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ABSTRACT
Tweedie models can be used to analyze nonnegative continuous data with a probability mass at zero.
There have been wide applications in natural science, healthcare research, actuarial science, and other
fields. The performance of existing Tweedie models can be limited on today’s complex data problems
with challenging characteristics such as nonlinear effects, high-order interactions, high-dimensionality and
sparsity. In this article, we propose a kernel Tweedie model, Ktweedie, and its sparse variant, SKtweedie, that
can simultaneously address the above challenges. Specifically, nonlinear effects and high-order interactions
can be flexibly represented through a wide range of kernel functions, which is fully learned from the data;
In addition, while the Ktweedie can handle high-dimensional data, the SKtweedie with integrated variable
selection can further improve the interpretability. We perform extensive simulation studies to justify the
prediction and variable selection accuracy of our method, and demonstrate the applications in ratemaking
and loss-reserving in general insurance. Overall, the Ktweedie and SKtweedie outperform existing Tweedie
models when there exist nonlinear effects and high-order interactions, particularly when the dimensionality
is high relative to the sample size. The model is implemented in an efficient and user-friendly R package
ktweedie (https://cran.r-project.org/package=ktweedie).
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1. Introduction

The Tweedie compound Poisson distribution (Tweedie 1984),
derived from a Poisson sum of gamma variables, is a member
of the exponential dispersion (ED) family (Jorgensen 1997).
What distinguishes the distribution from other members of the
exponential family is that it incorporates a probability mass
at zero into an elsewhere continuous distribution. Because of
this unique feature, the Tweedie distribution naturally handles
semi-continuous outcomes and has been extensively studied
and widely used in applications. Examples include the modeling
of the total precipitation in meteorology and climatology (Dunn
2004; Hasan and Dunn 2011; Dons et al. 2016; Dzupire, Ngare
and Odongo 2018), the biomass of a certain species in ecology
(El-Shaarawi, Zhu, and Joe 2011; Foster and Bravington 2013),
the total catch in fishery (Shono 2008), and the aggregate losses
in insurance (Smyth and Jorgensen 2002; Shi, Feng, and Boucher
2016). The medical research community has also found its use
in various ways (Moshitch and Nelken 2014; Kurz 2017; Islam
et al. 2021).

Various statistical models have been developed based on
the Tweedie compound Poisson distribution, and the learning
in these Tweedie models range across a wide spectrum—from
highly structural approaches such as Tweedie GLMs (TGLM;
Jørgensen and de Souza 1994; Smyth and Jorgensen 2002; Shi,
Feng, and Boucher 2016) and Tweedie mixed models (Zhang

CONTACT Robert William Platt robert.platt@mcgill.ca Department of Epidemiology, Biostatistics and Occupational Health, McGill University.
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2013; Yang, Luo, and Liu 2019) to more flexible nonparametric
approaches such as regression trees (Yang, Qian, and Zou 2018;
Lee and Lin 2018; Zhou, Qian, and Yang 2020) and neural
networks (Blier-Wong et al. 2021). The TGLM relates the con-
ditional mean of a Tweedie response to a linear function of
predictors through a link function. To improve the flexibility,
the Tweedie generalized additive model (TGAM) (Hastie and
Tibshirani 1990; Wood 2011) uses splines to model nonlinear
functional components of predictors. Although allowing for the
specification of nonlinear relationship between the response
and predictors, the TGAM is limited to additive nonlinear
effects. To further mitigate the risk of model misspecification,
Yang, Qian, and Zou (2018) and Zhou, Qian, and Yang (2020)
proposes a tree-based gradient boosting algorithm (Friedman
2001) for the Tweedie model (TDboost). It features the abil-
ity to handle nonlinear effects and high-order interactions of
the predictors. However, none of the aforementioned methods
can directly handle high-dimensional data. As the number of
predictors in the data increases and potentially surpasses the
number of observations, the prediction performance of those
methods will deteriorate rapidly. Although some recent works
can work with high-dimensional data (Qian, Yang, and Zou
2016; Fontaine et al. 2020), they are limited within the linear
model framework.

In this article, we propose Ktweedie, a fully nonparametric
Tweedie model in reproducing kernel Hilbert space (RKHS).

© 2023 American Statistical Association and the American Society for Quality
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Table 1. A comparison of characteristics of different Tweedie models.

TGLM TGAM TDboost Ktweedie SKtweedie

Nonlinearity ! ! ! !
High-order interactions ! ! !
High-dimensionality !* ! !
Sparsity !* !
NOTE: ∗requires sparse regularization, see Qian, Yang, and Zou (2016).

It is well known that the Tikhonov regularized models in
RKHS have deep connections with the support vector machine
(Vapnik 2013). The proposed method enjoys several key fea-
tures: First, the model structure is fully learned from the data,
hence, can mitigate potential model mis-specification; Sec-
ond, the model can capture complex nonlinear relationships
and high-order interactions among variables. This is due to
the flexible choices of corresponding kernel functions at our
disposal. Researchers have conducted extensive research on
the use and combined use of kernel functions to accommo-
date complex relationships in data (Rasmussen 2003; Duve-
naud 2014); Third, the method can handle high-dimensional
data and features an automatic variable selection procedure for
removing redundant predictors. Under the high-dimensional
setting, the error accumulated from noninformative or noisy
predictors can more easily undermine the prediction perfor-
mance (Fan and Fan 2008). This drives us to further incor-
porate variable selection mechanism into the Ktweedie model.
Specifically, we introduce variable weights to the kernel as
parameters of interest, and employ regularization to intro-
duce sparsity among weights associated with each variable. The
resulting approach is inspired by Allen (2013), Yang, Lv, and
Wang (2016), and Chen et al. (2018) and is referred to as
SKtweedie in this article. Compared with the other existing
methods discussed in the previous paragraph, our work is the
only one that can address all the challenges (i.e., nonlinear-
ity, high-order interactions, high-dimensionality and sparsity)
simultaneously. Table 1 summarizes the comparison of different
Tweedie models.

We demonstrate the performance of the proposed method
in both simulation studies and real data analyses. In the sim-
ulation, we test the predictive accuracy of our model in the
presence of nonlinear effects and high-order interactions of
predictors. The performance of variable selection is also inves-
tigated. In the real data analysis, we examine the applications of
the Tweedie model in two key insurance operations, ratemaking
and claims reserving. The former concerns the determination
of the premium for future risks, and the latter concerns the
prediction of outstanding liability from existing risks. The out-
come of interest is the aggregate loss in both cases, with the
focus being an individual policy in ratemaking and a portfolio
of policies in claims reserving. The Tweedie random variable,
constructed by a random sum, has a semi-continuous prob-
ability distribution with a nonzero probability at zero along
with a positive continuous support, which makes it a natural
choice for insurance applications (Ohlsson and Johansson 2010;
Taylor and McGuire 2016). The Tweedie models have received
extensive attention by the actuarial community and insurance
practitioners, see Jørgensen and de Souza (1994), Smyth and
Jorgensen (2002), Shi, Feng, and Boucher (2016), Halder et al.

(2019) for ratemaking applications and Peters, Shevchenko, and
Wüthrich (2009), Shi (2014), Taylor (2019) for claims reserving
applications. We show the superior performance of the pro-
posed method to the competing Tweedie models in the two
cases.

The rest of the article is organized as follows. In Section 2,
we formally introduce the Tweedie compound Poisson distri-
bution, lay out the kernel Tweedie model, and provide the
intuition and formulation of the integrated variable selection
component. Section 3 proposes the optimization algorithms
for model learning and analyzes the convergence property. We
discuss various aspects of the model implementation, including
the profile likelihood approach for estimating the additional
parameters in the Tweedie model and the procedures to improve
the computational efficiency of the proposed algorithms. In Sec-
tion 4, we test the prediction accuracy of the model and examine
the performance of variable selection. Section 5 showcases the
performance of our model in the aforementioned ratemaking
and loss-reserving applications. Section 6 concludes the article.
Technical details and additional empirical results are provided
in the supplementary materials.

2. Methodology

Assume N to be a Poisson random variable N ∼ Poisson(vλ)

associated with a weight of observation v, and conditional on
N, for d = 0, 1, . . . , N, Zd’s are iid gamma distributed Zd ∼
Gamma(α, γ ). Define Y as the conditional sum of N iid gamma
random variables standardized by the weight:

Y =
{

0 if N = 0
(Z1 + Z2 + · · · + ZN)/v if N = 1, 2, . . .

. (1)

The distribution of Y is referred to as the compound Poisson
distribution. For example, in insurance applications, N is the
number of claims for a risk, Zd is the amount of losses for the
dth claim, and v is the exposure (e.g., duration of the policy in
years), thus, Y represents the aggregate loss amount per unit
at risk (Jørgensen and de Souza 1994; Smyth and Jorgensen
2002; Shi 2016). Note that Y = 0 if and only if N = 0,
thus, Y has a probability mass at 0, that is, Pr(Y = 0) =
Pr(N = 0) = exp(−vλ). Additionally, Y conditional on N = n
follows a gamma distribution with shape nα and scale γ /v.
It has been shown that the compound Poisson distribution is
related to a special class of the ED family known as the Tweedie
distribution (Tweedie 1984; Jørgensen 1987; Smyth 1996). The
density function of the ED family follows

g
(
y|θ , ϕ

)
= a

(
y, ϕ

)
exp

{yθ − κ(θ)

ϕ

}
, (2)

with the natural parameter θ ∈ R and the dispersion parameter
ϕ ∈ R+. The normalizing function a(·) and the cumulant
function κ(·) are both known. By the property of the ED family,
we have that

µ ≡ E(Y) = κ̇(θ), var(Y) = ϕκ̈
(
κ̇−1(µ)

)
= ϕκ̈(θ), (3)

where κ̇ (θ) and κ̈ (θ) are the first and second order derivative
of κ(θ), respectively. For the Tweedie distribution, θ , κ(θ) and
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ϕ have the specific forms:

θ = µ1−ρ

1 − ρ
, κ(θ) = µ2−ρ

2 − ρ
,

κ̇(θ) = µ, κ̈(θ) = µρ , ϕ = φ/v, (4)

for some index parameter (also called power parameter) ρ ∈
(1, 2) and the dispersion parameter φ ∈ R+. Using (2), the den-
sity of the Tweedie distribution Tw(µ, φ/v, ρ) can be written as

g(y|µ, φ, ρ) = a(y, φ, ρ) exp
{ v

φ

(yµ1−ρ

1 − ρ
− µ2−ρ

2 − ρ

)}
, (5)

where the exact form of a(·) can be found in Section 3 of Yang,
Qian, and Zou (2018). The mean and variance relationship of
the Tweedie distribution becomes var(Y) = φ/v · µρ .

