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A B S T R A C T

Mixture-of-experts provide flexible statistical models for a wide range of regression (supervised
learning) problems. Often a large number of covariates (features) are available in many modern
applications yet only a small subset of them is useful in explaining a response variable
of interest. This calls for a feature selection device. In this paper, we present new group-
feature selection and estimation methods for sparse mixture-of-experts models when the number
of features can be nearly comparable to the sample size. We prove the consistency of the
methods in both parameter estimation and feature selection. We implement the methods using a
modified EM algorithm combined with proximal gradient method which results in a convenient
closed-form parameter update in the M-step of the algorithm. We examine the finite-sample
performance of the methods through simulations, and demonstrate their applications in a real
data example on exploring relationships in body measurements.

1. Introduction

High-dimensional data arises in many research fields such as biology, medicine, engineering, social science and economet-
rics (Rish and Grabarnik, 2014; Wainwright, 2019). At the beginning of a study, data often consists of observations on a large number
of features, yet only a small subset of which is important in explaining the behavior of a response variable. Sparse regularization
can help select important features to form a more parsimonious model while alleviating overfitting brought by high-dimensionality,
thus improves interpretability and prediction accuracy of the resulting model (Simon et al., 2013). The seminal works of Tibshirani
(1996) on the least absolute shrinkage operator (Lasso), Fan and Li (2001) on the smoothly clipped absolute deviation (scad), Zou
(2006) on the adaptive Lasso (AdaLasso), and Yuan and Lin (2006) on the group Lasso have led to astonishing amounts of research
developments over the last two decades for estimation and feature selection in various high-dimensional supervised/unsupervised
learning problems; see the two books (Hastie et al., 2019) and Fan et al. (2020) for a comprehensive review of the topic.

Estimation and feature selection become even more complex when the relationship between a response variable and potential
features varies across multiple sub-populations – due to the existence of an unobservable heterogeneity in a population or data
generation process. Mixture-of-experts (moe) models, originally introduced by Jacobs et al. (1991), are composed of several functions
which are referred to as experts and a gating network which assigns observations to an expert with a certain probability. The moe
models can be viewed as a decision tree with its branches as experts and the decision process governed by the gating network of e.g.
multinomial logit probabilistic models. As a generalization of finite mixture of regression (fmr) models (McLachlan and Peel, 2000),
moes provide a rich class of statistical models to deal with unobserved heterogeneity in the data. These models were originally
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proposed in problem decomposition context, where a complex problem is divided into a set of simpler subproblems based on a
divide-and-conquer principle, and then one or more specialized problem-solving experts are assigned to each of the subproblems
(Yuksel et al., 2012). This supervised learning technique have been widely applied in many regression and classification problems
due to its flexibility in capturing complex relationship between variables of interest; see Nguyen and Chamroukhi (2018) and the
references therein. However, despite their popularity in applications, very limited studies are conducted on estimation and feature
selection in high-dimensional moes. This is the focus of our paper.

To the best of our knowledge, there are currently only a few statistical papers that study estimation and feature selection problems
in fmr models as a special case of moes. Städler et al. (2010) elegantly studied feature selection in Gaussian fmr models using Lasso
when the dimension of the parameter space exceeds the number of observations. Guo et al. (2010) introduced a pairwise variable
selection method for high-dimensional Gaussian mixture model, with simplification that the expectations of the mixture components
are not modeled as functions of covariates. Khalili and Lin (2013) proposed a general theory for feature selection in fmr models when
the number of features can grow similar to n 1

4 . Khalili and Chen (2007), Khalili (2010), and Chamroukhi and Huynh (2019) studied
feature selection problems in fmr and moes under the standard setting of fixed-p-large-n. Nguyen et al. (2020) studied statistical error
of the high-dimensional Lasso estimators in moes .

In this paper, we study estimation and feature selection in moes with potentially a large number of covariates using a grouped
regularization technique. Motivated by the regularization techniques in regression, we propose a computationally efficient estimation
and feature selection method for a general class of moes. In an moe model with more than K = 2 mixture components and when
the number of features is large, the standard regularization of individual regression parameters, such as a penalty on the individual
experts’ parameters, may result in different subsets of selected features for different mixing probabilities in the gating network,
rendering the ending model difficult to interpret. To overcome this issue, we apply a group regularization on the gating network
parameters. As a result, the effects of a feature on different mixing probabilities {g1,… , gk},

≥K

k=1 gk = 1, will share the same
sparsity. Thus, the grouping is on all the regression parameters corresponding to each feature in the gating network, which results
in a more interpretable sparse moe model. We study conditions under which the proposed methods are consistent in estimation and
feature selection. We examine the finite-sample performance of the methods via simulations, and demonstrate their applications by
analyzing a data on exploring relationships in body measurements.

The rest of the paper is organized as follows. In Section 2, we introduce moe models and their sparsity structure. In Section 3,
we outline our new estimation and feature selection method. We study theoretical properties of the proposed methods in Section 4.
Numerical algorithm and implementation details of the methods are given in Sections 5 and 6, respectively. Our simulation study
and a real data example are given in Sections 7 and 8, respectively. Some discussion and closing remarks are given in Section 9.
Regularity conditions, tables, and some figures are given in Appendix. The proofs are given in our Supplementary Material.

