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Abstract: In recent years several sparse linear discriminant analysis methods have

been proposed for high-dimensional classification and variable selection. Most of

these proposals focus on binary classification and are not directly applicable to

multiclass classification problems. Some sparse discriminant analysis methods can

handle multiclass classification problems, but their theoretical justifications remain

unknown. In this paper, we propose a new multiclass sparse discriminant analysis

method that estimates all discriminant directions simultaneously. We show that

when applied to the binary case our proposal yields a classification direction that

is equivalent to those attained by two successful binary sparse linear discriminant

analysis methods, providing a unification of these seemingly unrelated proposals.

Our method can be solved by an e�cient algorithm that is implemented in an

open R package msda available from CRAN. We o↵er theoretical justification of

our method by establishing a variable selection consistency result and finding rates

of convergence under the ultrahigh dimensionality setting. We further demonstrate

the empirical performance of our method with simulations and data.

Key words and phrases: Discriminant analysis, high dimensional data, multiclass

classification, rates of convergence, variable selection.

1. Introduction

In multiclass classification we have a pair of random variables (Y,X), where

X 2 Rp and Y 2 {1, . . . ,K}. We need to predict Y based on X. Let ⇡k =

Pr(Y = k). The linear discriminant analysis model states that

X | (Y = k) ⇠ N(µk,⌃), k 2 {1, 2, . . . ,K}. (1.1)

Under (1.1), the Bayes rule can be explicitly derived as

Ŷ = argmax
k

n⇣
X� µk

2

⌘
T

�k + log ⇡k
o
, (1.2)

where �k = ⌃
�1µk for k = 1, . . . ,K. Linear discriminant analysis has been ob-

served to perform very well on many low-dimensional datasets (Michie, Spiegel-

halter and Taylor (1994); Hand (2006)). It may not be suitable for high-dimen-

sional datasets for at least two reasons. It cannot be applied if the dimension
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p exceeds the sample size n, while Bickel and Levina (2004) and Fan and Fan

(2008) have shown that, even if the true covariance matrix is an identity matrix

and we know this fact, a classifier involving all the predictors is no better than

random guessing.

In recent years, many high-dimensional generalizations of linear discriminant

analysis have been proposed (Tibshirani et al. (2002); Trendafilov and Jolli↵e

(2007); Clemmensen et al. (2011); Donoho and Jin (2008); Fan and Fan (2008);

Wu et al. (2008); Shao et al. (2011); Cai and Liu (2011); Witten and Tibshi-

rani (2011); Mai, Zou and Yuan (2012); Fan, Feng and Tong (2012)). In the

binary case, the discriminant direction is � = ⌃
�1(µ2 � µ1). One can seek

sparse estimates of � to generalize linear discriminant analysis to deal with high-

dimensional classification. This is the common feature of three popular sparse

discriminant analysis methods: the linear programming discriminant (Cai and

Liu (2011)), the regularized optimal a�ne discriminant (Fan, Feng and Tong

(2012)), and the direct sparse discriminant analysis (Mai, Zou and Yuan (2012)).

The linear programming discriminant finds a sparse estimate by the Dantzig se-

lector (Candes and Tao (2007)), the regularized optimal a�ne discriminant (Fan,

Feng and Tong (2012)) adds the lasso penalty (Tibshirani (1996)) to Fisher’s

discriminant analysis, and the direct sparse discriminant analysis (Mai, Zou and

Yuan (2012)) derives the sparse discriminant direction via a sparse penalized least

squares formulation. The three methods can detect the important predictors and

consistently estimate the classification rule with overwhelming probabilities in

the presence of ultrahigh dimensions. However, they are explicitly designed for

binary classification and do not handle the multiclass case naturally.

A referee has suggested breaking the K-class problem into K(K�1)/2 pair-

wise problems, applying a binary classifier to each, and classifying according to

majority vote. Tie votes complicate such an approach to the problem.

Two popular multiclass sparse discriminant analysis proposals are the `1

penalized Fisher’s discriminant (Witten and Tibshirani (2011)) and sparse opti-

mal scoring (Clemmensen et al. (2011)). These methods do not have theoretical

justifications in place.

We seek a new multiclass sparse discriminant analysis algorithm that is con-

ceptually intuitive, computationally e�cient, and theoretically sound. We show

that our proposal has competitive empirical performance and enjoys strong the-

oretical properties under ultrahigh dimensionality. In Section 2 we introduce

the details of our proposal after briefly reviewing two existing proposals, and we

develop an e�cient algorithm for our method. Theoretical results are given in
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Section 3. In Section 4 we use simulations and a data example to demonstrate the

superior performance of our method over sparse optimal scoring and `1 penalized

Fisher’s discriminant. Proofs are in the supplementary materials.

2. Method

2.1. Existing proposals

The Bayes rule under a linear discriminant analysis model is

Ŷ = argmax
k

n⇣
X� µk

2

⌘
T

�k + log ⇡k
o
,

where �k = ⌃
�1µk for k = 1, . . . ,K. If ✓Bayes

k = �k � �1 for k = 1, . . . ,K, the

Bayes rule can be written as

Ŷ = argmax
k

⇢
(✓Bayes

k )T
✓
X� µ1 + µk

2

◆
+ log

⇡k

⇡1

�
. (2.1)

We refer to the directions ✓Bayes = (✓Bayes

2
, . . . ,✓Bayes

K ) 2 Rp⇥(K�1) as the dis-

criminant directions.

Instead of estimating ✓Bayes directly, sparse optimal scoring and `1 penalized

Fisher’s discriminant estimate a set of directions ⌘ = (⌘1, . . . ,⌘K�1) 2 Rp⇥(K�1)

such that ⌘ spans the same linear subspace as ✓Bayes, and hence linear discrimi-

nant analysis on X
T⌘ is equivalent to (2.1) on the population level. The methods

look for estimates of ⌘ = (⌘1, . . . ,⌘K�1) in Fisher’s discriminant analysis:

⌘k = argmax⌘T

k⌃b⌘k, s.t. ⌘T

k⌃⌘k = 1,⌘T

k⌃⌘l = 0 for l < k, (2.2)

where ⌃b = {1/(K � 1)}
PK

k=1
(µk � µ̄)(µk � µ̄)T with µ̄ = 1/K

P
k µk.

We refer to ⌘ as discriminant directions as well. To find ⌘, take Y
dm as an

n⇥K matrix of dummy variables with Y
dm

ik = 1(Yi = k).

Sparse optimal scoring creates K � 1 vectors of scores ↵1, . . . ,↵K�1 2 RK .

Then for k = 1, . . . ,K � 1, sparse optimal scoring sequentially determines ⌘k.

Given ↵̂l and discriminant directions ⌘̂SOS

l , l < k, sparse optimal scoring finds

↵̂k, ⌘̂SOS

k by solving

(↵̂k, ⌘̂
SOS

k ) = arg min
↵k,⌘k

nX

i=1

(Ydm↵k � X̃⌘k)
2 + �k⌘kk1 (2.3)

s.t.
1

n
↵T

k(Y
dm)TYdm↵k = 1,↵T

k(Y
dm)TYdm↵̂l = 0, for any l < k,

where X̃ is the centered data matrix, and � is a tuning parameter. Sparse

optimal scoring is closely related to (2.2) because, when the dimension is low, the

unpenalized version of (2.3) gives the same directions (up to a scalar) as (2.2) with
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the parameters ⌃b and ⌃ substituted with their sample estimates. Therefore,

with the `1 penalty, sparse optimal scoring gives sparse approximations to ⌘.