The Tweedie family of distributions includes several distri-
butions, specified by the index parameter ρ (Tweedie 1984;
Jørgensen 1987). For example, it degenerates to the normal
distribution when ρ = 0, to the Poisson distribution when ρ =
1, and to the gamma distribution when ρ = 2. When 1 < ρ < 2,
it has been shown that the Tweedie distribution is equivalent
to the aforementioned compound Poisson distribution, if we
reparameterize (λ, α, γ ) by (µ, φ, ρ) as following,

λ = 1
φ

µ2−ρ

2 − ρ
, α = 2 − ρ

ρ − 1
, γ = φ(ρ − 1)µρ−1. (6)

From now on we will refer to the compound Poisson distri-
bution as the Tweedie distribution or the Tweedie model for
convenience.

2.1. Kernel Learning of Tweedie Compound Poisson
Models

Consider a dataset D = {(yi, xi, vi)}n
i=1 that contains n inde-

pendent observations, where, for the ith observation, xi =
(xi1, . . . , xip)⊤ is a p-dimensional vector of exogenous predic-
tors and yi is the outcome variable observed under a exposure
of vi. Then Yi under duration vi follows Yi/vi ∼ Tw(µi, φ/vi, ρ).
We model the mean µi as a function of the predictors xi ∈ Rp

using a log link function as log(µi) = f (xi), where f belongs
to a function space F . For instance, f (xi) = x⊤

i β corresponds
to the Tweedie GLM (Jørgensen and de Souza 1994). Using the
aforementioned model setup, the log-likelihood function can be
written as

ℓ(f (·), φ, ρ|D) (7)

=
n∑

i=1

vi
φ

{

yi
exp

[
(1 − ρ)f (xi)

]

1 − ρ
− exp

[
(2 − ρ)f (xi)

]

2 − ρ

}

.

We propose a nonparametric Tweedie model, in which the
function f is chosen from a reproducing kernel Hilbert space
HK . To learn the function f from the data D = {(yi, xi, vi)}n

i=1,
we minimize the following penalized negative log-likelihood
function

f̂ (·) = arg min
f ∈HK

[
−ℓ(f (·), φ, ρ|D) + λ∥f ∥2

HK

]
, (8)

where
∥∥f

∥∥2
HK

is a generalized Tikhonov regularization defined
in the Hilbert space. The optimization problem for f is infinite-
dimensional, and f does not belong to some specific parametric
family. The representer theorem (Wahba 1990) shows that f can
be parameterized by a combination of kernel functions

f (xi) = α0 +
n∑

i′=1
αi′K(xi, xi′) = α0 + K⊤

i α, (9)

where Ki is the ith row of the n × n kernel matrix K =
(K(xi, xi′))n×n, generated by a positive definite kernel function
K(·, ·), and α0 and α = (α1, . . . , αn)⊤ are the coefficients.
This result allows f to have a “parametric form” with the
finite-dimensional representation, the dimension is dependent
of sample size n. We consider commonly used kernel func-
tions including the Gaussian radial basis function (RBF) ker-
nel K(xi, xi′) = exp(−σ∥xi − xi′ ∥2

2) and the Laplace kernel
K(xi, xi′) = exp(−σ∥xi − xi′ ∥2), where σ is some kernel
parameter. Consequently, (8) is equivalent to

(̂α0, α̂) = arg min
α0,α

{

−
n∑

i=1

vi
φ

(
yie(1−ρ)(α0+K⊤

i α)

1 − ρ
(10)

−e(2−ρ)(α0+K⊤
i α)

2 − ρ

)

+ λα⊤ Kα

}

,

which minimizes a smooth convex function of (α0, α). We
refer to this model as the Ktweedie model. The algorithms for
optimizing (10) will be discuss in Section 3.1.

One important issue in kernel-based learning is the choice
of the kernel functions based on the data characteristics. For
example, the Gaussian RBF kernel can be used to model smooth
functions, the periodic kernel can be used to model periodic
functions and the string kernel can be used to analyze text data.
We direct the interested readers to two comprehensive online
tutorials Duvenaud (2014) and Pedregosa et al. (2011) for the
use and combined use of different kernel functions.

2.2. Integrated Variable Selection via Weighted Kernels

We further extend the Ktweedie model to integrate automatic
variable selection. Several methods have considered weighting
variables within the kernel to achieve variable selection (Weston
et al. 2000; Grandvalet and Canu 2002; Gilad-Bachrach, Navot,
and Tishby 2004; Li, Yang, and Xing 2005; Argyriou et al. 2006;
Cao et al. 2007), where weights are found using a separate pro-
cedure and variable selection is not integrated in the estimation.
Other approaches such as COSSO (Lin and Zhang 2006) can
simultaneously estimate the nonlinear functional component
and select important variables, but they are limited to the addi-
tive models. Inspired by the work of Allen (2013) and Chen
et al. (2018), we achieve variable selection in the Ktweedie model
through a certain sparse penalization on the variable weights
in the kernel function. This additional feature can potentially
improve the interpretability of the result and the prediction
accuracy. Specifically, we modify the objective function (10) in
two aspects: First, variable weights are used in the kernel matrix
such that

f (xi) = α0 +
n∑

i′=1
αi′K(w ⊙ xi, w ⊙ xi′), (11)

https://www.cs.toronto.edu/~duvenaud/cookbook/
https://scikit-learn.org/stable/auto_examples/gaussian_process/
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Figure 1. Geometric interpretation of the regularization term 1⊤ w. The shaded areas are the constraint regions w1, w2 ∈ [0, 1] and w1 + w2 < t for different t’s. The
ellipses are the contours of the loss function as a function of w1 and w2. Sparsity is induced in (c).

where w ∈ [0, 1]p is a p-dimensional weight vector that con-
trols the contribution of each variable in x and “⊙” denotes
element-wise multiplication. That is, the kernel matrix K in
(9) is replaced by the weighted kernel matrix K(w) with the
following form,

K(w) =

⎡

⎢⎣
K(w ⊙ x1, w ⊙ x1) · · · K(w ⊙ x1, w ⊙ xn)

...
. . .

...

K(w ⊙ xn, w ⊙ x1) · · · K(w ⊙ xn, w ⊙ xn)

⎤

⎥⎦ .

(12)
Second, a sparsity-inducing regularization is applied on the
weights w (Allen 2013). The resulting modified objective func-
tion is

(̂α0, α̂, ŵ) = arg min
α0,α,w

{
−

n∑

i=1

vi
φ

(
yie(1−ρ)(α0+K(w)⊤i α)

1 − ρ

−e(2−ρ)(α0+K(w)⊤i α)

2 − ρ

)

+ λ1α
⊤ K(w)α + λ21⊤ w

}

s.t. wj ∈ [0, 1], j = 1, . . . , p.

(13)

We refer to the model (13) as the SKtweedie model, and
discuss its fitting in Section 3.2. The regularization term 1⊤ w
together with the constraints wj ∈ [0, 1] in (13) can induce
sparsity to w. As a result, when the estimated weight of the jth
variable is zero, the contribution of the jth variable is removed
from the model. To see this, let us consider a simplistic two-
dimensional example for some loss function ℓ(w1, w2) with a
constrained form of the penalization

(ŵ1, ŵ2) = arg min
w1,w2

ℓ(w1, w2), (14)

s.t. w1 + w2 < t and w1, w2 ∈ [0, 1].

The constraint region of (14), depending on the value of t,
varies among three different scenarios (a), (b), and (c) as shown
in Figure 1. In particular, when t ≤ 1, the constraint region
becomes a right triangle that is similar to a constraint region
induced by an ℓ1 norm.

3. Computation

In this section, we introduce the algorithms for optimizing
the Ktweedie and SKtweedie described in Sections 2.1 and 2.2,
respectively. For the Ktweedie model with objective function
(10), we adopt an inverse Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm (Broyden 1970; Fletcher 1970; Goldfarb 1970;
Shanno 1970; Nocedal and Wright 2006). For the SKtweedie
model with objective function (13), we propose an alternating
optimization method. For this moment, we assume that both ρ

and φ are given, and we discuss the procedure for estimating
their values in Section 3.3.

3.1. Fitting the Ktweedie Model

We propose an inverse BFGS algorithm, which belongs to the
Quasi-Newton methods, to solve the optimization problem (10).
The BFGS enjoys the fast convergence rate of the Newton-type
algorithms and avoids the exact computation and inverse of the
Hessian matrix whose dimension is equal to the sample size.
Solving the Ktweedie model requires additional considerations
for the intercept α0, which is discussed in Section B. Here we
first solve a simpler variant: α̂ = arg minα g(α), where g(α)

is the objective function in (10) without the intercept. We use
superscript (k) to indicate kth iteration of our algorithm. We first
update α(k+1) by

α(k+1) = α(k) − t(k)B(k)∇g(α(k)), (15)

where t(k) is the step size, B(k) is an approximate inverse Hessian
matrix of the objective g(α) and ∇g(α) is the gradient:

∇αj g(α) = 1
n

n∑

i=1

vi
φ

(
−yiKije(1−ρ)K⊤

i α + Kije(2−ρ)K⊤
i α

)

+ 2λK⊤
j α, j = 1, . . . , p.

