matrix would artificially be zeroes.

3. Algorithm

In this section, we propose an efficient algorithm to solve the
penalized composite Tweedie model (6). We decompose the
description of our algorithm into four parts: Section 3.1 gives
a general idea on how to solve our optimization problem via the
cyclic groupwise proximal gradient (GPG) descent; Section 3.2
discusses an acceleration scheme for the proposed algorithm;
and Section 3.3 provides detailed solutions to the L1/Lq regu-
larization, which gives necessary information to introduce our
complete algorithm to solve the more general L1/Lq(α) regular-
ization in Section 3.4.

For data source k, denote the response vector by Y(k) =
(y(k)

1 , . . . , y(k)
nk )⊤ and the nk × p design matrix by X(k) =

(x(k)
1 , . . . , x(k)

nk )⊤ = (X(k)
1 , . . . , X(k)

p ). For consistency of notation,
we also let X(k)

0 = 1nk .

3.1. A Groupwise Proximal Gradient Algorithm for
MStweedie

Note that the penalty term Pα(β) in (6) is separable with respect
to the indices of the feature sets j = 1, . . . , p. We exploit this
property and propose to iteratively update and cycle through
the β j’s (j = 0, 1, . . . , p) via the proximal gradient (Beck and
Teboulle 2009) scheme which gives rise to a cyclic GPG algo-
rithm designed for MStweedie. Specifically, let b̃ be the current
iterate

b̃ ≡ (β̃0, . . . , β̃ j−1, β̃ j, β̃ j+1, . . . , β̃p)
⊤ ,

and b̃−j be the current iterate with the jth group excluded

b̃−j ≡ (β̃0, . . . , β̃ j−1, β̃ j+1, . . . , β̃p)
⊤ , j = 0, . . . , p.

Suppose we are about to update the group β j =
(β

(1)
j , . . . , β(K)

j )⊤ for some j ∈ {0, 1, . . . , p}. View the negative
log-likelihood function ℓ(β0, β) in (5) as a function of the jth
group β j, while keeping all the other groups fixed at b̃−j, that is,
ℓ(β j; b̃−j) = ℓ(β0, β)|βm=β̃m,0≤m≤p,m̸=j. For group j, note that
a quadratic approximation to ℓ(β j; b̃−j) around β̃ j is given by

ℓ(β j; b̃−j) ≈ ℓQj(β j; b̃, tj) (7)

≡ ℓ(b̃) + ∇jℓ(β̃ j; b̃−j)
⊤ (β j − β̃ j) + 1

2tj
∥β j − β̃ j∥2

2, tj > 0.

It can be seen that ℓQj(β j; b̃, tj) = ℓ(β j; b̃−j) when β j = β̃ j
for any tj > 0. To ensure the convergence of the algorithm,
the value of tj can be determined using the backtracking line
search (details given later in this section). In (7), the gradient
∇jℓ(β̃ j; b̃−j) can be written explicitly as

∇jℓ(β̃ j; b̃−j) (8)

= ∂

∂β j
ℓ(β j; b̃−j)

∣∣∣
β j=β̃ j

=
(
(η̃(k) − z̃(k))⊤ W̃(k)X(k)

j
)K

k=1,

where η̃(k) = (η̃
(k)
1 , . . . , η̃(k)

nk )⊤ with η̃
(k)
i = ∑p

j=0 x(k)
ij β̃

(k)
j ,

z̃(k) = (z̃(k)
1 , . . . , z̃(k)

nk )⊤ with

z̃(k)
i = η̃

(k)
i + w(k)

i

w̃(k)
i

(y(k)
i e(1−ρ)η̃

(k)
i − e(2−ρ)η̃

(k)
i ), (9)

and W̃(k) = diag(w̃(k)
1 , . . . , w̃(k)

nk ) with

w̃(k)
i = w(k)

i
(
(ρ − 1)y(k)

i e(1−ρ)η̃
(k)
i + (2 − ρ)e(2−ρ)η̃

(k)
i

)
. (10)

Now we apply the proximal gradient algorithm on ℓQj(β j; b̃, tj)
to update β j as follows. For τ > 0, define the proximal mapping
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of h(·) = (1−α)||·||q+α||·||1 as the minimizer of the following
problem

proxτh(u) = arg min
v

(
τh(v) + 1

2
∥v − u∥2

2

)
. (11)

For now, suppose that the solution to (11) is given (meth-
ods for computing the minimizer is deferred to Sections 3.3
and 3.4). We update β j by minimizing the following penalized
problem

β+
j (b̃, tj) = arg min

β j

ℓQj(β j; b̃, tj) + λPα,j(β j)

= arg min
β j

1
2
∥β j − (β̃ j − tj∇jℓ(β̃ j; b̃−j))∥2

2 + λvjtjh(β j)

= proxλvjtjh(β̃ j − tj∇jℓ(β̃ j; b̃−j)). (12)

Note that in (12), when j = 0, we have β+
0 (b̃, t0) = β̃0 −

t0∇jℓ(β̃0; b̃−0), since the intercept term is not penalized, that
is, Pα,0(β0) ≡ 0.

To guarantee convergence, we determine the step size tj in
(12) using backtracking line search. Define

Gtj(β̃ j) = 1
tj

{β̃ j − β+
j (b̃, tj)}

= 1
tj

{
β̃ j − proxλvjtjh(β̃ j − tj∇jℓ(β̃ j; b̃−j))

}
.

We initialize tj with some tmax > 0 and repeatedly shrink tj with
tj ← δtj for some prechosen 0 < δ < 1 until

ℓ(β+
j (b̃, tj)) = ℓ(β̃ j − tjGtj(β̃ j)) (13)

≤ ℓ(b̃) − tj∇jℓ(β̃ j; b̃−j)
⊤ Gtj(β̃ j) + tj

2
∥Gtj(β̃ j)∥2

2.

Once (13) is satisfied by β+
j (b̃, tj) for some tj, we set β̃ j ←

β+
j (b̃, tj) and move on to the next group j + 1 and com-

pute the update β+
j+1(b̃, tj+1). The algorithm cyclically updates

groups j = 0, 1, . . . , p, 0, 1, . . . , p, . . . until convergence of
(β̃0, β̃).

We summarize our proposal above with backtracking line
search in Algorithm 1, and call it MStweedie-GPG for short.
Moreover, we show that the proposed iterative approach is guar-
anteed to converge with at least linear rate in the following theo-
rem, whose proof can be found in Appendix D (supplementary
materials).

Theorem 1. In the MStweedie-GPG algorithm, let (β
(r)
0 , β(r))

be the update of (β0, β) after the rth cycle, r ≥ 0. The algo-
rithm with backtracking line search converges to the global
minimum f ∗ of (6) with at least a linear rate of convergence,
that is,

f (β(r+1)
0 , β(r+1)) − f ∗ ≤ c(f (β(r)

0 , β(r)) − f ∗)

for large enough r, where c ∈ (0, 1) is a constant.

Algorithm 1: MStweedie-GPG with backtracking line
search.

1 Initialize the coefficients with (β̃0, β̃) and choose some
0 < δ < 1;

2 repeat
3 for j = 0, 1, 2, . . . , p do
4 Initialize tj with tmax > 0;
5 repeat
6 Compute

β+
j (b̃, tj) = proxλvjtjh(β̃ j − tj∇jℓ(β̃ j; b̃−j)) using

the proximal operator in (21), where ∇jℓ(β̃ j; b̃−j)

is calculated from (8);
7 Compute Gtj(β̃ j) = 1

tj
{β̃ j − β+

j (b̃, tj)};
8 Set tj ← δtj;
9 until ℓ(β̃ j − tjGtj(β̃ j)) <

ℓ(b̃) − tj∇jℓ(β̃ j; b̃−j)⊤ Gtj(β̃ j) + tj
2 ∥Gtj(β̃ j)∥2

2;
10 Set β̃ j ← β+

j (b̃, tj);
11 end
12 until Convergence of (β̃0, β̃);
13 Return(β̃0, β̃);
14 Note: when j = 0, β+

0 (b̃, t0) = β̃0 − t0∇0ℓ(β̃0; b̃−0) and
Gt0(β̃0) = ∇0ℓ(β̃0; b̃−0)

3.2. Accelerated MStweedie-GPG

In the vanilla MStweedie-GPG algorithm, operation (13) for
backtracking is repeatedly evaluated during each groupwise
update, and is thus computationally expensive. We can accel-
erate our algorithm by fixing the step sizes and only update
them after (β0, β) converges in each loop. Specifically, instead of
searching for a new step size to update β j during each iteration
within a loop, we use a fixed step size t∗j as follows: given (β̃0, β̃)

at the beginning of each loop, we set the step sizes to t∗j = σ−1
j

for j = 0, 1, . . . , p, where σj is the largest element of ∇2
j ℓ(β̃ j; b̃−j)

with

∇2
j ℓ(β̃ j; b̃−j) = ∂2

∂β j∂β⊤
j

ℓ(β̃ j; b̃−j)

= diag
(
X(k)⊤

j W̃(k)X(k)
j , k = 1, . . . , K

)
. (14)

Next, we make the cyclic updates β̃ j ← β+
j (b̃, t∗j ) with

β+
j (b̃, t∗j ) = proxλvjσ

−1
j h(β̃ j − σ−1

j ∇jℓ(β̃ j; b̃−j)), (15)

for j = 0, 1, . . . , p, 0, 1, . . . , p . . . until (β̃0, β̃) converges during
this loop. Then we recompute step sizes t∗j using (14) and
repeat the above process. We refer to this scheme as the Accel-
erated MStweedie-GPG (or MStweedie-AGPG for short). We
summarize this practically important acceleration strategy in
Algorithm 2. It can be seen that the algorithm only updates step
sizes after (β̃0, β̃) converges in the sub-iteration 2(b) of Algo-
rithm 2. A similar technique for accelerating coordinate descent
algorithms can be found in Friedman, Hastie, and Tibshirani
(2010). Our empirical evidence shows that MStweedie-AGPG
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converges very fast and follows an overall descending trend; see
Figure A1 in the appendix (supplementary materials) for an
illustration. This is the algorithm we use for all our numerical
studies.

Algorithm 2: Accelerated MStweedie-GPG.
1 Initialize the coefficients with (β̃0, β̃);
2 repeat
3 Compute step sizes t∗j = σ−1

j for j = 0, 1, . . . , p, where
σj is defined in (14);

4 repeat
5 for j = 0, 1, 2, . . . , p do
6 Update β̃ j ← β+

j (b̃, t∗j ) =
proxλvjσ

−1
j h(β̃ j − σ−1

j ∇jℓ(β̃ j; b̃−j)) with the fixed
step sizes t∗j = σ−1

j , where the proximal operator
is given in (21) and ∇jℓ(β̃ j; b̃−j) is calculated
from (8);

7 end
8 until Convergence of (β̃0, β̃);
9 until Convergence of (β̃0, β̃);

10 Return(β̃0, β̃);

3.3. L1/Lq Regularization

In the unified algorithm of Section 3.1, it remains to show how
to solve (12). We first discuss the L1/Lq regularization case
(α = 0), which will be used in the next subsection to derive
solutions to the more general L1/Lq(α) regularization with
α ∈ [0, 1].

The following lemma translates the proximal operator of the
L∞ regularization (q = ∞) into a projection. Its proof is given
in Appendix A (supplementary materials).

Lemma 1. The minimization problem

β+
j (b̃, tj) = arg min

β j

1
2
∥β j−(β̃ j−tj∇jℓ(β̃ j; b̃−j))∥2

2+λvjtj∥β j∥∞

(16)
is equivalent to

β+
j (b̃, tj) = β̃ j − tj∇jℓ(β̃ j; b̃−j) (17)

− ProjB1(λvjtj)(β̃ j − tj∇jℓ(β̃ j; b̃−j)),
where ProjB1(τ )(·) is the L2-projection onto B1(τ ) = {v | ||v||1 ≤
τ }, the L1-ball with radius τ .