The `1 penalized Fisher’s discriminant analysis estimates ⌘k by

⌘̂k = argmax
⌘k

⌘T

k⌃̂
k
b⌘k + �k

X

j

|�̂j⌘kj | s.t. ⌘T

k⌃̃⌘k  1,

for k = 1, . . . ,K � 1, where �k are tuning parameters, �̂2

j is the (j, j)th element

of the sample estimate of ⌃, ⌃̃ is a positive definite estimate of ⌃,

⌃̂
k
b = X

T
Y

dm{(Ydm)TYdm}�1/2
⌦k{(Ydm)TYdm}�1/2(Ydm)TX, (2.4)

and ⌦k is the identity matrix if k = 1, otherwise an orthogonal projection matrix

with column space orthogonal to {(Ydm)TY}�1/2
Y

T
X⌘̂l for all l < k. Again, if

the dimension is low, the unpenalized version of (2.4) is equivalent to (2.2) with

the parameters replaced by the sample estimates. Since ⌦k relies on ⌘̂l for all

l < k, the `1 penalized Fisher’s discriminant analysis also finds the discriminant

directions sequentially.

2.2. Our proposal

Good empirical results have been reported for supporting the `1 penalized

Fisher’s discriminant analysis and sparse optimal scoring, but it is not known

whether these classifiers are consistent when more than two classes are present.

While these methods estimate the discriminant directions sequentially, we believe

a better multiclass sparse discriminant analysis algorithm would estimate all

discriminant directions simultaneously, as in classical linear discriminant analysis.

We develop a computationally e�cient multiclass sparse discriminant analysis

method that enjoys strong theoretical properties under ultrahigh dimensionality.

It can be viewed as a natural multiclass counterpart of the three binary sparse

discriminant methods in Mai, Zou and Yuan (2012), Cai and Liu (2011), and

Fan, Feng and Tong (2012).

The implication of sparsity in the multiclass problem, explained in Mai, Zou

and Yuan (2012), is that the right target for variable selection should be the

subset of variables that influences the Bayes rule. By (2.1), the contribution

from the jth variable (Xj) vanishes if and only if

✓
Bayes

2j = · · · = ✓
Bayes

Kj = 0. (2.5)

Let D = {j : (2.5) does not hold}. Here whether an index j belongs to D
depends on ✓kj for all k, since ✓

Bayes

kj , k = 2, . . . ,K are related to each other,

being coe�cients for the same predictor. Thus, ✓Bayes

kj , k = 2, . . . ,K are naturally
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grouped according to j, and successful multiclass sparse LDA method should

correctly identify D, at least in theory.

In sequential procedures, directions are estimated one by one, and it is less

likely to estimate all the coe�cients of one predictor to be zero. Hence, sequential

methods do not utilize all the available information and are prone to loss of

accuracy.

Mai, Zou and Yuan (2012) take advantage of a close link between the LDA

and the ordinary least squares, so that one can use any software for solving

sparse penalized linear regression to fit the sparse LDA classifier they proposed.

However, such a connection only holds for the binary case. We observe that,

theoretically speaking, the binary sparse LDA proposal in Mai, Zou and Yuan

(2012) is equivalent to a sparse penalized quadratic criterion, and, computation-

ally speaking, a penalized quadratic problem is as e�cient as penalized least

squares. Thus, we develop a multiclass sparse LDA method that can be formu-

lated as the minimizer of a penalized quadratic objective function. This idea was

also pursued in an independent work (Gaynanova, Booth and Wells (2016)).

Our proposal begins with a convex optimization formulation of the Bayes rule

of the multiclass linear discriminant analysis model. With ✓Bayes

k = ⌃
�1(µk�µ1)

for k = 2, . . . ,K, on the population level,

(✓Bayes

2
, . . . ,✓Bayes

K ) = arg min
✓2,...,✓K

KX

k=2

⇢
1

2
✓T

k⌃✓k � (µk � µ1)
T✓k

�
. (2.6)

In the classical low-dimension-large-sample-size setting, we can estimate (✓Bayes

2
,

. . . ,✓Bayes

K ) via an empirical version of (2.6)

(✓̂2, . . . , ✓̂K) = arg min
✓2,...,✓K

KX

k=2

⇢
1

2
✓T

k⌃̂✓k � (µ̂k � µ̂1)
T✓k

�
, (2.7)

where ⌃̂ = {1/(n�K)}
PK

k=1

P
Y i=k(X

i�µ̂k)(Xi�µ̂k)T, µ̂k = (1/nk)
P

Y i=k X
i

and nk is the sample size within Class k. The solution to (2.7) gives us the clas-

sical multiclass linear discriminant classifier.

Write ✓.j = (✓2j , . . . , ✓Kj)T and define k✓.jk = (
PK

i=2
✓
2

ij)
1/2

. For the high-

dimensional case, we propose a penalized formulation for multiclass sparse dis-

criminant analysis,

(✓̂2, . . . , ✓̂K) = arg min
✓2,...,✓K

KX

k=2

⇢
1

2
✓T

k⌃̂✓k � (µ̂k � µ̂1)
T✓k

�
+ �

pX

j=1

k✓·jk, (2.8)

where � is a tuning parameter. It is clear that (2.8) is based on (2.7). In (2.8)
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we have used the group lasso (Yuan and Lin (2006)) to encourage the common

sparsity structure. Let D̂ = {j : ✓̂kj 6= 0} denote the set of selected variables for

the multiclass classification problem. We will show that with a high probability

D̂ equals D. One can also use a group version of a nonconvex penalty (Fan and

Li (2001)) or an adaptive group lasso penalty (Bach (2008)) to replace the group

lasso penalty in (2.8). We do not pursue this here.

After obtaining ✓̂k, k = 2, . . . ,K, we fit the classical multiclass linear dis-

criminant analysis on (XT✓̂2, . . . ,XT✓̂K), as in sparse optimal scoring and `1

penalized Fisher’s discriminant analysis. We repeat the procedure for a sequence

of � values and pick the one with the smallest cross-validation error rate.

While sparse optimal scoring and `1 penalized Fisher’s discriminant analy-

sis penalize a formulation related to Fisher’s discriminant analysis in (2.2), our

method directly estimates the Bayes rule. This leads to considerable convenience

in both computational and theoretical studies. Yet we can easily recover the

directions defined by Fisher’s discriminant analysis after applying our method.

See Section S1 in the supplementary materials for details.

2.3. Connections with existing binary sparse LDA methods

Although our proposal is primarily motivated by the multiclass classification

problem, it can be directly applied to the binary classification problem as well by

simply letting K = 2 at (2.8). It turns out that the binary case of our proposal

has connections with some binary sparse LDA methods in the literature. We

elaborate more on this point.

When K = 2, (2.8) reduces to

✓̂MSDA(�) = argmin
✓

⇢
1

2
✓T

⌃̂✓ � (µ̂2 � µ̂1)
T✓ + �k✓k1

�
. (2.9)

Considering the Dantzig selector formulation of (2.9), we have a constrained `1

minimization estimator,

✓̂ = argmin
✓

k✓k1 s.t. k⌃̂✓ � (µ̂2 � µ̂1)k1  �. (2.10)

This estimator is the linear programming discriminant (LPD) (Cai and Liu

(2011)).

We compare (2.9) with two more sparse discriminant analysis proposals for

binary classification: the regularized optimal a�ne discriminant (ROAD)(Fan,

Feng and Tong (2012)) and the direct sparse discriminant analysis (DSDA) (Mai,

Zou and Yuan (2012)). Denote the estimates of the discriminant directions given
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by ROAD and DSDA as ✓̂ROAD and ✓̂DSDA, respectively. Then we have

✓̂ROAD(�) = argmin
✓

✓T
⌃̂✓ + �k✓k1 s.t. ✓T(µ̂2 � µ̂1) = 1, (2.11)

✓̂DSDA(�) = argmin
✓

X

i

{Y i � ✓0 � (Xi)T✓}2 + �k✓k1. (2.12)

We can show the connections between our proposal, K = 2, and ROAD and

DSDA. The proofs of this proposition and subsequent lemmas and theorems can

be found in the appendix.