Given α(k+1), we update B by

B(k+1) =
(

In − s(k)z(k)⊤

z(k)⊤ s(k)

)

B(k)
(

In − z(k)s(k)⊤

z(k)⊤ s(k)

)

+ s(k)s(k)⊤

z(k)⊤ s(k)
,

(16)
where s(k) = α(k+1) − α(k) and z(k) = ∇g(α(k+1)) − ∇g(α(k)).

The update of α and B is repeated until the convergence
of g(α) or α. The details of the algorithm are summarized in



TECHNOMETRICS 285

Algorithm 1. The appropriate step size t(k) in (15) is chosen by
a bisection line-search in Algorithm S1 (Section A.1) to satisfy
the Wolfe conditions (Wolfe 1971),

{
g(α + tp) ≤ g(α) + c1t∇g(α)⊤ p Condition 1
∇g(α + tp)⊤ p ≥ c2∇g(α)⊤ p Condition 2

, (17)

where p = −B∇g(α), c1 ∈ (0, 1) and c2 ∈ (c1, 1) are some
constants. Condition 1 is commonly referred to as the Armijo
condition (Armijo 1966) and Condition 2 is called the curvature
condition (Nocedal and Wright 2006). The two conditions serve
as the upper and lower bounds for the step size t that warrants a
reasonable progress.

Algorithm 1: (Inverse) BFGS algorithm for Ktweedie.
Input: K, y, λ
Output: α̂

1 Initialization: k = 0, B(0) = In, α(0);
2 repeat BFGS loop
3 p(k) = −B(k)∇g(α(k))

4 call Algo. S1 to find step size t(k)

if cannot find proper t(k) then exit;
5 s(k) = t(k)p(k)

6 α(k+1) = α(k) + s(k)

7 z(k) = ∇g(α(k+1)) − ∇g(α(k))

8 B(k+1) =(
In − s(k)z(k)⊤

z(k)⊤ s(k)

)
B(k)

(
In − z(k)s(k)⊤

z(k)⊤ s(k)

)
+ s(k)s(k)⊤

z(k)⊤ s(k)

9 k := k + 1
10 until convergence;
11 α̂ = α(k)

There is a convergence guarantee for the proposed BFGS
algorithm:

Theorem 1 (Global Convergence of BFGS). The updating
sequence

{
α(k)} generated by the BFGS update (15) converges to

the minimizer α∗ of the objective function g(α) at a superlinear
rate.

Proof. The detailed proof is given in Section C.

In practice, due to a potential precision loss, the bisection
line-search in the BFGS may not be able to find a proper step
size t. To fix this issue, we make the algorithm transition to a
standard gradient descent with the backtracking line-search in
Algorithm S2 (Section A.2) when the bisection line-search in
the BFGS fails.

3.2. Fitting the SKtweedie model

We propose an alternating optimization method (Algorithm 2)
to solve the objective function (13) in Section 2.2. The algorithm
alternates between the model parameters α and the weights w to
perform joint estimation of the two, which achieves simultane-
ous estimation and variable selection. Specifically, in each outer
loop iteration m, the inner w-loop updates w(m) to w(m+1) with

α fixed at α(m), then the inner α-loop updates α(m) to α(m+1)

using the new weights w(m+1). We run the outer loops until
convergence.

In the inner w-loops, the gradient descent with backtracking
line-search is used to update the weights w (Algorithm S3;
Section A.3). Updated weights are projected to the interval [0, 1]
by the operation proj(wj) = min(max(wj, 0), 1), j = 1, . . . , p,
due to the constraint. Denote the kth update of wj within the mth
outer loop iteration by w(m,k)

j . Then the inner w-loop update has
the form

w(m,k+1)
j = proj

(
w(m,k)

j − t(m,k) · ∇wj g(α(m), w(m,k))
)

, (18)

where ∇wj g(α(m), w(m,k)) denotes the gradient of the objective
function (13) with respect to wj, and its specific form is provided
in Section D. The details of the alternating optimization are
given in Algorithm 2.

Algorithm 2: Alternating Optimization Algorithm for
the SKtweedie.

Input: X, y, λ1, λ2
Output: α̂, ŵ

1 Initialization: α(0) = 0n, w(1) = 1p, m = 1;
2 call Algo. 1 with α initialized at α(0)

α(1) = arg minα g(α, w(1))

3 repeat outer loop
4 call Algo. S3 with w initialized at w(m)

w(m+1) = arg minw g(α(m), w) s.t. w ∈ [0, 1]p

5 if w(m+1) = 0p then exit;
6 K = K(w(m+1)) as defined in (12)
7 call Algo. 1 with α initialized at α(m)

α(m+1) = arg minα g(α, w(m+1))

8 m := m + 1
9 until convergence;

10 α̂ = α(m)

11 ŵ = w(m)

3.3. Implementation Details

Profile likelihood. As mentioned in Section 2.1, although the
primary interest is the estimation of µ in the Tweedie model, we
also need to estimate ρ and φ in order to characterize the vari-
ance of Yi through the mean-variance relationship var(Yi) =
φµ

ρ
i in (3). Following Dunn and Smyth (2005), we use the

profile likelihood to estimate ρ and φ. It is straightforward to
see from (5) that the estimation of µ does not depend on φ.
Taking advantage of this fact, for any given ρ, we can estimate
µ using the estimators for (α0, α) in µ(ρ) = eα0+K⊤

i α that
minimizes (10) in the Ktweedie model. Denote by (̂α0(ρ), α̂(ρ))

and µ̂(ρ) = eα̂0(ρ)+K⊤
i α̂(ρ) the estimators for (α0, α) and µ(ρ),

respectively, for the given ρ. Conditioning on ρ and µ̂(ρ), the
likelihood function in (7) becomes a univariate function of φ.
The optimal φ̂ can then be obtained by using a combination
of golden section search and successive parabolic interpolation
(Brent 2013). We estimate the optimal µ̂(ρ) and φ̂(ρ) for a
equally spaced sequence of ρ’s of length l on the interval (1, 2),
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and choose the optimal ρ̂ that gives the maximum profile like-
lihood

ρ̂ = arg max
ρ∈{ρ1,ρ2,...,ρl}

ℓ(µ̂(ρ), φ̂(ρ), ρ). (19)

The resulting estimates of (µ, φ, ρ) from the profile likelihood
are (µ̂(ρ̂), φ̂(ρ̂), ρ̂), which gives us an estimated variance of Yi
as φ̂(ρ̂)[µ̂i(ρ̂)]ρ̂ . However, if the main goal of the data analysis is
only to predict the response, the profile likelihood procedure is
unnecessary and we can simply estimate µ with any arbitrary ρ,
for example, ρ = 1.5 in (10). This is due to fact that parameter
µ is statistically orthogonal to both φ and ρ in the Tweedie
likelihood (see details in Section E). Thus, the estimation of µ

is almost independent to φ and ρ in large sample sense. We
also observe such phenomenon in the simulation discussed in
Section 4.2.

Warm start and active set. For the SKtweedie model in Sec-
tion 3.2, a warm start option is implemented to improve compu-
tational efficiency. Specifically, the inner α-loop within the outer
loop iteration m can be set to initialize at α(m−1), which may
be closer to the final solution than the otherwise default initial
value 0. On the other hand, the inner w-loop within the iteration
m always initializes at w(m−1). This is related to the active set
of w, which is another feature that is implemented to improve
efficiency.

The active set includes the indices of all the elements in w
that are not equal to 0 in the previous inner loop iteration k:
A(m,k) = {j : w(m,k)

j ∈ (0, 1], j = 1, . . . , p}. The weights not in
the active set, that is, w(m,k)

j = 0 are not updated anymore and
the corresponding variables are not involved in the subsequent
calculation of the weighted kernel matrix K(w). The rationale
is that, for any w(m,k)

j = 0 within the mth outer loop iteration,
its partial derivative ∇wj g(α(m), w(m,k)) is equal to λ2 in many
kernel functions such as the Gaussian RBF kernel (Section D),
and thus the gradient descent update in this direction will be
w(m,k+1)

j = proj(0 − t(m,k)λ2) = 0, ∀λ2 > 0 according to
(18). As a result, the weight wj will remain 0 for the rest of the
inner w-loop as well as the outer loop if we keep updating it. By
maintaining and updating the active set A, we can avoid much
unnecessary computation, especially when the number of noise
variables is large.

We provide an R package ktweedie (https://cran.r-
project.org/package=ktweedie) to implement the proposed
method with all the aforementioned features. The core of the
software is written in Fortran to maximize efficiency.

4. Simulation

We compare the Ktweedie and SKtweedie with the a num-
ber of existing models mentioned in Section 1 in terms of
their prediction performance. These include the TGLM (Jør-
gensen and de Souza 1994) implemented in the R package
statmod (Giner and Smyth 2016; Smyth et al. 2021; here-
inafter TGLM), the TGAM model (Wood 2011) in theRpackage
mgcv (Wood 2021; hereinafter MGCV), and the Gradient Tree-
Boosted Tweedie model (Yang, Qian, and Zou 2018) in the

R package TDboost (Yang, Qian, and Zou 2016; hereinafter
TDboost). The model tuning for the TDboost is replicated from
Yang, Qian, and Zou (2018). We consider the RBF kernel and
the Laplace kernel in the Ktweedie for demonstration purposes.
Throughout this section, we denote the true f (·) used in the
simulations by F(·). Results related to the computation times are
generated with R version 4.1.2 “Bird Hippie” on a 2021 MacBook
Pro with the 10-core M1 Pro CPU and 16GB unified memory
that runs macOS Monterey Version 12.4.