We use an extension of the algorithm suggested by Duchi
et al. (2008) to perform fast projections onto the L1-ball (see
Appendix A for details in the supplementary materials). The
KKT conditions of (16) can be shown (see Appendix B for
details in the supplementary materials) as follows
⎧
⎪⎨

⎪⎩

∥β̃ j − tj∇jℓ(β̃ j; b̃−j)∥1 ≤ λvjtj, β j = 0,
∥β̃ j − tj∇jℓ(β̃ j; b̃−j) − β j∥1 = λvjtj, β j ̸= 0,
β̃

(k)
j − tj∇jℓ(β̃ j; b̃−j)(k) − β

(k)
j = 0, β j ̸= 0, k ̸∈ M(β j),

(18)

where M(β j) =
{

k ∈ {1, . . . , K} : ∥β j∥∞ = |β(k)
j |

}
is the

maximizing index set.
Next, we still assume α = 0 and briefly discuss the L2

regularization case (q = 2) in (12). We will omit most of the
details and focus only on its differences from the L1/L∞ case.
The minimizer of the penalized objective

β+
j (b̃, tj)=arg min

β j

1
2
∥β j−(β̃ j−tj∇jℓ(β̃ j; b̃−j))∥2

2+λvjtj∥β j∥2

has closed form

β+
j (b̃, tj) = (∥β̃ j − tj∇jℓ(β̃ j; b̃−j)∥2 − λvjtj)+ (19)

β̃ j − tj∇jℓ(β̃ j; b̃−j)

∥β̃ j − tj∇jℓ(β̃ j; b̃−j)∥2
,

and the corresponding KKT conditions are
{

∥β̃ j − tj∇jℓ(β̃ j; b̃−j)∥2 ≤ λvjtj, β j = 0,
λvjtj

β j
∥β j∥2

+ tj∇jℓ(β̃ j; b̃−j) + (β j − β̃ j) = 0K , β j ̸= 0.
(20)

3.4. L1/Lq(α) Regularization

With the L1/Lq regularization discussed in the previous subsec-
tion to take advantage of possibly common covariates across
data sources, we are now ready to discuss the more general
L1/Lq(α) regularization (0 ≤ α ≤ 1) to achieve the goal of
uncovering relevant covariates unique to some data source.

It could seem complicated to derive a closed form expression
of the above proximal operator (the Fenchel conjugate of f
cannot be derived explicitly), but it is possible to solve it with
a proximal technique originally developed for the hierarchical
group lasso (Jenatton et al. 2010). Specifically, we rewrite our
composite penalty as a sum of Lq-norms (q = 2 or ∞) on a
set of groups G that is tree-structured by noting that ∥β j∥1 is
separable across k = 1, . . . , K

(1 − α)∥β j∥q + α∥β j∥1 = (1 − α)∥β j∥q + α

K∑

k=1
|β(k)

j |

= (1 − α)∥β j∥q +
K∑

k=1
α∥β(k)

j ∥q,

where we can identify G = {{1}, . . . , {K}, {1, . . . , K}}, which
is tree-structured. Consequently, we only require the proximal
operator of each norm and compose them according to the tree
ordering. Let u = β̃ j − tj∇jℓ(β̃ j; b̃−j) and τ = λvjtj. It is known
from Section 3.3 that the proximal operator of (1 − α)τ∥.∥q is

prox(1−α)τ∥·∥q(u) =
{

u − ProjB1((1−α)τ )(u), q = ∞,
(∥u∥2 − (1 − α)τ )+

u
∥u∥2

, q = 2,

and the proximal operator of ατ | · | is given by the soft-
thresholding operator

proxατ |·|(uk) = sgn(uk) (|uk| − ατ )+ =: S(uk, ατ ).
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Defining S(u, ατ ) as the component-wise soft-thresholding
operator, that is, [S(u, ατ )]k = S(uk, ατ ), we get

proxτh(u) = prox(1−α)τ∥·∥q (S(u, ατ ))

=
{

S(u, ατ ) − ProjB1((1−α)τ )(S(u, ατ )), q = ∞,
(∥S(u, ατ )∥2 − (1 − α)τ )+

S(u,ατ )
∥S(u,ατ )∥2

, q = 2,
(21)

the computation of which has been already studied in Sec-
tion 3.3.

Remark. Although we could wish for a general algorithm for
all q ≥ 1, our construction is only valid for q ∈ {2, ∞}. As
shown in Jenatton et al. (2010), the property used to derive the
proximal operator of the composite penalty is only true when
q ∈ {2, ∞}. Note also that the case q = 1 is simply the Lasso.

3.5. Missing Features Properties

One of the assumptions behind our algorithm is that all sources
share exactly the same set of features. In practice, distinct sets of
features may be encountered from different sources. For exam-
ple, if a dataset contains policies from different years where some
additional information is available in the later years, we may
split the data into two sources where the first source contains
fewer predictors than the second one. Another example is the
case where data come from—literally—different sources that do
not keep track of exactly the same information on the policy.

Suppose that the jth feature is missing from the kth source.
We can set X(k)

j = 0 for the corresponding j and k. It can
be shown that this treatment, together with the initialization
β

(k)
j = 0, keeps β

(k)
j at zero throughout the entire algorithm

for all choices of q ∈ {2, ∞} and 0 ≤ α ≤ 1. This way, predictor
j of source k is systematically excluded from the model.

Indeed, at any point of the algorithm, we have

∇jℓ(β̃ j; b̃−j)
(k) = (η̃(k) − z̃(k))⊤ W̃(k)X(k)

j = 0.

Hence, in the proximal operator, we have uk = β̃
(k)
j −

tj∇jℓ(β̃ j; b̃−j)(k) = 0 − 0 = 0. Then, the soft-thresholding
operator produces

S(uk, ατ ) = sgn(uk)(|uk| − ατ )+ = 0

for any 0 ≤ α ≤ 1. Thus, for q = 2, we get

[proxτh(u)]k = (||S(u, ατ )||2 − (1 − α)τ )+
S(uk, ατ )

||S(u, ατ )||2
= 0,

and, for q = ∞,

[proxτh(u)]k = −
[

ProjB1((1−α)τ )(S(u, ατ ))
]

k
= − sgn(uk)(|uk| − ξ)+ = 0.

In any case, we obtain β
(k)+
j = [proxτh(u)]k = 0. It should be

pointed out that this property does not prevent the same feature
from being included in the model for other sources, though.

4. Implementation

4.1. Regularization Path

To select the tuning parameter, we apply the MStweedie-GPG
algorithm on a decreasing sequence (λl)L

l=1. The sequence of
the corresponding solutions produces the solution path when
a fine grid of λ is used. We present the solution path algo-
rithm for solving MStweedie in Algorithm 3, where we wrap
the MStweedie-GPG algorithm in an outer loop over the λ

sequence. The sequence starts at λ1 = λmax, chosen so that
all coefficients except the intercepts are shrunken to zero, and
iterates successively to smaller values of λ until the last value,
λL, is reached.

The full sequence of λ is chosen as follows. We first compute
λmax via the KKT conditions (see below for details) and set
λmin = ελmax for some small ε (e.g., ε = 10−3). Then, we con-
struct a logarithmically decreasing sequence from λmax to λmin,
that is, λl = λmax (λmin/λmax)

l−1
L−1 , where l = 1, . . . , L. Note

that we want β̃ j = 0 for all j ̸= 0 when λ = λmax. From the KKT
conditions, that requires λ ≥ v−1

j ∥∇jℓ(β̃ j; b̃−j)∥1 for all j ̸= 0.
Therefore, we can choose λmax = max1≤j≤p v−1

j ∥∇jℓ(β̃ j; b̃−j)∥1.
Now at λ = λmax, we have β̃(init) = 0 and

β̃
(k)
0 (init) = arg min

β
(k)
0

nk∑

i=1
w(k)

i

{
−y(k)

i
e(1−ρ)β

(k)
0

1 − ρ
+ e(2−ρ)β

(k)
0

2 − ρ

}
,

= log
∑nk

i=1 w(k)
i y(k)

i∑nk
i=1 w(k)

i
, k = 1, . . . , K. (22)

Consequently, we obtain η̃
(k)
i = β̃

(k)
0 (init) and

∇jℓ(β̃ j; b̃−j)
(k) =

nk∑

i=1
w̃(k)

i
(
η̃

(k)
i − z̃(k)

i
)
x(k)

ij , (23)

which now can be used to determine λmax.

Algorithm 3: Solution path algorithm for solving MSt-
weedie

1. Initialize β̃ j = 0 and β̃0 = β̃0(init) according to (22).
2. Compute ∇jℓ(β̃ j; b̃−j) using (23) and set

λmax = max1≤j≤p v−1
j ∥∇jℓ(β̃ j; b̃−j)∥1 and λ = λmax.

3. For l = 2, . . . , L, do

(a)Increment λ ← λ
(

λmin
λmax

) 1
L−1 ,

(b)Update β̃ using Algorithm 1.

Once a solution path
{
(β̃

[l]
0 , β̃[l]

)
}L

l=1 is obtained, we could
use cross-validation (CV) to perform the model selection, where
the out-of-sample prediction deviance may be used as the
guided criterion. The scaled deviance from a single observation
is

d(k)
i = −2φ

{
log fY(y(k)

i |µ(k)
i , φ, ρ) − log fY(y(k)

i |y(k)
i , φ, ρ)

}

= 2
{y(k)(2−ρ)

i − y(k)
i µ

(k)(1−ρ)
i

1 − ρ
− y(k)(2−ρ)

i − µ
(k)(2−ρ)
i

2 − ρ

}
,
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where µ
(k)
i = exp(β̃

(k)
0 + x(k)⊤

i β̃
(k)

), and the full deviance is
then the weighted sum across all observations from all sources.
Often, we choose the optimal λ as the one that minimizes the
CV deviance (call it λm). If model simplicity and interpretabil-
ity are more of a concern, one may prefer the one-standard-
error rule (Hastie, Tibshirani, and Friedman 2009), that is,
choose optimal λ as the largest λl within one standard error
of λm.

4.2. Further Acceleration and Stabilization Strategies

Two tricks suggested by Friedman, Hastie, and Tibshirani (2010)
are added to our algorithm. First, the solution path is computed
using warm starts at each iteration to increase the stability of the
algorithm. This means that the initialization at λ = λl is chosen
to be the solution b̃[l−1] = (β̃

[l−1]
0 , β̃[l−1]

) from previously λ =
λl−1. Second, the MStweedie-GPG algorithm is augmented with
the active set updates: we first run a full cycle of the updates and
identify the set of active predictors A = {j ∈ {1, . . . , p}|β̃ j ̸= 0},
and then repeat the cycles only over j ∈ A until convergence.

Another method to speed up the calculations, similar to the
active set updates, is the sequential strong rule (Tibshirani et al.
2012). Specifically, it is designed to identify an active set on
which to perform the full MStweedie-GPG algorithm at each
λ. Before entering the algorithm at λl, we check the following
conditions for each j = 1, . . . , p

∥∥∇jℓ(β̃
[l−1]
j ; b̃[l−1]

−j )
∥∥

1 < vj(2λl − λl−1).

We exclude every predictor with index j that meets the above
condition and run the MStweedie-GPG algorithm on the
remaining predictors. Once the algorithm reaches convergence
with these remaining variables, we perform a final check to
verify that we do not accidentally exclude a predictor that should
have been included. The check is based on the KKT condi-
tions: for each predictor j initially excluded, we verify the KKT
condition with β j = 0, which requires ∥∇jℓ(β̃ j; b̃−j)∥q∗ ≤
λvj, where q∗ = 1 if q = ∞ and q∗ = 2 if q =
2. If at least one condition is violated, then the correspond-
ing predictor is added back to the active set. This process is
repeated until the KKT condition is satisfied for all excluded
predictors.

The algorithm with the sequential strong rule is presented in
Algorithm 4.

Algorithm 4: MStweedie sequential strong rule.
1. Do while V ̸= ∅:

(a) Identify S = {j : ∥∇jℓ(β̃ j; b̃−j)∥q∗ ≥ vj(2λl − λl−1)}
and SC = {1, . . . , p} \ S.

(b) Update β̃ as in Algorithm 1 while keeping β̃ j = 0 for
all j ∈ SC.

(c) Identify the violations
V = {j : ∥∇jℓ(β̃ j; b̃−j)∥q∗ ≤ λvj, j ∈ SC}.

Note: q∗ = 1 if q = ∞ and q∗ = 2 if q = 2.

4.3. Adaptive MStweedie

We also consider an adaptive version of MStweedie (a-
MStweedie). The a-MStweedie is motivated from Zou (2006),
where the adaptive lasso is used to improve model selection
performance over the regular lasso. In a-MStweedie, we first
obtain β̂

∗, the cross-validated parameter estimate under equal
penalty factors (i.e., vj = 1 for all 1 ≤ j ≤ p). Then, we update
the penalty factors vj = ||̂β∗

j ||−ϕ
q for some ϕ > 0 (default is

ϕ = 1) and refit the model with these new penalty factors. When
the initial CV yields β̂

∗
j = 0 for some j, we set vj to a large

machine number to ensure that this variable is not included in
the adaptive modeling.

5. Numerical Studies

5.1. Performance Assessment

We use deviance as the criterion to access model fit. First of
all, we split the data into two parts: a training set on which a
model is fit to yield the coefficient estimates, and a testing set on
which these estimates are used for prediction. The train and test
deviances are then obtained, respectively, from these two sets.