Proposition 1. If c0(�) = ✓̂MSDA(�)T(µ̂2 � µ̂1), c1(�) = ✓̂DSDA(�)T(µ̂2 � µ̂1),

and a = {2n|c1(�)|}/(|c0(�)|), then we have

✓̂MSDA(�) = c0(�)✓̂
ROAD

✓
2�

|c0(�)|

◆
, (2.13)

✓̂MSDA(�) =
c0(�)

c1(a�)
✓̂DSDA(a�). (2.14)

Proposition 1 shows that the classification direction by our proposal is identi-

cal to a classification direction by ROAD and a classification direction by DSDA.

2.4. Algorithm

Besides their solid theoretical foundation, LPD, ROAD, and DSDA all enjoy

computational e�ciency. In particular, DSDA’s computational complexity is the

same as fitting a lasso linear regression model. In this section we produce an

e�cient algorithm for our proposed multiclass procedure. It is then a natural

generalization of these binary sparse LDA methods.

In solving (2.8), write �̂k = µ̂k�µ̂1. Our algorithm is based on the following.

Lemma 1. Given {✓.j0 , j0 6= j}, the solution of ✓.j to (2.8) is

argmin
✓.j

KX

k=2

1

2
(✓kj � ✓̃kj)

2 +
�

�̂jj
k✓.jk, (2.15)

where ✓̃k,j = (�̂kj �
P

l 6=j �̂lj✓kl)/�̂jj . If ✓̃.j = (✓̃2j , . . . , ✓̃Kj)T and k✓̃.jk =

(
PK

k=2
✓̃
2

kj)
1/2, the solution to (2.15) is given by

✓̂.j = ✓̃.j

 
1� �

k✓̃.jk

!

+

. (2.16)

Algorithm 1 (Multiclass sparse discriminant analysis for a given penalization

parameter).

1. Compute ⌃̂ and �̂k, k = 1, 2, . . . ,K.
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2. Initialize ✓̂(0)

k and compute ✓̃(0)

k accordingly.

3. For m = 1, . . . , do the following loop until convergence: for j = 1, . . . , p,

(a) compute

✓̂(m)

.j = ✓̃(m�1)

.j

 
1� �

k✓̃(m�1)

.j k

!

+

;

(b) update

✓̃kj =
�̂
k
j �

P
l 6=j �̂lj ✓̂

(m)

kl

�̂jj
.

4. Let ✓̂k be the solution at convergence. The output classifier is the linear

discriminant classifier on (XT✓̂2, . . . ,XT✓̂K).

We have implemented our method in an R package msda which is available

on CRAN. Our package also handles the version of (2.8) using an adaptive group

lasso penalty, because Lemma 1 and Algorithm 1 can be easily generalized to

handle the adaptive group lasso penalty.

3. Theory

In this section we study the properties of our proposal under the setting

where p can be much larger than n. Under regularity conditions we show that

our method can consistently select the true subset of variables and, at the same

time, consistently estimate the Bayes rule.

We begin with some useful notation. For a vector ↵, k↵k1 = maxj |↵j |,
k↵k1 =

P
j |↵j |, while for a matrix ⌦ 2 Rm⇥n, k⌦k1 = maxi

P
j |!ij |, k⌦k1 =

maxj
P

i |!ij |. Let

' = max{k⌃DC,Dk1, k⌃�1

D,Dk1},� = max{kµk1, k✓Bayesk1};

✓
Bayes

min
= min

(k,j):✓kj 6=0

|✓kj |, ✓Bayes

max = max
(k,j)

|✓kj |;

k⌃DC,D⌃
�1

D,Dk1 = ⌘
⇤
.

Let d be the cardinality of D. For simplicity, we assume that �jj is uniformly

bounded from above.

If tD 2 Rd⇥(K�1) is the subgradient of the group lasso penalty at the true

✓D, we assume the following:

(C0) maxj2Dc{
PK

k=2
(⌃j,D⌃

�1

D,Dtk,D)
2}1/2 =  < 1.
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A condition similar to (C0) has been used to study the group lasso penal-

ized regression model (Bach (2008)). It is satisfied for many commonly used

covariance structures, as shown by the following.

Lemma 2. If the LDA model holds, then (C0) holds if all elements in ⌃D,DC are

equal to 0, if D = {1, . . . , d} and ⌃ has an autoregressive structure, or if ⌃ has

compound symmetry.

With ',�, ⌘
⇤ and  fixed, we will use the following regularity conditions.

(C1) There exists c1, C1 > 0 such that (c1/K)  ⇡k  (C1/K) for k = 1, . . . ,K

and
⇣
✓
Bayes
max /✓

Bayes

min

⌘
< C1.

(C2) n, p ! 1 and {d2 log (pd)}/n ! 0;

(C3) ✓
Bayes

min
� {(d2 log (pd))/n}1/2;

(C4) mink,k0{(✓Bayes

k � ✓Bayes

k0 )T⌃(✓Bayes

k � ✓Bayes

k0 )}1/2 is bounded away from 0.

Condition (C1) guarantees that we will have a decent sample size for each

class. The assumption ✓
Bayes
max /✓

Bayes

min
< C1 ensures that the set of important

predictors is well defined, and that no important predictor dominates others. If

Condition (C1) is violated, there are predictors with nonzero but relatively small

coe�cients; these predictors are “close to unimportant” and can be di�cult to

detect. Condition (C2) requires that p not grow too fast with respect to n.

It is very mild, as p can grow at a nonpolynomial rate of n. In particular, if

d = O(n1/2�↵), 0 < ↵  1/2, (C2) is satisfied if log p = o(n2↵). Condition (C3)

guarantees that the nonzero coe�cients are bounded away from 0, a common

assumption in the literature. The lower bound of ✓Bayes

min
tends to 0 under (C3).

Condition (C4) is required so that all the classes can be separated from each

other; if it is violated, even the Bayes rule cannot work well. We make no claim

that these are the weakest possible conditions.

In the following, C denotes a generic positive constant that can vary from

place to place.

Theorem 1. Under conditions (C0)–(C1), there exists a generic constant M

such that, if � < min{✓Bayes

min
/8',M(1� )}, then with a probability greater than

1� Cpd exp

✓
�Cn

✏
2

Kd2

◆
� CK exp

⇣
�C

n

K2

⌘
� Cp(K � 1) exp

✓
�Cn

✏
2

d2K

◆

(3.1)
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with 0 < ✏ < min{1/2',�/(1 + '�)}, we have that D̂ = D, and k✓̂k�✓Bayes

k k1 
4'� for k = 2, . . . ,K. If we further assume conditions (C2)–(C3), we have that

if {(d2 log (pd))/n}1/2 ⌧ � ⌧ ✓
Bayes

min
, then with probability tending to 1, we have

D̂ = D, and k✓̂k � ✓Bayes

k k1 ! 0 for k = 2, . . . ,K.

We now show that our proposal is a consistent estimator of the Bayes rule

in terms of the misclassification error rate. For a new observation (X, Y ), not

used in constructing the classifier, let

Rn = Pr{Ŷ (✓̂k, ⇡̂k, k = 1, . . . ,K) 6= Y | training data},

where Ŷ (✓̂k, ⇡̂k, k = 1, . . . ,K) is the prediction by our method. It can be seen

that Rn is the prediction error of our estimated classifier. Take R as the Bayes

error. Then we have the following.

Theorem 2. Under conditions (C0)–(C1), there exists a generic constant M1

such that, if � < min{✓Bayes

min
/8',M1(1� )}, then with a probability greater than

1�Cpd exp

✓
�Cn

✏
2

Kd2

◆
�CK exp

⇣
�C

n

K2

⌘
�Cp(K�1) exp

✓
�Cn

✏
2

K

◆
(3.2)

with 0 < ✏ < min{1/2',�/(1 + '�)}, we have

|Rn �R|  M1�
1/3

, (3.3)

for some generic constant M1. Under conditions (C0)–(C4), if � ! 0, then with

probability tending to 1, we have Rn ! R.