2. Mixture-of-experts (MOE) and their sparsity

Let Y À Y œ R be a response variable of interest and x = (x1, x2,… , xp)Ò À X œ Rp be a p-dimensional vector of features which
may be related to Y . Further, let F = {h(y; ⌘ , �) : ⌘ À R, and � À R+} be a known parametric family of probability (mass) density
functions with respect to a �-finite measure ⌫. In an moe model with K components, the conditional density (mass) function of Y
given x is

f (y;x,✓) =
K…
k=1

gk(x;↵) h(y; ⌘k(x), �k) (1)

with ⌘k(x) = �0k + �Ò
k
x, and �k = (�k1, �k2,… , �kp)Ò, for k = 1, 2,… , K. Here, h is called expert and the mixing probabilities gk are

referred to as the gating network (Jacobs et al., 1991). The gk is commonly modeled using a conditional multinomial regression
function

log
0
gk(x;↵)
gK (x;↵)

1
= ↵0k + ↵Ò

k
x for k = 1,… , K * 1, (2)

and gK (x;↵) = 1 * ≥K*1
k=1 gk(x;↵), where ↵ = (↵01,↵1, ↵02,↵2,… , ↵0,K*1,↵K*1)Ò, with ↵k = (↵k1, ↵k2,… , ↵kp)Ò. The vector of all

parameters is denoted by

✓ = (�01, �1, �02, �2,… , �0K , �K , ↵01,↵1, ↵02,↵2,… , ↵0,K*1,↵K*1,�),

where � = (�1, �2,… , �K )Ò is the vector of dispersion parameters. Note that dim(✓) = d = (2K * 1)(p+ 1) +K, and K is fixed. Denote
⇥ ” Rd as the parameter space.

One may interpret an moe model as follows: given the input variable x, with probability gk(x;↵), the random variable Y is
generated according to the distribution h(y; ⌘k(x), �k), k = 1,… , K.

Identifiability is essential for statistical inference in moe models: if f (y;x,✓1) = f (y;x,✓2), for all (y,x) À Y ù X , then we must
have ✓1 = ✓2, up to a mixture component permutation. The unique representation of an moe depends on the density h(y; ⌘ , �),
the maximum possible order K, and the design matrix (x1,x2,… ,xn)Ò. Jiang and Tanner (1999b) studied the identifiability of moe
models under a random design matrix, where x1,… ,xn are a random sample from a marginal density m(x) that does not depend on
✓. The density m(x) must not have all of its mass concentrated in up to K of (p * 1)-dimensional linear subspaces. We restate their
main result as follows.
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Proposition 1 (Jiang and Tanner, 1999b). Assume that {h(y; ⌘j , �j ); j = 1, 2,… , 2K} are linearly independent functions of y, for any 2K
distinct parameters ⌘j and �j , referred to as non-degeneracy condition. If for any two parameter vectors ✓1,✓2 À ⇥, f (y;x,✓1) = f (y;x,✓2),
for all (y,x) À Y ù X , then ✓1 = ✓2, up to permutation of the entries of the two parameter vectors.

The non-degeneracy condition is applicable to moe models based on Gaussian, Poisson, and Binomial with number of trials
m > 2K* 1. Hennig (2000) showed that for fixed designs, in addition to the non-degeneracy condition on experts h(y; ⌘ , �), a sufficient
condition for identifiability is that the design points xi do not fall in the union of any K linear subspaces of (p * 1)-dimension.

Sparse MOE models: In many applications of moes, there are often a large number of features present in the data. To avoid
over-parameterization when fitting an moe model to such data, it is necessary to assume certain structure for the model. A common
practice is to assume sparsity, under which many of the elements of the vectors ↵k and �k are zero, resulting in a parsimonious
and more interpretable moe model. Specifically, let S = {1, 2,… , p} be the index set representing the full feature vector x. For any
index subsets A1, A2,… , AK œ S, with cardinality Ak for k = 1, 2,… , K, denote �k[Ak] and x[Ak] as subvectors of �k and x,
respectively, such that �kj ë 0,≈j À Ak, for k = 1, 2,… , K. In regards to the sparsity of the gating network, for each j = 1, 2,… , p,
let ↵�j = (↵1j , ↵2j ,… , ↵K*1,j )Ò, which represents the grouping effect of a feature xj on the whole gating network. For any A<

œ S,
with cardinality A<, denote ↵[A<] and x[A<] as subvectors of ↵ and x, respectively, such that for any j À A

<, we have ↵�j ë 0.
Equivalently, we assume that for any j Ã A

<, we have ↵kj = 0, for all k = 1, 2,… , K* 1. This formulation leads to the grouping effect
among the regression coefficients ↵kj in the gating network g1,… , gk. In Section 4, these subsets are referred to as active sets. For
A1, A2,… , AK , A<

œ S, we denote a sparse moe or submodel as

f[A1 ,…,AK ;A<](y;x,✓) =
K…
k=1

gk(x[A<];↵[A<]) h(y; ⌘k(x[Ak]), �k). (3)

We assume that the true model underlying data is a sparse moe of the form in (3). The goal is to correctly recover the supports of
the nonzero coefficients in the true model and accurately estimate their values, based on the given data. Note that for a given value
of K and p, the total number of moe submodels of the form (3) is 2[(K+1)p], which could be very large even for moderate values of K
and p. Hence, all-subset selection methods such as aic, bic and their variants (Konishi and Kitagawa, 2008) are clearly not practical
in this scenario. In this paper, we investigate the use of regularization techniques for sparse learning in moes.

3. Simultaneous estimation and feature selection in sparse MOEs

Let (xi, yi), i = 1, 2,… , n, be an observed random sample from a true sparse moe defined in (3). The (conditional) log-likelihood
of the parameter vector ✓ based on the full model (1) is given by

ln(✓) =
n…
i=1

log
< K…
k=1

gk(xi;↵) h(yi; ⌘k(xi), �k)
=
. (4)

The maximum likelihood estimator (mle) of ✓, i.e. the maximizer of ln(✓), when the dimension of ✓ is small relative to the sample
size n, is well-studied in the literature (Jiang and Tanner, 1999a). However, the mle does not have the sparsity property as postulated
by (3) when the dimension of ✓ is large. Thus, we focus on a penalized maximum likelihood estimator of ✓ as outlined below.