Three measures are considered for assessing selection per-
formance: the percentage of variables correctly identified (accu-
racy), the percentage of identified variables that are indeed true
variables (precision), and the percentage of true variables identi-
fied (recall). These three measures describe different aspects of a
variable selection result and are widely used in classification and
pattern recognition (see, e.g., Fawcett 2006). In terms of overall
performance, accuracy is perhaps a more interesting measure as
our goal is not only to find the true predictors but also to exclude
those spurious ones.

5.2. Synthetic Data

We consider a variety of settings under which our algorithm is
tested and compared to existing ones.

5.2.1. Setting 1—Unequal Coefficients, p < nk
This simulation setting is inspired by Gong, Ye, and Zhang
(2012), in which we set the number of sources to K = 10,
the number of observations to nk = 400, k = 1, . . . , 10,
and the number of covariates to p = 100. The covariates are
generated from independent normal distributions. Moreover,
we set the coefficient matrix β to zero everywhere except the
last 10 columns, which are generated from independent normal
distributions of mean 0 and variance 42σ with σ = 0.1. Finally,
we generate the responses y(k)

i from Tw(µ
(k)
i , φ, ρ) with φ = 1

and ρ = 1.5, where µ
(k)
i = exp(x(k)⊤

i β(k)) for all i and k.
We randomly split the above data into two equal parts (nk =

200 for each source): the first part is used to tune the model via
10-fold CV, while the second is used for testing the model. The
results are averaged over 100 replications. The following models
are compared: Full Lasso (L1-regularized Tweedie model on
the full dataset, using the HDtweedie package by Qian, Yang,
and Zou (2016)), Individual Lasso (Individual L1-regularized
Tweedie model for each source, also using HDtweedie), and
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Table 1. Results from Setting 1 with 100 replications.

(a) Setting 1: Mean (standard error)

Full Lasso Ind. Lasso L1/L∞ a-L1/L∞ L1/L2 a-L1/L2

Test dev. 2,642,427 17,710 17,330 5963 7763 5590
(553,415) (3234) (2066) (523) (717) (723)

Size 1.02 (0.36) 89.37 (0.43) 89.46 (0.89) 10.00 (0.00) 40.19 (1.34) 10.00 (0.00)

Accuracy 89.9 (0.2) 20.6 (0.4) 20.5 (0.9) 100.0 (0.0) 69.8 (1.3) 100.0 (0.0)
Precision 94.0 (1.9) 11.2 (0.1) 11.3 (0.1) 100.0 (0.0) 28.3 (1.1) 100.0 (0.0)
Recall 4.6 (1.2) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
L2 loss 12.76 (0.01) 1.56 (0.04) 1.87 (0.06) 1.20 (0.06) 1.30 (0.06) 1.03 (0.07)

(b) Setting 1: Mean rank (# of times best)

Full Lasso Ind. Lasso L1/L∞ a-L1/L∞ L1/L2 a-L1/L2

Test dev. 6.00 (0) 4.00 (5) 4.74 (0) 2.08 (16) 2.89 (2) 1.29 (77)

Size 1.06 (97) 5.36 (0) 5.58 (0) 1.97 (3) 4.00 (0) 1.97 (3)

Accuracy 3.04 (0) 5.36 (0) 5.58 (0) 1.00 (100) 3.93 (0) 1.00 (100)
Precision 1.27 (89) 5.35 (0) 5.57 (0) 1.00 (100) 3.97 (0) 1.00 (100)
Recall 6.00 (0) 1.00 (100) 1.00 (100) 1.00 (100) 1.00 (100) 1.00 (100)
L2 loss 6.00 (0) 3.74 (9) 4.86 (0) 2.29 (9) 2.77 (1) 1.34 (81)

NOTE: Part (a) shows the mean values of the statistics (with their standard errors listed in the parentheses). Part (b) shows the mean rank across the six models and, in
parentheses, the number of times the model is best.

MStweedie with L1/L∞, L1/L2, a-L1/L∞ (adaptive L1/L∞), and
a-L1/L2 (adaptive L1/L2) regularizations.

Part (a) of Table 1 lists the averages and standard errors of
different statistics. The test deviance, measuring the goodness
of fit of the corresponding model, shows that MStweedie with
the adaptive L1/L2 regularization is the best while the Full Lasso
performs very poorly on this matter. The poor performance
of Full Lasso is due to the fact that it has identical estimates
across sources, which is apparently not true according to our
data-generating mechanism.

If we disregard the Full Lasso (which selected no features
81 out of 100 times), the two adaptive procedures performed
the best in terms of variable selection performance, where each
picks exactly 10 predictors in every replication. This selection
matches exactly the true active variables so that both a-L1/L2
and a-L1/L∞ achieve perfect accuracy, precision and recall. For
the other models, the number of selected variables is much
larger, yielding low precision and accuracy even with perfect
recall. Finally, a-L1/L2 produces estimates that are closest (in
L2 norm) to the true coefficients. For both L1/L∞ and L1/L2,
their adaptive versions greatly increase the selection accuracy
and precision by picking much fewer variables while achieving
lower deviance and L2-loss. Overall, L1/L∞ exhibits similar per-
formance to Individual Lasso, but its adaptive version increases
the performance significantly.

The results about the ranking of these methods, reported in
part (b) of Table 1, gives similar conclusions. However, we can
see that, although being the best on average, a-L1/L2 is occa-
sionally outperformed by either Individual Lasso or a-L1/L∞ in
terms of test deviance.

5.2.2. Setting 2—Equal Coefficients, p > nk
In this setting, we consider the high-dimensional scenario (p >

nk) with local correlation structure. The data are generated
similarly as in Gu and Zou (2016) with nk = 300, p = 600, and
K = 5. We generate the covariates x(k)

i from the multivariate
normal distribution with mean 0 and covariance matrix $ =

(0.5|i−j|)p
i,j=1 and set β j = 0 for all j except j ∈ {2, 4, 8, 16, 32}

where it is set to 2 in all sources. We then simulate the responses
as in Setting 1 using µ

(k)
i = exp(x(k)⊤

i β(k)), φ = 1, and ρ = 1.5.
Results below are summarized from 100 replications.

Part (a) of Table 2 contains the average values and standard
errors of the different statistics. The lowest average test deviance
is achieved by a-L1/L∞ followed closely by Full Lasso while
Individual Lasso is significantly worse. The models selected by
L1/L∞ are much more complex than any other method. As
in Setting 1, the two adaptive methods performed perfectly in
terms of accuracy, precision and recall, since they select the
five true predictors exactly. Also, a-L1/L∞ produces the best
estimates in term of L2-loss. The study of the rankings, in part
(b) of Table 2, leads to the same observations except that a-L1/L2
and Full Lasso outperform a-L1/L∞ on some occasions in terms
of test deviance or L2-loss.

5.2.3. Setting 3—Within-Feature Sparsity
In multisource insurance claim data, some predictors may not
be relevant to all sources. For example, property age may only
help predict the property claim amount. Some information of
the same policyholders, such as credit history, however, may
be relevant for both sources. The model thus exhibits both
within-feature and between-sources sparsity. We consider a sce-
nario designed to generate such a model to specifically test our
L1/Lq(α) regularization.

The setting is similar to Setting 2, except that we voluntarily
set the coefficients of some true generating variables to zero in
certain sources

(β2, β4, β8, β16, β32) =

⎡

⎢⎢⎢⎢⎣

2 0 2 2 0
0 2 2 0 0
2 0 0 0 0
2 2 0 0 2
0 2 0 2 2

⎤

⎥⎥⎥⎥⎦
,

β j =0, j ̸∈ {2, 4, 8, 16, 32}.
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Table 2. Results from Setting 2 with 100 replications.

(a) Setting 2: Mean (standard error)

Full Lasso Ind. Lasso L1/L∞ a-L1/L∞ L1/L2 a-L1/L2

Test dev. 1430 1,136,266 3096 1161 6968 2572
(142) (265,655) (604) (129) (1277) (642)

Size 22.07 (0.76) 29.73 (1.44) 71.10 (2.33) 5.00 (0.00) 37.86 (0.94) 5.00 (0.00)

Accuracy 97.2 (0.1) 95.7 (0.2) 89.0 (0.4) 100.0 (0.0) 94.5 (0.2) 100.0 (0.0)
Precision 24.5 (0.6) 22.6 (2.0) 8.1 (0.4) 100.0 (0.0) 14.2 (0.4) 100.0 (0.0)
Recall 100.0 (0.0) 91.2 (2.5) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
L2 loss 0.43 (0.03) 8.86 (0.07) 0.70 (0.02) 0.34 (0.01) 1.03 (0.06) 0.53 (0.05)

(b) Setting 2: Mean rank (# of times best)

Full Lasso Ind. Lasso L1/L∞ a-L1/L∞ L1/L2 a-L1/L2

Test dev. 2.09 (30) 6.00 (0) 3.89 (0) 1.57 (55) 4.90 (0) 2.55 (15)

Size 3.34 (0) 3.87 (7) 5.97 (0) 1.06 (94) 4.67 (0) 1.06 (94)

Accuracy 3.34 (0) 4.01 (0) 5.97 (0) 1.00 (100) 4.67 (0) 1.00 (100)
Precision 3.32 (0) 3.94 (5) 5.96 (0) 1.00 (100) 4.66 (0) 1.00 (100)
Recall 1.00 (100) 1.70 (86) 1.00 (100) 1.00 (100) 1.00 (100) 1.00 (100)
L2 loss 2.16 (25) 6.00 (0) 3.84 (0) 1.44 (61) 4.97 (0) 2.59 (14)

NOTE: Part (a) shows the mean values of the statistics and their standard errors in parentheses. Part (b) shows the mean rank across the six models and, in parentheses, the
number of times the model is best.

Thus, the true model is sparse in terms of features (only five
generating variables), but it is also sparse within features since
some of the true features do not generate the responses in certain
sources.

Under Setting 2, we see that a-L1/L∞ produces the best fit. In
this setting, we compare Full Lasso (which should not perform
well) and Individual Lasso to a-L1/L∞(α) for different choices
of the mixing parameter α. The case α = 0 is exactly a-L1/L∞
and we also consider α = 0.5, α = 0.8 and α = 1. We note
that there is a small difference between Individual Lasso and
the case α = 1: both models consider the same regularization,
but the former selects a model through CV in each source,
while the latter selects a model through CV for all sources
simultaneously.

Under this setting, the statistics of size, accuracy, precision
and recall are calculated for each component β

(k)
j instead of

the vectors β j. This means that the true model has size 3 +
3 + 2 + 2 + 2 = 12. Using this definition, we will see
more clearly the effect of α on the sparsity of the selected
model. The results from 100 replications are summarized in
Table 3.

The lowest test deviance is achieved by a-L1/L∞(α) with
α = 0.5. It is not significantly better than other values of
the parameter, but clearly has improvement over the Full and
Individual Lasso for out-of-sample adjustment. We also observe
a decrease in the size of the model as α increases: starting
from 25 selected features with α = 0 (i.e., five features
selected in five sources since there is no selection performed
across sources) to less than 15 for α = 1, closing in to the
12 generating features. With perfect recall for all MStweedie
algorithms, this means that with α = 1 we achieve the best
accuracy and precision. Finally, the L2 loss being the small-
est under α = 0.5 means that its extra selected features
have coefficient estimates very close to 0 and that its coef-
ficient estimates for the true features are closer to the true
values.

5.2.4. Setting 4—Different Datasets
To test how our algorithm behave under circumstances where
some features are missing from certain sources, we consider
three simulation setups: (4A) some true generating variables are
missing from certain sources, (4B) some spurious variables are
missing from certain sources, and (4C) both true and spurious
variables are missing from certain sources. For all cases, we
generate data as in Setting 2 with K = 5, nk = 300, p = 600
and the true variable indices are {2, 4, 8, 16, 32}. In Setting 4A,
we set to 0 column 32 for sources 1 and 2 and columns 16 and
32 of source 3. In Setting 4B, we set to 0 the last 100 columns
of sources 1 and 2 and the last 200 columns of source 3. In
Setting 4C, we consider the zero columns of Settings 4A and
4B simultaneously. For demonstration purposes, we compare
Full Lasso, Individual Lasso and a-L1/L∞. The results over 100
replications are reported in Table 4.

Under Setting 4A, where true variables are omitted in some
sources, we find that a-L1/L∞ clearly outperforms both Full
Lasso and Individual Lasso under all criteria. As we would
expect, it does not achieve the same performance as when using
the complete dataset (Setting 2) due to removal of important
features.