Remark 1. Based on our proof we can derive the asymptotic results by lettingK

(the number of classes) diverge with n to infinity. This requires more cumbersome

notion and bounds, but the analysis remains largely the same. For a clearer

picture of the theory, we have focused on the fixed K case.

4. Numerical Studies

4.1. Simulations

We have investigated our proposal by simulation. For comparison, we have

included the sparse optimal scoring and `1 penalized Fisher’s discriminant anal-

ysis in the simulation study. Four simulation models were considered where the

dimension p = 800 and the training set has a sample size n = 75K, K the num-

ber of classes in each model. We generated a validation set of size n to select the

tuning parameters and a testing set of size 1,000 for each method. We specified

�k and ⌃ as in the following, then let µk = ⌃�k. We say that a matrix ⌃ has

the AR(⇢) structure if �jk = ⇢
|j�k| for j, k = 1, . . . , p, and that ⌃ has the CS(⇢)
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structure if �jk = ⇢ for any j 6= k and �jj = 1 for j = 1, . . . , p.

Model 1: K = 4, �jk = 1.6 for j = 2k�1, 2k; k = 1, . . . ,K and �jk = 0 otherwise.

The covariance matrix ⌃ has the AR(0.5) structure.

Model 2: K = 6, �jk = 2.5 for j = 2k�1, 2k; k = 1, . . . ,K and �jk = 0 otherwise.

The covariance matrix ⌃ = I5 ⌦⌦, where ⌦ has the CS(0.5) structure.

Model 3: K = 4, �jk = k + ujk for j = 1, . . . ,K, where ujk is uniform over the

interval [�1/4, 1/4]; �jk = 0 otherwise. The covariance matrix ⌃ has the CS(0.5)

structure.

Model 4: K = 4, �jk = k + ujk for j = 1, . . . , 4, and ujk is uniform distribution

over [�1/4, 1/4]; �jk = 0 otherwise. The covariance matrix ⌃ has the CS(0.8)

structure.

Model 5: K = 4, �2,1 = · · · = �2,8 = 1.2, �3,1 = · · · = �3,4 = �1.2, �3,5 = · · · =
�3,8 = 1.2, �4,2j�1 = �1.2,�4,2j = 1.2 for j = 1, . . . , 4; �jk = 0 otherwise. The

covariance matrix ⌃ has the AR(0.5) structure.

Model 6: K = 4, �2,1 = · · · = �2,8 = 1.2, �3,1 = · · · = �3,4 = �1.2, �3,5 = · · · =
�3,8 = 1.2, �4,2j�1 = �1.2,�4,2j = 1.2 for j = 1, . . . , 4; �jk = 0 otherwise. The

covariance matrix ⌃ has the AR(0.8) structure.

The error rates of methods are listed in Table 1. To compare variable selec-

tion performance, we report the number of correctly selected variables (C) and

the number of incorrectly selected variables (IC) by each method. Our method

shows the best across all six models, and it is a very good approximation of the

Bayes rule in terms of sparsity and misclassification error rate. Although our

method tends to select a few more variables aside from the true ones, this can

be improved by using the adaptive group lasso penalty (Bach (2008)). Because

the other two methods do not use the adaptive lasso penalty, we do not include

these results.

4.2. A data example

We have demonstrated the application of our method on the IBD dataset

(Burczynski et al. (2006)). This dataset contains 22,283 gene expression levels

from 127 people. These people are either normal, have Crohn’s disease, or have

ulcerative colitis. The dataset can be downloaded from Gene Expression Om-

nibus with accession number GDS1615. We randomly split the datasets with a

2:1 ratio in a balanced manner to form the training set and the testing set.

It is known that marginal t-test screening (Fan and Fan (2008)) can greatly

speed up the computation for linear discriminant analysis in binary problems.

For a multiclass problem the natural generalization of t-test screening is the
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Table 1. Simulation results for Models 1–6. The two competing methods are denoted
by the first author of the original papers: Witten’s method is the `1 penalized Fisher’s
discriminant analysis, and Clemmensen’s method is the sparse optimal scoring method.
The reported numbers are medians based on 500 replicates. Standard errors are in
parentheses. Here C is the number of correctly selected variables, and IC is the number
of incorrectly selected variables.

Bayes Our Witten Clemmensen Bayes Our Witten Clemmensen
Model 1 Model 2

Error (%) 11.0 12.4 15.5 13 13.3 15.2 31.7 17
(0.06) (0.07) (0.07) (0.06) (0.05) (0.07) (0.20) (0.08)

C 8 8 8 8 12 12 12 12
(0) (0) (0) (0) (0) (0)

IC 0 10 126 5 0 15 19.5 16
(0.6) (4.9) (0.4) (0.7) (1.5) (0.3)

Model 3 Model 4
Error (%) 8.8 9.4 14.1 12.7 5.3 5.7 7 7.6

(0.06) (0.09) (0.06) (0.08) (0.06) (0.08) (0.05) (0.07)
C 4 4 4 4 4 4 4 4

(0) (0) (0) (0) (0) (0)
IC 0 3 796 30 0 4 796 30

(0.4) (0) (0.2) (0.5) (0) (2.2)
Model 5 Model 6

Error (%) 8.3 9.5 17.9 13.6 14.2 17.4 23.4 24.8
(0.05) (0.07) (0.14) (0.09) (0.06) (0.08) (0.09) (0.09)

C 8 8 8 8 8 8 8 6
(0) (0) (0) (0.0) (0) (0.1)

IC 0 6 97 4 0 0 4 3
(0.9) (2.8) (0.5) (0) (0.5) (0.3)

F -test screening. We computed the F -test statistic for each Xj ,

fj =

PK
k=1

nk(µ̂kj � ˆ̄µj)2/(K � 1)Pn
i=1

(Xi
j � µ̂Y i,j)2/(n�K)

,

where ˆ̄µj is the sample grand mean for Xj and ng is the within-group sample

size. Based on the F -test statistic, our screening kept only the predictors with

F -test statistics among the dnth largest. As widely recommended (Fan and Fan

(2008); Fan and Song (2010); Mai and Zou (2013a)), dn can be the same as the

sample size if we believe that the number of truly important variables is much

smaller than the sample size. We let dn = 127 for the current dataset.

We estimated the rules given by sparse optimal scoring, `1 penalized Fisher’s

discriminant analysis and our proposal on the training set. The tuning parame-

ters were chosen by 5-fold cross validation. We evaluated the classification errors
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Table 2. Classification and variable selection results on the real dataset. The two com-
peting methods are denoted by the first author of the original papers. In particular,
Witten’s method is the `1 penalized Fisher’s discriminant analysis, and Clemmensen’s
method is the sparse optimal scoring method. All numbers are medians based on 100
random splits. Standard errors are in parentheses.

Our Witten Clemmensen
Error (%) 7.32(0.972) 21.95(1.10) 9.76(0.622)
Fitted Model Size 25 (0.7) 127 (0) 27 (0.5)

on the testing set. The results based on 100 replicates are listed in Table 2. It

can be seen that our proposal achieves the highest accuracy with the sparsest

classification rule.

Supplementary Materials

Proofs are available in the supplementary materials. Section S1 contains the

connection between our method and Fisher’s discriminant analysis. Section S2

contains all other proofs.
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Appendices

A.1 Connections with Fisher’s discriminant analysis

For simplicity, in this subsection we denote ⌘ as the discriminant directions defined by Fisher’s

discriminant analysis in (4), and ✓ as the discriminant directions defined by Bayes rule. Our

method gives a sparse estimate of ✓. In this section, we discuss the connection between ✓ and

⌘, and hence the connection between our method and Fisher’s discriminant analysis. We first

comment on the advantage of directly estimating ✓ rather than estimating ⌘. Then we discuss how

to estimate ⌘ once ✓̂ is available.

