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ABSTRACT
Expectile, first introduced by Newey and Powell in 1987 in the econometrics literature, has recently become
increasingly popular in risk management and capital allocation for financial institutions due to its desirable
properties such as coherence and elicitability. The current standard tool for expectile regression analysis is
themultiple linear expectile regression proposed by Newey and Powell in 1987. The growing applications of
expectile regressionmotivate us to develop amuchmore flexible nonparametric multiple expectile regres-
sion in a reproducing kernel Hilbert space. The resulting estimator is called KERE, which hasmultiple advan-
tages over the classicalmultiple linear expectile regressionby incorporatingnonlinearity, nonadditivity, and
complex interactions in the final estimator. The kernel learning theory of KERE is established. We develop
an efficient algorithm inspired bymajorization-minimization principle for solving the entire solution path of
KERE. It is shown that the algorithm converges at least at a linear rate. Extensive simulations are conducted
to show the very competitive finite sample performance of KERE. We further demonstrate the application
of KERE by using personal computer price data. Supplementarymaterials for this article are available online.

1. Introduction

The expectile introduced by Newey and Powell (1987) is becom-
ing an increasingly popular tool in risk management and capital
allocation for financial institutions. LetY be a random variable,
the ω-expectile ofY , denoted as fω, is defined by

ω =
E{|Y − fω|IY≤ fω}

E{|Y − fω|}
, ω ∈ (0, 1). (1)

In financial applications, the expectile has been widely used
as a tool for efficient estimation of the expected shortfall (ES)
through a one-one mapping between the two (Taylor 2008;
Hamidi, Maillet, and Prigent 2014; Xie, Zhou, and Wan 2014).
More recently, many researchers started to advocate the use of
the expectile as a favorable alternative to other two commonly
used riskmeasures—Value at Risk (VaR) and ES, due to its desir-
able properties such as coherence and elicitability (Kuan, Yeh,
and Hsu 2009; Gneiting 2011; Ziegel 2016). VaR has been crit-
icized mainly for two drawbacks: first, it does not reflect the
magnitude of the extreme losses for the underlying risk as it
is only determined by the probability of such losses; second,
VaR is not a coherent risk measure due to the lack of the sub-
additive property (Emmer, Kratz, and Tasche 2013; Embrechts
et al. 2014). Hence, the risk of merging portfolios together could
get worse than adding the risks separately, which contradicts the
notion that risk can be reduced by diversification (Artzner et al.
1999). Unlike VaR, ES is coherent and it considers the magni-
tude of the losses when the VaR is exceeded. However, a major
problem with ES is that it cannot be reliably backtested in the
sense that competing forecasts of ES cannot be properly evalu-
ated through comparison with realized observations. Gneiting
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(2011) attributed this weakness to the fact that ES does not have
elicitability. Ziegel (2016) further showed that the expectile are
the only risk measure that is both coherent and elicitable.

In applications, we often need to estimate the conditional
expectile of the response variable given a set of covariates. This
is called expectile regression. Statisticians and Econometricians
pioneered the study of expectile regression. Theoretical proper-
ties of the multiple linear expectile were firstly studied in Newey
and Powell (1987) and Efron (1991). Yao and Tong (1996) stud-
ied a nonparametric estimator of conditional expectiles based
on local linear polynomials with a one-dimensional covariate,
and established the asymptotic property of the estimator. A
semiparametric expectile regressionmodel relying on penalized
splines is proposed by Sobotka and Kneib (2012). Yang and Zou
(2015) adopted the gradient tree boosting algorithm for expec-
tile regression.

In this article, we propose a flexible nonparametric expec-
tile regression estimator constructed in a reproducing kernel
Hilbert space (RKHS) (Wahba 1990). Our contributions in this
article are twofold: first, we extend the parametric expectile
model to a fully nonparametric multiple regression setting and
develop the corresponding kernel learning theory. Second, we
propose an efficient algorithm that adopts the majorization-
minimization principle for computing the entire solution path
of the kernel expectile regression. We provide numerical con-
vergence analysis for the algorithm. Moreover, we provide an
accompanying R package that allows other researchers and
practitioners to use the kernel expectile regression.

The rest of the article is organized as follows. In Section 2,
we present the kernel expectile regression and develop an
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asymptotic learning theory. Section 3 derives the fast algorithm
for solving the solution paths of the kernel expectile regression.
The numerical convergence of the algorithm is examined. In
Section 4, we use simulation models to show the high predic-
tion accuracy of the kernel expectile regression. We analyze the
personal computer price data in Section 5. The technical proofs
are relegated to an appendix.

2. Kernel Expectile Regression

2.1 Methodology

Newey and Powell (1987) showed that the ω-expectile fω of Y
has an equivalent definition given by

fω = argmin
f

E{φω(Y − f )}, (2)

where

φω(t ) =
{
(1 − ω)t2 t ≤ 0,
ωt2 t > 0. (3)

Consequently, Newey and Powell (1987) showed that the
ω-expectile fω of Y given the set of covariates X = x, denoted
by fω(x), can be defined as

fω(x) = argmin
f

E{φω(Y − f ) | X = x}. (4)

Newey and Powell (1987) developed the multiple linear expec-
tile regression based on (4). Given n random observations
(x1, y1), . . . , (xn, yn) with xi ∈ Rp and yi ∈ R, Newey and
Powell (1987) proposed the following formulation:

(β̂, β̂0) = argmin
(β,β0 )

1
n

n∑

i=1

φω

(
yi − xᵀi β − β0

)
. (5)

Then the estimated conditional ω-expectile is xᵀi β̂ + β̂0. Efron
(1991) proposed an efficient algorithm for computing (5).

The linear expectile estimator can be too restrictive in many
real applications. Researchers have also considered more flexi-
ble expectile regression estimators. For example, Yao and Tong
(1996) studied a local linear-polynomial expectile estimator
with a one-dimensional covariate. However, the local fitting
approach is not suitable when the dimension of explanatory
variables is more than five. This limitation of local smooth-
ing motivated Yang and Zou (2015) to develop a nonparamet-
ric expectile regression estimator based on the gradient tree
boosting algorithm. The tree-boosted expectile regression tries
to minimize the empirical expectile loss:

min
f∈F

1
n

n∑

i=1

φω(yi − f (xi)), (6)

where each candidate function f ∈ F is assumed to be an
ensemble of regression trees.

In this article, we consider another nonparametric approach
to themultiple expectile regression. Tomotivate ourmethod, let
us first look at the special expectile regression withω = 0.5. It is
easy to see from (3) and (4) that if ω = 0.5, expectile regression
actually reduces to ordinary conditionalmean regression.Ahost
of flexible regressionmethods has beenwell-studied for the con-
ditional mean regression, such as generalized additive model,

regression trees, boosted regression trees, and function esti-
mation in a reproducing kernel Hilbert space (RKHS). Hastie,
Tibshirani, and Friedman (2009) provided excellent introduc-
tions to all these methods. In particular, mean regression in
an RKHS has a long history and a rich success record (Wahba
1990). So in the present work we propose the kernel expectile
regression in an RKHS.

Denote by HK the Hilbert space generated by a positive
definite kernel K. By the Mercer’s theorem, kernel K has an
eigen-expansionK(x, x′) =

∑∞
i=1 νiϕi(x)ϕi(x′)with νi ≥ 0 and∑∞

i=1 ν2
i < ∞. The function f in HK can be expressed as an

expansion of these eigen-functions f (x) =
∑∞

i=1 ciϕi(x) with
the kernel induced squared norm ∥ f ∥2HK

≡
∑∞

i=1 c2i /νi < ∞.

Some most widely used kernel functions are! Gaussian RBF kernel K(x, x′) = exp(−∥x−x′∥2
σ 2 );! sigmoidal kernel K(x, x′) = tanh(κ⟨x, x′⟩ + θ );! polynomial kernel K(x, x′) = (⟨x, x′⟩ + θ )d .

Other kernels can be found in Smola, Schölkopf, and Müller
(1998) and Hastie, Tibshirani, and Friedman (2009).

Givenn observations {(xi, yi)}ni=1, the kernel expectile regres-
sion estimator (KERE) is defined as

( f̂n(x), α̂0) = arg min
f∈HK ,α0∈R

n∑

i=1

φω(yi − α0 − f (xi)) + λ∥ f ∥2HK
,

(7)

where xi ∈ Rp, α0 ∈ R. The estimated conditional ω-expectile
is α̂0 + f̂n(x). Sometimes, one can absorb the intercept term
into the nonparametric function f . We keep the intercept term
to make a direct comparison to the multiple linear expectile
regression.