Under Setting 4B, where only spurious variables are removed
from some sources, we do not observe significant difference in
any statistic compared to the models trained on the complete
data.

Under Setting 4C, where both true and spurious variables are
removed from some sources, we observe similar behavior as in
Setting 4A, with a-L1/L∞ having slightly better performance.
It seems that both Full Lasso and a-L1/L∞ are less inclined to
overfit the spurious information when it is missing from some
sources.

5.2.5. Setting 5—Scalability Study
Under the same construction of Setting 1, we conduct a short
scalability study of the influence of the number of covariates
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Table 3. Results from Setting 3 with 100 replications.

(a) Setting 3: Mean (standard error)

a-L1/L∞(α)

Full Lasso Ind. Lasso α = 0 α = 0.5 α = 0.8 α = 1

Test dev. 52,398 11,590 861 852 863 866
(5830) (1448) (9) (8) (10) (10)

Size 61.20 (5.52) 30.63 (0.55) 25.00 (0.00) 16.97 (0.20) 15.34 (0.18) 14.76 (0.17)

Accuracy 98.1 (0.2) 99.3 (0.0) 99.6 (0.0) 99.8 (0.0) 99.9 (0.0) 99.9 (0.0)
Precision 27.3 (2.4) 38.0 (0.5) 48.0 (0.0) 71.7 (0.9) 79.4 (1.0) 82.4 (1.0)
Recall 72.2 (3.0) 95.1 (1.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
L2 loss 5.99 (0.05) 2.73 (0.09) 0.38 (0.01) 0.34 (0.01) 0.36 (0.01) 0.36 (0.01)

(b) Setting 3: Mean rank (# of times best)

a-L1/L∞(α)

Full Lasso Ind. Lasso α = 0 α = 0.5 α = 0.8 α = 1

Test dev. 5.96 (0) 5.04 (0) 2.68 (31) 2.19 (31) 2.47 (15) 2.66 (23)

Size 4.82 (19) 5.10 (0) 4.37 (0) 2.89 (8) 1.68 (43) 1.23 (78)

Accuracy 5.56 (0) 5.15 (0) 4.19 (0) 2.68 (8) 1.52 (49) 1.08 (92)
Precision 5.42 (7) 5.14 (0) 4.19 (0) 2.75 (8) 1.59 (48) 1.15 (86)
Recall 4.27 (34) 2.14 (74) 1.00 (100) 1.00 (100) 1.00 (100) 1.00 (100)
L2 loss 6.00 (0) 5.00 (0) 2.87 (18) 2.00 (40) 2.41 (21) 2.72 (21)

NOTE: Part (a) shows the mean values of the statistics and their standard errors in parentheses. Part (b) shows the mean rank across the five models and, in parentheses,
the number of times the model is best.

Table 4. Results from Setting 4 with 100 replications: values represent mean values of the statistics and their standard errors in parentheses.

Setting 4: Mean (standard error)

(2) Complete data (4A) Missing true features

Full Lasso Ind. Lasso a-L1/L∞ Full Lasso Ind. Lasso a-L1/L∞
Test dev. 1430 1,136,266 1161 272,840 2,122,348 152,315

(142) (265,655) (129) (49,327) (839,704) (31,194)

Size 22.07 (0.76) 29.73 (1.44) 5.00 (0.00) 34.74 (2.83) 21.38 (1.33) 11.95 (0.44)

Accuracy 97.2 (0.1) 95.7 (0.2) 100.0 (0.0) 94.9 (0.5) 96.9 (0.2) 98.7 (0.1)
Precision 24.5 (0.6) 22.6 (2.0) 100.0 (0.0) 19.2 (1.3) 31.5 (2.7) 44.8 (1.8)
Recall 100.0 (0.0) 91.2 (2.5) 100.0 (0.0) 89.4 (1.4) 78.8 (3.5) 92.8 (1.5)
L2 loss 0.43 (0.03) 8.86 (0.07) 0.34 (0.01) 6.01 (0.13) 9.34 (0.04) 5.15 (0.08)

(4B) Missing spurious features (4C) Missing true and spurious features

Full Lasso Ind. Lasso a-L1/L∞ Full Lasso Ind. Lasso a-L1/L∞
Test dev. 1376 1,119,800 1164 245,761 2,116,184 119,081

(133) (265,508) (130) (46,198) (839,728) (18,616)

Size 19.53 (0.53) 29.77 (1.33) 5.00 (0.00) 31.25 (2.53) 21.49 (1.25) 11.60 (0.42)

Accuracy 97.6 (0.1) 95.8 (0.2) 100.0 (0.0) 95.5 (0.4) 96.9 (0.2) 98.8 (0.1)
Precision 27.4 (0.7) 22.1 (1.8) 100.0 (0.0) 21.1 (1.5) 29.9 (2.5) 46.4 (1.7)
Recall 100.0 (0.0) 94.4 (2.0) 100.0 (0.0) 90.4 (1.3) 80.8 (3.2) 94.6 (1.5)
L2 loss 0.41 (0.03) 8.79 (0.07) 0.34 (0.01) 5.99 (0.12) 9.33 (0.04) 5.09 (0.08)

NOTE: The four parts, respectively, show the results from Settings 2, 4A, 4B, and 4C for comparison.

Table 5. Description of the different parameters used in Setting 5.

Setting 5: Description of the scenarios

K p # of true variables % true variables nk

(a) 20 10 × 3i , i = 0, . . . , 5 10 – 300
(b) 20 10 × 3i , i = 0, . . . , 5 – 10% 300
(c) 5 × 2i , i = 0, . . . , 5 100 10 – 300
(d) 20 100 2i , i = 0, . . . , 5 – 300
(e) 5 50 10 – 5 × 4i , i = 0, . . . , 5
(f ) 5 1000 10 – 30 × 2i , i = 0, . . . , 5
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p, the number of sources K and sample sizes nk on the CPU
time. We consider different scenarios as shown in Table 5. The
running times are averaged over 10 independent runs and are
used to compare the L1/L∞ and L1/L2 regularizations to the
Individual Lasso.

Figure 1 contains the plot of the average CPU time versus
the variable of interest under the four schemes considered. In
parts (a) and (b), the running times of all three algorithms

increase at a similar linear rate. In part (c), we clearly see, as we
would expect, that the running time of individual regularization
increases linearly with the number of sources. In contrast, the
CPU times of the two MStweedie algorithms increase faster
than the linear rate and seem to diminish with K. Note that the
iteration complexity of the MStweedie algorithm is influenced
by K mainly in the step that requires Euclidean projections.
For L1/L∞ regularization, Condat (2016) pointed out that the
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Figure 1. Results from the scalability study under various conditions for synthetic data. The dashed line represents what a linear relation between the CPU time and the
variable of interest would follow. All axes are in logarithmic scales.



TECHNOMETRICS 351

algorithm by Duchi et al. (2008) has expected and observed
complexity O(K), but can be slower (up to O(K2)) in sparse
problems.

In part (d), we study the effect of sparsity by varying the
proportion of true variables in the model. For all three algo-
rithms, we note a slight increase of the computing time when
the proportion increases. In parts (e) and (f), we look at the
effect of the sample size nk in the cases nk > p and nk < p,
respectively. A linear rate can be observed for both cases with
the MStweedie algorithms. In contrast, the Individual Lasso has
CPU time increasing only sublinearly when nk < p.

Overall, L1/L∞ regularization is systematically slower than
L1/L2 regularization by a multiplicative constant. Both MSt-
weedie algorithms are slower than individual regularization only
by a multiplicative constant.

5.2.6. Setting 6—Correlated Responses in
Upon the request of a referee, we also study the impact of hav-
ing correlated responses on the performance of our proposed
algorithm. The simulation results show that all versions of our
algorithm significantly produce better test deviance and the
two adaptive versions clearly beats all other models. Due to
limited space, we provide the simulation results in Appendix E
(supplementary materials).

5.3. Real Data—Automobile Insurance Claims

We apply our algorithm to the analysis of a real dataset studied
in Yip and Yau (2005) and Qian, Yang, and Zou (2016). The
dataset consists of many automobile insurance policy records
and is available as AutoClaim in the R package cplm (Zhang
2011, 2013). A preprocessed version of the data is also avail-
able in our R package. It contains the records of 10,296 poli-
cies of which 6290 (61.1%) have no claims. We are interested

in predicting the aggregate claim loss of the policy using
the 15 predictors (along with their necessary transformations)
described in Table 6. We split the dataset into two sources
corresponding to potentially different types of driving license
(according to whether or not the policyholder had his or her
license revoked). Source 1 contains 9036 policies of which
5643 (62.5%) have no insurance claims and Source 2 contains
1260 policies of which 646 (51.3%) have no insurance claims.
Figure 2 plots the histogram of the aggregate claims for both
sources.

The following models are considered: the Full and Individual
Lasso, and the MStweedie with both L1/L2(α) and L1/L∞(α)

regularizations as well as their adaptive counterparts under
different values of the mixing parameter α ∈ {0, 0.5, 0.8, 1}.
We split the dataset into a training and a testing set consist-
ing, respectively, of two-thirds and one-third of the policies
of each source. The 10-fold CV is then performed to select
the best model. Finally, we summarize the results by aver-
aging them over 100 replications of training/testing random
partition.

The results of the study are reported in Table 7. In terms
of model fit, we note that all adaptive MStweedie methods
perform very similarly while the nonadaptive procedures and
the Individual Lasso are slightly worse and the Full Lasso is the
worst. In terms of model sparsity, the Individual Lasso produces
the simplest models on average followed by the adaptive MSt-
weedie algorithms and then the Full Lasso. The nonadaptive
MStweedie algorithms yield models that have significantly more
variables.

Now, by looking at the exact variables selected within each
source, we first see that MVR_PTS and AREA are systematically
included in every model except the Individual Lasso which does
not include AREA for source 2. When α is nonzero, there is no
major difference between the models under different values of

Table 6. Description of the variables in the auto insurance claim dataset.

AutoClaim Dataset Variable Description

Variable Type Transformation Description

Response
CLM_AMT5 Numerical ×10−3 Aggregate claim loss of policy

Source identifier
REVOKED Categorical(2) 1/2 Whether the policyholder’s license was (2) revoked in the past or (1) not

Predictors
KIDSDRIV Numerical – Number of child passengers
TRAVTIME Numerical – Commute time
CAR_USE Categorical(2) 1/2 (1) Private or (2) Commercial use
BLUEBOOK Numerical log Car value
NPOLICY Numerical – Number of policies
RED_CAR Categorical(2) 1/2 Whether the color of the car is (2) red or (1) not
MVR_PTS Numerical – Number of motor vehicle record points
AGE Numerical – Age of policyholder
HOMEKIDS Numerical – Number of children at home
GENDER Categorical(2) 1/2 Gender of policyholder: (2) male or (1) female
PARENT1 Categorical(2) 1/2 Whether (2) the policyholder grew up in a single-parent family or (1) not
AREA Categorical(2) 1/2 (1) Rural or (2) urban area
CAR_TYPE Categorical(6) Dummy(5) Type of car: (base) Panel Truck, (2) Pickup, (3) Sedan, (4) Sports Car, (5)

SUV, (6) Van
JOBCLASS Categorical(9) Dummy(8) Job class of policyholder: (base) Unknown, (2) Blue Collar, (3) Clerical, (4)

Doctor, (5) Home Maker, (6) Lawyer, (7) Manager, (8) Professional, (9)
Student

MAX_EDUC Categorical(5) Dummy(4) Maximal level of education of policyholder: (base) less than High School,
(2) Bachelors, (3) High School, (4) Masters, (5) PhD
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Figure 2. Frequency of the aggregate claim amounts in the AutoClaim dataset according the whether or not the policyholder’s license was revoked (defining the two
sources).

Table 7. Test deviance, size of the selected model and selected variables under different regularization schemes on the AutoClaim dataset.