There are two advantages of estimating ✓ rather than ⌘. Firstly, estimating ✓ allows for simul-

taneous estimation of all the discriminant directions. Note that (4) requires that ⌘T
k⌃⌘l = 0 for

any l < k. This requirement almost necessarily leads to a sequential optimization problem, which

is indeed the case for sparse optimal scoring and `1 penalized Fisher’s discriminant analysis. In

our proposal, the discriminant direction ✓k is determined by the covariance matrix and the mean

vectors µk within Class k, but is not related to ✓l for any l 6= k. Hence, our proposal can simulta-

neously estimate all the directions by solving a convex problem. Secondly, it is easy to study the

theoretical properties if we focus on ✓. On the population level, ✓ can be written out in explicit

forms and hence it is easy to calculate the difference between ✓ and ✓̂ in the theoretical studies.

Since ⌘ do not have closed-form solutions even when we know all the parameters, it is relatively

harder to study its theoretical properties.

Moreover, if one is specifically interested in the discriminant directions ⌘, it is very easy to

obtain a sparse estimate of them once we have a sparse estimate of ✓. For convenience, for any

positive integer m, denote 0m as an m-dimensional vector with all entries being 0, 1m as an m-

dimensional vector with all entries being 1, and Im as the m ⇥ m identity matrix. The following

lemma provides an approach to estimating ⌘ once ✓̂ is available. The proof is relegated to Section

A.2.

Lemma 3. The discriminant directions ⌘ contain all the right eigenvectors of ✓0⇧�T
0

correspond-

ing to positive eigenvalues, where ✓0 = (0p,✓), ⇧ = IK� 1

K 1K1T
K , and �0 = (µ1�µ̄, . . . ,µK�µ̄)

with µ̄ =
PK

k=1
⇡kµk.

Therefore, once we have obtained a sparse estimate of ✓, we can estimate ⌘ as follows. Without

17



loss of generality write ✓̂ = (✓̂T

D̂, 0)
T, where D̂ = {j : ✓̂·j 6= 0}. Then ✓̂0 = (0, ✓̂). On the other

hand, set �̂0 = (µ̂1 � ˆ̄µ, . . . , µ̂K � ˆ̄µ) where µ̂k are sample estimates and ˆ̄µ =
PK

k=1
⇡̂kµ̂k. It

follows that ✓̂0⇧�̂0 = ((✓̂
0,D̂⇧�̂T

0,D̂)
T
, 0)T. Consequently, we can perform eigen-decomposition

on ✓̂
0,D̂⇧�̂T

0,D̂ to obtain ⌘̂D̂. Because D̂ is a small subset of the original dataset, this decomposition

will be computationally efficient. Then ⌘̂ would be (⌘̂T

D̂, 0)
T.

A.2 Technical Proofs

Proof of Proposition 1. We first show (15).

For a vector ✓ 2 Rp, define

L
MSDA(✓,�) =

1

2
✓T⌃̂✓ � (µ̂2 � µ̂1)

T✓ + �k✓k1, (22)

L
ROAD(✓,�) = ✓T⌃̂✓ + �k✓k1 (23)

Set ✓̃ = c0(�)�1✓̂MSDA(�). Since ✓̃T(µ̂2 � µ1) = 1, it suffices to check that, for any ✓̃0 such

that (✓̃0)T(µ̂2 � µ1) = 1, we have L
ROAD(✓̃, 2�

|c0(�)|)  L
ROAD(✓̃0

,
2�

|c0(�)|). Now for any such ✓̃0,

L
MSDA(c0(�)✓̃

0
,�) = c0(�)

2
L
ROAD(✓̃0

,
2�

|c0(�)|
)� c0(�) (24)

Similarly,

L
MSDA(c0(�)✓̃,�) = c0(�)

2
L
ROAD(✓̃,

2�

|c0(�)|
)� c0(�). (25)

Since L
MSDA(c0(�)✓̃,�)  L

MSDA(c0(�)✓̃0
,�), we have (15).

On the other hand, by Theorem 1 in Mai & Zou (2013b), we have

✓̂DSDA(�) = c1(�)✓̂
ROAD(

�

n|c1(�)|
) (26)

18



Therefore,

✓̂ROAD(
2�

|c0(�)|
) = ✓̂ROAD

✓
(
2n|c1(�)|�
|c0(�)|

)/(n|c1(�)|)
◆

(27)

=

✓
c1(

2n|c1(�)|�
|c0(�)|

)

◆�1

✓̂DSDA

✓
2n|c1(�)|�
|c0(�)|

◆
(28)

= (c1(a�))
�1✓̂DSDA(a�) (29)

Combine (29) with (15) and we have (16).

Proof of Lemma 1. We start with simplifying the first part of our objective function, 1

2
✓T
k ⌃̂✓k �

(µ̂k � µ̂1)T✓k.

First, note that

1

2
✓T
k ⌃̂✓k =

1

2

pX

l,m=1

✓kl✓km�̂lm (30)

=
1

2
✓
2

kj�̂jj +
1

2

X

l 6=j

✓kl✓kj�̂lj +
1

2

X

m 6=j

✓kj✓km�̂jm +
1

2

X

l 6=j,m 6=j

✓kl✓km�̂lm (31)

(32)

Because �̂lj = �̂jl, we have
P

l 6=j ✓kl✓kj�̂lj =
P

m 6=j ✓kj✓km�̂jm. It follows that

1

2
✓T
k ⌃̂✓k =

1

2
✓
2

kj�̂jj +
X

l 6=j

✓kj✓kl�̂lj +
1

2

X

l 6=j,m 6=j

✓kl✓km�̂lm (33)

Then recall that �̂k = µ̂k � µ̂1. We have

(µ̂k � µ̂1)
T✓k =

pX

l=1

�
k
l ✓kl = �

k
j ✓kj +

X

l 6=j

�
k
l ✓kl (34)

Combine (33) and (34) and we have

1

2
✓T
k ⌃̂✓k � (µ̂k � µ̂1)

T✓k (35)

=
1

2
✓
2

kj�̂jj +
X

l 6=j

✓kj✓kl�̂lj +
1

2

X

l 6=j,m 6=j

✓kl✓km�̂lm � �
k
j ✓kj �

X

l 6=j

�
k
l ✓kl (36)

=
1

2
✓
2

kj�̂jj + (
X

l 6=j

�̂l,j✓kl � �̂
k
j )✓kj +

1

2

X

m 6=j,l 6=j

✓kl✓km�̂lm �
X

l 6=j

�̂
k
l ✓kl (37)
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Note that the last two terms does not involve ✓.j . Therefore, given {✓.j0 , j
0 6= j}, the solution

of ✓.j is defined as

arg min
✓2,j ,...,✓K,j

KX

k=2

{1
2
✓
2

kj�̂jj + (
X

l 6=j

�̂lj✓kl � �̂
k
j )✓kj}+ �k✓.jk,

which is equivalent to (17). It is easy to get (18) from (17) (Yuan & Lin 2006).

Proof of Lemma 2. We start with the first conclusion. If all elements in ⌃D,DC are equal to 0, then

we must have ⌃j,D⌃
�1

D,Dtk,D = 0 and hence maxj2Dc{
PK

k=2
(⌃j,D⌃

�1

D,Dtk,D)
2}1/2 = 0. It follows

that Condition (C0) holds.