To select features for each expert h(y; ⌘k(x), �k), we penalize individual regression coefficients �kj ’s by introducing a Lasso-type
regularization function (to be described below). This allows potentially different subsets of features to be selected in different experts.
For the gating network {g1, g2,… , gK}, instead, we aim to select the same features across the gating network which also enhances
interpretability of the resulting model. More specifically, for each j = 1, 2,… , p, let ↵�j = (↵1j , ↵2j ,… , ↵K*1,j )Ò, which represents the
effect of a feature xj on the whole gating network, we hope that xj is selected when the corresponding ↵�j ë 0. According to the
structural sparsity assumption of the true model defined in (3), we apply group penalization on the entire vector ↵�j instead of using
coordinate-separable penalization on ↵kj ’s. Denote

Ò↵�jÒ2 =
0K*1…
k=1

↵
2
kj

11_2
, j = 1,… , p.

We can see that Ò↵�jÒ2 = 0 if and only if ↵kj = 0, for all k = 1, 2,… , K * 1, thus can preserve (remove) the same features for (from)
the whole gating network.

We are now ready to tackle the feature selection problem in moes. We estimate ✓ by maximizing the penalized log-likelihood
function

Ln(✓) = ln(✓) *Rn(✓), (5)

where

Rn(✓) =
K…
k=1

p…
j=1

rn(�kj ; �) +
p…
j=1

<
rn(Ò↵�jÒ2; �<) + ⌧

<

2 Ò↵�jÒ22
=

(6)

for some regularization function rn and tuning parameters (�, �<, ⌧<). The first regularization function allows for separate feature
selection for each expert k, while the second penalty enforces groupwise feature selection across the gating network by penalizing
the entire parameter vector ↵�j . The main purpose of using an additional ridge-type (quadratic) penalty is to improve the estimation
of the model with highly correlated covariates and thus avoiding unstable estimates of the gating network parameters. In addition,
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it helps with numerical stability of the computational algorithm as pointed out by Friedman et al. (2010). Examples of the penalty
rn are the Lasso, AdaLasso, scad, and mcp which are given in Appendix A.

The maximum penalized likelihood estimator (mple) of ✓ is then given by
ö✓n = ar g max

✓À⇥
Ln(✓). (7)

By appropriate tuning of the parameters (�, �<) together with ⌧
< in (6), various elements of the vector estimator ö✓n turn into zero.

We achieve the goal of feature selection and estimation simultaneously, which is of a great computational advantage when fitting
an moe to data. In Sections 4.1 and 4.2, we discuss the selection of appropriate tuning parameters (�, �<, ⌧<) to ensure that the ridge
penalty does not overshadow the penalty rn, thereby enabling the method to effectively carry out variable selection. Numerical
implementation of (7) is given in Section 5.

4. Large-sample study

We first introduce some notations. For each k, we assume that the parameter vectors in the experts are partitioned as �k =
(�k,1, �k,2), such that each �k,1 contains the non-zero coefficients and �k,2 = 0. Similarly, we assume the partitioning ↵ = (↵1,↵2)
such that ↵1 contains all the intercepts ↵0k, k = 1, 2,… , K * 1 and non-zero vectors ↵�j , and ↵2 contains all those ↵�j = 0. Without
loss of generality, we thus rearrange the elements of the master vector ✓ and write ✓ = (✓1,✓2) such that ✓2 contains all the zero
regression coefficients �k,2, for k = 1, 2,… , K, and ↵2 = 0. Further, denote ✓0 = (✓01,✓02) as the true parameter-vector of the moe
model such that ✓02 = 0. We assume ✓0 is an interior point of the parameter space ⇥. Also, denote the so-called active sets

Akn = {1 f j f pn; �0kj ë 0} , k = 1, 2,… , K (8)

corresponding to the true non-zero regression parameters of the experts, and the active set

A
<
n
= {1 f j f pn;↵0

�j ë 0} (9)

corresponding to the true non-zero grouping parameters ↵0
�j of the gating network. Let skn = Akn, k = 1,… , K * 1, and s

<
n
= A<

n


be the cardinalities of the above active sets. Further, let sn = max{max1fkfK{snk}, s<n} be the maximum number of the non-zero
regression coefficients in the experts and the gating network.

The following quantities help us to state the regularity conditions on the penalty rn. Denote

an1 = max
1fkfK max

jÀAkn
{r®

n
(�0
kj
; �n)_

˘
n}, an2 = max

jÀA<
n

{r®
n
(Ò↵0

�jÒ2; �<n)_
˘
n}, (10)

bn1 = max
1fkfK max

jÀAkn
{r®®

n
(�0
kj
; �n)_n}, bn2 = max

jÀA<
n

{r®®
n
(Ò↵0

�jÒ2; �<n)_n}, (11)

an = max(an1, an2), bn = max(bn1, bn2), (12)

where r
®
n
(�; �n) and r

®®
n
(�; �n) are the first and second derivatives of rn(✓; �n) with respect to ✓. In what follows, the large-sample

behaviors of �n and �
<
n

are the same and thus we use �n to represent both when needed. We consider the following conditions on
rn, and the parameters (�n, �<n , ⌧<n ).

C0. For all n and �n, rn(0; �n) = 0, and rn(✓; �n) is symmetric and non-negative. It is non-decreasing and twice differentiable for all ✓
in (0,ÿ) with at most a few exceptions. In addition, there exists constants C1 and C2 such that when ✓1 > C1�n and ✓2 > C1�n,
then 1

n
r®®
n
(✓1; �n) * r®®n (✓2; �n) f C2✓1 * ✓2.