Although (7) is often an optimization problem in an infinite-
dimensional space, depending on the choice of the kernel, the
representer theorem (Wahba 1990) ensures that the solution to
(7) always lies in a finite-dimensional subspace spanned by ker-
nel functions on observational data, that is,

f (x) =
n∑

i=1

αiK(xi, x), (8)

for some {αi}ni=1 ⊂ R.
By (8) and the reproducing property of RKHS (Wahba 1990),

we have

∥ f ∥2HK
=

n∑

i=1

n∑

j=1

αiα jK(xi, x j). (9)

Based on (8) and (9), we can rewrite the minimization prob-
lem (7) in a finite-dimensional space

{α̂i}ni=0 = arg min
{αi}ni=0

n∑

i=1

φω

⎛

⎝yi − α0 −
n∑

j=1

α jK(xi, x j)

⎞

⎠

+ λ

n∑

i=1

n∑

j=1

αiα jK(xi, x j). (10)

The corresponding KERE estimator is α̂0 +
∑n

i=1 α̂iK(xi, x).
The computation of KERE is based on (10) and we use both

(7) and (10) for the theoretical analysis of KERE.
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2.2 Kernel Learning Theory

In this section, we develop a kernel learning theory for KERE.
We first discuss the criterion for evaluating an estimator in the
context of expectile regression. Given the loss function φω, the
risk is R( f ,α0) = E(x,y)φω(y − α0 − f (x)). It is argued that
R( f ,α0) is a more appropriate evaluation measure in practice
than the squared error risk defined as Ex∥ f (x) + α0 − f ∗

ω (x)∥2,
where f ∗

ω is the true conditional expectile ofY givenX = x. The
reason is simple: Let f̂ , α̂0 be any estimator based on the training
data. By law of large number, we see that

R( f̂ , α̂0) = E{y j,x j}mj=1

1
m

m∑

j=1

φω(y j − α̂0 − f̂ (x j))

= lim
m→∞

1
m

m∑

j=1

φω(y j − α̂0 − f̂ (x j)),

where {(x j, y j)}mj=1 is another independent test sample. Thus,
one can use techniques such as cross-validation to estimate
R( f ,α0). Additionally, the squared error risk depends on the
function f ∗

ω (x), which is usually unknown. Thus, we prefer to
useR( f̂ , α̂0) over the squared error risk.Of course, if we assume
a classical regressionmodel (whenω = 0.5) such as y = f (x) +
error, where the error is independent of x with mean zero and
constant variance, R( f̂ , α̂0) then just equals the squared error
risk plus a constant. Unfortunately, such equivalence breaks
down for other values of ω and more general models.

After choosing the risk function, the goal is to minimize the
risk. Since typically the estimation is done in a function space,
the minimization is carried out in the chosen function space.
In our case, the function space is RKHS generated by a kernel
function K. Thus, the ideal risk is defined as

R∗
f ,α0

= inf
f∈HK ,α0∈R

R( f ,α0).

Consider the kernel expectile regression estimator ( f̂ , α̂0)

as defined in (7) based on a training sample Dn, where Dn =
{(xi, yi)}ni=1 are iid drawn from an unknown distribution. The
observed risk of KERE is

R( f̂ , α̂0) = E(x,y)φω(y − α̂0 − f̂ (x)).

It is desirable to show that R( f̂ , α̂0) approaches the ideal risk
R∗

f ,α0
.

It is important to note that R( f̂ , α̂0) is a random quantity
that depends on the training sample Dn. So it is not the usual
risk function, which is deterministic. However, we can consider
the expectation of R( f̂ , α̂0) and call it expected observed risk.
The formal definition is

Expected observed risk:
EDnR( f̂ , α̂0) = EDn

{
E(x,y)φω(y − α̂0 − f̂ (x))

}
. (11)

Our goal is to show that R( f̂ , α̂0) converges to R∗
f ,α0

.

We achieve this by showing that the expected observed risk
converges to the ideal risk, that is, limn→∞ EDnR( f̂ , α̂0) =
R∗

f ,α0
. By definition, we always have R( f̂ , α̂0) ≥ R∗

f ,α0
. Then

by Markov inequality, for any ε > 0

P
(
R( f̂ , α̂0) − R∗

f ,α0
> ε

)
≤

EDnR( f̂ , α̂0) − R∗
f ,α0

ε
→ 0.

The rigorous statement of our result is as follows:

Theorem 1. Let M = supx K(x, x)1/2. Assume M < ∞ and
Ey2 < D < ∞ whereM and D are two constants. If λ is chosen
such that as n → ∞, λ/n2/3 → ∞, λ/n → 0, then we have

EDnR( f̂ , α̂0) → R∗
f ,α0

as n → ∞,

and hence

R( f̂ , α̂0) − R∗
f ,α0

→ 0 in probability.

The Gaussian kernel is perhaps the most popular kernel
for nonlinear learning. For the Gaussian kernel K(x, x′) =
exp(−∥x − x′∥2/c), we haveM = 1. For any radial kernel with
the form K(x, x′) = h(∥x − x′∥) where h is a smooth decreas-
ing function, we see M = h(0) 1

2 , which is finite as long as
h(0) < ∞.

3. Algorithm

3.1 Derivation

Majorization-minimization (MM) algorithm is a very successful
technique for solving a wide range of statistical models (Lange,
Hunter, and Yang 2000; Hunter and Lange 2004; Wu and Lange
2010; Zhou and Lange 2010; Lange and Zhou 2014). In this sec-
tion, we develop an algorithm inspired by MM principle for
solving the optimization problem (10). Note that the loss func-
tion φω in (10) does not have the second derivative. We adopt
the MM principle to find the minimizer by iteratively minimiz-
ing a surrogate function that majorizes the objective function
in (10).

To further simplify the notation, we write α =
(α0,α1,α2, . . . ,αn)

ᵀ, and

Ki = (1,K(xi, x1), . . . ,K(xi, xn)) ,

K =

⎛

⎜⎝
K(x1, x1) · · · K(x1, xn)

...
. . .

...
K(xn, x1) · · · K(xn, xn)

⎞

⎟⎠,

K0 =
(
0 0ᵀ
0 K

)
.

Then (10) is simplified to a minimization problem as

α̂ = argmin
α

Fω,λ(α), (12)

Fω,λ(α) =
n∑

i=1

φω

(
yi − Kiα

)
+ λαᵀK0α, (13)

where ω is given for computing the corresponding level of the
conditional expectile. We also assume that λ is given for the
time being. A smart algorithm for computing the solution for
a sequence of λ will be studied in Section 3.3.

Our approach is to minimize (12) by iteratively update
α using the minimizer of a majorization function of
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Fω,λ(α). Specifically, at the kth step of the algorithm, where
k = 0, 1, 2, . . ., assume that α(k) is the current value of α at
iteration k, we find a majorization function Q(α | α(k)) for
Fω,λ(α) at current α(k) that satisfies

Q(α | α(k)) > Fω,λ(α) when α ̸= α(k), (14)
Q(α | α(k)) = Fω,λ(α) when α = α(k). (15)

Then we update α by minimizing Q(α | α(k)) rather than the
actual objective function Fω,λ(α):

α(k+1) = argmin
α

Q(α | α(k)). (16)

To construct the majorization function Q(α | α(k)) for Fω,λ(α)

at the kth iteration, we use the following lemma:

Lemma 1. The expectile loss φω has a Lipschitz continuous
derivative φ′

ω, that is,

|φ′
ω(a) − φ′

ω(b)| ≤ L|a − b| ∀a, b ∈ R, (17)

where L = 2max(1 − ω,ω). This further implies that φω has a
quadratic upper bound

φω(a) ≤ φω(b) + φ′
ω(b)(a − b) + L

2
|a − b|2 ∀a, b ∈ R.

(18)
Note that “=” is taken only when a = b.

Assume the current “residual” is r(k)i = yi − Kiα
(k), then it

is equivalent in (12) that yi − Kiα = r(k)i − Ki(α − α(k)). By
Lemma 1, we obtain
∣∣∣φ′

ω

(
r(k)i − Ki(α − α(k))

)
− φ′

ω(r(k)i )
∣∣∣ ≤ 2max(1 − ω,ω)

|Ki(α − α(k))|,

and the quadratic upper bound

φω

(
r(k)i − Ki

(
α − α(k))

)
≤ qi(α | α(k)),

where

qi(α | α(k)) = φω(r(k)i ) − φ′
ω(r(k)i )Ki(α − α(k))

+ max(1 − ω,ω)(α − α(k))ᵀKiKᵀ
i (α − α(k)).

Therefore, the majorization function of Fω,λ(α) can be written
as

Q(α | α(k)) =
n∑

i=1

qi(α | α(k)) + λαᵀK0α, (19)

which has an alternatively form that can be written as

Q(α | α(k)) = Fω,λ(α
(k)) + ∇Fω,λ(α

(k))(α − α(k))

+ (α − α(k))ᵀKu(α − α(k)), (20)

where

Ku = λK0 + max(1 − ω,ω)

n∑

i=1

KiKᵀ
i (21)

= max(1 − ω,ω)

(
n 1ᵀK
K1 KK + λ

max(1−ω,ω)
K

)
, (22)

and 1 is an n × 1 vector of all ones. Our algorithm updates
α using the minimizer of the quadratic majorization function
(20):

α(k+1) = argmin
α

Q(α | α(k)) = α(k) + K−1
u

(
− λK0α

(k)

+ 1
2

n∑

i=1

φ′
ω(r(k)i )Ki

)
. (23)

The details of the whole procedures for solving (12) are
described in Algorithm 1.