For the second conclusion, note that, when �ij = ⇢
|i�j| and D = {1, . . . , d}, for j 2 DC , we have

⌃j,D = ⇢
j�d⌃d,D. Consequently,

⌃j,D⌃
�1

D,D = ⇢
j�d(0d�1, 1).

Hence,
KX

k=2

(⌃j,D⌃
�1

D,Dtk,D)
2 = ⇢

2(j�d)
KX

k=2

t
2

kd = ⇢
2(j�d)

< 1

which implies Condition (C0).

For the third conclusion, note that, if ⌃ is compound symmetry, then we can write ⌃D,D = (1 �

⇢)Id + ⇢1d1T
d . Straightforward calculation verifies that

⌃�1

D,D =
1

1� ⇢
Id �

⇢

[1 + (d� 1)⇢](1� ⇢)
1d1

T
d .

Consequently, for any j 2 DC ,

⌃j,D⌃
�1

D,D = a1T
d
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where a =
⇢

1� ⇢
(1� d⇢

1 + (d� 1)⇢
). Therefore, by Cauchy-Schwarz inequality, we have

KX

k=2

(⌃j,D⌃
�1

D,Dtk,D)
2 = a

2

KX

k=2

(1T
dtk,D)

2  a
2

KX

k=2

{(1T
d1d)(t

T
k,Dt

T
k,D)}

= a
2
d

KX

k=2

X

j2D

t
2

kj = a
2
d

X

j2D

KX

k=2

t
2

kj = a
2
d
2

where we use the fact
PK

k=2
t
2

kj = 1 for any j 2 D. Hence,

{
KX

k=2

(⌃j,D⌃
�1

D,Dtk,D)
2}1/2 = ad =

d⇢

1� ⇢
(1� d⇢

1 + (d� 1)⇢
) =

d⇢

1 + (d� 1)⇢
< 1

and we have the desired conclusion.

In what follows we use C to denote a generic constant for convenience.

Now we define an oracle “estimator" that relies on the knowledge of D for a specific tuning

parameter �:

✓̂oracle

D = arg min
✓2,D,...,✓K,D

KX

k=2

{1
2
✓T
k,D⌃̂D,D✓k,D � (µ̂k,D � µ̂1,D)

T✓k,D}+ �

X

j2D

k✓.jk. (38)

The proof of Theorem 1 is based on a series of technical lemmas. For convenience, in what

follows we simply write ✓Bayes as ✓. This convention shall not be confused with the generic ✓ in

an objective function.

Lemma 4. Define ✓̂oracle

D (�) as in (38). Then ✓̂k = (✓̂oracle

k,D , 0), k = 2, . . . , K is the solution to (10)

if

max
j2Dc

[
KX

k=2

{(⌃̂DC ,D✓̂
(oracle)

k,D )j � (µ̂kj � µ̂1j)}2]1/2 < �. (39)

Proof of Lemma 4. The proof is completed by checking that ✓̂k = (✓̂oracle

k,D (�), 0) satisfies the KKT

condition of (10).

Lemma 5. For each k, ⌃DC ,D⌃
�1

D,D(µk,D � µ1,D) = µk,DC � µ1,DC .
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Proof of Lemma 5. For each k, we have ✓k,DC = 0. By definition, ✓DC = (⌃�1(µk � µ1))DC .

Then by block inversion, we have that

✓k,DC = �(⌃DC ,DC �⌃DC ,D⌃D,D⌃D,DC)�1(⌃DC ,D⌃
�1

D,D(µk,D � µ1,D)� (µk,DC � µ1,DC)),

and the conclusion follows.

Proposition 2. Under Condition (C1), there exists a constant ✏0 such that for any 0 < ✏  ✏0 we

have

pr{|(µ̂kj � µ̂1j)� (µkj � µ1j)| � ✏}  C exp(�C
n✏

2

K
) + C exp(�Cn

K2
), (40)

k = 2, . . . , K, j = 1, . . . , p;

pr(|�̂ij � �ij| � ✏)  C exp(�C
n✏

2

K
) + C exp(�Cn

K2
), i, j = 1, . . . , p. (41)

Proof of Proposition 2. We first show (40). We start with the fact that, conditional on Y, µ̂kj ⇠

N(µkj,
�jj

nk
). Therefore, for any s > 0, we have

pr(µ̂kj � µkj � ✏ | Y ) = pr(es(µ̂kj�µkj) � e
s✏ | Y )  e

�s✏
E
�
e
s(µ̂kj�µkj) | Y

 
= e

�s✏+
�jjs

2

2nk

Let s =
nk✏

�jj
and we have

pr(µ̂kj � µkj � ✏ | Y )  exp(�nk✏
2

2�jj
)  exp(�Cnk✏

2),

where the last inequality follows from the assumption that �jj are bounded from above. Repeat

these steps for µkj � µ̂kj and we have

pr(µ̂kj � µkj  �✏ | Y )  exp(�Cnk✏
2)

Hence,

pr(|µ̂kj � µkj| � ✏ | Y )  C exp(�Cnk✏
2)

22



It follows that

pr(|µ̂kj � µkj| � ✏)  E(pr(|µ̂kj � µkj| � ✏ | Y ))  E(C exp(�Cnk✏
2)) (42)

= E
�
C exp(�Cnk✏

2)1(nk > ⇡kn/2)
 
+ E

�
C exp(�Cnk✏

2)1(nk < ⇡kn/2)
 

(43)

For the first term, note that, if nk > ⇡kn/2, we must have

C exp(�Cnk✏
2)  C exp(�C⇡kn✏

2)  C exp(�C
n✏

2

K
),

where the last inequality follows from Condition (C1). Hence,

E
�
C exp(�Cnk✏

2)1(nk > ⇡kn/2)
 
 C exp(�C

n✏
2

K
). (44)

For the second term, note that

E
�
C exp(�Cnk✏

2)1(nk < ⇡kn/2)
 
 Cpr(nk < ⇡kn/2)),

Define W
i = 1(Y i = k). Then W

i ⇠ Bernoulli(⇡k) and nk =
Pn

i=1
W

i. By Hoeffding’s

inequality we have that

pr(nk < ⇡kn/2)) = pr(| 1
n

nX

i=1

W
i � E(W i)| > ⇡k/2) (45)

 C exp(�Cn⇡
2

k)  C exp(�C
n

K2
), (46)

where the last inequality again follows from Condition (C1). Combine (43),(44) and (46), and we

have the desired conclusion.

A similar inequality holds for µ̂1j , and (40) follows.
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For (41), note that

�̂ij =
1

n�K

KX

k=1

X

Y m=k

(Xm
i � µ̂ki)(X

m
j � µ̂kj)

=
1

n�K

KX

k=1

X

Y m=k

(Xm
i � µ

m
i )(X

m
j � µ

m
j ) +

1

n�K

KX

k=1

nk(µ̂ki � µki)(µ̂kj � µkj)

= �̂
(0)

ij +
1

n�K

KX

k=1

nk(µ̂ki � µki)(µ̂kj � µkj).

Now by Chernoff bound, pr(|�̂(0)

ij � �ij| � ✏)  C exp(�Cn✏
2). Combining this fact with (40),

we have the desired result.

Now we consider two events depending on a small ✏ > 0:

A(✏) = {|�̂ij � �ij| <
✏

d
for any i = 1, · · · , p and j 2 D},

B(✏) = {|(µ̂kj � µ̂1j)� (µkj � µ1j)| < ✏ for any k and j}.

By simple union bounds, we can derive Lemma 4 and Lemma 5.

Lemma 6. There exist a constant ✏0 such that for any ✏  ✏0 we have

1. pr(A(✏)) � 1� Cpd exp(�Cn
✏
2

Kd2
)� CK exp(�Cn

K2
);

2. pr(B(✏)) � 1� Cp(K � 1) exp(�C
n✏

2

K
)� CK exp(�Cn

K2
);

3. pr(A(✏) \ B(✏)) � 1� �(✏), where

�(✏) = Cpd exp(�C
n✏

2

d2
) + Cp(K � 1) exp(�C

n✏
2

K
) + 2CK exp(�Cn

K2
).