Auto Claims: Mean (standard error)

Algorithm Test Deviance Size Selected variables (# of times in source 1, in source 2)

Full Lasso 22,203 (35) 5.32 (0.30) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(25,25),
MARRIED(14,14), PARENT1(6,6), KIDSDRIV(4,4), CAR_TYPE_3(4,4),
JOBCLASS_6(3,3), MAX_EDUC_3(3,3), BLUEBOOK(2,2),
JOBCLASS_3(2,2), JOBCLASS_4(2,2), MAX_EDUC_5(1,1)

Ind. Lasso 19,493 (33) 3.77 (0.11) MVR_PTS(100,100), AREA(100,36), CAR_TYPE_4(0,27),
CAR_USE(0,1), MARRIED(2,1), JOBCLASS_3(0,1),
JOBCLASS_6(1,1), MAX_EDUC_4(0,1), AGE_CAT_5(0,1)

L1/L∞ 19,475 (32) 13.08 (0.63) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(98,98),
JOBCLASS_3(59,59), JOBCLASS_6(59,59), CAR_TYPE_5(33,33),
MARRIED(25,25), JOBCLASS_7(22,22), KIDSDRIV(21,21),
AGE_CAT_5(20,20), AGE_CAT_2(16,16), JOBCLASS_5(15,15),
CAR_USE(12,12), BLUEBOOK(10,10), CAR_TYPE_6(10,10),
MAX_EDUC_4(10,10), JOBCLASS_4(8,8), JOBCLASS_8(7,7),
RED_CAR(4,4), TRAVTIME(3,3), CAR_TYPE_2(3,3),
CAR_TYPE_3(3,3), MAX_EDUC_2(3,3), AGE_CAT_4(3,3),
PARENT1(2,2), MAX_EDUC_3(2,2), AGE_CAT_3(2,2), NPOLICY(1,1),
GENDER(1,1), JOBCLASS_2(1,1), MAX_EDUC_5(1,1)

a-L1/L∞(0) 19,438 (32) 5.00 (0.12) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(45,45),
JOBCLASS_6(4,4), MARRIED(1,1)

a-L1/L∞(0.5) 19,437 (31) 4.31 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(1,28),
MARRIED(0,1), JOBCLASS_6(0,1)

a-L1/L∞(0.8) 19,431 (32) 4.29 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(1,26),
JOBCLASS_6(0,2)

a-L1/L∞(1) 19,431 (32) 4.29 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(0,28),
JOBCLASS_6(0,1)

L1/L2 19,456 (30) 9.86 (0.29) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(99,99),
JOBCLASS_3(50,50), JOBCLASS_6(44,44), CAR_TYPE_5(16,16),
JOBCLASS_7(16,16), JOBCLASS_5(12,12), AGE_CAT_5(11,11),
AGE_CAT_2(9,9), MAX_EDUC_4(8,8), CAR_USE(6,6), MARRIED(6,6),
BLUEBOOK(5,5), KIDSDRIV(2,2), RED_CAR(2,2), GENDER(1,1),
CAR_TYPE_3(1,1), CAR_TYPE_6(1,1), JOBCLASS_4(1,1),
JOBCLASS_8(1,1), MAX_EDUC_2(1,1), AGE_CAT_4(1,1)

a-L1/L2(0) 19,434 (31) 5.00 (0.11) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(48,48),
MARRIED(1,1), JOBCLASS_6(1,1)

(continued)
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Table 7. Continued

Auto Claims: Mean (standard error)

Algorithm Test Deviance Size Selected variables (# of times in source 1, in source 2)

a-L1/L2(0.5) 19,442 (32) 4.61 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(1,56),
JOBCLASS_6(0,2), MAX_EDUC_4(0,1), AGE_CAT_5(0,1)

a-L1/L2(0.8) 19,432 (31) 4.68 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(0,62),
JOBCLASS_6(0,4), MAX_EDUC_4(0,1), AGE_CAT_5(0,1)

a-L1/L2(1) 19,428 (31) 4.72 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(0,66),
JOBCLASS_6(0,3), MARRIED(0,1), MAX_EDUC_4(0,1),
AGE_CAT_5(0,1)

NOTE: The results are averaged over 100 replications of the training/testing splitting.
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Figure 3. MStweedie with adaptive L1/L∞ regularization on AutoClaim data. Panel (a) shows the plot of the 10-fold CV mean deviance (and its standard error) along the λ
sequence. Panel (b) plots the norm of the estimates, ||β j||∞ , along the λ sequence. In each pane, the grey vertical line indicates the λ for which the CV deviance is minimal
and the black vertical line indicates the λ value selected according to the one-standard-error rule.

α, but they all behave as expected: for example, they select the
variable CAR_TYPE_4 (corresponding to “Sports Car”) only
for source 2, corresponding to between-sources sparsity that the
α = 0 method cannot uncover.

CV is used to select the optimal value of λ. We plot the CV
deviance as well as its standard error along the sequence of λ

values and display the minimal value as well as the selected
λ according to the one-standard-error rule in Figure 3. The
figure also contains the plot of the norm of the estimated
coefficients for a-L1/L∞. It provides an excellent example of
why the one-standard-error rule is often favored in practice: its
selected model does not have a significantly different model fit
than the one minimizing the CV error, but it is considerably
sparser.

Furthermore, to have a real data example that approaches
more real-world situations, we artificially increase the

proportion of zeros of the dataset by sub-sampling the nonzero
responses. We consider target proportions between 65% and
95% and remove enough nonzero claim amounts observation
from the dataset to reach the given proportion. The new datasets
will be smaller in size and the proportion of zeroes may differ
between the two sources: the simple random sampling ensures
that the disproportion remains the same on average. Table 8
contains details on the new datasets.

The same experimental methodology as with the orig-
inal data is performed; Figure 4 contains the normalized
test deviance and model size, both averaged over 10 repli-
cations of the sampling, of the two base algorithms and of
a-L1/L∞(α) for α ∈ {0.8, 1}, which performed the best
on the original dataset. Uniformly over the range of pro-
portion of zeros, our algorithm exhibit performance similar
or better than individual Lasso and significantly better than
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Table 8. Number of observations and proportion of zeros in the whole dataset and
within each sources for the datasets sampled from the AutoClaim dataset to yield a
target global proportion of zeros.

AutoClaim: resampled datasets

Proportion of zeros

N Global Source 1 Source 2

10,296 61.6 62.5 51.3

9677 65.0 66.3 55.5
8986 70.0 71.2 60.8
8387 75.0 76.1 66.5
7863 80.0 81.0 72.4
7400 85.0 85.8 78.9
6989 90.0 90.6 85.4
6622 95.0 95.2 92.8

the Lasso on the complete dataset. Except for a proportion
of zeros of 95%, the adjustment to test data and the spar-
sity are essentially the same between the multisource algo-
rithms and the independent Lasso. For a proportion of 95%,
the multisource algorithm produce significantly sparser mod-
els with very similar adjustment. Hence, sharing information
between sources for variable selection seem to allow the algo-
rithm to discard more efficiently faint signals from particular
features.

5.4. Discussion—Choosing the Regularization

Before fitting the model, it is not obvious which regularization
should be used. All simulations as well as the real data example
indicate that adaptive regularization should always be preferred
to increase the prediction, estimation and selection efficiency of
our model. In our experiments, it seems that L1/L∞ performs

better than L1/L2 when the coefficients are the same across tasks
for a same feature while the converse is true when the coeffi-
cients differ between sources. Additionally, the sparse penalty
only helps reduce the size of the model for variable selection
(it does not improve the fit) and it seems that most of the gain
comes from relatively small α values.

Hence, we can outline some general guideline in selecting the
regularization. If the user suspect that the coefficient will vary
wildly between sources, then L1/L2 should be preferred while
L1/L∞ should be preferred when the coefficient are thought to
be roughly the same. A sparse penalty never seem to hurt, so
using α = 0.5 may uncover some additional sparsity. Nonethe-
less, it is difficult to predict what the optimal solution would look
like and it might be useful to study the results of a trial run to
tune the regularization of the real fit.

6. Conclusion

In this article, we develop a unified algorithm for sparse learning
of multisource insurance data using the MStweedie method.
The Mstweedie-GPG algorithm we proposed cyclically updates
each group of coefficients via the proximal gradient descent
scheme and enjoys fast convergence guarantee. This procedure
is embedded in a solution path algorithm to achieve the best
balance between goodness of fit and model sparsity.

Experiments on simulated data show that our approach
clearly outperforms simpler methods in prediction and selec-
tion accuracy. It is particularly effective for datasets having
distinct structures across the sources. The various regulariza-
tion schemes behave as expected and thus provide additional
flexibility for our algorithm to allow user specification of the
desired type of sparsity. While our implementation scales well
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Figure 4. For the two base algorithms and the two best multisource algorithms: (a) normalized test deviance and (b) number of variables in the model, both averaged
over 10 replications of the sampling of the AutoClaim dataset to yield target global proportions of zeros. The error bars represent one standard error around the mean.
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with the number of observations and variables in a dataset, we
caution that an increasing number of sources may slow down
the calculation because of the increased number of Euclidean
projections required. When applied to real data constituted
of aggregate claim amount of the automobile insurance, our
procedure convey similar messages to those from the simulated
experiments. We also note that although our approach is specifi-
cally designed for the Tweedie model with actuarial applications,
it is possible to develop similar algorithms for alternative model
choices.

In addition, though beyond the scope of our work, a promis-
ing approach is to use the multivariate copula to account for
the conditional correlation between data sources. For exam-
ple, Shi (2016) and Frees et al. (2018) proposed multivariate
Tweedie copula models, Czado et al. (2012) used a copula on the
frequency-severity pair of a single claim with Gamma severity
(see also Shi and Zhang 2013 and Shi, Feng, and Ivantsova 2015),
and Frees, Shi, and Valdez (2009) use a copula to jointly model
a single frequency with hierarchical Generalized Beta claim
amounts (see also Frees and Valdez 2008). There is also work
on joint modeling of multivariate claim counts (e.g., Bermúdez
and Karlis 2011; Nikoloulopoulos 2013; Shi and Valdez 2014).
See Frees, Lee, and Yang (2016) and many references therein
for a comprehensive review of multivariate insurance claim
data modeling. Accordingly, variable selection of multisource
data within a multivariate copula model framework can be a
promising topic and we leave it for further investigation.

Last but not least, we note that the Tweedie model has a wide
range of applications well beyond the scope of our presentation
in this article. Examples of nonnegative valued data with excess
zeros can also be found in other actuarial settings (Tong, Mues,
and Thomas 2013; Frees, Jin, and Lin 2013; Frees, Gao, and
Rosenberg 2011; Lauderdale 2012), and in ecology (Blakey et al.
2016; Foster and Bravington 2013; Zhang 2011), fishery (Ancelet
et al. 2010; Shono 2008), meteorology (Dunn 2004; Smyth 1996;
Swan 2006), and health (Buu et al. 2011; Moger and Aalen
2005; Smyth 1996), to name a few. We hope that this work
builds new and useful research tool for many of these promising
applications.

Supplementary Materials

MSTweedie TheR package implementing our proposed methods available
at the address https://github.com/fontaine618/MSTweedie.

AutoClaim The dataset used in the real data experiment is available within
MSTweedie package.

Appendices This appendix file contains additional numerical examples
and results not shown in the main article. (appendix.pdf)
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Appendix A. Projection onto the L1-Ball

Proof of Lemma 1. Note that (16) can be written as
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⌧ prox 1
⌧ h

⇤

⇣u
⌧

⌘
= ProjB1(⌧)(u).

To see this, note that the convex conjugate h
⇤ of h = || · ||1 is

h
⇤(u) = I{u:||u||11} =

8
><

>:

0, ||u||1  1,

+1, ||u||1 > 1,

and

2⌧h⇤
⇣z
⌧

⌘
=

8
><

>:

0, ||z||1  ⌧,

+1, ||z||1 > ⌧.
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Then

⌧ prox 1
⌧ h

⇤

⇣u
⌧

⌘
= ⌧ argmin

v
h
⇤(v) +

⌧

2

���v �
u

⌧

���
2

2

= argmin
z

h
⇤
⇣z
⌧

⌘
+

⌧

2

���
z

⌧
�

u

⌧

���
2

2
(z = ⌧v)

= argmin
z

h
⇤
⇣z
⌧

⌘
+

1

2⌧
kz� uk22

= argmin
z

2⌧h⇤
⇣z
⌧

⌘
+ kz� uk22 .

The objective function is minimized at where 2⌧h⇤ � z
⌧

�
is finite, i.e., ||z||1  ⌧ . Hence, we get

⌧ prox 1
⌧ h

⇤

⇣u
⌧

⌘
= argmin

z:||z||1⌧
kz� uk22 = ProjB1(⌧)(u).

If ||u||1  ⌧ , we obviously have ProjB1(⌧)(u) = u. Otherwise, we have to solve

KX

k=1

(|uk|� ⇠)+ = ⌧

for ⇠ and compute

⇥
ProjB1(⌧)(u)

⇤
k
= sgn(uk) (|uk|� ⇠)+ .

Duchi et al. (2008) suggest a linear time algorithm to perform projection onto the simplex that

can be easily extended to projection onto the L1-ball. Algorithm 5 summarizes the procedure.