C1. As nô ÿ, ⌧
<
n˘
n
maxjÀA<

n
Ò↵0

�jÒ2 = o(1 + an), an_
˘
n

min
jÀA<

n
Ò↵0

�jÒ2
= o(1), and ⌧<

n
= o(n). Also,

min
jÀA<

n

Ò↵0
�jÒ2_�<n ô ÿ , min

jÀAnk
�0
kj
_�n ô ÿ , k = 1, 2,… , K .

C2. As nô ÿ, bn = o(1).
C3. For Tn = {✓; 0 < ✓ f t

pn

n
log n}, limnôÿ inf✓ÀTn

r
®
n
(✓;�n)˘
npn

= +ÿ.

C<
3 . For T <

n
= {✓; 0 < ✓ f t

snpn

n
log n}, limnôÿ inf✓ÀT <

n

r
®
n
(✓;�n)˘
nsnpn

= +ÿ.

Conditions C0-C<
3 guide us on the appropriate choice of rn and the tuning parameters (�n, �<n , ⌧<n ) in order to achieve consistency in

both estimation of the non-zero regression coefficients and feature selection. More specifically, C0 is a standard smoothness condition
on the penalty rn that facilitates obtaining estimators by differentiating the objective function Ln(✓) when solving (7) and for studying
the asymptotic properties of the estimators of the true non-zero regression coefficients. Conditions C1 and C2 are to control the
contribution of rn with respect to the log-likelihood function ln(✓) in (5) to guarantee the existence of consistent estimators of ✓0.
The second part of Condition C1 is often referred to as a minimum-signal assumption which is necessary to guarantee the selection
consistency; please see the last paragraph in Section 4.2 for more discussion. Under conditions C3 and C<

3 , the penalty function rn

grows sufficiently fast in a vanishing neighborhood of ✓ = 0 resulting in feature selection consistency (sparsity) property of the mple.
The implications of these conditions for the Lasso, AdaLasso, scad, and mcp are explained after each theorem in Sections 4.1 and 4.2.

To focus on the main results, regularity conditions R1-R5 on the family F = {h(y; ⌘ , �) : ⌘ À R, and � À R+} are given
in Appendix B. Condition R1 is on identifiability of the model which makes the estimation problem of interest well-defined;
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see Section 2 for more on identifiability of moe models. Additionally, the common support condition facilitates interchanging
differentiation and integration operations on the density. R2 is a smoothness condition on the density required in Taylor’s expansions
for asymptotic analyses while R3 guarantees the asymptotic existence of the mple of the model parameters. R4 posits positive
definiteness and finiteness of the Fisher information while R5 allows interchanging of the expectation and the limits due to the
dominant convergence theorem. The most popular moes that satisfy the conditions are with experts h belonging to the exponential
family including Gaussian, Poisson, and Binomial with number of trails m > 2K * 1.

In what follows, we study asymptotic properties of the mple ö✓n under two scenarios when pn grows slowly as a function of the
sample size n and when pn could be as large as n. The proofs are given in the Supplementary Material.

4.1. Dimension pn grows slowly with n

Theorems 1 and 2 extends the results of Fan and Peng (2004) for (generalized) linear regression models to moes with diverging
number of parameters, where we also perform group variable selection.

Theorem 1. Let (xi, Yi), i = 1, 2,… , n, be a random sample with the conditional density in (1) and a joint density satisfying the regularity
conditions R1-R5 in Appendix B. Assume that the penalty rn and (�n, �<n , ⌧<n ) satisfy Conditions C0-C2. If p

2
n˘
n
ô 0, as n ô ÿ, there exists a

local maximizer ö✓n of the penalized log-likelihood Ln(✓) in (5) such that Òö✓n * ✓0Ò2 = Op{
t

pn

n
(1 + an)}, where an is in given in (12).

Theorem 1 guaranties the existence of a ˘
n_pn-consistent estimator of the parameter-vector ✓0 of the sparse moe model, similar

to the ordinary mle, as long as rn and the tuning parameters (�n, �<n , ⌧<n ) are chosen such that an = O(1). This is also similar to
the result of Huber (1973) for M-estimators in the context of robust regression in which the number of parameters diverges.
For the Lasso, AdaLasso, scad, and mcp this translates into the choices of the parameters (�n, �<n) and ⌧

<
n

according to ConditionsC0-C2. More specifically, for the Lasso, one could choose
˘
nmax{�n, �<n} = O(1), ⌧<

n
maxjÀA<

n
Ò↵0

�jÒ2 = o(
˘
n) and ⌧

<
n

= o(n). For
scad and mcp, by the minimum-signal condition in C1, we have an = 0 and ⌧

<
n

has to satisfy the same conditions as above. For
AdaLasso, basically the weights ! and !

< coupled with (�n, �<n) are to be chosen so that an = O(1). This implies that we need˘
n�n(max1fkfK maxjÀAkn !kj ) = Op(1) and

˘
n�

<
n
(maxjÀA<

n
!
<
j
) = Op(1), where !kj and !<

j
are (possibly random) weights in AdaLasso;

more details are provided in the discussion after Theorem 2 below.
Theorem 2 investigates even more interesting properties of the estimator ö✓n such as the consistency in feature selection and

also asymptotic normality of the estimator ö✓n in estimating the true non-zero regression coefficients in both the gating network
and the experts. Recall the partitioning ✓0 = (✓01,✓02) such that ✓02 = 0. Also, consider the partitioning ö✓n = (ö✓n1, ö✓n2) such that
dim(ö✓n1) = dim(✓01) and dim(ö✓n2) = dim(✓02). Let Bn be a constant matrix of dimension l ù dim(ö✓n1), l < ÿ, such that BnBÒ

n
ô B

and B is a positive definite symmetric matrix. Note that Bn
ö✓n1 has the fixed dimension l ù 1. Let R®

n
(✓) and R®®

n
(✓) be the gradient

and Hessian of Rn in (6) with respect to ✓.