4.1. Case I

We compare the prediction accuracies of different models under
the following two scenarios where the true target functions
F(x) = log(µ) are nonlinear functions of the predictors.

Model 1: log(µ) = F(x) = 0.5I(x > 0.5)

Here the true log(µ) is a non-smooth function of the one-
dimensional predictor x. We assume that x ∼ Unif(0, 1), and
y ∼ Tw(µ, φ, ρ) with ρ = 1.5 and φ = {0.1, 0.5, 1.0, 2.0}.

Model 2: log(µ) = F(x) = exp[−5(1−x1)2 +x2
2]+exp[−5x2

1 +
(1 − x2)2]
Here the true log(µ) is a smooth nonlinear function of the
predictors (x1, x2) with complex interactions. We assume
that x1, x2 ∼ Unif(0, 1), and y ∼ Tw(µ, φ, ρ) with ρ = 1.5
and φ = {0.1, 0.5, 1.0, 2.0}.

We generate training datasets with n = 400 observations and
test datasets with n′ = 400. The training dataset is fitted with
Ktweedie. The inverse kernel width σ of the RBF and Laplace
kernel functions and the regularization coefficient λ are deter-
mined using 5-fold cross-validation based on the likelihood of
the validation set. The criterion for the performance is the mean
absolute deviation (MAD) of the predicted F̂(x) = log(µ̂) from
the true F(x) = log(µ) as follows

MAD = 1
n′

n′∑

i=1

∣∣F(xi) − F̂(xi)
∣∣ .

We choose to use the MAD in the article because it is a com-
monly used measure of prediction error (e.g., Friedman 2001
and Hastie et al. 2009). There is no specific reason why other
proper norms such as the RMSE cannot also be used. Since the
true F is known in simulation, both the MAD and RMSE are
sensible measures that can quantify the difference between the
predicted F̂ and the true F and are expected to deliver similar
results.

The resulting MADs based on 100 replications are reported
in Tables 2 and 3, and some sample predictions are plotted in
Figures S1 and 2, for Models 1 and 2, respectively. In Model
1, the Ktweedie is not as good as the TDboost but is on par
with the MGCV and better than the TGLM. This is as expected
under a non-smooth setting due to the tree-based nature of
the TDboost. In Model 2, the Ktweedie with the RBF and the
Laplace kernels outperforms MGCV, TDboost and TGLM in
the smooth function case. We also report the total computation
times required for cross-validation, model fitting and prediction
in Tables S1 and S2.

In addition, we estimate φ and ρ using the profile likelihood
approach proposed in Section 3.3. The setups of Model 1 and

https://cran.r-project.org/package=ktweedie
https://cran.r-project.org/package=ktweedie
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Table 2. The mean and standard errors of the mean absolute deviations of the predicted F̂(x) = log(µ̂) from the true F(x) = log(µ) in Model 1 based on 100 replications
for different values of φ.

φ MGCV TDboost TGLM RBF Laplace

0.1 0.049 (0.0008) 0.030 (0.0012) 0.106 (0.0004) 0.059 (0.0007) 0.058 (0.0015)
0.5 0.086 (0.0019) 0.071 (0.0021) 0.112 (0.0007) 0.090 (0.0018) 0.085 (0.0024)
1.0 0.101 (0.0023) 0.091 (0.0031) 0.115 (0.0012) 0.106 (0.0021) 0.094 (0.0025)
2.0 0.131 (0.0031) 0.131 (0.0048) 0.134 (0.0027) 0.135 (0.0034) 0.120 (0.0036)

Table 3. The mean and standard errors of the mean absolute deviations of the predicted F̂(x) = log(µ̂) from the true F(x) = log(µ) in Model 2 based on 100 replications
for different values of φ.

φ MGCV TDboost TGLM RBF Laplace

0.1 0.241 (0.0012) 0.084 (0.0007) 0.348 (0.0016) 0.065 (0.0009) 0.073 (0.0021)
0.5 0.248 (0.0012) 0.129 (0.0014) 0.345 (0.0020) 0.085 (0.0014) 0.095 (0.0017)
1.0 0.251 (0.0016) 0.156 (0.0023) 0.349 (0.0023) 0.102 (0.0021) 0.126 (0.0022)
2.0 0.264 (0.0023) 0.191 (0.0026) 0.354 (0.0029) 0.135 (0.0033) 0.170 (0.0037)

Model 2 are adopted with true ρ = 1.5 and true φ = 0.5
and we only consider the RBF kernel. In the procedure, a series
of candidate ρ’s are generated: {1.02, 1.04, 1.06, . . . , 1.96, 1.98},
and the one that generates the greatest log-likelihood as in (19)
is used in the subsequent estimation of φ and µ. In Figure
S2, the estimated likelihoods at different candidate ρ’s from a
sample run for each model is plotted. On the left, ρ̂ = 1.52 for
Model 1, and on the right, ρ̂ = 1.58 for Model 2. The estimates
of ρ and φ and the MADs from 20 independent replications
are summarized in Table S3. Note that, the MADs are slightly
higher than the corresponding entries in Tables 2 and 3 as a
price for not knowing the true φ and ρ. Overall, the profile
likelihood approach coupled with the Ktweedie is able to acquire
good estimates of the true ρ and φ. Although this approach also
provides good estimates of the true µ, we show numerically in
Section 4.2 that estimating φ and ρ can be redundant when µ is
the only parameter of interest.

4.2. Case II

We evaluate the performance of the Ktweedie in comparison
with the MGCV and TDboost with complicated interactions
among the predictors. The random function generator (RFG)
model by Friedman (2001) is used in the simulation to gener-
ate the true target function F(·). Specifically, F(·) is randomly
generated as a linear expansion of functions {gk}20

k=1:

F(x) =
20∑

k=1
bkgk(zk), (20)

where the bk’s are the coefficients generated from Unif[−1, 1].
In addition, gk(zk) is a function of zk, which is a subset of the
p-dimensional variable x with size pk,

zk = {xψk(j)}pk
j=1 (21)

where each ψk is an independent permutation of the integers
{1, 2, . . . , p}. The size pk is equal to min(⌊2.5 + rk⌋, p), where
rk is generated from an exponential distribution with mean 2.
Thus, xψk(j) in (21) indicates the jth element of the permuted
vector xψk . By adopting this setup, we expect that each gk(zk)
should have between 2 and p predictors (x) and at least a few of

Table 4. The mean and standard errors of the mean absolute deviations in Case II
for different values of φ based on 100 replications.

φ MGCV TDboost RBF Laplace

0.1 0.764 (0.034) 0.680 (0.039) 0.615 (0.038) 0.650 (0.036)
0.5 0.983 (0.047) 0.894 (0.054) 0.832 (0.027) 0.767 (0.031)
1.0 1.328 (0.059) 1.136 (0.052) 1.073 (0.051) 1.044 (0.052)
2.0 0.985 (0.040) 0.572 (0.030) 0.562 (0.031) 0.569 (0.030)

the gk(zk)’s should involve high-order interactions. For each k,
gk(zk) is a pk-dimensional Gaussian function:

gk(zk) = exp
{
−1

2
(zk − uk)

⊤ Vk(zk − uk)

}
, (22)

where uk’s are mean vectors generated from N(0, Ipk) inde-
pendently, and the covariance matrix Vk is defined by Vk =
UkDkU⊤

k , where Uk was a random orthonormal matrix, Dk =
diag(dk[1], dk[2], . . . , dk[pk]) with

√
dk[j]

iid∼ Unif(0.1, 2.0). We
generate the data

{
yi, xi

}n
i=1 according to the Tweedie distribu-

tion,

yi ∼ Tw(µi, φ, ρ), xi ∼ N(0, Ip), i = 1, 2, . . . , n

where µi = exp[F(xi)].
For the simulation, we set the sample size n = 100, the

dimension p = 10 for both training data and test data, the
Tweedie parameters ρ = 1.5 and φ = {0.1, 0.5, 1.0, 2.0}. The
models are fitted with known ρ. The simulation is replicated
for 100 times. The MADs for MGCV, TDboost and Ktweedie
are summarized in Table 4 and plotted in Figure S3. The results
suggest that in the presence of complicated interactions among
the predictors, the Ktweedie outperforms both the MGCV and
TDboost. We also report the computational times required for
the cross-validation, model fitting and prediction in Table S4.

We further examine how the index parameter ρ used in the
model fitting affects the estimation accuracy of µ. Recall that
the data is generated using ρ = 1.5 and φ = 0.5. We consider
the Ktweedie with the RBF kernel and use a series of different
ρ’s in the model fitting. As shown in Figure S4, the estimation
accuracy of µ is almost unaffected by ρ.
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Figure 2. Fitted F̂(x) versus true F(x) in Model 2 from a sample run (φ = 0.5).

4.3. Case III

We study the performance of SKtweedie under a simulation
setting with a large number of predictors (n = 100, p = 50). We
consider a simplified version of Case II described in Section 4.2.
Specifically, (1) Replace (20) with F(x) = ∑5

k=1 bkgk(zk);

(2) The size pk in zk = {xψk(j)}pk
j=1 is equal to min(⌊1.5 +

rk⌋, 2), where rk is generated from an exponential distribution
with mean 1. As a result, each zk contains 1 to 2 variables. In
addition, only 5 of the total 50 variables can be used in the
generation of F(x)—the other 45 are noise variables; (3) Replace
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Figure 3. A sample SKtweedie solution path in case IV with arbitrary λ1 = 1 and σ = 0.01.