Algorithm 1 The algorithm for the minimization of (12).
• Let {yi}n1 be observations of the response,

{K(xi, x j)}ni, j=1be the kernel of all observations, and
α := (α0,α1,α2, . . . ,αn).

• Initialize α(0) and k = 0.
• Iterate Steps 1–3 until convergence:
1. Calculated the residue of the response by r(k)i = yi −

Kiα
(k)for all 1 ≤ i ≤ n.

2. Obtain α(k+1) by:

α(k+1) = α(k) + K−1
u

(

−λK0α
(k) + 1

2

n∑

i=1

φ′
ω(r(k)i )Ki

)

,

where

Ku = max(1 − ω,ω)

(
n 1ᵀK
K1 KK + λ

max(1−ω,ω)
K

)
.

3. k := k + 1.

3.2 Convergence Analysis

Now we provide the convergence analysis of Algorithm 1.
Lemma 2 shows that the sequence (α(k)) in the algorithm con-
verges to the unique global minimum α̂ of the optimization
problem.

Lemma 2. If we update α(k+1) by using (23), then the following
results hold:

1. The descent property of the objective function.
Fω,λ(α

(k+1)) ≤ Fω,λ(α
(k)), ∀k.

2. The convergence of α. Assume that
∑n

i=1 KiKᵀ
i is a pos-

itive definite matrix, then limk→∞ ∥α(k+1) − α(k)∥ = 0.
3. The sequence (α(k)) converges to α̂, which is the unique

global minimum of (12).

Theorem 2. Denote by α̂ the unique minimizer of (12) and

,k = Q(̂α | α(k)) − Fω,λ (̂α)

(̂α − α(k))ᵀKu (̂α − α(k))
. (24)

Note that when,k = 0, it is just a trivial case α( j) = α̂ for j > k.
We define

- = 1 − γmin
(
K−1

u Kl
)
,

where

Kl = λK0 + min(1 − ω,ω)

n∑

i=1

KiKᵀ
i .
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Assume that
∑n

i=1 KiKᵀ
i is a positive definite matrix. Then we

have the following results:
1. Fω,λ(α

(k+1)) − Fω,λ (̂α) ≤ ,k(Fω,λ(α
(k)) − Fω,λ (̂α)).

2. The sequence (Fω,λ(α
(k))) has a linear convergence rate

no greater than -, and 0 ≤ ,k ≤ - < 1.
3. The sequence (α(k)) has a linear convergence rate no

greater than
√

-γmax(Ku)/γmin(Kl ), that is,

∥α(k+1) − α̂∥ ≤

√

-
γmax(Ku)

γmin(Kl )
∥α(k) − α̂∥.

Theorem 2 says that the convergence rate of Algorithm 1 is
at least linear. In our numeric experiments, we have found that
Algorithm 1 converges very fast: the convergence criterion is
usually met after 15 iterations.

3.3 Implementation

We discuss some techniques used in our implementation to fur-
ther improve the computational speed of the algorithm.

Usually expectile models are computed by applying
Algorithm 1 on a descending sequence of λ values. To cre-
ate a sequence {λm}Mm=1, we place M − 2 points uniformly (in
the log-scale) between the starting and ending point λmax and
λmin such that the λ sequence length is M. The default number
for M is 100, hence λ1 = λmax, and λ100 = λmin. We adopt
the warm-start trick to implement the solution paths along λ

values: suppose that we have already obtained the solution α̂λm

at λm, then α̂λm will be used as the initial value for computing
the solution at λm+1 in Algorithm 1.

Another computational trick adopted is based on the fact that
inAlgorithm1, the inverse ofKu does not have to be recalculated
for each λ. There is an easy way to update K−1

u for λ1, λ2, . . ..
Because Ku can be partitioned into two rows and two columns
of submatrices, by Theorem 8.5.11 of Harville (2008), K−1

u can
be expressed as

K−1
u (λ) = 1

max(1 − ω,ω)

(
n 1ᵀK
K1 KK + λ

max(1−ω,ω)
K

)−1

= 1
max(1 − ω,ω)

[( 1
n 01×n

0n×1 0n×n

)

+
(

− 1
n1

ᵀK
In

)
Q−1

λ

(
− 1
n
K1, In

)]
, (25)

where

Q−1
λ =

[(
KK + λ

max(1 − ω,ω)
K
)

− 1
n
K11ᵀK

]−1

.

In (25), only Q−1
λ changes with λ, therefore the computation of

K−1
u for a different λ only requires the updating ofQ−1

λ . Observ-
ing thatQ−1

λ is the inverse of the sum of two submatrices A and
B:

Aλ = KK + λ

max(1 − ω,ω)
K, B = − 1

n
K11ᵀK.

By Sherman–Morrison formula (Sherman and Morrison
1950),

Q−1
λ = [Aλ + B]−1 = A−1

λ − 1
1 + g

A−1
λ BAλ

−1, (26)

where g = trace(BA−1
λ ), we find that to getQ−1

λ for a different λ
one just needs to get A−1

λ , which can be efficiently computed by
using eigen-decomposition K = UDUᵀ:

A−1
λ =

(
KK + λ

max(1 − ω,ω)
K
)−1

= U
(
D2 + λ

max(1 − ω,ω)
D
)−1

Uᵀ. (27)

Equation (27) implies that the computation of K−1
u (λ) depends

only on λ, D, U, and ω. Since D, U, and ω stay unchanged, we
only need to calculate them once. To get K−1

u (λ) for a different
λ in the sequence, we just need to plug in a new λ in (27).

The following is the implementation for computingKERE for
a sequence of λ values using Algorithm 1:! Calculate U andD according to K = UDUᵀ.! Initialize α̂λ0 = [0, 0, . . . , 0].! form = 1, 2, . . . ,M, repeat steps 1–3:

1. Initialize α(0)
λm

= α̂λm−1 .
2. Compute K−1

u (λm) using (25), (26), and (27).
3. Call Algorithm 1 to compute α̂λm .

Our algorithm has been implemented in an offi-
cial R package KERE, which is publicly available from
the Comprehensive R Archive Network at http://cran.r-
project.org/web/packages/KERE/index.html.

4. Simulation

In this section, we conduct extensive simulations to show the
excellent finite performance of KERE. We investigate how the
performance of KERE is affected by various model and error
distribution settings, training sample sizes, and other charac-
teristics. Throughout this section, we consider Gaussian radial

basis function (RBF) kernel K(xi, x j) = e
−∥xi−x j∥2

σ2 , Laplacian
kernel K(xi, x j) = e

−∥xi−x j∥
σ , and the hyperbolic tangent kernel

K(x, x′) = tanh(σ ⟨x, x′⟩ + 1) (Hastie, Tibshirani, and Fried-
man 2009). We select the best pair of kernel parameter σ and
regularization parameter λ by two-dimensional five-fold cross-
validation. All computations were done on an Intel Core i7-3770
processor at 3.40GHz.

Simulation I: Single Covariate Case

The model used for this simulation is defined as

yi = sin(0.7xi) + x2i
20

+ |xi| + 1
5

ϵi, (28)

which is heteroscedastic as error depends on a single covariate
x ∼U [−8, 8].We used a single covariate such that the estimator
can be visualized nicely.

We used two different error distributions: Laplace distribu-
tion and a mixed normal distribution,

ϵi ∼ 0.5N
(
0,

1
4

)
+ 0.5N

(
1,

1
16

)
.

We generated n = 400 training observations from
(28), on which five expectile models with levels ω =
{0.05, 0.2, 0.5, 0.8, 0.95}were fitted.We selected the best (σ, λ)

http://cran.r-project.org/web/packages/KERE/index.html
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Table . The averagedMADs and the corresponding standard errors of expectile regression predictions for single covariate heteroscedastic models withmixed normal and
Laplace error.

ω . . . . .

KERE (Gaussian)
Mixture . (.) . (.) . (.) . (.) . (.)
Laplace . (.) . (.) . (.) . (.) . (.)

KERE (Laplacian)

Mixture . (.) . (.) . (.) . (.) . (.)
Laplace . (.) . (.) . (.) . (.) . (.)

KERE (Hyperbolic tangent)
Mixture . (.) . (.) . (.) . (.) . (.)
Laplace . (.) . (.) . (.) . (.) . (.)

NOTES: The models are fitted on five expectile levelsω = {0.05, 0.2, 0.5, 0.8, 0.95}. The results are based on  independent runs.

pair by using two-dimensional, five-fold cross-validation. We
generated an additional n′ = 2000 test observations for evalu-
ating the mean absolute deviation (MAD) of the final estimate.
Assume that the true expectile function is fω and the predicted
expectile is f̂ω, then the mean absolute deviation is defined as

MAD(ω) = 1
n′

n′∑

i=1

| fω(xi) − f̂ω(xi)|.