Appendix B. KKT Conditions

Denote u = �̃j � tjrj`(�̃j|b̃�j). Note that

||u||1 = max
k

|uk| = max
k

|e>k u|,

where ek = (I(j = k), 1  j  K)>. For each individual |e>k u|, we have

@|e>k u| = ek@|e
>
k u| = ek · sk,

3



Algorithm 5: Linear time projection of y 2 Rn onto the L1-ball of radius z > 0 (Duchi et al.,
2008)

1. Consider v = (|y1|, . . . , |yn|)>;

2. Project v onto the simplex:

(a) Initialize U = {1, . . . , n}, s = 0, ⇢ = 0;

(b) While U 6= ;, do:

i. Pick k 2 U at random;
ii. Partition U = G [ L, where G = {j 2 U |vj � vk} and L = U \G;

iii. Compute �⇢ = |G| and �s =
P

j2G vj;
iv. If (s+�s)� (⇢+�⇢)vk < z, then set s s+�s, ⇢ ⇢+�⇢ and U  L.

Otherwise, set U  G \ {k};

(c) Set ✓ = (s� z)/⇢;

(d) Compute the projection onto the simplex w = (w1, . . . , wn)>, where
wi = max(vi � ✓, 0);

3. Output x = (x1, . . . , xn)>, the projection onto the L1-Ball, where xi = wi · sgn(yi).

where

sk =

8
>>>><

>>>>:

{1} e>k u > 0,

{�1} e>k u < 0,

[�1, 1] e>k u = 0.

Thus we can obtain the sub-differential for ||u||1

@||u||1 = conv
[

k2M(u)

{ek · sk},

where M(u) =
�
k : |e>k u| = ||u||1

 
is the maximizing indices set and conv denotes the convex

hull. This implies that an optimal solution needs to satisfy the condition: 0 2 rj`(�̃j; b̃�j) +

t
�1
j (�j � �̃j) + �vj@||�j||1, i.e.,

1

�vjtj

⇣
�̃j � tjrj`(�̃j; b̃�j)

⌘
�

1

�vjtj
�j 2 conv

[

k2M(�j)

{ek · sk}. (24)
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If �j = 0, then M(�j) = {1, . . . , K} resulting in a convex hull equal to the L1 unit ball formed

by {ek · s}Kk=1. Thus, from (24), we require k�̃j � tjrj`(�̃j; b̃�j)k1  �vjtj . In practice, our

algorithm builds the model upwards: it will never exclude a feature from the model (i.e., by setting

�j = 0) once it is already included (i.e., �̃j 6= 0 for some previous iteration) so that these two

inequalities will be equivalent.

For �j 6= 0, we need to verify the above inclusion directly. If (24) holds, then we must have

1

�vjtj

⇣
�̃
(k)
j � tjrj`(�̃j; b̃�j)

(k)
⌘
�

1

�vjtj
�
(k)
j = 0

for all k 62M(�j), i.e., |�(k)
j | 6= k�jk1, while kt�1

j �̃j �rj`(�̃j; b̃�j)� t
�1
j �jk1 = �vj since the

convex hull must be a subset of the boundary of the L1 ball of radius �vj . These two conditions are

also sufficient for (24) to hold.

Appendix C. Algorithm Verification

To check the validity of our algorithm, we consider the modeling under L1/L1 regularization of

simulated data with K = 5, p = 20, nk = 200 and 4 true variables in setting 1.

In Section 3.1, we have seen that the inner loop of the algorithm (the MStweedie-GPG algorithm)

should feature the strict descent property. We can plot the difference in the objective function

`Q(�̃0, �̃)� `Q(�0,�) and check whether this value is positive for every cycle of the MStweedie-

GPG algorithm. The theoretical solution should always exhibit the descent property where a

numerical solution will possibly violate that check. Figure A1 displays this verification for the current

example. Except minor violations, we can see that this property is satisfied by our implementation.

The KKT conditions are at the heart of minimizing the penalized likelihood `(�0,�) + �P↵(�).

Along the solution path, the KKT conditions in (18) should always be verified by the theoretical

solution. However, a numerical solution could only approach this analytical value within certain

precision and therefore may fail the KKT check. Thus, we can plot the values of these conditions

for both zero and non-zero estimates and check how far they deviate from their theoretical values.

Figure A2 shows these conditions for every j = 1, . . . , p along the sequence of � values. There are

exactly no violations of the condition on excluded variables and the condition on included variables

is never violated by a large value.
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Figure A1: Verification of the descent property in the MStweedie-GPG algorithm with synthetic

data: the difference in objective function is plotted versus the iteration number (representing one

MStweedie-GPG cycle). The vertical dotted lines represent new � values in the solution path.
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Figure A2: Verification of the KKT conditions with synthetic data. The curves in each panel

trace the path of the value ||�j ||1/vj � � for one j. In part (a), we verify the condition on

non-zero estimates, i.e. variables included in the model for a given �, where we expect the value

to be 0. In part (b), we verify the condition on zero estimates, i.e. variables excluded from the

model, where we expect the value to be below 0.
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Appendix D. Convergence of MStweedie-GPG with Line Search

Lemma 2. For each j 2 {0, 1, . . . , p}, rj`(�j; b̃�j) is uniformly Lipschitz continuous in the

sublevel set L0 = {(�0,�) : f(�0,�)  f(0,0)}, where f(�0,�) = `(�0,�) + �P↵(�). In other

words, there exists Mj 2 (0,1) such that the inequality

krj`(�j; b̃�j)�rj`(�
0
j; b̃�j)k2 Mjk�j � �0

jk2

holds for any �j,�
0
j and b̃�j such that (�j, b̃�j) 2 L0 and (�0

j, b̃�j) 2 L0. Moreover, r`(�0,�)

is uniformly Lipschitz continuous with constant M 2 (0,1), i.e., for all (�0,�), (�
0
0,�

0) 2 L0,

kr`(�0,�)�r`(�
0
0,�

0)k2 Mk(�0,�)� (�0
0,�

0)k2.

Proof of Lemma 2

Proof. As will be shown in the proof of Theorem 1, the MStweedie-GPG algorithm is descending

along its iterations and we can thus restrict the domain of (�0,�) to the sublevel set L0. Without

loss of generality, assume not all y(k)i ’s are zero. Define ⌘(k)i = �
(k)
0 + x(k)>

i �(k)
, i = 1, . . . , nk, k =

1, . . . , K. It follows that the set

C0 = {⌘ = (⌘(k)i , 1  i  nk, 1  k  K) : (�0,�) 2 L0}

is convex compact. Therefore, for all (�0,�) 2 L0, ⌘
(k)
i is bounded by ⌘max, where

⌘max = max
1ink,1kK

sup
(�0,�)2L0

|⌘
(k)
i | <1.

Also, w(k)
i and y

(k)
i are bounded, respectively, by

wmax = max
1ink,1kK

w
(k)
i and ymax = max

1ink,1kK
y
(k)
i .

Let

w
(k)
i = w

(k)
i

�
(⇢� 1)y(k)i e

(1�⇢)⌘
(k)
i + (2� ⇢)e(2�⇢)⌘

(k)
i
�
.
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Note that w(k)
i is bounded by

max
1ink,1kK

sup
(�0,�)2L0

|w
(k)
i |  wmax

�
ymax(⇢� 1)e(⇢�1)⌘max + (2� ⇢)e(2�⇢)⌘max

�
⌘ C.

Let Mj = Cmax1kK kX
(k)
j k

2
2. We can see that

r
2
j`(�j; b̃�j) =

@
2

@�j@�
>
j

`(�j; b̃�j)

= diag
⇣
X

(k)>
j [diag(w(k)

1 , . . . , w
(k)
nk
)]X(k)

j , k = 1, . . . , K
⌘

�MjIK , 8(�j; b̃�j) 2 L0.

It follows from the mean-value theorem that rj`(�j; b̃�j) is uniformly Lipschitz continuous on the

sublevel set L0. Indeed, the inequality

krj`(�j; b̃�j)�rj`(�
0
j; b̃�j)k2 Mjk�j � �0

jk2

holds for any �j,�
0
j and b̃�j satisfying (�j, b̃�j) 2 L0 and (�0

j, b̃�j) 2 L0. Now let

M = max
1kK

C⇤max(X̂
(k)>X̂(k)),

where X̂(k) = (1nk
,X(k)) and ⇤max(·) denotes the largest eigenvalue of the enclosed matrix. We

can similarly show that r`(�0,�) is uniformly Lipschitz continuous with constant M for all

(�0,�) 2 L0.

Proof of Theorem 1

Proof. To simplify notation, let b = (�0,�) such that bj = �j, 0  j  p. Also, let `(b) =

`(�0,�), h(b) = �P↵(�) and f(b) = `(b) + h(b). Since h is separable in b, we let hj(bj) =

�P↵,j(bj), 0  j  p. Denote by r`(b) = @`(b)/@b the gradient of ` and by rj`(b) =

@`(b)/@bj the groupwise gradient of `. Letr2
j`(b) = @

2
`(b)/(@bj@b>

j ) be the Hessian matrix of

`(·) for group j. In Lemma 2, we have shown that r`(·) is uniformly Lipschitz continuous on the

sublevel set L0 with constant M and rj`(·) is uniformly Lipschitz continuous on the sublevel set

L0 with constant Mj, 0  j  p. Moreover, from (10), it can be shown that w(k)
i is lower-bounded

8



in the sublevel set L0. First, we have

w
(k)
i �

⇣
⇢� 1

2� ⇢

⌘3�2⇢

w
(k)
i (y(k)i )2�⇢

I(y(k)i > 0) + (2� ⇢)e�(2�⇢)⌘maxI(y(k)i = 0) > 0

for all b 2 L0 and 1  i  nk, 1  k  K. Let

wmin = min

⇢⇣
⇢� 1

2� ⇢

⌘3�2⇢

min
i,k:y

(k)
i >0

w
(k)
i (y(k)i )2�⇢

, (2� ⇢)e�(2�⇢)⌘max

�
.

Then we can see that w(k)
i � wmin > 0. Therefore

r
2
j`(b) ⌫ diag

⇣
X

(k)>
j [diag(w(k)

1 , . . . , w
(k)
nk
)]X(k)

j , k = 1, . . . , K
⌘

⌫ wmin diag
⇣
kX

(k)
j k

2
2, k = 1, . . . , K

⌘
.

As long as none of X̂(k)’s columns are zero (otherwise we simply remove that column and the

corresponding group variable), this implies that `(·) is groupwise strongly convex in L0.

Let tr+1
j be the first step size that satisfies (13) when updating group bj in the (r + 1)-st cycle of

MStweedie-GPG. We claim that

�

Mj
 t

r+1
j  tmax, 0  j  p. (25)

Indeed, recall that in the line search, tj starts with tmax. The search then continues by scaling tj

down with the factor � 2 (0, 1). Therefore, the last inequality holds in (25). Denote

Gtj(b̃) = Gtj(�̃j; b̃�j) =
�̃j � prox�vjtjh(�̃j � tjrj`(�̃j; b̃�j))

tj
=

�̃j � �+
j

tj
.

By the definition of Mj , we can see that

`(�+
j ; b̃�j)  `(b̃) +rj`(�̃j; b̃�j)

>(�+
j � �̃j) +

Mj

2
k�+

j � �̃jk
2
2

= `(b̃)� tjrj`(�̃j; b̃�j)
>
Gtj(b̃) +

Mjt
2
j

2
kGtj(b̃)k

2
2

holds for any tj . Compared to (13), the above inequality implies that (13) can be satisfied by all

tj 2 [0,M�1
j ]. Consequently, the first inequality holds in (25). Now let tmin = �/(max0jp Mj),

we conclude that tr+1
j 2 [tmin, tmax] for all j and r.
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In the cyclic MStweedie-GPG algorithm, let br be the update of b after the r-th cycle. For

notational convenience, define the following auxiliary variables

Br+1
j ⌘ (br+1

0 , . . . ,br+1
j�1,b

r
j ,b

r
j+1, . . . ,b

r
p)

>
, j = 0, . . . , p,

Br+1
�j ⌘ (br+1

0 , . . . ,br+1
j�1,b

r
j+1, . . . ,b

r
p)

>
, j = 0, . . . , p,

For z 2 RK , let

(z;Br+1
�j ) ⌘ (br+1

0 , . . . ,br+1
j�1, z,b

r
j+1, . . . ,b

r
p)

>
.

Clearly we have Br+1
0 = br and Br+1

p+1 = br+1, and we have

Br+1
j = (br

j ;B
r+1
�j ), Br+1

j+1 = (br+1
j ;Br+1

�j ).