Table 5. The mean and standard errors of the mean absolute deviations in Case III
for different values of φ based on 100 replications.

φ TDboost Ktweedie SKtweedie

0.1 3.496 (0.3205) 1.844 (0.0731) 1.997 (0.0863)
0.5 3.341(0.2986) 1.932 (0.0785) 1.975 (0.0856)
1.0 3.006 (0.2706) 1.846 (0.0706) 1.914 (0.0839)
2.0 3.346 (0.3262) 1.933 (0.0608) 1.859 (0.0790)

(22) with gk(zk) = z⊤
k zk to reduce the variation in the data

generation. All other simulation settings remain the same as in
Case II. Due to the relatively large dimension of x, the MGCV
becomes computationally infeasible thus, is not included in this
simulation. It is worth explaining the hyperparameter tuning
strategy of the SKtweedie. As mentioned in Section 2.2, the
weight regularization coefficient λ2 controls the sparsity in the
variables. Similar to the LASSO, there exists a λmax

2 (σ , λ1) such
that for all λ2 ≥ λmax

2 (σ , λ1), all weights are zero for the given σ

and λ1. In our experiments, grid search or random search for the
three hyperparameters regularly encounters combinations that
lead to such a mean model. This is because λmax

2 (σ , λ1) can be
very sensitive to σ , λ1 and the data and it is difficult to set proper
search ranges that can control the relative magnitude of the
three hyperparameters. We therefore use a tuning strategy that
combines the random search and a solution path. Specifically,
the tuning of σ and λ1 is performed with a random search with
cross-validation (which is the tuning strategy for the Ktweedie),
then a solution path for λ2 is constructed with the chosen σ and
λ1. The MADs for the TDboost, Ktweedie, and SKtweedie with
the RBF kernel are compared and summarized in Table 5 and
Figure S5. Under high dimensional setting, our kernel method
performs better than the TDboost. In addition, SKtweedie is able
to achieve LASSO-type variable selection, which is tested more
purposefully in Section 4.4.

4.4. Case IV

The purpose of this simulation is to test the variable selection
performance of the SKtweedie. Consider the model:

log(µ) = F(x) = sin(x)⊤ β true,

where x ∈ Rp is randomly generated from a standard normal
distribution and β true ∈ Rp are the true coefficients.

We generate training datasets
{

yi, xi
}n

i=1 with n =
{100, 200, 500} and three different dimensions p = {10, 50, 200}.
The true coefficients are β true = [6, −4, 3, 2, −2, 0, . . . , 0]⊤ ,
whose first five nonzero entries are the coefficients for the
signal variables and the remaining zero entries corresponds
to the noise variables. The same strategy used in Case III is
used to tune the hyperparameters. For illustration, we show
in Figure 3 a visual demonstration of a sample solution path
for λ2 at an arbitrary combination of σ and λ1. To formally
test the variable selection performance, we fit SKtweedie with
the tuning strategy mentioned in Section 4.3. Figure S6 shows
the estimated weights in the 20 replications for p = 10 and 50
(p = 200 in Figure S7) with n = 500. Each column corresponds
to a replication and each row corresponds to a variable. The red
rectangle indicates the true signal variables, and the grayscale
represents the magnitude of the estimated weights with a
value between 0 and 1. The average precision and recall of
the twenty replications are summarized in Table 6. Overall
SKtweedie is able to achieve good variable selection accuracy.
In addition, we use this case to demonstrate the effect of sample
size on the computation times. Specifically, for each sample
size n = {50, 100, 200, 400}, we record the time needed to fit a
Ktweedie model and an SKtweedie model at fixed σ , λ1 and λ2.
The dimension is fixed at p = 10. The timing results averaged
over 20 replications are plotted in Figure S8.

5. Real Data Analysis

We demonstrate the application of the proposed Tweedie mod-
els in two insurance operations.

5.1. Case Study I: Claims Reserving

Dataset. In claims reserving, data are often organized in a
triangular format, known as the “run-off triangle”. We consider
the triangle of paid losses for workers compensation insur-
ance of a large insurer in United States. The data is obtained
from the Schedule P of the National Association of Insurance
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Table 6. Mean precision and recall of the variable selection accuracy with standard
errors under different sample sizes and dimensions in Case IV based on 20 replica-
tions.

p = 10 p = 50

n Precision Recall Precision Recall

100 87.4% (3.3%) 84.0% (4.3%) 73.3% (6.1%) 60.0% (6.5%)
200 91.5% (2.9%) 85.0% (4.1%) 81.9% (4.7%) 73.0% (5.1%)
500 94.4% (2.9%) 94.0% (2.6%) 86.3% (6.5%) 94.7% (2.1%)

Table 7. A typical run-off triangle of incremental paid losses (shaded) and the
additional accident years with fully developed claims.

Development year

Accident year 1 2 · · · 9 10

Fully developed 1989 1 Y1,1 Y1,2 · · · Y1,9 Y1,10
...

...
...

...
. . .

...
...

1996 8 Y8,1 Y8,2 · · · Y8,9 Y8,10
Run-off triangle 1997 9 Y9,1 Y9,2 · · · Y9,9 Y9,10

1998 10 Y10,1 Y10,2 · · · Y10,9
...

...
...

... . .
.

2005 17 Y17,1 Y17,2
2006 18 Y18,1

Commissioners (NAIC) database (Meyers and Shi 2011; NAIC
2021). Let i and j be the accident year (AY) and the develop-
ment year (DY), respectively, and t = i + j be the calen-
dar year. Assume i = 1, . . . , I, j = 1, . . . , J, J ≤ I. Let
Yi,j denote the amount losses paid by the insurer for claims
occurred in the ith AY during the jth DY. We collect the
incremental losses Yi,j for I = 18 AYs (from 1989 to 2006)
where each accident year has a development period of J = 10
years, following Sriram and Shi (2020). Table 7 exhibits the
data that are available to an analyst by the end of 2006. The
shaded portion of the dataset with AY ∈ {10, . . . , 18} represents
the standard run-off triangle which is the most widely used
data format for loss reserving. Our dataset contains 8 addi-
tional AYs that are fully developed. The goal of loss reserv-
ing is to predict the future payments in the lower triangle{

Yi,j : 10 ≤ i ≤ 18, 2 ≤ j ≤ 10, 20 ≤ i + j ≤ 28
}

based on the
observed payments in the upper trapezoid

{
Yi,j : i + j ≤ 19

}
.

Models. Define Yt =
{

Yi,j : i + j = t
}

to be the vector of paid
losses in calendar year t, which is located on the anti-diagonal
(lower left to upper right) in Table 7. Assume Yt satisfies the
Markov property such that the joint distribution of Y2, . . . , YT
can be factorized as

g(Y2, ..., YT) = g(Y2|H2)
T∏

t=3
g(Yt|Yt−1, Ht), (23)

where T = 20 is the latest calendar year in the training data„
and Ht is a set of additional predictors. In this analysis, we set
Ht = {(i, j) : i + j = t} where i represents the AY effect
and j represents the DY effect. Note that g(Y2|H2) is the initial
condition that can be omitted under some assumptions. Then
we have the conditional probability in the following form,

g(Yt|Yt−1, Ht) =
∏

i+j=t
g(Yi,j|Yt−1, Ht)

=
∏

i+j=t
g(Yi,j|Yi−1,j, Yi,j−1, i, j).

(24)

Table 8. The root mean square errors (on the entire run-off triangle and on the
diagonal immediately next to the observed data) and the incurred but not reported
(IBNR) amounts of different loss reserving models.

No. Model Triangle Diagonal IBNR

True 0 0 245768.0
0 MCL 1919.7 1297.2 197416.0
1 TGLM 2036.0 1456.2 192938.4
2 MGCV 2139.8 1763.5 194288.2
3 TDboost 4460.2 7832.4 318237.9
4 Ktweedie 1679.1 922.1 215499.1

5 TGLM-2 1902.9 1219.7 197596.9
6 TGLM-x 2053.7 1547.1 192182.5
7 MGCV-x 2114.4 1107.5 194257.5

We further assume that for each i = 1, . . . , I, j = 1, . . . , J, the
incremental loss Yi,j follows a Tweedie distribution

Yi,j|(Yi−1,j, Yi,j−1, i, j) ∼ Tw(µi,j, φ, ρ). (25)

The fact that each Yi,j represents the aggregate claims from
a large number of policyholders in the portfolio makes the
Tweedie model a natural choice (Wüthrich 2003; Peters,
Shevchenko, and Wüthrich 2008; Taylor and McGuire 2016).

We consider several versions of Tweedie model assumptions
in (25)—each of them corresponds to a specific model under
comparison: Model 1—the Tweedie linear model (TGLM) with
log µi,j = β1Yi−1,j + β2Yi,j−1 + β⊤

3 d(i) + β⊤
4 d(j) where d(i)

and d(j) are dummy variables for the factor predictors i and
j, respectively; Model 2—the Tweedie additive model (MGCV)
with log µi,j = h1(Yi−1,j) + h2(Yi,j−1) + h3(i) + h4(j); Model
3—the tree-based gradient boosting model (TDboost) with
log µi,j = ∑M

m=1 Tm(Yi−1,j, Yi,j−1, i, j), and Model 4—the kernel
Tweedie model (Ktweedie) with log µi,j = f (Yi−1,j, Yi,j−1, i, j)
where f ∈ HK . Due to the limited number of available features
that renders variable selection unnecessary, we only consider
the prediction problem using Ktweedie. We refer to the four
predictors

{
Yi−1,j, Yi,j−1, i, j

}
in the above Tweedie models as

TOP, LEFT, AY, and DY, respectively. In addition, we consider
Model 0—the classic Mack Chain-Ladder (MCL) algorithm
(Mack 1993) as a baseline. The MCL is an industry benchmark
and is mathematically equivalent to modeling Yi,j using the
Poisson GLM with the factor predictors i and j.