The true expectile fω is equal to sin(0.7x) + x2
20 + |x|+1

5 bω(ϵ),
where bω(ϵ) is theω-expectile of ϵ, which is the theoreticalmin-
imizer of Eφω(ϵ − b).

The simulations were repeated for 100 times under the above
settings. We recorded MADs for different expectile levels in
Table 1. We find that the accuracy of the expectile prediction
with mixed normal errors is generally better than that with
Laplace errors. For the symmetric Laplace case, the prediction
MADs are also symmetric aroundω = 0.5, while for the skewed
mixed-normal case the MADs are skewed. Overall, KERE with
theGaussianKernel and the Laplacian kernel achieve better per-
formance than KERE with the hyperbolic tangent kernel. To
show that KERE works as expected, in Figure 1 we also com-
pared the theoretical and predicted expectile curves based on
KERE (Gaussian kernel) with ω = {0.05, 0.2, 0.5, 0.8, 0.95} in
Figure 1. We can see that the corresponding theoretical and
predicted curves are very close. Theoretically the two should
become the same curves as n → ∞.

Simulation II: Multiple Covariate Case

In this part, we illustrate that KERE can work very well for tar-
get functions that are nonadditive and/or with complex interac-
tions. We generated data {xi, yi}ni=1 according to

yi = f1(xi) + | f2(xi)|ϵi,

where predictors xi, i = 1, . . . , n were generated from a joint
normal distributionN(0, Ip)with p = 10. For the error term ϵi,
we consider three types of distributions:

1. Normal distribution ϵi ∼ N(0, 1).
2. Student’s t-distribution with four degrees of freedom

ϵi ∼ t4.
3. Mixed normal distribution ϵi ∼ 0.9N(0, 1) +

0.1N(1, 4).

We now describe the construction of f1 and f2. In the
homoscedastic model, we let f2(xi) = 1 and f1 is generated
by the “random function generator” model (Friedman 2000),
according to

f (x) =
20∑

l=1

algl (xl ),

where {al}20l=1 are sampled from uniform distribution al ∼
U [−1, 1], and xl is a random subset of p-dimensional
predictor x, with size pl = min(⌊1.5 + r, p⌋), where r was sam-
pled from exponential distribution r ∼ Exp(0.5). The function
gl (xl ) is a pl-dimensional Gaussian function:

gl (xl ) = exp
[

− 1
2
(xl − µl )

ᵀVl (xl − µl )
]
,

where µl follows the distribution N(0, Ipl ). The pl × pl covari-
ance matrix Vl is defined by Vl = UlDlUᵀ

l , where Ul is a ran-
dom orthogonal matrix, and Dl = diag(d1l, d2l, . . . , dpl l ) with√
d jl ∼U [0.1, 2].
In the heteroscedastic model, f1 is the same as in the

homoscedastic model and f2 is independently generated by the
“random function generator” model.

We generated n = 300 observations as the training set, on
which the estimated expectile functions f̂ω were computed at
seven levels:

ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.

An additional test set with n′ = 1200 observations was gener-
ated for evaluating MADs between the fitted expectile f̂ω and
the true expectile fω. Note that the expectile function fω(x) is
equal to f1(x) + bω(ϵ) in the homoscedasticmodel and f1(x) +
| f2(x)|bω(ϵ) in the heteroscedasticmodel, where bω(ϵ) is theω-
expectile of the error distribution. Under the above settings, we
repeated the simulations for 300 times and record theMAD and
timing each time.

In Figures 2 and 3, we show the boxplots of empirical dis-
tributions of MADs, and in Tables 2–4, we report the average
values of MADs and corresponding standard errors. We see
that KERE can deliver accurate expectile prediction results in
all cases, although relatively the prediction error is more volatile
in the heteroscedastic case as expected: in the mean regres-
sion case (ω = 0.5), the averaged MADs in homoscedastic
and heteroscedastic models are very close. But this difference
grows larger as ω moves away from 0.5. We also observe that
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Figure . Theoretical expectiles and empirical expectiles (Gaussian kernel) for a covariate heteroscedastic model with mixed normal error. The model is fitted on five
expectile levelsω = {0.05, 0.2, 0.5, 0.8, 0.95}.

the prediction MADs for symmetric distributions, normal
and t4, also appear to be symmetric around the conditional
mean ω = 0.5, and that the prediction MADs in the skewed
mixed-normal distribution cases are asymmetric. We can also
see that the Gaussian kernel and the Laplacian kernel give better
performance than the Hyperbolic tangent kernel. The total
computation times for conducting two-dimensional, five-fold
cross-validation and fitting the final model (Gaus-
sian kernel) with the chosen parameters (σ, λ) for
conditional expectiles are also reported in Table 5.
We find that the algorithm can efficiently solve all
models under 20 sec, regardless of choices of error
distributions.

We next study how sample size affects predictive perfor-
mance and computational time. We fit expectile models (KERE
with the Gaussian kernel) with ω ∈ {0.1, 0.5, 0.9} using vari-
ous sizes of training sets n ∈ {250, 500, 750, 1000} and evaluate

the prediction accuracy of the estimate using an independent
test set of size n′ = 2000. We then report the averaged MADs
and the corresponding averaged timings in Table 6. Since the
results are very close for different model settings, only the result
from the heteroscedasticmodel withmixed-normal error is pre-
sented. We find that the sample size strongly affects predictive
performance and timings: large samples givemodels with higher
predictive accuracy at the expense of computational cost – the
timings as least quadruple as one doubles sample size.

5. Real Data Application

In this section, we illustrate KERE by applying it to the personal
computer price data studied in Stengos and Zacharias (2006).
The data collected from PC Magazine from January of 1993 to
November of 1995 have 6259 observations, each of which con-
sists of the advertised price and features of personal computers

Figure . Homoscedastic models (KERE with the Gaussian kernel) with error distribution: (a) normal, (b) t4 distribution, (c) mixed normal. Boxplots show MADs based on
 independent runs for expectiles ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.
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Figure . Heteroscedasticmodelswith error distribution: (a) normal, (b) t4 distribution, (c)mixednormal. Boxplots showMADsbasedon  independent runs for expectiles
ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.

sold in United States. There are nine main price detriments of
PCs summarized in Table 7. The price and the continuous vari-
ables except the time trend are in logarithmic scale. We con-
sider a hedonic analysis, where the price of a product is consid-
ered to be a function of the implicit prices of its various compo-
nents, see Triplett (1989). The intertemporal effect of the implicit
PC-component prices is captured by incorporating the time
trend as one of the explanatory variables. The presence of non-
linearity and the interactions of the components with the time
trend in the data, shown by Stengos and Zacharias (2006), sug-
gest that the linear expectile regression may lead to a misspeci-
fied model. Since there lacks of a general theory about any par-
ticular functional form for the PC prices, we use KERE with
three types of kernels (Gaussian, Laplacian, and hyperbolic tan-
gent) to capture the nonlinear effects and higher order interac-
tions of characteristics on price and avoid severemodelmisspec-
ification.

Table . Normal models: The averaged MADs and the corresponding stan-
dard errors for fitting homoscedastic and heteroscedastic models based on
 independent runs.

Homoscedastic model

ω KERE (G) KERE (L) KERE (H)

. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)

Heteroscedastic model

ω KERE (G) KERE (L) KERE (H)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)

NOTES: The expectile levels are ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. KERE
(G) uses the Gaussian kernel; KERE (L) uses the Laplacian kernel; KERE (H) uses
the hyperbolic tangent kernel.

Werandomly sampled 1/R observations for training and tun-
ingwith two-dimensional five-fold cross-validation for selecting
an optimal (σ, λ) pair, and the remaining (R − 1)/R observa-
tions as the test set for calculating the prediction error defined
by

prediction error = 1
n′

n′∑

i=1

φω(yi − f̂ω(xi)).

To show the stability of our results with respect to different split-
ting ratios, we consider two cases R = 3 and R = 10. For com-
parison, we also computed the prediction errors using the lin-
ear expectile model and the ER-Boost method, which is a gra-
dient tree boosting algorithm for expectile regression proposed
by Yang and Zou (2015). All prediction errors are computed for
seven expectile levels ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.

Table . t4 models: The averaged MADs and the corresponding standard errors for
fitting homoscedastic andheteroscedasticmodels based on  independent runs.

Homoscedastic model

ω KERE (G) KERE (L) KERE (H)

. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)

Heteroscedastic model

ω KERE (G) KERE (L) KERE (H)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)

NOTES: The expectile levels are ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. KERE
(G) uses the Gaussian kernel; KERE (L) uses the Laplacian kernel; KERE (H) uses
the hyperbolic tangent kernel.
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Table . Mixture models: The averaged MADs and the corresponding standard
errors for fitting homoscedastic and heteroscedastic models based on  inde-
pendent runs.