Theorem 2. Assume that the conditions of Theorem 1 are fulfilled, and let rn and (�n, �<n , ⌧<n ) also satisfy Condition C3. If p
2.5
n˘
n
ô 0, then

for any ˘
n_pn-consistent estimator ö✓n = (ö✓n1, ö✓n2) of ✓0, we have that, as nô ÿ,

(i) Sparsity: P (ö✓n2 = 0) ô 1.
(ii) Asymptotic normality:

˘
nBn I *1_2

n1 (✓01)
<4

In1(✓01) + R®®
n
(✓01)
n

5
(ö✓n1 * ✓01) +

R®
n
(✓01)
n

=
d

ô N(0,B),

where In1(✓01) is the Fisher information of the true moe with ✓02 = 0.

The estimator ö✓n with properties in Theorems 1 and 2 is called an oracle estimator as defined in Fan and Peng (2004). The
estimators based on the penalty functions scad and mcp, and AdaLasso have the oracle property but not the one based on the Lasso.
To achieve sparsity for Lasso, scad, and mcp, according to condition C3 we require

˘
n_pn�n and

˘
n_pn�<n ô ÿ, as n ô ÿ. For

AdaLasso, we require
˘
n_pn�n(min1fkfK minjÃAkn !kj ) and

˘
n_pn�<n(minjÃA<

n
!
<
j
) ô ÿ, as n ô ÿ. For Lasso, the required choices

of (�n, �<n) lead to an explosive bias for the non-zero estimators ö✓n1 as described in Theorem 2-(ii). More specifically, the bias term
R®
n
(✓01)_n Ì (�n, �<n) will go to zero slower than n

* 1
2 in the Lasso case. On the other hand, for scad and mcp penalties, we have

R®
n
(✓01)_n = 0, for any n g 1, and hence the aforementioned choices of (�n, �<n) guarantees the oracle property of the mple, as long

as �n, �<n ô 0, as n ô ÿ. For AdaLasso, if we choose the weights such that for all k = 1,… , K , j À Akn, !kj = O(1), and !
<
j
= O(1),

for all j À A
<
n
, and for all k = 1,… , K , j Ã Akn, !kj_

˘
pn ô ÿ, and !

<
j
_
˘
pn ô ÿ, for all j Ã A

<
n
, then �n, �<n Ì n

*1_2 suffices to
achieve the oracle property. In practice, we may use the weights !kj = ( É�kj )*1 and !

<
j
= (õ↵�j )*1, where ( É�kj , õ↵�j ) are the mle of the

parameters obtained by maximizing the log-likelihood ln(✓) in (4). The weights satisfy the required conditions. Note that the ridge
tuning parameter ⌧<

n
is chosen according to condition C1 as explained after Theorem 1 above.
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4.2. Dimension pn is comparable to the sample size n

In this section, we extend the results of Theorems 1 and 2 to the case where the dimension pn grows much faster than n1_4 and
comparable to the sample size n. Consequently, as shown below, the rate of consistency of the mple in this case will depend on the
sparsity factor sn. Recall that sn is defined as the maximum number of the true non-zero regression coefficients in the experts and
the gating network of an sparse moe model.

Theorem 3. Assume that the conditions of Theorem 1 hold. If s
2
n˘
n
ô 0 and sn(pn * sn) = o(n), as n ô ÿ, then there exists a local

maximizer ö✓n of the penalized log-likelihood Ln(✓) in (5) such that Òö✓n * ✓0Ò2 = Op{
t

sn

n
(1 + an)}, where an is given in (12).

Note that the rate of consistency of the mple under the conditions of Theorem 3 is
˘
n_sn, as long as an = O(1), while the dimension

pn grows faster than what is considered in Section 4.1. In Theorem 1, however, the rate of consistency is ˘
n_pn. It is worth noting

that the growth rate of pn, as a function of the sample size n, in Theorem 1 is similar to that of sn in Theorem 3. For example, in
Theorem 3, we could have pn = o(n�1 ) and sn = O(n�2 ), where �1 > �2 > 0, �2 < 1_4 and �1 + �2 f 1. The discussion provided after
Theorem 1 on the choices of the tuning parameters (�n, �<n , ⌧<n ), and the weights (!kj , !<

j
), to assure an = O(1) for the four penalties

still holds here.
Theorem 4 that follows investigates the conditions under which the mple has the oracle property. Let Dn be a constant matrix

of dimension l
< ù d im(ö✓n1), l< < ÿ, such that DnDÒ

n
ô D, and D is a positive definite matrix. Theorem 4 seeks the asymptotic

distribution of the finite linear transformation Dn
ö✓n1, which has the fixed dimension l

< ù 1.