Performance comparison. We train the models using the
trapezoid-shaped training data

{
Yi,j : i ≥ 2, j ≥ 2, i + j ≤ 20

}
,

and compare their prediction performance on two test data:
(a) the anti-diagonal immediately next to the observed
data

{
Yi,j : i + j = 21

}
; (b) the entire lower triangle{

Yi,j : i ≥ 11, j ≥ 3, i + j ≥ 21
}

. The first test corresponds
to one-year prediction and the second one predicts the
ultimate losses at the valuation date. For the lower triangle
case, predictions are made sequentially, that is, predicted Ŷi,j is
plugged into the subsequent predictions for Ŷi+1,j and Ŷi,j+1.
Note that extra data

{
Yij : i + j = 20

}
is added to the training

set to avoid extrapolation in prediction due to our model
specification. For fair comparison, all candidate models are
trained using the same data.

Table 8 reports the root mean squared errors (RMSE) for the
test data. The Ktweedie model with the RBF kernel outperforms
all the other methods and is the only Tweedie model that beats
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Figure 4. Visualization of pairwise interactions using Ktweedie. With the effects of accident year and development year fixed, the predictions made with the Ktweedie
model reveals complex nonlinear interaction between the variables TOP and LEFT.

the MCL. An in-depth analysis reveals that the advantage of
the Ktweedie mainly comes from: (1) its appropriate use of the
Tweedie distribution; (2) its flexible functional structure that
can capture the complex interactions in the data.

To demonstrate (1), we fit Model 5—a Tweedie GLM with
only two factor predictors AY and DY (TGLM-2) and observe
that the resulting RMSEs are lower than those of the MCL
(Table 8). Given the connection between the MCL and the
Poisson GLM, we conclude that the Tweedie-based models

offers superior prediction to the Poisson-based models for claim
reserving.

To demonstrate (2), we first show the interaction effects in
the data. As an illustration, Figure S9 visualizes the relationship
between Yi,j and the pair (AY, DY) using a heat map. Next we
examine the two-way interaction effects implied by the fitted
function of the Ktweedie. The log predicted losses are plotted
against

(4
2
)

= 6 pairs of the predictors among TOP, LEFT, AY
and DY in Figure 4(a)–(f), among which, panel (f) emphasizes
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Figure 5. Visualization of the TOP-LEFT interaction using predictions made by the TGLM (left) and MGCV (right) models.

the nonlinear interaction between TOP and LEFT. Finally, we
stress that as a fully nonparametric method, the Ktweedie
accommodates the complex interactions better than the more
restricted models. To this end, we compare the Ktweedie with
Model 6—a TGLM model with a two-way interaction between
TOP and LEFT (TGLM-x), and Model 7—a modified MGCV
model with a full tensor product smooth term for the TOP-
LEFT interaction (MGCV-x). The interaction effects in the
TGLM-x and the MGCV-x are plotted in Figure 5(a) and (b),
respectively. In particular, the interaction effect in the TGLM-x,
which is represented by the product of TOP and LEFT, is much
more restricted than in the Ktweedie (Figure 4(f)). The results in
Table 8 shows that the TGLM-x does not provide improvement
over the original TGLM, while the MGCV-x significantly lowers
the RMSE than the original additive model for one-year pre-
diction. But neither models delivers a better performance than
the Ktweedie. It is also worth noting that despite its potential
in capturing the complex interactions in the data, the TDboost
cannot be trained effectively on such fairly small dataset.

5.2. Case Study II: Ratemaking

Dataset. For the purpose of pricing insurance contract, we
predict the loss cost of individual policyholders. We analyze
an automobile insurance claims dataset in Yip and Yau (2005).
The dataset contains the total loss amount (yi) for 10,296 obser-
vations over a five-year period (vi = 5), among which 6290
(61%) observations have zero losses, and 961 (9%) observations
have losses over $10,000. In addition, the dataset contains basic
rating variables that the insurer uses for risk classification. We
summarize the set of rating variables in Table 9 and use them as
predictors.

Models. Five different models are compared in terms of their
prediction accuracy, including a mean model (MEAN), TGLM,
MGCV, TDboost, and Ktweedie (with the RBF kernel). The
real data analysis is conducted in the following way: in each
replication, the dataset is split into a training set and a test set
of equal size. All five models are trained using the training set,

Table 9. Explanatory variables in the claim history dataset.

ID Variable Description

1 AGE Driver’s age
2 BLUEBOOK Value of vehicle
3 HOMEKIDS Number of children
4 KIDSDRIV Number of driving children
5 MVR_PTS Motor vehicle record points
6 NPOLICY Number of policies
7 RETAINED Number of years as a customer
8 TRAVTIME Distance to work
9 AREA Home/work area: Rural, Urban
10 CAR_USE Vehicle use: Commercial, Private
11 GENDER Driver’s gender: F, M
12 MARRIED Married or not: Yes, No
13 REVOKED Whether license revoked in past 7 years: Yes, No

Table 10. The mean absolute deviations, root mean square errors and the nor-
malized Gini indices and computational times with standard deviations in the
parentheses of the prediction made with different models based on 20 replications.

MAD RMSE nGini Timing

MEAN 5.316 (0.121) 8.759 (0.186) 0.005 (0.017) –
TGLM 4.420 (0.078) 8.167 (0.245) 0.594 (0.012) 0.026 (0.001)
MGCV 4.258 (0.069) 7.742 (0.179) 0.595 (0.012) 8.370 (0.540)
TDboost 4.119 (0.066) 7.571 (0.180) 0.600 (0.010) 69.75 (0.088)
Ktweedie 4.225 (0.064) 7.598 (0.177) 0.597 (0.011) 441.4 (15.831)

then the trained models are used to make predictions on the test
set. We replicate the above procedure for 20 times and calculate
the average prediction accuracy over the 20 replications.

The mean model predicts using an intercept-only lin-
ear Tweedie model, which serves as a noninformative base-
line. In MGCV, the effect of the numerical variables (AGE,
BLUEBOOK, HOMEKIDS, KIDSDRIV, MVR PTS, NPOL-
ICY, RETAINED, and TRAVTIME) are modeled by splines.
The TDboost model is tuned with 5-fold cross-validation as
described in Yang, Qian, and Zou (2018). For Ktweedie, the
training involves tuning of the kernel parameter σ and the
regularization coefficient λ with a 5-fold cross-validation from
10 pairs of candidate values. For all of the methods, we record
the total computation times needed for model training, fitting
and prediction.
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Table 11. The averaged Gini indices (Frees, Meyers, and Cummings 2011) and standard deviations in the auto-insurance claim data example based on 20 replications.

Competing premium
Base premium MEAN TGLM MGCV TDboost Ktweedie

MEAN 0 48.154(0.926) 48.297(0.976) 48.646(0.819) 48.458(0.876)
TGLM 8.140(2.453) 0 8.115(1.704) 13.527(2.002) 10.476(1.362)
MGCV 6.515(2.303) 2.751(3.573) 0 10.367(2.250) 7.190(2.422)
TDboost −0.983(1.773) 3.741(2.250) 3.089(1.907) 0 3.911(1.696)
Ktweedie 1.458(1.449) 1.450(2.043) 2.741(2.069) 8.144(1.513) 0

Figure 6. A sample solution path obtained by the SKtweedie model showing the change in variable weights with increasing sparsity-inducing regularization coefficient.
The most important predictors of the claim loss are (1) the history of license revocation, (2) the motor vehicle record points, and (3) the area of the policyholder’s home/work.

Performance comparison. To compare predictive perfor-
mance, we first examine the MAD, RMSE, and normalized Gini
index (nGini; Ye et al. 2018). Smaller MAD and RMSE, and
larger nGini is preferred. Table 10 reports the average accuracy
measures with the associated standard deviations. The results
suggest that the TDboost and Ktweedie outperform all the other
models. The performance of TDboost and Ktweedie are com-
parable, with all three criteria slightly supporting the TDboost.
The computation times are reported in the rightmost column of
the table.

Due to the large proportion of zero outcomes and high
skewness, we also use the ordered Lorenz curve and the asso-
ciated Gini index as performance measures (Frees, Meyers, and
Cummings 2011). We consider a pairwise comparison among
alternative models and Table 11 summarizes the average Gini
indices and standard deviations from 20 replications. Each row
uses one candidate model as the base and evaluates the “relative
improvement” made by the competing models. A large and
significant Gini index indicates by switching from the base to
the alternative, the insurer could better separate low and high
risks. First, the MEAN model is the least favorable one as it
does not take into account the rating variables. Second, both
TDboost and Ktweedie show superior performance over other
Tweedie models. Third, the selection between the TDboost and
Ktweedie is not obvious, neither showing substantial advantage
over the other. Figure S10 exhibits the ordered Lorenz curves
from one replication, which shows the superior performance
of the Ktweedie to other Tweedie models. The Gini indices in
Table 11 are calculated as twice the area between the curve and
the equity line.

Overall, we conclude that the Ktweedie clearly outperforms
the TGLM and MGCV and its prediction accuracy is on par with
the TDboost. It is within our expectation that the TDboost also
has a good performance on this dataset since the sample size is

sufficiently large while the dimension is relatively low—a setting
that generally favors the tree-based gradient boosting methods.
In addition, a number of binary predictors in the dataset puts
the tree-based methods in advantage due to its natural handling
of the partition of the input space.