24



Lemma 7. Assume that both A(✏) and B(✏) have occurred. We have the following conclusions:

k⌃̂D,D �⌃D,Dk1 < ✏;

k⌃̂DC ,D �⌃DC ,Dk1 < ✏;

k(µ̂k � µ̂1)� (µk � µ1)k1 < ✏;

k(µ̂k,D � µ̂1,D)� (µk,D � µ1,D)k1 < ✏.

Lemma 8. If both A(✏) and B(✏) have occurred for ✏ <
1

'
, we have

k⌃̂�1

D,D �⌃�1

D,Dk1 < ✏'
2(1� '✏)�1

,

k⌃̂DC ,D(⌃̂D,D)
�1 �⌃DC ,D(⌃D,D)

�1k1 <
'✏

1� '✏
.

Proof of Lemma 8 . Let ⌘1 = k⌃̂D,D�⌃D,Dk1, ⌘2 = k⌃̂DC ,D�⌃DC ,Dk1 and ⌘3 = k(⌃̂D,D)�1�

(⌃D,D)�1k1. First we have

⌘3  k(⌃̂D,D)
�1k1 ⇥ k(⌃̂D,D �⌃D,D)k1 ⇥ k(⌃D,D)

�1k1 = ('+ ⌘3)'⌘1.

On the other hand,

k⌃̂DC ,D(⌃̂D,D)
�1 �⌃DC ,D(⌃D,D)

�1k1  k⌃̂DC ,D �⌃DC ,Dk1 ⇥ k(⌃̂D,D)
�1 � (⌃D,D)

�1k1

+k⌃̂DC ,D �⌃DC ,Dk1 ⇥ k(⌃D,D)
�1k1

+k⌃DC ,Dk1 ⇥ k(⌃̂D,D)
�1 � (⌃D,D)

�1k1

 ⌘2⌘3 + ⌘2'+ '⌘3.

By '⌘1 < 1 we have ⌘3  '
2
⌘1(1� '⌘1)�1 and hence

k⌃̂DC ,D(⌃̂D,D)
�1 �⌃DC ,D(⌃D,D)

�1k1 <
'✏

1� '✏
.
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Lemma 9. Define

✓̂0

k,D = ⌃̂�1

D,D(µ̂k,D � µ̂1,D). (47)

Then k✓̂0

k,D � ✓k,Dk1 
'✏(1 + '�)

1� '✏
.

Proof of Lemma 9. By definition, we have

k⌃̂�1

D,D(µ̂k,D � µ̂1,D)�⌃�1

D,D(µk,D � µ1,D)k1

 k⌃̂�1

D,D �⌃�1

D,Dk1k(µ̂k,D � µ̂1,D)� (µk,D � µ1,D)k1

+k⌃�1

D,Dk1k(µ̂k,D � µ̂1,D)� (µk,D � µ1,D)k1 + k⌃̂�1

D,D �⌃�1

D,Dk1kµk,D � µ1,Dk1

 '✏(1 + '�)

1� '✏
.

Lemma 10. If A(✏) and B(✏) have occurred for ✏ < min{ 1

2' ,
�

1 + '�
}, then for all k

k✓̂(oracle)

k,D (�)� ✓k,Dk1  4�'.

Proof of Lemma 10. Observe ✓̂oracle

k = ⌃̂�1

D,D(µ̂k,D � µ̂1,D)� �⌃̂�1

D,Dt̂k,D. Therefore,

k✓̂oracle

k,D � ✓k,Dk1

 k✓̂0

k,D � ✓k,Dk1 + �k⌃̂�1

D,D �⌃�1

D,Dk1kt̂k,Dk1 + �k⌃�1

D,Dk1kt̂k,Dk1

where ✓̂0

k,D is defined as in (47). Now kt̂k,Dk1  1 and we have

k✓̂oracle

k,D � ✓k,Dk1  '✏(1 + '�) + �'

1� '✏
< 4'�.

Lemma 11. For a sets of real numbers {a1, . . . , aN}, if
PN

i=1
a
2

i  
2
< 1, then

PN
i=1

(ai+b)2 < 1

as long as b <
1� p

N
.
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Proof. By the Cauchy-Schwartz inequality, we have that

NX

i=1

(ai + b)2 =
NX

i=1

a
2

i + 2
NX

i=1

aib+Nb
2 (48)


NX

i=1

a
2

i + 2

vuut(
NX

i=1

a2i ) ·Nb2 +Nb
2 (49)

 
2 + 2

p
Nb2 +Nb

2 (50)

which is less than 1 when b <
1� p

N
.

We are ready to complete the proof of Theorem 1.

Proof of Theorem 1. We first consider the first conclusion. For any � <
✓min
8' and ✏ < min{ 1

2' ,
�

1 + '�
},

consider the event A(✏) \ B(✏). By Lemmas 4, 6 & 10 it suffices to verify (39).

For any j 2 Dc, by Lemma 5 we have

|(⌃̂DC ,D✓̂
(oracle)

k,D )j � (µ̂kj � µ̂1j)|

 |(⌃̂DC ,D✓̂
(oracle)

k,D )j � (⌃DC ,D✓k,D)j|+ |(µ̂kj � µ̂1j)� (µkj � µ1j)|

 |(⌃̂DC ,D✓̂
(oracle)

k,D )j � (⌃DC ,D✓k,D)j|+ ✏

 |(⌃̂DC ,D✓̂
(0)

k,D)j � (⌃DC ,D✓k,D)j|+ ✏+ �|(⌃̂DC ,D⌃̂
�1

D,Dt̂k,D)j|

|(⌃̂DC ,D✓̂
(oracle)

k,D )j � (⌃DC ,D✓k,D)j|+ ✏

 k(⌃̂DC ,D)j � (⌃DC ,D)jk1k✓̂0

k,D � ✓k,Dk1 + k✓k,Dk1k(⌃̂DC ,D)j � (⌃DC ,D)jk1

+k(⌃DC ,D)jk1k✓̂0

k,D � ✓k,Dk1 + ✏

 C✏. (51)
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|(⌃̂DC ,D⌃̂
�1

D,Dt̂k,D)j � (⌃DC ,D⌃
�1

D,Dtk,D)j|

 k⌃̂DC ,D⌃̂
�1

D,D �⌃DC ,D⌃
�1

D,Dk1kt̂k,D � tk,Dk1

+k⌃DC ,D⌃
�1

D,Dk1kt̂k,D � tk,Dk1 + k⌃̂DC ,D⌃̂
�1

D,D �⌃DC ,D⌃
�1

D,Dk1|(tk,D)j|

|t̂kj � tkj| = | ✓̂kjk✓.jk � ✓kjk✓̂.jk
k✓.jkk✓̂.jk

|

 |✓̂kj � ✓kj|k✓.jk+ ✓maxk✓.j � ✓̂.jk
k✓.jkk✓̂.jk

 C'

✓min

p
(K � 1)

�.

Therefore,

�|(⌃̂DC ,D⌃̂
�1

D,Dt̂k,D)j|

 �|(⌃DC ,D⌃
�1

D,Dtk,D)j|+ �(
C'✏

1� '✏
+ ⌘

⇤ C'�

✓min

p
K � 1

) (52)

 �|(⌃DC ,D⌃
�1

D,Dtk,D)j|+ C�
2 (53)

Under condition (C0), it follows from (51) and (53) that

|(⌃̂DC ,D✓̂
(oracle)

k,D )j � (µ̂kj � µ̂1j)|  �|(⌃DC ,D⌃
�1

D,Dtk,D)j|+ C�
2 (54)

Combine condition (C0) with Lemma 11, we have that, there exists a generic constant M > 0,

such that when � < M(1� ), (39) is true. Therefore, the first conclusion is true.