Theorem 4. Assume that the conditions of Theorem 3 hold, and let (rn, �n, �<n , ⌧<n ) satisfy Condition C<
3 . If

s
2.5
n˘
n

ô 0, then for any
˘
n_sn-consistent estimator ö✓n = (ö✓n1, ö✓n2) of ✓0, as nô ÿ,
(i) Sparsity: P (ö✓n2 = 0) ô 1.
(ii) Asymptotic normality:

˘
nDn I *1_2

n1 (✓01)
<4

In1(✓01) + R®®
n
(✓01)
n

5
(ö✓n1 * ✓01) +

R®
n
(✓01)
n

=
d

ô N(0,D),

where In1(✓01) is the Fisher information of the true sparse moe with ✓02 = 0.
Note that Condition C<

3 in Theorem 4 is to ensure sparsity of the mple. The discussion provided after Theorem 3 in Section 4.1
regarding the choices of tuning parameters for the penalties under our consideration applies here except that pn is to be replaced
by snpn. Hence, theoretically the estimator ö✓n based on the Lasso does not have the oracle property while the one based on the
AdaLasso, scad, or mcp does. Nevertheless, the mple based on all these penalties preserves the sparsity property which is important
in high dimensions. It is worth noting that, as expected, Condition C<

3 in Theorem 4 compared to Condition C3 in Theorem 3 for
sparsity requires (asymptotically) larger choices of (�n, �<n) compared to the low-dimensional case discussed in Section 4.1.

Condition C1 is commonly referred to as a minimum-signal condition in the variable selection literature. Basically, it implies
that together with condition C3 or C<

3 , those non-zero regression coefficients that satisfy �
0
kj

> �n or ↵0
�j > �<

n
, where (�n, �<n) ô 0

as nô ÿ, are detectable by the proposed regularization method and will be estimated non-zero, i.e. variable selection consistency
property. On the other hand, those coefficients that are below the thresholds, the weak signals, will most likely be estimated as zero
by the regularization method. Without this condition, it may be possible to establish certain estimation error bounds but not really
selection consistency as those weak-signal regression parameters most likely will be estimated as zero; see also Roy et al. (2023)
for a recent work on weak signal recovery in high-dimensional regression. Fang et al. (2021) proposed a two-step procedure based
on both variable selection and ridge regression estimators in linear regression models that were shown to be capable of detecting
weak signals and providing an estimation of both strong and weak signal. This is a future research direction worthy of investigation
in the context of moe models.

According to Theorems 1 and 4, for large n, the approximate distribution of linear transformations of the sub-vector ö✓n1, which
estimates linear transformations of ✓01 (the true non-zero regression coefficients), is normal. For penalties such as scad and mcp,
the terms R®

n
(✓01)_n and R®®

n
(✓01)_n can be ignored. Therefore, by estimating the information matrix In1(✓01)–typically done in moe

models using the empirical information matrix derived from the complete log-likelihood function in (14) (McLachlan and Peel,
2000)–one may attempt to perform further statistical inference, such as hypothesis testing and constructing confidence intervals
for the regression coefficients of the selected model. However, such inference referred to as naive inference is reserved as the true
sparse structure (oracle’s perspective) of the model is not known in advance and it is estimated by the penalization method. Hence, in
practice due to the variable selection stage the dimension of the sub-vector ö✓n1 is random and may not be equal to the dimension of
the sub-vector ✓01, and hence asymptotically normal distribution may be distorted. The extra variability due to the variable selection
needs to be taken into account for a further inference and is referred to as post-selection inference (PoSI, Berk et al. (2013)). There
has been a surge of research on PoSI in recent years for (generalized) linear regression models (Zhang et al., 2022). The topic of
PoSI in mixture of regression models, considered as a special case of moe with the gating network gk(x;↵) = gk assumed to be
independent of features x, was studied by Khalili and Vidyashankar (2018); PoSI in general moes requires a careful study and is a
topic of future research.
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5. Numerical algorithm

To solve the optimization problem presented in (7), we develop a modified em algorithm (Dempster et al., 1977) that features
a coordinate descent type M-step adapted to our penalized likelihood. The previous studies have shown successful application of
coordinate descent methods combined with the em algorithm in fmr models. For example, Städler et al. (2010) used the coordinate
descent together with the em algorithm in high-dimensional Gaussian fmr models with the Lasso penalty. Friedman et al. (2010)
developed algorithms that make use of the coordinate descent along a regularization path for variable selection problems in
generalized linear models with convex penalties. These methods are especially efficient for solving high-dimensional models. In
addition, due to the complexity of moes, the adjusted version of the em algorithm applies the proximal gradient descent algorithm
in each coordinate descent circle of the M-step to obtain an approximation to the optimization problem. We proceed as follows.

The complete log-likelihood function (McLachlan and Peel, 2000) of an moe model is given by

l
c

n
(✓) =

n…
i=1

K…
k=1

zik

<
log gk(xi;↵) + logh(yi; ⌘k(xi), �k)

=
,

where zik is an unobservable indicator variable showing that, given xi, the observation yi is generated from the kth expert density
h(yi; ⌘k(xi), �k). The complete penalized log-likelihood is given by

L
c

n
(✓) = l

c

n
(✓) *Rn(✓). (13)

For fixed K and the tuning parameters (�, �<, ⌧<), the em algorithm maximizes (13) iteratively in two steps as follows.
Data-adaptive selections of K and the tuning parameters are discussed in Section 6.