Under the new notation, (13) can be rewritten as

`(Br+1
j+1) = `(br+1

j ;Br+1
�j )  `(Br+1

j )�tr+1
j rj`(B

r+1
j )>Gtr+1

j
(Br+1

j )+
t
r+1
j

2
kGtr+1

j
(Br+1

j )k22, (26)

where

Gtr+1
j

(Br+1
j ) ⌘ Gtr+1

j
(br

j ;B
r+1
�j ) = �

br+1
j � br

j

t
r+1
j

. (27)

Next, we show that for any z 2 RK
,

f(Br+1
j+1)  f(z;Br+1

�j ) +Gtr+1
j

(Br+1
j )>(br

j � z)�
t
r+1
j

2
kGtr+1

j
(Br+1

j )k22. (28)

Let

`Qj(B
r+1
j+1) = `Qj(b

r+1
j ;Br+1

�j ) = `(Br+1
j ) +rj`(B

r+1
j )>(br+1

j � br
j) +

1

2tr+1
j

kbr+1
j � br

jk
2
2.

The gradient of `Qj is

rj`Qj(B
r+1
j+1) = rj`(B

r+1
j ) +

br+1
j � br

j

tj
= rj`(B

r+1
j )�Gtr+1

j
(Br+1

j ). (29)

10



By subgradient optimality condition, we have

0 2 rj`Qj(B
r+1
j+1) + @hj(b

r+1
j ),

thus

Gtr+1
j

(Br+1
j )�rj`(B

r+1
j ) 2 @hj(b

r+1
j ). (30)

Now by convexity of `

`(z;Br+1
�j ) � `(br

j ;B
r+1
�j ) +rj`(B

r+1
j )>(z� br

j), (31)

and the convexity of h

h(z;Br+1
�j ) = hj(z) +

X

0mp,m 6=j

hm(b
r+I(m<j)
m ) � h(br+1

j ;Br+1
�j ) + @hj(b

r+1
j )>(z� br+1

j ) (32)

and (13), we have that for any z 2 RK
,

f(Br+1
j+1) = f(br+1

j ;Br+1
�j ) = `(br+1

j ;Br+1
�j ) + h(br+1

j ;Br+1
�j )

(26)
 `(Br+1

j )� t
r+1
j rj`(B

r+1
j )>Gtr+1

j
(Br+1

j ) +
t
r+1
j

2
kGtr+1

j
(Br+1

j )k22 + h(br+1
j ;Br+1

�j )

(31)(32)
 `(z;Br+1

�j ) +rj`(B
r+1
j )>(br

j � z)� t
r+1
j rj`(B

r+1
j )>Gtr+1

j
(Br+1

j )

+
t
r+1
j

2
kGtr+1

j
(Br+1

j )k22 + hj(z) + @hj(b
r+1
j )>(br+1

j � z) +
X

0mp,m 6=j

hm(b
r+I(m<j)
m )

(30)
= `(z;Br+1

�j ) +rj`(B
r+1
j )>(br

j � z)� t
r+1
j rj`(B

r+1
j )>Gtr+1

j
(Br+1

j )

+
t
r+1
j

2
kGtr+1

j
(Br+1

j )k22 + hj(z) + (Gtr+1
j

(Br+1
j )�rj`(B

r+1
j ))>(br+1

j � z)

+
X

0mp,m 6=j

hm(b
r+I(m<j)
m )

= `(z;Br+1
�j ) + h(z;Br+1

�j ) +rj`(B
r+1
j )>(br

j � br+1
j )� t

r+1
j rj`(B

r+1
j )>Gtr+1

j
(Br+1

j )

+
t
r+1
j

2
kGtr+1

j
(Br+1

j )k22 +Gtr+1
j

(Br+1
j )>(br+1

j � br
j + br

j � z)

(27)
= f(z;Br+1

�j ) +Gtr+1
j

(Br+1
j )>(br

j � z)�
t
r+1
j

2
kGtr+1

j
(Br+1

j )k22,

which proves (28).
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Now taking z = br
j in (28), we have

f(Br+1
j )� f(Br+1

j+1) �
t
r+1
j

2
kGtr+1

j
(Br+1

j )k22 =
1

2tr+1
j

kbr
j � br+1

j k
2
2 �

1

2tmax
kbr

j � br+1
j k

2
2,

which implies that the MStweedie-GPG algorithm is descending. Moreover, we have the descent

property of MStweedie-GPG over the cycles

f(br)� f(br+1) =
pX

j=0

[f(Br+1
j )� f(Br+1

j+1)] � (2tmax)
�1
kbr
� br+1

k
2
2. (33)

Now let X ⇤ := {b⇤
2 L0 : f(b⇤) = minb2L0 f(b)} be the optimal solution set of problem (6)

and define dX ⇤(b) := minb⇤2X ⇤ kb� b⇤
k2 to be the minimum distance from b to X

⇤. Let br⇤ be

the point in X
⇤ such that kbr

� br⇤
k2 = dX ⇤(br). We also have f(br⇤) = f

⇤ := minb2L0 f(b). By

the mean value theorem, there exists µ 2 [0, 1] and ⇣r = µbr+1 + (1� µ)br⇤ such that

`(br+1)� `(br⇤) = (r`(⇣r))>(br+1
� br⇤).

It follows that

f(br+1)� f
⇤ = f(br+1)� f(br⇤)

= `(br+1)� `(br⇤) +
pX

j=0

[hj(b
r+1
j )� hj(b

r⇤
j )]

=
pX

j=0

[rj`(⇣
r)>(br+1

j � br⇤
j ) + hj(b

r+1
j )� hj(b

r⇤
j )]

=
pX

j=0

[rj`(B
r+1
j )>(br+1

j � br⇤
j ) + hj(b

r+1
j )� hj(b

r⇤
j )

+ (rj`(⇣
r)�rj`(B

r+1
j ))>(br+1

j � br⇤
j )].
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By convexity of h, we have

rj`(B
r+1
j )>(br+1

j � br⇤
j ) + hj(b

r+1
j )� hj(b

r⇤
j )

 rj`(B
r+1
j )>(br+1

j � br⇤
j )� @hj(b

r+1
j )>(br⇤

j � br+1
j )

(30)
= rj`(B

r+1
j )>(br+1

j � br⇤
j )� (Gtr+1

j
(Br+1

j )�rj`(B
r+1
j ))>(br⇤

j � br+1
j )

= �Gtr+1
j

(Br+1
j )(br⇤

j � br+1
j )

=
1

t
r+1
j

(br+1
j � br

j)(b
r⇤
j � br

j + br
j � br+1

j )


1

t
r+1
j

[(br+1
j � br

j)
>(br⇤

j � br
j)� kb

r+1
j � br

jk
2
2]


1

2tr+1
j

[kbr⇤
j � br

jk
2
2 + kb

r
j � br+1

j k
2
2]


1

2tmin
[kbr⇤

j � br
jk

2
2 + kb

r
j � br+1

j k
2
2].

Moreover, by the Lipschitz continuity ofr`(·) and the Cauchy–Schwarz inequality, we have

✓ pX

j=0

(rj`(⇣
r)�rj`(B

r+1
j ))>(br+1

j � br⇤
j )

◆2



 
pX

j=0

kr`(⇣r)�r`(Br+1
j )k22

! 
pX

j=0

kbr+1
j � br⇤

j k
2
2

!



 
pX

j=0

M
2
k⇣r
�Br+1

j k
2
2

!
kbr+1

� br⇤
k
2
2

=

✓ pX

j=0

M
2

pX

j0=0

kµ(br+1
j0 � br

j0) + (1� µ)(br⇤
j0 � br

j0) + br
j0 � br+I(j0j)

j0 k
2
2

◆

· 2(kbr+1
� br

k
2
2 + kb

r⇤
� br

k
2
2)



 
2

pX

j=0

M
2
kbr+1

� br
k
2
2 + kb

r⇤
� br

k
2
2

!
· 2(kbr+1

� br
k
2
2 + kb

r⇤
� br

k
2
2)

 4(p+ 1)M2
�
kbr+1

� br
k
2
2 + kb

r⇤
� br

k
2
2

�2
.
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Altogether these imply

f(br+1)� f
⇤


pX

j=0

1

2tmin
[kbr⇤

j � br
jk

2
2 + kb

r
j � br+1

j k
2
2]

+ 2M
p

p+ 1
�
kbr+1

� br
k
2
2 + d2

X ⇤(br)
�



⇣ 1

2tmin
+ 2M

p
p+ 1

⌘�
kbr+1

� br
k
2
2 + d2

X ⇤(br)
�
.

(34)

According to our algorithm,

br+1
j = argmin

z2RK

`Qj(z;B
r+1
j ) + hj(z)

= argmin
z2RK

`(Br+1
j ) +rj`(B

r+1
j )>(z� br

j) +
1

2tr+1
j

kz� br
jk

2
2 + hj(z). (35)

By the optimality condition of br+1
j in (35), we have

br+1
j = proxtr+1

j hj
(br+1

j � t
r+1
j rj`Qj(b

r+1
j ;Br+1

j )).
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Now let c0 = min(1, tmax). It follows from Lemma 4.3 of Kadkhodaie et al. (2014) that

kbr
j � proxhj

(br
j �rj`(b

r))k2


1

max(1, 1/tr+1
j )
kbr

j � proxtr+1
j hj

(br
j � t

r+1
j rj`(b

r))k2

= min(1, tr+1
j )kbr

j � proxtr+1
j hj

(br
j � t

r+1
j rj`(b

r))k2

 c0kb
r
j � proxtr+1

j hj
(br

j � t
r+1
j rj`(b

r)) + br+1
j � br+1

j k2

 c0[kb
r+1
j � proxtr+1

j hj
(br

j � t
r+1
j rj`(b

r))k2 + kb
r+1
j � br

jk2]

 c0[k proxtr+1
j hj

(br+1
j � t

r+1
j rj`Qj(b

r+1
j ;Br+1

j ))

� proxtr+1
j hj

(br
j � t

r+1
j rj`(b

r))k2 + kb
r+1
j � br

jk2]

 2c0kb
r+1
j � br

jk2 + c0t
r+1
j krj`Qj(b

r+1
j ;Br+1

j )�rj`(b
r)k2

(29)
= 2c0kb

r+1
j � br

jk2 + c0t
r+1
j krj`(B

r+1
j ) +

1

t
r+1
j

(br+1
j � br

j)�rj`(b
r)k2

 3c0kb
r+1
j � br

jk2 + c0tmaxkrj`(B
r+1
j )�rj`(b

r)k2

 3c0kb
r+1
j � br

jk2 + c0tmaxkr`(B
r+1
j )�r`(br)k2

 3c0kb
r+1
j � br

jk2 + c0tmaxMkB
r+1
j � br

k2.

It follows that

kbr
� proxh(b

r
�r`(br))k2  (3c0 + c0tmaxM

p
p+ 1)kbr+1

� br
k2. (36)

Note that

`(⌘) =
KX

k=1

nkX

i=1

w
(k)
i

⇢
�
y
(k)
i e

(1�⇢)⌘
(k)
i

1� ⇢
+

e
(2�⇢)⌘

(k)
i

2� ⇢

�

is strongly convex in ⌘ 2 C0 and ⌘ is an affine transformation of (�0,�), i.e., ⌘(k)i = �
(k)
0 +x(k)>

i �(k).

It follows from Zhang et al. (2013) that for any given ⇠ � f
⇤ = minb2L0 f(b), there exists , ✏ > 0

such that, for all b 2 L0 satisfying f(b)  ⇠ and kb� proxh(b�r`(b))k2  ✏, we have

dX ⇤(b)  kb� proxh(b�r`(b))k2. (37)
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From (33), we can see that

rX

i=0

kbi
�bi+1

k
2
2  2tmax

rX

i=0

⇥
f(bi)� f(bi+1)

⇤
= 2tmax

⇥
f(b0)� f(br+1)

⇤
 2tmaxf(b

0) <1,

then we must have kbr+1
� br

k2 ! 0 as r ! 1. Thus, it follows from (36) that as r ! 1,

kbr
� proxh(b

r
�r`(br))k2 ! 0, and further by (37), this implies that dX ⇤(br)! 0 as r !1.

Consequently, from (34) it follows that f(br) ! f
⇤
, which proves that the MStweedie-GPG

algorithm converges to the global minimum. Let �r = f(br) � f
⇤
, c1 = 1

2tmin
+ 2M

p
p+ 1.

By (37) and (34) again, we have for large enough r,

�r+1 = f(br+1)� f
⇤
 c1[d

2
X ⇤(br) + kbr+1

� br
k
2
2]

 c1
2
kbr
� proxh(b

r
�r`(br))k22 + c1kb

r+1
� br

k
2
2

 (c1
2(3c0 + c0tmaxM

p
p+ 1)2 + c1)kb

r+1
� br

k
2
2

 (c1
2(3c0 + c0tmaxM

p
p+ 1)2 + c1) · 2tmax[f(b

r)� f(br+1)]

= 2tmax(c1
2(3c0 + c0tmaxM

p
p+ 1)2 + c1)(�

r
��r+1).