Under conditions (C2)–(C4), the second conclusion directly follows from the first conclusion.

Lemma 12. Under the conditions in Theorem 1, under A(✏) [B(✏), we have that

k✓̂kk1  K(�+
'✏(1 + '�)

1� '✏
).
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Proof. Under the conditions in Theorem 1, we have that, under A(✏) [ B(✏), ✓̂k = (✓̂oracle

k,D , 0). It

follows that

KX

k=2

{1
2
(✓̂oracle

k,D )T⌃̂D,D✓̂
oracle

k,D � (µ̂k � µ̂1)
T✓̂oracle

k,D }+ �

pX

j=1

vuut
KX

k=2

(✓̂oraclekj )2


KX

k=2

{1
2
(✓̂0

k,D)
T⌃̂D,D✓̂

0

k,D � (µ̂k � µ̂1)
T✓̂0

k,D}+ �

pX

j=1

vuut
KX

k=2

(✓̂0kj)
2

while by the definition of ✓̂0

k,D, we must have

1

2
(✓̂oracle

k,D )T⌃̂D,D✓̂
oracle

k,D � (µ̂k � µ̂1)
T✓̂oracle

k,D � 1

2
(✓̂0

k,D)
T⌃̂D,D✓̂

0

k,D � (µ̂k � µ̂1)
T✓̂0

k,D

Hence,

pX

j=1

vuut
KX

k=2

(✓̂oraclekj )2 <
pX

j=1

vuut
KX

k=2

(✓̂0kj)
2 

KX

k=2

k✓̂0

kk1  K�+K
'✏(1 + '�)

1� '✏

where the last inequality follows from Lemma 8. Finally, note that k✓̂kk1 
Pp

j=1

qPK
k=2

(✓̂oraclekj )2

and we have the desired conclusion.

Proof of Theorem 2. We first show the first conclusion. Define Ŷ (✓2, . . . ,✓K) as the prediction

by the Bayes rule and Ŷ (✓̂2, . . . , ✓̂K) as the prediction by the estimated classification rule. Also

define lk = (X� µk + µ1

2
)T✓k + log(⇡k/⇡1) and l̂k = (X� µ̂k + µ̂1

2
)T✓̂k + log(⇡̂k/⇡̂1).

Define C(✏) = {|⇡̂k � ⇡k|  min{mink ⇡k/2, ✏}}. By the Bernstein inequality we have that

Pr(C(✏))  C exp(�Cn/K
2).

Assume that the event A(✏) \ B(✏) \ C(✏) for ✏ < min{ 1

2'
,

�

1 + '�
} has happened. By

Lemma 6, we have

Pr(A(✏)\B(✏)\C(✏)) � 1�Cpd exp(�Cn
✏
2

Kd2
)�CK exp(�C

n

K2
)�Cp(K�1) exp(�Cn

✏
2

K
)

(55)
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For any ✏0 > 0,

Rn �R  Pr(Ŷ (✓2, . . . ,✓K) 6= Ŷ (✓̂2, . . . , ✓̂K))

 1� Pr(|l̂k � lk| < ✏0/2, |lk � lk0 | > ✏0, for any k, k
0)

 Pr(|l̂k � lk| � ✏0/2 for some k) + Pr(|lk � lk0 |  ✏0 for some k, k
0).

Now, for X in each class, lk � lk0 is normal with variance (✓k � ✓k0)T⌃(✓k � ✓k00). Therefore,

Pr(|lk � lk0 |  ✏0 for some k, k
0) 

X

k00

Pr(|lk � lk0 |  ✏0 | Y = k
00
)⇡k00


X

k,k0 ,k00

⇡k00
C✏0

{(✓k � ✓k0)T⌃(✓k � ✓k0)}1/2

 CK
2
✏0.

On the other hand, conditional on training data, l̂k � lk is normal with mean

u(k, k0) = µT
k0(✓̂k � ✓k)�

(µ̂1 + µ̂k)T✓̂k

2
+

(µ1 + µk)T✓k

2
+ log ⇡̂k/⇡̂1 � log ⇡k/⇡1

and variance (✓̂k � ✓k)T⌃(✓̂k � ✓k) within class k0. By Markov’s inequality, we have

Pr(|l̂k � lk| � ✏0/2 for some k) =
X

k0

⇡k0 Pr(|l̂k � lk| � ✏0/2 | Y = k
0)

 CE{maxk(✓̂k � ✓k)T⌃(✓̂k � ✓k)

(✏0 � u(k, k0))2
}.

Moreover, under the event A(✏) \ B(✏) \ C(✏), by Lemma 12,

max
k

(✓̂k � ✓k)
T⌃(✓̂k � ✓k)  max

k
k✓̂k � ✓kk1k⌃k1k✓̂k � ✓kk1

 max
k

(k✓̂kk1 + k✓kk1)k⌃k1k✓̂k � ✓kk1  C�

|u(k, k0)|  |µT
k0(✓̂k � ✓k)|+

1

2
|{(µ̂1 + µ̂k)� (µ1 + µk)}T(✓̂k � ✓k)|

+
1

2
|{(µ̂1 + µ̂k)� (µ1 + µk)}T✓k|+

1

2
|(µ1 + µk)

T(✓̂k � ✓k)|
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+| log ⇡̂k/⇡̂1 � log ⇡k/⇡1|

 C1�

Hence, pick ✏0 = M2�
1/3 such that ✏0 � C1�/2, for C1 in (56). Then Pr(|l̂k�lk| � ✏0/2 for some k) 

C�
1/3. It follows that |Rn �R|  M1�

1/3 for some positive constant M1.

Under Conditions (C2)–(C4), the second conclusion is a direct consequence of the first conclu-

sion.

We need the result in the following proposition to show Lemma 3. A slightly different version

of the proposition has been presented in Fukunaga (1990) (Pages 446-450), but we include the

proof here for completeness.

Proposition 3. The solution to (4) consists of all the right eigenvectors of ⌃�1⌃b corresponding

to positive eigenvalues.

Proof. For any ⌘k, set uk = ⌃1/2⌘k. It follows that solving (4) is equivalent to finding

(u⇤
1
, . . . ,u⇤

K�1
) = argmax

uk

uT
k⌃

�1/2�0�
T
0
⌃�1/2uk, s.t. uT

kuk = 1 and uT
kul = 0 for any l < k.

(56)

and then setting ⌘k = ⌃�1/2u⇤
k. It is easy to see that u⇤

1
, . . . , u

⇤
K�1

are the eigenvectors corre-

sponding to positive eigenvalues of ⌃�1/2�0�T
0
⌃�1/2. By Proposition 4, let A = ⌃�1/2�0�T

0
, and

B = ⌃�1/2 and we have that ⌘ consists of all the eigenvectors of ⌃�1�0�T
0

corresponding to

positive eigenvalues.

Proposition 4. (Mardia et al. (1979), Page 468, Theorem A.6.2) For two matrices A and B, if x is

a non-trivial eigenvector of AB for a nonzero eigenvalue, then y = Bx is a non-trivial eigenvector

of BA.
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Proof of Lemma 3. Set �̃ = (0p, �) and �0 = (µ1� µ̄, . . . ,µK � µ̄). Note that �1K =
PK

k=2
µk�

(K � 1)µ1 = K(µ̄� µ1). Therefore, �0 = �̃ � 1

K �̃1K1T
K = �̃(IK � 1

K 1K1T
K) = �̃⇧.

Then, since ✓0 = ⌃�1�̃, we have ✓0⇧ = ⌃�1�0 and ✓0⇧�T
0
= ⌃�1�0�T

0
. By Proposition 3,

we have the desired conclusion.
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