E-step: At the (m + 1)th iteration, given the data and current estimate ✓(m), we compute the conditional expectation of Lc
n
(✓) with

respect to the unobservable random variables Zik’s. Thus,

E

<
L
c

n
(✓)data,✓(m)

=
= Q(✓;✓(m))

=
n…
i=1

K…
k=1

⌧
(m)
ik

<
logh(yi; ⌘k(xi), �k) + log gk(xi;↵)

=
*Rn(✓)

= Q1(✓;✓(m)) +Q2(↵;✓(m)) *Rn(✓), (14)

where

⌧
(m)
ik

= E
�
Zik✓(m),xi, yi

�
=

gk(xi;↵(m))h(yi; ⌘
(m)
k

(xi), �(m)
k

)
≥K

k=1 gk(xi;↵(m))h(yi; ⌘
(m)
k

(xi), �(m)
k

)
. (15)

The leading functions in (14) are

Q1(✓;✓(m)) =
K…
k=1

n…
i=1

{⌧(m)
ik

logh(yi; ⌘k(xi), �k)} =
K…
k=1

Q1k(✓k;✓(m))

with ✓k = (�k, �k), and Q1k(✓k;✓(m)) are the inner sums
≥n

i=1{�}. Also, using (2), we have

Q2(↵;✓(m)) =
K…
k=1

n…
i=1

⌧
(m)
ik

log gk(xi;↵)

=
K*1…
k=1

n…
i=1

⌧
(m)
ik
õxÒ
i
õ↵k *

n…
i=1

log
0
1 +

K*1…
k=1

exp(õxÒ
i
õ↵k)

1
,

where õxi = (1,xÒ
i
)Ò and õ↵k = (↵0k,↵Òk )Ò. In summary, the E-step boils down to the computation of the weights in (15).

M-step: In this step, we maximize the function Q(✓;✓(m)) in (14) with respect to ✓. The maximization can be done using either the
proximal gradient or Newton–Raphson-type algorithms in which the leading terms Q1 and Q2 in (14) are locally approximated by
quadratic functions of ✓ (Nesterov, 2004). To handle the folded concave penalties such as scad and mcp, we develop a proximal
gradient method combined with the local linear approximation (LLA), inspired by Zou and Li (2008). This algorithm can avoid
computation of the Hessian matrix as required in the local quadratic approximation method (LQA) (Fan and Li, 2001), which is
particularly slow for large dimensional vectors (↵, �k), k = 1,… , K. On the other hand, for AdaLasso, we use the regular gradient
descent method. In what follows, we only focus on the regression parameters, as the updates for the dispersion parameters �k can
also be obtained by maximizing Q1k(✓k;✓(m)) with respect to �k at each iteration of the EM.

Thus, in the M-step by using the LLA to rn when necessary, the updates of �k are obtained separately for each k = 1,… , K, by
minimizing the following function with respect to �k,

L1k(�k;✓(m)) +
p…
j=1

!
(m)
kj

�kj , (16)
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with L1k(�k;✓(m)) = *Q1k(�k;✓(m))_n. Also, the updates of ↵ are obtained by minimizing

L2(↵;✓(m)) +
p…
j=1

<
!
<(m)
j

Ò↵�,jÒ2 + ⌧
<

2nÒ↵�,jÒ22
=

(17)

with L2(↵;✓(m)) = *Q2(↵;✓(m))_n. The minimization is done as follows.
Given ⇢1 > 0, we locally majorize the function in (16) by the regularized quadratic function

G1(�k, ⇢1) := L1k(�
(m)
k

;✓(m)) +
4
)L1k(�

(m)
k

;✓(m))
)�k

5Ò
(�k * �(m)

k
)

+
⇢1
2 Ò�k * �(m)

k
Ò22 +

p…
j=1

!
(m)
kj

�kj . (18)

Minimizing function G1(�k, ⇢1) with respect to �k results in the closed-form updates

�(m+1)
k

= S(z(m)
k

; ⇢*11 !(m)
k

), (19)

for all k = 1,… , K, where

z(m)
k

= �(m)
k

* ⇢*11

0
)L1k(�

(m)
k

;✓(m))
)�k

1

and S(z;w) = [S(z1;w1),… , S(zp;wp)]Ò with S(z;w) = (1 * w

z )+z as the soft-thresholding operator (Breheny and Huang, 2015;
Donoho and Johnstone, 1994). The weights in (16) are for scad, mcp, the weights are !

(m)
kj

= r
®(�(m)

kj
; �)_n, where r

®
n

is the first
derivative of rn with respect to �kj . For the Lasso and AdaLasso, we do not need to use the LLA procedure. Hence, we fix the weight
!
(m)
kj

= � for the lasso. For AdaLasso, the weights are chosen as � multiplied by the reciprocal of the absolute value of the MLE of
�kj ’s, as suggested by Zou (2006). When the dimension of x is large and the MLE is not feasible, one may use ridge-type estimates
of �kj ’s to construct the weights.

A similar method is used to obtain updates of ↵ in the M-step. Given ⇢2 > 0, we locally majorize the function in (17) by the
regularized quadratic function (up to some constants)

G2(↵�,j , ⇢2) := L2(↵(m);✓(m)) +
p…
j=1

< 4
)L2(↵;✓(m))

)↵�,j

5Ò0
↵�,j * ↵(m)

�,j

1

+
⇢2
2 Ò↵�,j * ↵(m)

�,j Ò22
=

+
p…
j=1

<
!
<(m)
j

Ò↵�,jÒ2 + ⌧
<

2nÒ↵�,jÒ22
=
. (20)

Minimizing this function with respect to ↵�,j results in the closed form updates

↵(m+1)
�,j = S(z(m)

j
; (⇢2 + ⌧<_n)*1!<(m)

j
), j = 1,… , p, (21)

where

z(m)
j

= (⇢2 + ⌧<_n)*1
L
⇢2↵

(m)
�,j *

0
)L2(↵;✓(m))

)↵�,j

1M

and S(z;!<) = (1 * !
<

ÒzÒ2
)+z is the multivariate soft-thresholding operator (Breheny and Huang, 2015; Donoho and Johnstone, 1994)

for group Lasso. Note that the weights !<(m)
j

in (20) are chosen in a similar fashion to the weights !(m)
kj

as described above where �
is replaced by �<.