Homoscedastic model

ω KERE (G) KERE (L) KERE (H)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)

Heteroscedastic model

ω KERE (G) KERE (L) KERE (H)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)
. . (.) . (.) . (.)

NOTES: The expectile levels are ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. KERE
(G) uses the Gaussian kernel; KERE (L) uses the Laplacian kernel; KERE (H) uses
the hyperbolic tangent kernel.

Table . The averaged computation times (in seconds) for fitting homoscedastic
and heteroscedastic models (KERE with the Gaussian kernel) based on  inde-
pendent runs.

Homoscedastic model Heteroscedastic model

ω Normal t4 Mixture Normal t4 Mixture

. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

NOTE: The expectile levels areω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.

Table . The averaged MADs and the corresponding averaged computation times
(in seconds) are reported. The size of the training set varies from  to . The
size of the test dataset is . All models (KEREwith the Gaussian kernel) are fitted
on three expectile levels: (a)ω = 0.1, (b)ω = 0.5, and (c)ω = 0.9.

Error Timing

n        

ω = 0.1 . . . . . . . .
ω = 0.5 . . . . . . . .
ω = 0.9 . . . . . . . .

Table . Explanatory variables in the Personal Computer Price Data (Stengos and
Zacharias ).

ID Variable Explanation

 SPEED clock speed in MHz
 HD size of hard drive in MB
 RAM size of RAM in MB
 SCREEN size of screen in inches
 CD if a CD-ROM present
 PREMIUM if the manufacturer was a “premium”firm (IBM, COMPAQ)
 MULTI if a multimedia kit (speakers, sound card) included
 ADS number of  price listings for each month
 TREND time trend indicating month starting from Jan.  to Nov. 

Table . The averaged prediction error and the corresponding standard errors for
the Personal Computer Price Data based on  independent runs.

Personal computer price data

ω . . . . . . .

KERE (G) . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

KERE (L) . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

KERE (H) . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

ER-Boost . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

Linear . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

NOTES: The expectile levels are ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. This
case uses 1/10 observations for training and 9/10 for testing. The numbers in this
table are of the order of 10−2.

Table . The averaged prediction error and the corresponding standard errors for
the Personal Computer Price Data based on  independent runs.

Personal computer price data

ω . . . . . . .

KERE (G) . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

KERE (L) . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

KERE (H) . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

ER-Boost . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

Linear . . . . . . .
(.) (.) (.) (.) (.) (.) (.)

NOTES: The expectile levels are ω ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. This
case uses 1/3 observations for training and 2/3 for testing. The numbers in this
table are of the order of 10−2.

We repeated this process 10 times and reported the average pre-
diction error and their corresponding standard errors in Tables 8
and 9.We can see that for all expectile levels, the linear expectile
model always has the worst performance in terms of both pre-
diction error and the corresponding standard errors. The best
performers are KERE (Gaussian) for R = 10, and KERE (hyper-
bolic) for R = 3, followed by the ER-Boost. The ER-Boost and
KERE models both offer much more flexible and accurate pre-
dictions than the linear model by guarding against model mis-
specification bias.

Supplementary Materials

Appendix: This supplementary file contains technical proofs for
the theorems and lemmas not shown in the main article.
(appendix.pdf)

R package KERE: This supplementary file is the R package KERE, which
implements the algorithms proposed in this article. (KERE_1.1.0.tar.gz)
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Appendix for ”Flexible Expectile Regression in Repro-

ducing Kernel Hilbert Spaces”

In this appendix we provide technical proofs for the theorems and lemmas in “Flexible

Expectile Regression in Reproducing Kernel Hilbert Spaces”.

Some technical lemmas for Theorem 1

We first present some technical lemmas and their proofs. These lemmas are used to prove

Theorem 1.

Lemma 3. Let �⇤
! be the convex conjugate of �!,

�⇤
!(t) =

8
><

>:

1
4(1�!)t

2 if t  0,

1
4! t

2 if t > 0.

The solution to (10) can be alternatively obtained by solving the optimization problem

min
{↵i}ni=0

g(↵1,↵2, . . . ,↵n), subject to
nX

i=1

↵i = 0, (29)

where g is defined by

g(↵1,↵2, . . . ,↵n) = �
nX

i=1

yi↵i +
1

2

nX

i,j=1

↵i↵jK(xi,xj) + 2�
nX

i=1

�⇤
!(↵i). (30)

Proof. Let ↵ = (↵1,↵2, . . . ,↵n)|. Since both objective functions in (10) and (29) are convex,

we only need to show that they share a common stationary point. Define

G!(↵) = �!(↵1) + �!(↵2) + · · ·+ �!(↵n),

rG!(↵) = (�0
!(↵1),�

0
!(↵2), . . . ,�

0
!(↵n))

|.

By setting the derivatives of (10) with respect to ↵ to be zero, we can find the stationary
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point of (10) satisfying
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which can be reduced to

� �0
!

�
yi � ↵0 �

nX

j=1

K(xi, xj)↵j

�
+ 2�↵i = 0, for 1  i  n, (31)

and setting the derivative of (10) with respect to ↵0 to be zero, we have

nX

i=1

�0
!

�
yi � ↵0 �

nX

j=1

K(xi, xj)↵j

�
= 0. (32)

Combining (31) and (32), (32) can be simplified to

nX

i=1

↵i = 0. (33)

In comparison, the Lagrange function of (29) is

g(↵1,↵2, . . . ,↵n) + ⌫
nX

i=1

↵i. (34)

The first order conditions of (34) are

� yi + ⌫ +
nX

j=1

K(xi, xj)↵j + 2��⇤ 0

! (↵i) = 0, for 1  i  n, (35)

and
nX

i=1

↵i = 0. (36)

Noting that 2��⇤ 0
! (↵i) = �⇤ 0

! (2�↵i) and �⇤ 0
! is the inverse function of �0

!. Let ⌫ = ↵0, then

(31) and (35) are equivalent. Therefore, (10) and (29) have a common stationary point and

2



therefore a common minimizer.

Lemma 4.

nX

j=1

↵jK(xi,xj) 
p

K(xi,xi) ·

vuut
nX

i=1

nX

j=1

↵i↵jK(xi,xj).

Proof. Let C = K
1/2, then by Cauchy-Schwarz inequality

nX

j=1

↵jK(xi,xj) = (↵1,↵2, . . . ,↵n)C(Ci,1,Ci,2, . . . ,Ci,n)
T

k(↵1,↵2, . . . ,↵n)Ck · k(Ci,1,Ci,2, . . . ,Ci,n)k =

vuut
nX

i=1

nX

j=1

↵i↵jK(xi,xj) ·
p
K(xi,xi).

Lemma 5. For the g function defined in (30), we have

1

2

nX

i,j=1

(↵i � ↵̂i)(↵j � ↵̂j)K(xi,xj) +
�

2max(1� !,!)

nX

i=1

(↵i � ↵̂i)
2

g(↵1,↵2, . . . ,↵n)� g(↵̂1, ↵̂2, . . . , ↵̂n)

1

2

nX

i,j=1

(↵i � ↵̂i)(↵j � ↵̂j)K(xi,xj) +
�

2min(1� !,!)

nX

i=1

(↵i � ↵̂i)
2.

Proof. It is clear that the second derivative of g is bounded above by K + �
min(1�!,!)I and

bounded below by K+ �
max(1�!,!)I, where K 2 R

n,n. Let ↵ = (↵1,↵2, . . . ,↵n)|

g(↵)� g(b↵)  g0(b↵)|(↵� b↵) +
1

2
(K+

�

min(1� !,!)
I)(↵� b↵)|(↵� b↵), (37)

g(↵)� g(b↵) � g0(b↵)|(↵� b↵) +
1

2
(K+

�

max(1� !,!)
I)(↵� b↵)|(↵� b↵). (38)

Hence when ↵ and b↵ are fixed and g0(b↵) = 0, the maximum of g(↵) � g(b↵) is obtained

when the second order derivative of g achieves its maximum and the minimum is obtained

when the second order derivative achieves its minimum.

The next lemma establishes the basis for the so-called leave-one-out analysis (Jaakkola

and Haussler, 1999; Joachims, 2000; Forster and Warmuth, 2002; Zhang, 2003). The basic

3



idea is that the expected observed risk is equivalent to the expected leave-one-out error. Let

Dn+1 = {(xi, yi)}n+1
i=1 be a random sample of size n+ 1, and let D[i]

n+1 be the subset of Dn+1

with the i-th observation removed, i.e.

D[i]
n+1 = {(x1, y1), . . . , (xi�1, yi�1), (xi+1, yi+1), . . . , (xn+1, yn+1)}.

Let (f̂ [i], ↵̂[i]
0 ) be the estimator trained on D[i]

n+1. The leave-one-out error is defined as the

averaged prediction error on each observation (xi, yi) using the estimator (f̂ [i], ↵̂[i]
0 ) computed

from D[i]
n+1, where (xi, yi) is excluded:

Leave-one-out error:
1

n+ 1

n+1X

i=1

�!(yi � ↵̂[i]
0 � f̂ [i](xi)).