This implies that

�r+1


c2

1 + c2
�r

, (38)

where c2 = 2tmax(c12(3c0 + c0tmaxM
p
p+ 1)2 + c1). Let c3 = c2/(1 + c2). From (38), we can

see that f(br) approaches f ⇤ with linear rate O(cr3). By (33) this further implies that {br
, r � 0}

converges at least linearly.

Appendix E. Numerical Studies on Correlated Responses

Setting 6 – Correlated responses

In this simulation setting, we study the impact of having correlated responses on the performance of

our proposed algorithm. Correlation is introduced using two compounded techniques. We consider a

simultaneous setting, i.e. an observation consists of a vector of features x which is used to predict all

K responses. When the coefficients are similar across tasks, then there will be correlation induced

from the fact that the means µ
(k) = exp

⇣
x�(k)

⌘
, k = 1, . . . , K, will be related. If we simply

generate K Tweedie variables from these means, then the random variables will be independent,

conditionally on the vector of means. To introduce additional correlation, we consider the following
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setup inspired from a claim count decomposition suggested by Bermúdez and Karlis (2011). We

generate K
0
> K independent Tweedie variables with means µ(k) = exp

⇣
x�(k)

⌘
, k = 1, . . . , K 0,

for some choice of coefficients �(k) and produce the responses by taking a linear combination of

these independent Tweedie random variables. In particular, we consider eY (k), k = 1, . . . , 6, the

independent Tweedie random variables generating the K = 3 observed responses as follows:

2

66664

Y
(1)

Y
(2)

Y
(3)

3

77775
=

2

66664

1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1

3

77775

| {z }
=:A


eY (1) eY (2) eY (3) eY (4) eY (5) eY (6)

�>
.

The correlation depends on the mean of each independent Tweedie, but it is clear there will be

correlation introduced in that way. Indeed, if eY (4)
> 0, then both Y

(1) and Y
(2) will be non-zero.

This construction actually has a real interpretation. Suppose the Y
(k) represent different aspect

of a car insurance policy (1: personal injury, 2: property damage, 3: third party). Then, the random

variable eY (4) can be seen as the total claim amount that is common to personal injuries and property

damages but without third party damages, while the difference between those aspects is captured by
eY (1) and eY (2), which are independent.

We consider three experiments under this setting. In the first two cases, we set ⇢ = 1.5, � = 40

and n
(k) = 1000 and consider p = 50 features of which only the first 5 are truly generating the

data. Each x
(k)
ij is produced from a standard normal distribution. In the experiment 6A, we consider

equal contribution of the features across the sources so that the Lasso on the full dataset should be

sufficient:


�(1) �(2) �(3) �(4) �(5) �(6)

�
=

2

666666666666664

0.2 0.2 0.2 0.8 0.8 0.8

0.2 0.2 0.2 0.8 0.8 0.8

0.2 0.2 0.2 0.8 0.8 0.8

�0.2 �0.2 �0.2 �0.8 �0.8 �0.8

�0.2 �0.2 �0.2 �0.8 �0.8 �0.8

045 045 045 045 045 045

3

777777777777775

.

Upon generating 100 replications of the experiment, we obtain the following empirical correlation
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(a) Setting 6A: Mean (standard error)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 48.13 (0.28) 52.11 (0.43) 49.82 (0.33) 48.63 (0.29) 49.85 (0.35) 48.32 (0.29)

Size 11.47 (0.48) 10.02 (0.35) 6.74 (0.20) 5.54 (0.13) 7.40 (0.21) 5.44 (0.10)

Accuracy 87.06 (0.96) 89.92 (0.70) 96.52 (0.39) 98.92 (0.25) 95.20 (0.43) 99.08 (0.21)
Precision 50.31 (1.82) 55.07 (1.67) 78.96 (1.77) 93.26 (1.37) 72.76 (1.89) 94.02 (1.23)
Recall 100.00 (0.00) 99.80 (0.20) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.80 (0.20)

(b) Setting 6A: Mean rank (nb. times best)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 1.75 (50) 5.89 (0) 4.39 (1) 2.58 (20) 4.28 (0) 2.11 (29)

Size 5.21 (1) 4.83 (3) 2.50 (29) 1.26 (83) 3.20 (21) 1.18 (87)

Accuracy 5.20 (1) 4.84 (3) 2.49 (30) 1.25 (84) 3.19 (22) 1.21 (86)
Precision 5.20 (1) 4.84 (3) 2.49 (30) 1.25 (84) 3.19 (22) 1.18 (87)
Recall 1.00 (100) 1.04 (99) 1.00 (100) 1.00 (100) 1.00 (100) 1.04 (99)

Table A1: Results from Setting 6A with 100 replications. Part (a) shows the mean values of the

statistics and their standard errors in parentheses. Part (b) shows the mean rank across the six

models and, in parentheses, the number of times the model is best.

matrix, 2

66664

1.00 0.76 0.73

0.76 1.00 0.74

0.73 0.74 1.00

3

77775
,

and the three sources respectively have 73.6%, 74.5% and 74.9% of zeroes.

Since the mean is exponential in the coefficients, we cannot compute the true coefficients

generating the real responses so that it is impossible to produce the L2-loss measure of performance.

However, the selection accuracy measures (accuracy, precision and recall) are still relevant. The

results of training and testing the usual six models are contained in Table A1. The two adaptive

versions of our algorithm (especially a-L1/L2) achieve test deviance values similar to that of Full

Lasso, but using far less features. The accuracy and precision are therefore much better with a

similar fit to the test data. This suggests that our proposal is quite robust to correlated data and can

actually benefit from it.

In experiment 6B, we consider unequal contribution of the coefficients to the means of the
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independent random variables:


�(1) �(2) �(3) �(4) �(5) �(6)

�
=

2

666666666666664

0.5 0.5 0 1.5 3.0 1.5

0.5 0 0.5 3.0 1.5 1.5

0 0.5 0.5 1.5 1.5 3.0

0 0 0 0 �3.0 0

0 0 0 �3.0 0 0

045 045 045 045 045 045

3

777777777777775

.

Hence, the Full Lasso should not perform well in this case, but the individual Lasso should be able

to capture the differences between sources. Upon generating 100 replications of the experiment, we

obtain the following empirical correlation matrix,

2

66664

1.00 0.83 0.21

0.83 1.00 0.48

0.21 0.48 1.00

3

77775
,

and the three sources respectively have 73.0%, 69.3% and 73.3% of zeroes. The results of training

and testing the usual six models are contained in Table A2. We get that all our models systematically

out-performs both the Full Lasso and independent Lasso in term of test deviance. While the

independent Lasso can assign different parameter values in each sources, it does not benefit from the

sharing of information between sources and is thus more prone to over-fit. This is what we observe

through the poor model fit to test data and larger number of variables in the model.

In experiment 6C, rather than considering a linear combination of independent random variables,

we consider a product:

Y
(1) = eY (1)eY (4)eY (6)

,

Y
(2) = eY (2)eY (4)eY (5)

,

Y
(3) = eY (3)eY (5)eY (6)

.

This new construction allows us to compute the true generating coefficients in each task and to

produce the L2-loss measure of performance. Indeed, we find that they are given by the sub of the
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(a) Setting 6B: Mean (standard error)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 39.58 (0.80) 43.13 (1.81) 36.22 (0.78) 31.69 (0.53) 36.55 (0.86) 31.51 (0.60)

Size 7.48 (0.23) 16.55 (0.49) 10.63 (0.37) 5.62 (0.13) 10.29 (0.38) 5.57 (0.13)

Accuracy 94.80 (0.44) 76.90 (0.98) 88.70 (0.73) 98.72 (0.27) 89.34 (0.76) 98.74 (0.25)
Precision 71.28 (1.83) 32.72 (0.96) 51.53 (1.47) 91.96 (1.42) 53.85 (1.67) 92.23 (1.38)
Recall 98.80 (0.48) 100.00 (0.00) 99.80 (0.20) 99.80 (0.20) 99.60 (0.28) 99.40 (0.34)

(b) Setting 6B: Mean rank (nb. times best)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 5.10 (0) 5.33 (0) 3.67 (2) 1.67 (39) 3.76 (0) 1.47 (59)

Size 2.79 (21) 5.86 (0) 4.21 (0) 1.32 (78) 3.99 (2) 1.25 (82)

Accuracy 2.82 (20) 5.86 (0) 4.20 (0) 1.28 (82) 4.00 (2) 1.25 (82)
Precision 2.82 (20) 5.86 (0) 4.21 (0) 1.29 (81) 4.01 (2) 1.24 (83)
Recall 1.25 (94) 1.00 (100) 1.03 (99) 1.04 (99) 1.06 (98) 1.11 (97)

Table A2: Results from Setting 6B with 100 replications. Part (a) shows the mean values of the

statistics and their standard errors in parentheses. Part (b) shows the mean rank across the six

models and, in parentheses, the number of times the model is best.

coefficients of the independent random variables of the product. For example,

E
�
Y

(1)
 
= µ

(1)
µ
(4)
µ
(6) = exp

n
x
⇣
�(1) + �(4) + �(6)

⌘o
.

Hence the true coefficients is the product between the matrix of independent coefficients and the

structure matrix A:

�true = �A> =

2

666666666666664

1 1 0 1 1 1

1 0 1 1 1 1

0 �1 �1 �1 �1 �1

0 0 0 0 �1 0

0 0 0 �1 0 0

045 045 045 045 045 045

3

777777777777775

2

666666666666664

1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 0 1

3

777777777777775

=

2

666666666666664

3 3 2

3 2 3

�2 �3 �3

0 �1 �1

�1 �1 0

045 045 045

3

777777777777775

.

In this setting, pairs of responses are often zero at the same: e.g. eY (4) = 0 implies Y (1) = 0 and

Y
(2) = 0. Upon generating 100 replications of the experiment with � = 10, we obtain the following
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(a) Setting 6C: Mean (standard error)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 7.44 (3.86) 8.10 (1.29) 6.13 (1.84) 2.99 (0.88) 7.11 (2.00) 3.45 (1.24)

Size 7.91 (0.31) 17.50 (0.64) 9.97 (0.54) 5.60 (0.32) 9.99 (0.46) 5.08 (0.24)

Accuracy 89.34 (0.51) 72.80 (1.16) 86.38 (0.92) 94.88 (0.50) 86.50 (0.73) 95.80 (0.36)
Precision 54.26 (1.93) 28.55 (1.01) 49.90 (2.01) 83.26 (2.20) 48.59 (1.90) 86.32 (1.87)
Recall 75.80 (1.49) 89.00 (1.25) 81.60 (1.63) 80.40 (1.63) 82.40 (1.74) 79.80 (1.65)
L2 loss 4.32 (0.08) 5.09 (0.10) 4.32 (0.08) 2.86 (0.08) 4.38 (0.10) 2.86 (0.09)

(b) Setting 6C: Mean rank (nb. times best)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 3.68 (6) 5.39 (1) 4.21 (2) 1.77 (39) 4.27 (3) 1.68 (49)

Size 3.19 (17) 5.66 (0) 3.84 (9) 1.69 (60) 3.88 (6) 1.42 (68)

Accuracy 3.43 (9) 5.68 (0) 3.89 (4) 1.52 (69) 3.84 (5) 1.33 (75)
Precision 3.42 (13) 5.71 (0) 3.93 (6) 1.54 (70) 3.82 (7) 1.29 (77)
Recall 2.95 (36) 1.32 (84) 1.99 (57) 2.16 (54) 1.88 (60) 2.13 (50)
L2 loss 4.05 (0) 5.42 (0) 4.12 (1) 1.60 (54) 4.19 (1) 1.62 (44)

Table A3: Results from Setting 6C with 100 replications. Part (a) shows the mean values of the

statistics and their standard errors in parentheses. Part (b) shows the mean rank across the six

models and, in parentheses, the number of times the model is best.

empirical correlation matrix, 2

66664

1.00 0.35 0.38

0.35 1.00 0.41

0.38 0.41 1.00

3

77775
,

and the three sources all have 92.9% of zeroes. Table A3 contain the results for the six models. All

versions of our algorithm significantly produce better test deviance and the two adaptive versions

clearly beats all other models. Also, the adaptive versions have smaller models and therefore much

improved selection accuracy. Finally, the estimated coefficients by the adaptive algorithms are much

closer to the truth.
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