Last, we show that the SKtweedie can be used to identify
important predictors. We first select parameters λ1 and σ using
cross-validation, and then construct a solution path for the
SKtweedie with respect to λ2. As shown in Figure 6, the weights
for most variables shrink to zero quickly, except for REVOKED,
AREA and MVR_PTS. The results indicate that the history
of license revocation, the driver’s motor vehicle record points,
and whether the policyholder lives/works in rural or urban
areas are the most important predictors for the insurance losses.
The findings are highly consistent with those by the TDboost,
where the most significant predictors are REVOKED, AREA,
BLUEBOOK and MVR_PTS as shown in Figure 9 and Section
6.4 in Yang, Qian, and Zou (2018).

6. Conclusion

In this article we have derived a kernel Tweedie model in RKHS
and also proposed a sparse variant which integrated variable
selection via sparsity-inducing regularization. We have demon-
strated the favorable prediction performance of the proposed
methods through comprehensive simulation and two case stud-
ies using real data. The proposed Ktweedie and SKtweedie are
implemented in Fortran with an R interface for improved speed.
We apply several computational tricks including the warm start
and the active set.

One major issue with kernel learning is the computational
limitation, for example, the computation and storage of the
Gram matrix of a kernel problem can be very expensive when
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the sample size is large. To avoid the problem of calculating the
whole Gram matrix (it costs O(n2p)), it remains interesting to
develop low-cost approximations of the kernel matrix through
subsampling methods (Rudi, Camoriano, and Rosasco 2015) or
random features (Rahimi and Recht 2007). These approxima-
tions can also improve prediction performances as they induce
implicit regularization.

Supplementary Materials

Supplementary Material includes derivations, proofs, Algorithms S1–S3,
Tables S1–S4, and Figures S1–S10 in Sections A–F, as well as R code to
reproduce Simulation Case I and links to the development and CRAN
versions of the R package ktweedie.
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A.1 Bisection Line-search for BFGS

This line-search is performed in each (inverse) BFGS update iteration. It aims to find an appropriate

positive step size t that satisfies the Wolfe conditions in (17).
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Algorithm S1: Bisection line-search for the (inverse) BFGS
Input: ↵,p
Output: t
Constants: c1 = 10�4, c2 = 0.9, a = 0

1 Initialization: t = 1, phase = A, accept = False;
2 repeat phase A
3 if Condition 1 holds then
4 if Condition 2 holds then
5 accept = True
6 else
7 t = 2t
8 end
9 else

10 phase = B
11 exit;
12 end
13 until accept;
14 if phase = B then
15 b = t
16 repeat phase B
17 told = t
18 t = (a+ b)/2
19 if told = t then
20 cannot find proper t
21 exit;

/* exit BFGS */
/* switch to GD */

22 end
23 if Condition 1 holds then
24 if Condition 2 holds then
25 accept = True
26 else
27 a = t
28 end
29 else
30 b = t
31 end
32 until accept;
33 end

2



A.2 Backtracking Line-search for Gradient Descent

This line-search is performed in each gradient descent update iteration. It aims to find an appropriate

positive step size t that satisfies the Armijo-Goldstein condition

g(⇠ � trg(⇠))  g(⇠)� ctkrg(⇠)k22

where ⇠ is the parameter of interest (↵ or w in our case) and c 2 (0, 1/2] is some constant.

Algorithm S2: Backtracking line-search for gradient descent
Input: ⇠
Output: t
Constants: c = 0.5

1 Initialization: t = 1, accept = False;
2 repeat
3 if g(⇠ � trg(⇠))  g(⇠)� ctkrg(⇠)k22 then
4 accept = True
5 else
6 t = 0.9t
7 end
8 until accept;

3



A.3 Gradient Descent Update for the Weights in the SKtweedie

Algorithm S3: Gradient descent for weight
Input: X,y,�1,�2,↵(m),w(m)

Output: w(m+1)

1 Initialization: k = 0,w(m,0) = w(m);
2 repeat gradient descent loop
3 Generate new kernel matrix K(w(m,k)) as defined in (12)
4 call Algo. S2 to find step size t(m,k)

5 for j = 1, . . . , p do
6 Compute w(m,k+1)

j using (18)
7 end
8 k := k + 1
9 if w(m,k+1) = 0p then exit;

10 until convergence;
11 w(m+1) = w(m,k)

B Fitting the Ktweedie Model with an Intercept

This section discusses the implementation details when there is an intercept term in the model.

Denote by g(↵0,↵) the objective function in (10). It is convex in (↵0,↵), which allows convenient

alternating minimization. Based on Algorithm 1, after updating ↵(k) to ↵(k+1) with ↵0 fixed at ↵(k)
0

in each iteration k (Line 6), we update ↵(k)
0 to ↵(k+1)

0 . This can be done by solving the equation
@g(↵0,↵(k+1))

@↵0
= 0 analytically,

↵(k+1)
0  log

Pn
i=1 yi exp[(1� ⇢)K>

i ↵
(k+1)]Pn

i=1 exp[(2� ⇢)K>
i ↵

(k+1)]
.

C Proof of Theorem 1

Proof. According to Theorem 6.5 (Nocedal and Wright, 2006), in order to show the global conver-

gence of BFGS in our algorithm, we only need to check the following two conditions (Assumption

6.1 Nocedal and Wright, 2006) are satisfied:

4



1. The objective function g is twice continuously differentiable.

2. There exist positive constants m and M such that, for all ↵,

mIn � r2g (↵) �MIn.

where In is an n⇥ n identity matrix.

Since Algorithm 1 is descending along its iterations thus we can restrict the domain of ↵ to the

sublevel set L0 =
�
↵ 2 Rn : g(↵)  g(↵(0))

 
. Since g is a convex function, set L0 is convex

compact. Without loss of generality, assume not all yi’s are zero. Define ⌧i = K>
i ↵ for i = 1, . . . , n.

It follows that the set

C0 =
n
⌧ = (⌧1, . . . , ⌧n)

> : ↵ 2 L0

o

is convex compact. Therefore for all ↵ 2 L0, ⌘i is bounded by ⌘max, where

⌘max = max
1in

sup
↵2L0

|⌘i| <1.

Also yi’s are bounded by vmax = max1in vi and ymax = max1in yi. Let

w̄i = vi
�
(⇢� 1)yie

(1�⇢)⌧i + (2� ⇢)e(2�⇢)⌧i
�

Note that w̄i is bounded by

max
1in

sup
↵2L0

|w̄i|  vmax

�
ymax(⇢� 1)e(⇢�1)⌧max + (2� ⇢)e(2�⇢)⌧max

�
⌘ wmax.

We can see that

r2g (↵) = Kdiag [w̄1, w̄2, . . . , w̄n]K+ �K

� (wmax⇤max(KK) + ⇤max(K))In, 8↵ 2 L0.

where ⇤max(A) represents the largest eigenvalue of matrix A. Thus g (↵) is strongly smooth on the

sublevel set L0. We can also show that g (↵) is strongly convex on L0. It can be shown that w̄i can

5



be lower-bounded on L0,

w̄i �
✓
⇢� 1

2� ⇢

◆3�2⇢

vi (yi)
2�⇢ I (yi > 0) + (2� ⇢)e�(2�⇢)⌘maxI (yi = 0) > 0

for all ↵ 2 L0 and i = 1, . . . , n. Let

wmin = min

(✓
⇢� 1

2� ⇢

◆3�2⇢

min
i:yi>0

wi (yi)
2�⇢ , (2� ⇢)e�(2�⇢)⌘max

)
.

We see that w̄i � wmin > 0. Therefore

r2g (↵) = Kdiag [w̄1, w̄2, . . . , w̄n]K+ �K

⌫ (wmin⇤min(KK) + ⇤min(K))In, 8↵ 2 Rn.

This shows that g(↵) is strongly convex. We have proved that Assumption 6.1 in Theorem 6.5

(Nocedal and Wright, 2006) holds so that Algorithm 1 has global convergence.

By Theorem 6.6 (Nocedal and Wright, 2006), in order to show that the update ↵(k) generated by

Algorithm 1 converges to ↵⇤ at a superlinear rate, we only need to show that g is twice continuously

differentiable and that the Hessian matrix r2g is Lipschitz continuous (Assumption 6.2 Nocedal

and Wright, 2006), i.e. for all ↵,↵0 2 domg, there exists a positive constant L such that,

��r2g(↵)�r2g(↵0)
��
2
 L k↵�↵0k2 ,

where the norm applied to the matrix is the spectral norm.

We consider a vector-valued function h(t) : R! Rn satisfying hb(t) = b>r2f(↵+t(↵0�↵)),

6



then by the mean value theorem

b>[r2g(↵)�r2g(↵0)] =
hb(1)� hb(0)

1� 0

= h0
b(t̃) (mean value theorem, t̃ 2 (0, 1))

=

2

6664

P
i

P
j

@3g(e↵)
@↵1@↵i@↵j

bi(↵0
j � ↵j)

...
P

i

P
j

@3g(e↵)
@↵n@↵i@↵j

bi(↵0
j � ↵j)

3

7775
. (e↵ = ↵+ t̃(↵0 �↵)) (1)

In the sublevel set L0, the values of third derivatives of g in (1) can be upper-bounded

����
@3g(e↵)

@↵1@↵i@↵j

����  D, (2)

where D > 0 is a constant. Therefore the L2 norm of the vector b>[r2g(↵)�r2g(↵0)] can also

be upper-bounded

kb>[r2g(↵)�r2g(↵0)]k2  D
p
n
��
X

i

X

j

bi(↵
0
j � ↵j)

��

 D
p
n · nkbk2k↵0 �↵k2.