Lemma 6. Let (f̂(n), ↵̂0 (n)) be the KERE estimator trained from Dn. The expected observed

risk EDnE(x,y)�!(y � ↵̂0 (n) � f̂(n)(x)) is equivalent to the expected leave-one-out error on

Dn+1:

EDn

�
E(x,y)�!(y � ↵̂0 (n) � f̂(n)(x))

 
= EDn+1

⇣ 1

n+ 1

n+1X

i=1

�!(yi � ↵̂[i]
0 � f̂ [i](xi))

⌘
, (39)

where ↵̂[i]
0 and f̂ [i] are KERE trained from D[i]

n+1.

Proof.

EDn+1

⇣ 1

n+ 1

n+1X

i=1

�!(yi � ↵̂[i]
0 � f̂ [i](xi))

⌘
=

1

n+ 1

n+1X

i=1

EDn+1�!(yi � ↵̂[i]
0 � f̂ [i](xi))

=
1

n+ 1

n+1X

i=1

E
D

[i]
n+1

�
E(xi,yi)�!(yi � ↵̂[i]

0 � f̂ [i](xi))
 

=
1

n+ 1

n+1X

i=1

EDn

�
E(x,y)�!(y � ↵̂0 � f̂(x))

 

= EDnE(x,y)�!(y � ↵̂0 � f̂(x)).

In the following Lemma, we give an upper bound of |↵̂i| for 1  i  n.

4



Lemma 7. Assume M = supx K(x,x)1/2. Denote as (f̂(n), ↵̂0 (n)) the KERE estimator

in (7) trained on n samples Dn = {(xi, yi)}ni=1. The estimates ↵̂i (n) for 1  i  n are

defined by f̂(n)(·) =
Pn

i=1 ↵̂i (n)K(xi, ·). Denote kYnk2 =
pPn

i=1 y
2
i ,

kYnk1
n = 1

n

Pn
i=1 |yi|,

q1 =
max(1�!,!)
min(1�!,!) , q2 = max(1� !,!). We claim that

|↵̂i (n)| 
q2
�

⇣
q1
kYnk1
n

+M(q1 + 1)

r
q2
�
kYnk2 + |yi|

⌘
, for 1  i  n. (40)

Proof. The proof is as follows. The function g is defined as in (30), then

g(↵̂1 (n), ↵̂2 (n), . . . , ↵̂n (n))  g(0, 0, . . . , 0) = 0,

we have

1

2

nX

i,j=1

↵̂i (n)↵̂j (n)K(xi,xj) 
nX

i=1

yi↵̂i (n) � 2�
nX

i=1

�⇤
!(↵̂i (n))

 � �

2q2

nX

i=1

⇣
↵̂i (n) �

q2
�
yi
⌘2

+
q2
2�

nX

i=1

y2i

 q2
2�

nX

i=1

y2i .

Applying Lemma 4, we have

f̂(n)(xi) =
nX

j=1

↵̂j (n)K(xi,xj)  M

r
q2
Pn

i=1 y
2
i

�
= M

r
q2
�
kYnk2. (41)

By the definition in (10), ↵̂0 (n) is given by argmin↵0

Pn
i=1 �!

�
yi�↵0� f̂(n)(xi)

�
. By the first

order condition

nX

i=1

2
��! � I(yi � ↵̂0 (n) � f̂(n)(xi))

��(yi � ↵̂0 (n) � f̂(n)(xi)) = 0.

5



Let ci =
��! � I(yi � ↵̂0 (n) � f̂(n)(xi))

��, we have min(1� !,!)  ci  max(1� !,!), hence

���
⇣ nX

i=1

ci
⌘
↵̂0 (n)

��� =
���

nX

i=1

ci(yi � f̂(n)(xi))
��� 

nX

i=1

ci(
��yi
��+
��f̂(n)(xi)

��)

 q2
⇣ nX

i=1

|yi|+ nM

r
q2
�
kYnk2

⌘
,

and we have

|↵̂0 (n)|  q1
⇣kYnk1

n
+M

r
q2
�
kYnk2

⌘
. (42)

Combining (31) and (42), we concluded (40).

Proof of Theorem 1

Proof. Consider n + 1 training samples Dn+1 = {(x1, y1), . . . , (xn+1, yn+1)}. Denote as

(f̂ [i], ↵̂[i]
0 ) the KERE estimator trained from D[i]

n+1, which is a subset of Dn+1 with i-th ob-

servation removed, i.e.,

D[i]
n+1 = {(x1, y1), . . . , (xi�1, yi�1), (xi+1, yi+1), . . . , (xn+1, yn+1)}.

Denote as (f̂(n+1), ↵̂0 (n+1)) the KERE estimator trained from n + 1 samples Dn+1. The

estimates ↵̂i for 1  i  n+ 1 are defined by f̂(n+1)(·) =
Pn+1

i=1 ↵̂iK(xi, ·).

In what follows, we denote kYn+1k2 =
qPn+1

i=1 y2i ,
kYn+1k1
n+1 = 1

n+1

Pn+1
i=1 |yi|, q1 = max(1�!,!)

min(1�!,!) ,

q2 = max(1� !,!), q3 = min(1� !,!).

Part I We first show that the leave-one-out estimate is su�ciently close to the estimate

fitted from using all the training data. Without loss of generality, just consider the case that

the (n+1)th data point is removed. The same results apply to the other leave-one out cases.

We show that |f̂ [n+1](xi) + ↵̂[n+1]
0 � f̂(n+1)(xi) � ↵̂0 (n+1)|  C [n+1]

2 , where the expression of

C [n+1]
2 is to be derived in the following.

We first study the upper bound for |f̂ [n+1](xi) � f̂(n+1)(xi)|. By the definitions of g in

6



(30) and (↵̂[n+1]
1 , ↵̂[n+1]

2 , . . . , ↵̂[n+1]
n ), we have

g
�
↵̂[n+1]
1 , ↵̂[n+1]

2 , . . . , ↵̂[n+1]
n , 0

�

= g
�
↵̂[n+1]
1 , ↵̂[n+1]

2 , . . . , ↵̂[n+1]
n

�

 g
�
↵̂1 +

1

n
↵̂n+1, ↵̂2 +

1

n
↵̂n+1, . . . , ↵̂n +

1

n
↵̂n+1

�

= g
�
↵̂1 +

1

n
↵̂n+1, ↵̂2 +

1

n
↵̂n+1, . . . , ↵̂n +

1

n
↵̂n+1, 0

�
.

That is,

g
�
↵̂[n+1]
1 , ↵̂[n+1]

2 , . . . , ↵̂[n+1]
n , 0

�
� g
�
↵̂1, ↵̂2, . . . , ↵̂n+1

�

 g
�
↵̂1 +

1

n
↵̂n+1, ↵̂2 +

1

n
↵̂n+1, . . . , ↵̂n +

1

n
↵̂n+1, 0

�
� g
�
↵̂1, ↵̂2, . . . , ↵̂n+1

�
.

Denote for simplicity that ↵̂[n+1]
n+1 = 0. Applying Lemma 5 to both LHS and RHS of the

above inequality, we have

n+1X

i,j=1

(↵̂[n+1]
i � ↵̂i)(↵̂

[n+1]
j � ↵̂j)K(xi,xj) +

�

2q2

n+1X

i=1

(↵̂[n+1]
i � ↵̂i)

2

↵̂2
n+1

h⇣ 1
n
, . . . ,

1

n
,�1

⌘
K

⇣ 1
n
, . . . ,

1

n
,�1

⌘T
+

�(n+ 1)

2nq3

i
,

where K 2 R
n+1,n+1 is defined by Ki,j = K(xi,xj). Since |K(xi,xj)|  M2 for any 1 

i, j  n+ 1, we have

⇣
1
n , . . . ,

1
n ,�1

⌘
K

⇣
1
n , . . . ,

1
n ,�1

⌘T

= 1
n2

Pn
i,j=1 Ki,j � 1

n

Pn
i=1 Ki,n+1 � 1

n

Pn
j=1 Kn+1,j +Kn+1,n+1

 M2 +M2 +M2 +M2 = 4M2.

Combining it with the bound for |↵̂n+1| by Lemma 7 (note that here ↵̂n+1 is trained on n+1

samples), we have

n+1X

i,j=1

(↵̂[n+1]
i � ↵̂i)(↵̂

[n+1]
j � ↵̂j)K(xi,xj)  C [n+1]

1 , (43)
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where

C [n+1]
1 =

 
4M2 +

�(n+ 1)

2nq3

! 
q2
�
C [n+1]

0

!2

, (44)

and

C [n+1]
0 = q1

kYn+1k1
n+ 1

+M(q1 + 1)

r
q2
�
kYn+1k2 + |yn+1|. (45)

Combining (43) with Lemma 4, we have that for 1  i  n+ 1,

|f̂ [n+1](xi)� f̂(n+1)(xi)| =
���
n+1X

j=1

(↵̂[n+1]
i � ↵̂i)K(xi,xj)

��� 
q
C [n+1]

1 M. (46)

Next, we bound |↵̂[n+1]
0 � ↵̂0 (n+1)|. Since ↵̂0 (n+1) and ↵̂[n+1]

0 are the minimizers of

n+1X

i=1

�!

⇣
yi � ↵0 � f̂(n+1)(xi)

⌘
and

nX

i=1

�!

⇣
yi � ↵0 � f̂ [n+1](xi)

⌘
,

we have
d

d↵0

n+1X

i=1

�!

⇣
yi � ↵0 � f̂(n+1)(xi)

⌘ ���
↵0=↵̂0 (n+1)

= 0, (47)

and
d

d↵0

nX

i=1

�!

⇣
yi � ↵0 � f̂ [n+1](xi)

⌘ ���
↵0=↵̂

[n+1]
0

= 0. (48)

By the Lipschitz continuity of �0
! we have

�����
Pn+1

i=1 �0
!

⇣
yi � ↵̂0 (n+1) � f̂ [n+1](xi)

⌘
�
Pn+1

i=1 �0
!

⇣
yi � ↵̂0 (n+1) � f̂(n+1)(xi)

⌘ �����

 2(n+ 1)q2|f̂ [n+1](xi)� f̂(n+1)(xi)|,

and by applying (46) and (47) we have the upper bound

�����

n+1X

i=1

�0
!

⇣
yi � ↵̂0 (n+1) � f̂ [n+1](xi)

⌘ �����  2(n+ 1)q2

q
C [n+1]

1 M.
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Similarly, by (41), (42), and (48) we have

�����
Pn

i=1 �
0
!

⇣
yi � ↵̂0 (n+1) � f̂ [n+1](xi)

⌘ �����

=

�����
Pn+1

i=1 �0
!

⇣
yi � ↵̂0 (n+1) � f̂ [n+1](xi)

⌘
�
Pn+1

i=1 �0
!

⇣
yi � ↵̂0 (n+1) � f̂(n+1)(xi)

⌘

��0
!

⇣
yn+1 � ↵̂0 (n+1) � f̂ [n+1](xn+1)

⌘ �����



�����
Pn+1

i=1 �0
!

⇣
yi � ↵̂0 (n+1) � f̂ [n+1](xi)

⌘
�
Pn+1

i=1 �0
!

⇣
yi � ↵̂0 (n+1) � f̂(n+1)(xi)

⌘ �����

+

������
0
!

⇣
yn+1 � ↵̂0 (n+1) � f̂ [n+1](xn+1)

⌘ �����

 2(n+ 1)q2

q
C [n+1]

1 M + 2q2
�
|yn+1|+ |↵̂0 (n+1)|+ |f̂(n)|

�

 2(n+ 1)q2

q
C [n+1]

1 M + 2q2
�
|yn+1|+ q1

kYn+1k1
n+1 +Mq1

p
q2
� kYn+1k2 +

p
q2
� kYnk2

�

 2(n+ 1)q2

q
C [n+1]

1 M + 2q2C
[n+1]
0 ,

(49)

where the second last inequality follows from (41) and (42). Note that in this case the

corresponding sample is n+ 1.

Using (48) we have

2nq3
��↵̂[n+1]

0 � ↵̂0 (n+1)

��


���

nX

i=1

�0
!

⇣
yi � ↵̂[n+1]

0 � f̂ [n+1](xi)
⌘
�

nX

i=1

�0
!

⇣
yi � ↵̂0 (n+1) � f̂ [n+1](xi)

⌘ ���

=
���

nX

i=1

�0
!

⇣
yi � ↵̂0 (n+1) � f̂ [n+1](xi)

⌘ ���.

By (49), we have

|↵̂[n+1]
0 � ↵̂0 (n+1)|  q1

⇣
(1 +

1

n
)

q
C [n+1]

1 M +
1

n
C [n+1]

0

⌘
. (50)

Finally, combining (46) and (50) we have

|f̂ [n+1](xi) + ↵̂[n+1]
0 � f̂(n+1)(xi)� ↵̂0 (n+1)|  C [n+1]

2 , (51)
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where

C [n+1]
2 = q1

⇣
(1 +

1

n
)

q
C [n+1]

1 M +
1

n
C [n+1]

0

⌘
+

q
C [n+1]

1 M. (52)

Part II We now use (51) to derive a bound for �!(yn+1 � ↵̂[n+1]
0 � f̂ [n+1](xn+1)). Let

t = f̂(n+1)(xi)+ ↵̂0 (n+1)� f̂ [n+1](xi)� ↵̂[n+1]
0 and t0 = yi� ↵̂0 (n+1)� f̂(n+1)(xi). We claim that,

�!(t+ t0)� �!(t
0)  q2(|2tt0|+ |t2|). (53)

when (t+t0) and t0 are both positive or both negative, (53) follows from (t+t0)2�t02 = 2tt0+t2.

When t+ t0 and t0 have di↵erent signs, it must be that |t0| < |t|, and we have |t| = |t+ t0|+ |t0|

and hence |t+ t0| < |t|. Then (53) is proved by �!(t+ t0)��!(t0) = max(�!(t+ t0),�!(t0)) 

q2 max((t+ t0)2, t02)  max(1� !,!)t2 < max(1� !,!)(|2tt0|+ |t2|).

Hence by (51), (53) and the upper bound of |yn+1 � f̂(n+1)(xn+1)� ↵̂0 (n+1)|, we have

�!(yn+1 � ↵̂[n+1]
0 � f̂ [n+1](xn+1))  �!(yn+1 � ↵̂0 (n+1) � f̂(n+1)(xn+1)) + C [n+1]

3 , (54)

where

C [n+1]
3 = q2(2C

[n+1]
0 C [n+1]

2 + (C [n+1]
2 )2). (55)

Note that (54) and (55) hold for other i, 1  i  n+ 1.

�!(yi � ↵̂[i]
0 � f̂ [i](xi))  �!(yi � ↵̂0 (n+1) � f̂(n+1)(xi)) + C [i]

3 . (56)

Hence by (44), (45), (52) and (54) we have

EDn+1

⇣
�!(yi � ↵̂[i]

0 � f̂ [i](xi))
⌘
 EDn+1

⇣
�!(yi � ↵̂0 (i) � f̂(n+1)(xi))

⌘
+ EDn+1C

[i]
3 . (57)

and

1

n+ 1
EDn+1

⇣ n+1X

i=1

�!(yi � ↵̂[i]
0 � f̂ [i](xi))

⌘

 1

n+ 1
EDn+1

⇣ n+1X

i=1

�!(yi � ↵̂0 (n+1) � f̂(n+1)(xi))
⌘
+

1

n+ 1
EDn+1

n+1X

i=1

C [i]
3 . (58)
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On the other hand, let (f ⇤
" ,↵

⇤
0 ") in the RKHS and satisfyR(f ⇤

" ,↵
⇤
0 ")  inff2HK ,↵02R R(f,↵0)+

". From the definition of ↵̂0 (n+1) and f̂(n+1) we have

1

n+ 1

⇣ n+1X

i=1

�!(yi � ↵̂0 (n+1) � f̂(n+1)(xi))
⌘
+

�

n+ 1
kf̂(n+1)k2HK

 1

n+ 1

⇣ n+1X

i=1

�!(yi � ↵⇤
0 " � f ⇤

" (xi))
⌘
+

�

n+ 1
kf ⇤

" k2HK
. (59)

By Lemma 6, (58) and (59), we get

EDn

�
E(x,y)�!(y � ↵̂0 (n) � f̂(n)(x))

 

=
1

n+ 1
EDn+1

⇣ n+1X

i=1

�!(yi � ↵̂[i]
0 � f̂ [i](xi))

⌘

 EDn

�
E(x,y)�!(y � ↵⇤

0 " � f ⇤
" (xi))

 
+

�

n+ 1
kf ⇤

" k2HK
+

1

n+ 1
EDn+1

n+1X

i=1

C [i]
3

 inf
f2HK ,↵02R

R(f,↵0) + "+
�

n+ 1
kf ⇤

" k2HK
+

1

n+ 1
EDn+1

n+1X

i=1

C [i]
3 . (60)

Because �/n ! 0, there exists N" such that when n > N",
�

n+1kf
⇤
" k2HK

 ". In what follows,

we show that there exists N 0
" such that when n > N 0

",
1

n+1EDn+1

Pn+1
i=1 C [i]

3  ". Thus, when

n > max(N", N 0
") we have

EDn

�
E(x,y)�!(y � ↵̂0 (n) � f̂(n)(x))

 
 inf

f2HK ,↵02R
R(f,↵0) + 3".

Since it holds for any " > 0, Theorem 1 will be proved.