The above inequality indicates thatr2g is Lipschitz continuous, since that

��r2g(↵)�r2g(↵0)
��
2
= max

kbk2=1
kb>[r2g(↵)�r2g(↵0)]k2

 max
kbk2=1

D
p
n · nkbk2k↵0 �↵k2

= D
p
n · nk↵0 �↵k2,

where the first line follows by the definition of the spectral norm. Therefore Assumption 6.1 in

Theorem 6.5 (Nocedal and Wright, 2006) holds.
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D The Derivative of the SKtweedie Objective Function

The objective function is

g (↵,w) = l1 + l2 + p1 + p2

=
1

n

nX

i=1

 
yi exp

⇥
�(⇢� 1)K(w)>i ↵

⇤

⇢� 1

!
.................(l1)

+
1

n

nX

i=1

 
exp

⇥
(2� ⇢)K(w)>i ↵

⇤

2� ⇢

!
........................(l2)

+ �1↵
>K(w)↵......................................................(p1)

+ �21
>w...............................................................(p2)

s.t. wj 2 [0, 1], j = 1, . . . , p,

where

K(w) =

2

6666664

K(w)1

K(w)2
...

K(w)n

3

7777775
=

2

6666664

K(w)11 K(w)12 · · · K(w)1n

K(w)21 K(w)22 · · · K(w)2n
...

... . . . ...

K(w)n1 K(w)n2 · · · K(w)nn

3

7777775

=

2

6666664

K(w � x1,w � x1) K(w � x1,w � x2) · · · K(w � x1,w � xn)

K(w � x2,w � x1) K(w � x2,w � x2) · · · K(w � x2,w � xn)
...

... . . . ...

K(w � xn,w � x1) K(w � xn,w � x2) · · · K(w � xn,w � xn)

3

7777775
,

and K(·, ·) is the RBF kernel function with tuning parameter �. For i, j = 1, 2, . . . , n,

K(w)ij = k(w � xi,w � xj) = exp(�� · kw � xi �w � xjk22).

For clarity, divide the objective function into four parts g(↵,w) = l1 + l2 + p1 + p2 and derive

individually. First, we take derivative of l1 with respect to w,

8



@l1
@w

=
1

n

nX

i=1

@l1
@K(w)i

· @K(w)i
@w

,

where
@l1

@K(w)i
= �yi exp

⇥
�(⇢� 1)K(w)>i ↵

⇤
·↵

= ⌘i ·↵ 2 Rn,

with ⌘i = �yi exp
⇥
�(⇢� 1)K(w)>i ↵

⇤
is a scalar, and

@K(w)i
@w

=
@ [K(w)i1,K(w)i2, . . . ,K(w)in]

@w
2 Rn⇥p,

with

@K(w)ij
@w

=
@k(w � xi,w � xj)

@w

=
@ exp(�� · kw � xi �w � xjk22)

@w

= exp(�� · kw � xi �w � xjk22) · (�2�) · (xi � xj)� (xi � xj)�w

= cij · (xi � xj)� (xi � xj)�w,

for the scalar cij = �2� · exp(�� · kw � xi �w � xjk22). Therefore,

@K(w)i
@w

=

2

6666664

ci1 · (xi � x1)� (xi � x1)�w

ci2 · (xi � x2)� (xi � x2)�w
...

cin · (xi � xn)� (xi � xn)�w

3

7777775
.

Put it together,

@`1
@w

=
1

n

nX

i=1

⌘i ·↵> ·

2

6666664

ci1 · (xi � x1)� (xi � x1)�w

ci2 · (xi � x2)� (xi � x2)�w
...

cin · (xi � xn)� (xi � xn)�w

3

7777775
2 Rp.
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Next, we derive l2. Similar to the above,

@l2
@w

=
1

n

nX

i=1

@l2
@K(w)i

· @K(w)i
@w

=
1

n

nX

i=1

⇣i ·↵> ·

2

6666664

ci1 · (xi � x1)� (xi � x1)�w

ci2 · (xi � x2)� (xi � x2)�w
...

cin · (xi � xn)� (xi � xn)�w

3

7777775

,

where ⇣i = exp
⇥
(2� ⇢)K(w)>i ↵

⇤
, i = 1, 2, . . . , n.

Next, take the derivative of the first penalty p1 w.r.t. w,

@p1
@w

= �1

nX

i=1

nX

j=1

@p1
@K(w)ij

· @K(w)ij
@w

= �1

nX

i=1

nX

j=1

↵i↵j
@K(w)ij

@w

= �1

nX

i=1

nX

j=1

↵i↵jcij · (xi � xj)� (xi � xj)�w.

Finally, @p2/@w has the following form,

@p2
@w

= �2.

Note that the gradient is scaled by the weights except for the last term, thus @g(↵,w)
@wj

= �2, for all

wj = 0.
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E Parameter Orthogonality

Following (5), g(y|µ,�, ⇢) is the density function, for y, we have
´
g(y|µ,�, ⇢)dy = 1. Therefore

0 =
@

@µ

ˆ
g(y|µ,�, ⇢)dy

=

ˆ
g(y|µ,�, ⇢)
g(y|µ,�, ⇢)

@g(y|µ,�, ⇢)
@µ

dy

=

ˆ
g(y|µ,�, ⇢)@ log g(y|µ,�, ⇢)

@µ
dy

= EY


@ log g(y|µ,�, ⇢)

@µ

�
.

Since

g(y|µ,�, ⇢) = a(y,�, ⇢) exp

⇢
1

�

✓
yµ1�⇢

1� ⇢
� µ2�⇢

2� ⇢

◆�
,

the density satisfies
@ log g (y|µ, ⇢,�)

@µ
=

y � µ

�µ⇢
.

Therefore

E

@2 log g(y|µ,�, ⇢)

@µ@�

�
= E


@

@�

✓
y � µ

�µ⇢

◆�

= E

� 1

�2
· y � µ

µ⇢

�

= �1

�
E

y � µ

�µ⇢

�

= �1

�
E

@ log g(y|µ,�, ⇢)

@µ

�

= 0,
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also

E

@2 log g(y|µ,�, ⇢)

@µ@⇢

�
= E


@

@⇢

✓
y � µ

�µ⇢

◆�

= E

log µ · y � µ

�µ⇢

�

= log µ · E

y � µ

�µ⇢

�

= log µ · E

@ log g(y|µ,�, ⇢)

@µ

�

= 0.

Therefore µ is orthogonal to both � and ⇢ (Cox and Reid, 1987, 1989; Jørgensen and Knudsen,

2004). The statistical consequences of this orthogonality is that the maximum likelihood estimates

µ̂ is asymptotically independent to �̂ and ⇢̂.
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F Additional Tables and Figures

Table S1: The mean computation times for Case I Model 1 based on 20 replications for different
values of �.

� MGCV TDboost TGLM RBF Laplace

0.1 0.020 0.971 0.001 0.638 1.273
0.5 0.055 0.994 0.001 0.672 1.340
1.0 0.019 0.970 0.001 0.687 1.457
2.0 0.022 0.982 0.001 0.682 1.611

Table S2: The mean computation times for Case I Model 2 based on 20 replications for different
values of �.

� MGCV TDboost TGLM RBF Laplace

0.1 0.130 4.211 0.002 0.915 2.095
0.5 0.037 4.369 0.001 0.958 3.444
1.0 0.064 4.230 0.001 0.976 4.469
2.0 0.130 4.132 0.001 1.027 5.822

Table S3: The mean and standard errors of MADs, b⇢ and b� based on 20 independent replications.
True ⇢ = 1.5 and true � = 0.5

Model MAD b⇢ b�
1 0.096 (0.004) 1.503 (0.0126) 0.497 (0.008)
2 0.088 (0.003) 1.441 (0.024) 0.505 (0.013)
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Table S4: The mean computation times for Case II based on 20 replications for different values of �.

� MGCV TDboost RBF Laplace

0.1 0.703 0.088 0.417 0.436
0.5 0.686 0.088 0.672 0.706
1.0 0.679 0.088 0.202 0.276
2.0 0.756 0.088 0.236 0.274
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Figure S1: Fitted bF (x) vs. true F (x) in Model 1 from a sample run (top to bottom � =
0.1, 0.5, 1.0, 2.0).
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Figure S2: The profile likelihood of ⇢ from a sample run. Model 1 (left): true ⇢ = 1.5, b⇢ = 1.52;
Model 2 (right): true ⇢ = 1.5, b⇢ = 1.58.
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Figure S3: Distribution of the mean absolute deviations from the MGCV, TDboost, and Ktweedie
(RBF and Laplace kernel) in Case II based on 100 independent replications.
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Figure S4: Boxplot of the mean absolute deviations for different values of the index parameter
⇢ 2 {1.1, 1.2, . . . , 1.9} used during model fitting when the true value (⇢ = 1.5) is unknown. The
estimation accuracy is almost unaffected by ⇢.
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Figure S5: Distribution of the mean absolute deviations from the TDboost, Ktweedie, and SKtweedie
in Case III based on 100 independent replications.
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Figure S6: Variable selection results using SKtweedie with the Gaussian RBF kernel (left: p = 10,
right: p = 50). Each column corresponds to a replication and each row corresponds to a variable,
thus within the red rectangles are the true signal variables. The grayscale represents the magnitude
of the estimated weights with a value between 0 and 1.
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Figure S7: Variable selection results using the SKtweedie with Gaussian RBF kernel (p = 200)
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Figure S8: Computation times needed to fit a Ktweedie model and an SKtweedie model for sample
size n = 50, 100, 200, 400 and p = 10 in simulation Case IV.
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Figure S9: A heatmap of the log incremental losses by accident year and development year.
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Figure S10: The ordered Lorenz curves for the auto-insurance claim data. In all four plots, the
Ktweedie serves as the competing model.
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