Now we only need to show that 1
n+1EDn+1

Pn+1
i=1 C [i]

3 ! 0 as n ! 1. In fact we can

show 1
n+1EDn+1

Pn+1
i=1 C [i]

3  Cp
�
D
�
1+n
� + 1

�
! 0 as n ! 1. In the following analysis, C

represents any constant that does not depend on n, but the value of C varies in di↵erent

expressions. Let Vi = q1
kYn+1k1
n+1 +M(q1+1)

p
q2
� kYn+1k2+ |yi|, then as n ! 1, 4M2 < �(n+1)

2nq3
,

and we have the upper bound

C [i]
1 < (C�)

⇣C
�
Vi

⌘2
= C

V 2
i

�
,

11



and since n >
p
� asymptotically, we have

C [i]
2 < C

⇣
C

q
C [i]

1 +
Vi

n

⌘
+ C

q
C [i]

1 < C
Vip
�
+ C

Vi

n
< C

Vip
�
.

Then

C [i]
3 < CViC

[i]
2 + CC [i] 2

2 < CVi
Vip
�
+ C

V 2
i

�
< C

V 2
ip
�
. (61)

We can bound Vi as follows:

Vi = q1
kYn+1k1
n+ 1

+M(q1 + 1)

r
q2
�
kYn+1k2 + |yi|

< q1
kYn+1k2p
n+ 1

+M(q1 + 1)

r
q2
�
kYn+1k2 + |yi|

< C

r
kYn+1k22

�
+ C|yi|.

Then we have

EDn+1V
2
i < 2C2EDn+1

hkYn+1k22
�

+ y2i

i
. (62)

Combining it with (61) and using the assumption Ey2i < D, we have

1

n+ 1
EDn+1

n+1X

i=1

C [i]
3  Cp

�

1

1 + n

✓
1 + n

�
EkYn+1k22 + EkYn+1k22

◆

 Cp
�

EkYn+1k22
1 + n

✓
1 + n

�
+ 1

◆
 Cp

�
D

✓
1 + n

�
+ 1

◆

So when �/n2/3 ! 1 we have 1
n+1EDn+1

Pn+1
i=1 C [i]

3 ! 0.

This completes the proof of Theorem 1.
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Proof of Lemma 1

Proof. We observe that the di↵erence of the first derivatives for the function �! satisfies

|�0
!(a)� �0

!(b)| =

8
>>>>>>>><

>>>>>>>>:

2(1� !)|a� b| if (a  0, b  0),

2!|a� b| if (a > 0, b > 0),

2|(1� !)a� !b| if (a  0, b > 0),

2|!a� (1� !)b| if (a > 0, b  0).

Therefore we have

|�0

!(a)� �
0

!(b)|  L|a� b| 8a, b, (63)

where L = 2max(1�!,!). By the Lipschitz continuity of �0
! and Cauchy-Schwarz inequality,

(�0
!(a)� �0

!(b))(a� b)  L|a� b|2 8a, b 2 R. (64)

If we let '!(a) = (L/2)a2 � �!(a), then (64) implies the monotonicity of the gradient

'0
!(a) = La � �0

!(a). Therefore ' is a convex function and by the first order condition for

convexity of '!:

'!(a) � '!(b) + '0
!(b)(a� b) 8a, b 2 R,

which is equivalent to (18).

Proof of Lemma 2

Proof. 1. By the definition of the majorization function and the fact that ↵(k+1) is the

minimizer in (16)

F!,�(↵
(k+1))  Q(↵(k+1) | ↵(k))  Q(↵(k) | ↵(k)) = F!,�(↵

(k)).

2. Based on (20) and the fact that Q is continuous, bounded below and strictly convex,

we have

0 = rQ(↵(k+1) | ↵(k)) = rF!,�(↵
(k)) + 2Ku(↵

(k+1) �↵(k)). (65)
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Hence

F!,�(↵
(k+1))  Q(↵(k+1) | ↵(k))

= F!,�(↵
(k)) +rF!,�(↵

(k))(↵(k+1) �↵(k)) + (↵(k+1) �↵(k))|Ku(↵
(k+1) �↵(k))

= F!,�(↵
(k))� (↵(k+1) �↵(k))|Ku(↵

(k+1) �↵(k)).

By (21) and the assumption that
Pn

i=1 KiK
|
i is positive definite, we see that Ku is also

positive definite. Let �min(Ku) be the smallest eigenvalue of Ku then

0  �min(Ku)k↵(k+1)�↵(k)k2  (↵(k+1)�↵(k))|Ku(↵
(k+1)�↵(k))  F!,�(↵

(k))�F!,�(↵
(k+1)).

(66)

Since F is bounded below and monotonically decreasing as shown in Proof 1, F!,�(↵(k)) �

F!,�(↵(k+1)) converges to zero as k ! 1, from (66) we see that limk!1 k↵(k+1)�↵(k)k = 0.

3. Now we show that the sequence (↵(k)) converges to the unique global minimum of

(12). As shown in Proof 1, the sequence (F!,�(↵(k))) is monotonically decreasing, hence

is bounded above. The fact that (F!,�(↵(k))) is bounded implies that (↵(k)) must also

be bounded, that is because lim↵!1 F!,�(↵) = 1. We next show that the limit of any

convergent subsequence of (↵(k)) is a stationary point of F . Let (↵(ki)) be the subsequence

of (↵(k)) and let limi!1 ↵(ki) = b↵, then by (65)

0 = rQ(↵(ki+1) | ↵(ki)) = rF!,�(↵
(ki)) + 2Ku(↵

(ki+1) �↵(ki)).

Taking limits on both sides, we prove that b↵ is a stationary point of F .

0 = lim
i!1

rQ(↵(ki+1) | ↵(ki)) = rQ( lim
i!1

↵(ki+1) | lim
i!1

↵(ki)).

= rF!,�(b↵) + 2Ku(b↵� b↵) = rF!,�(b↵).

Then by the strict convexity of F , we have that b↵ is the unique global minimum of (12).
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Proof of Theorem 2

Proof. 1. By (14) and (16),

F!,�(↵
(k+1))  Q(↵(k+1) | ↵(k))  Q(⇤k↵

(k) + (1� ⇤k)b↵ | ↵(k)). (67)

Using (24) we can show that

Q(⇤k↵
(k) + (1� ⇤k)b↵ | ↵(k))

=F!,�(↵
(k)) + (1� ⇤k)rF!,�(↵

(k))(b↵�↵(k)) + (1� ⇤k)
2(b↵�↵(k))|Ku(b↵�↵(k))

=⇤kF!,�(↵
(k)) + (1� ⇤k)

⇥
Q(b↵ | ↵(k))� ⇤k(b↵�↵(k))|Ku(b↵�↵(k))

⇤

=⇤kF!,�(↵
(k)) + (1� ⇤k)F!,�(b↵). (68)

Then the statement can be proved by substituting (68) into (67).

2. We obtain a lower bound for F!,�(b↵)

F!,�(b↵) � F!,�(↵
(k)) +rF!,�(↵

(k))(b↵�↵(k)) + (b↵�↵(k))|Kl(b↵�↵(k)), (69)

and majorization Q(b↵ | ↵(k))

Q(b↵ | ↵(k)) = F!,�(↵
(k)) +rF!,�(↵

(k))(b↵�↵(k)) + (b↵�↵(k))|Ku(b↵�↵(k)). (70)

Subtract (69) from (70) and divide by (b↵�↵(k))|Ku(b↵�↵(k)), we have

⇤k =
Q(b↵ | ↵(k))� F!,�(b↵)

(b↵�↵(k))|Ku(b↵�↵(k))

 1� (b↵�↵(k))|Kl(b↵�↵(k))

(b↵�↵(k))|Ku(b↵�↵(k))

 1� �min(K
�1
u Kl). (71)

Both Ku and Kl are positive definite by the assumption that
Pn

i=1 KiK
|
i is positive definite,

and since

K
�1
u Kl = K

� 1
2

u K
� 1

2
u KlK

� 1
2

u K

1
2
u ,
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the matrix K
�1
u Kl is similar to the matrix K

� 1
2

u KlK
� 1

2
u , which is positive definite. Hence

� = 1� �min(K
�1
u Kl) = 1� �min(K

� 1
2

u KlK
� 1

2
u ) < 1.

By (14) and (71) we showed that 0  ⇤k  � < 1.

3. Since rF!,�(b↵) = 0, using the Taylor expansion on F!,�(↵(k)) at b↵, we have

F!,�(↵
(k))� F!,�(b↵) � (↵(k) � b↵)|Kl(↵

(k) � b↵) � �min(Kl)k↵(k) � b↵k2,

F!,�(↵
(k))� F!,�(b↵)  (↵(k) � b↵)|Ku(↵

(k) � b↵)  �max(Ku)k↵(k) � b↵k2.

Therefore, by Results 1 and 2

k↵(k+1)�b↵k2  F!,�(↵(k+1))� F!,�(b↵)

�min(Kl)
 �(F!,�(↵(k))� F!,�(b↵))

�min(Kl)
 �

�max(Ku)

�min(Kl)
k↵(k)�b↵k2.
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