Line-search In each iteration of the EM, the two parameters ⇢1 and ⇢2 in the M-step are chosen using a backtracking line search
(Boyd and Vandenberghe, 2004) such that the functions in (16) and (17), when evaluated at the updating values using the chosen
stepsizes, are less than or equal to, respectively, their majorizing functions in (18) and (20).

Specifically, to determine step size ⇢1 in (18), we first initialize ⇢1 with some ⇢max
1 > 0 and repeatedly shrink ⇢1 with ⇢1 } ✏

*1
⇢1

for some pre-chosen 0 < ✏ < 1 until the following condition holds

G1(�
(m+1)
k

, ⇢1) f G1(�
(m)
k

, ⇢1), (22)

where G1 is defined in (18) and �(m+1)
k

is given in (19). For determining step size ⇢2 in (20), we initialize ⇢2 with some ⇢max
2 > 0 and

repeatedly shrink ⇢2 with ⇢2 } ✏
*1
⇢2 for some pre-chosen 0 < ✏ < 1 until the following condition holds

G2(↵(m+1)
, ⇢2) f G2(↵(m)

, ⇢2), (23)

where G2 is defined in (20) and ↵(m+1) is given in (21). We summarize our algorithm in Algorithm 1.
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Algorithm 1: Modified EM Algorithm.

1 Initialization: Choose initial values ✓(0) = (�(0)
,↵(0)

,�(0)); Set tuning parameters (�, �<, ⌧<); Set m = 0 and convergence
criterion (� ,max.iter);

2 while pln(✓(m+1)) * pln(✓(m)) g � and m f max.iter do
3 E-step: Compute weights ⌧(m)

ik
in (15), for all i, k;

4 M-step:
5 for k = 1, 2,…K and j = 1, 2,… p do
6

�(m+1)
k

} S(z(m)
k

; ⇢*11 !k).

↵(m+1)
�,j } S(z(m)

j
; (⇢2 + ⌧<_n)*1!<

j
)

�
(m+1)
k

} ar g max
�k

Q1k(✓k; �
(m+1)
k

,↵(m+1)).

7 end
8 Update the iteration counter m = m + 1;
9 end

6. Implementation details

Initialization In our study, we adopt the following procedure for initialization: Firstly, we perform univariate clustering on the
response variable to partition the data into K groups, corresponding to the number of components of the mixture model. For
initialization of the regression coefficient vectors (�01, �1,… , �0K , �K ), we fit separate (generalized) linear regression models to each
cluster using the data points assigned to that cluster. This ensures that the initial means are informed by the actual distribution of the
data. Regarding the initialization of the coefficient vectors (↵01,↵1,… , ↵0,K*1,↵K*1) for the mixing probabilities, we use the cluster
memberships of all the data points as a categorical response variable and fit a multinomial logistic regression model to the data.
This provides a starting point for the EM algorithm by reflecting the preliminary groupings of the data. To initialize the variance
parameters (�1, �2,… , �K ), we employ the estimated variances of the response variable within each cluster.

Convergence of the M-step using the LLA procedure During the M-step of the EM algorithm, the iterative procedure using the LLA
provides convergence guarantees. Within the M-step, we encounter two convex optimization sub-problems: the minimization of
(16) and (17) with respect to �1,… , �K and ↵, respectively. Both are convex problems. We perform this by first majorizing the
aforementioned two objective functions by the two convex functions (18) and (20), respectively. This majorization process involves
applying quadratic majorization to the leading (likelihood) terms and employing LLA majorization for the penalty function. This
approach is an instance of the majorization-minimization (MM) algorithm, the convergence of which has been extensively studied
in the literature, as demonstrated by Heiser (1995) and Lange et al. (2000).

Selection of tuning parameters As discussed in Section 3, the main purpose of the ridge penalty on ↵ is to help improving stability of
the numerical algorithm. For the ridge tuning parameter, we use ⌧< = C log n, for some constant C > 0 which was taken C = 0.01 in
our simulations. This value satisfies the conditions required in our theory and it further works in our simulations. We next discuss
data-driven selection of (�, �<) and the mixture order K.

For a fixed mixture order K, we use a bic-type criterion (Wang et al., 2007) to choose (�, �<) from a two-dimensional grid
expanded over [0, �max]2 for some pre-specified value �max. More specifically, let a1,… , aL be a grid of the interval [0, �max].
For each pair (al , al® ), l , l® = 1,… , L, corresponding to (�, �<), let ö✓l l® be the mple in (7). Due to the group selection of the gating
parameters, we calculate the total number of estimated non-zero regression parameters in ö✓l l® as df(l , l®) = ≥K

k=1
≥p

j=1 1{ö�kj (l , l®) ë
0} +≥K*1

k=1
≥p

j=1 1{ö↵kj (l , l®) ë 0}. We compute the bic value

bic1(l , l®) = *2ln(ö✓l l® ) + (log n) df(l , l®) (24)

where ln is the log-likelihood in (4). We choose a pair (al , al® ) over the two-dimensional discrete grid as the optimal value of (�, �<)
that minimizes the bic, that is, (ö�, ö�<) = argmin{(al ,al® ):l ,l®=1,…,L} bic1(l , l®). Let ö✓(K) be the final parameter estimate corresponding to
(ö�, ö�<), for any given mixture order K.

We estimate the mixture order as follows. The above process is repeated for each K = 1,… ,K, for some pre-specified upper
bound K. We then compute the total number of non-zero elements of ö✓(K) as df(K) = ≥K

k=1
≥p

j=1 1{ö�kj ë 0} +≥K*1
k=1

≥p

j=1 1{ö↵kj ë 0}.
We compute the bic value

bic2(K) = *2ln(ö✓(K)) + (log n)�df(K) + 3K * 1� , K = 1,… ,K, (25)

where 3K * 1 is the total number of estimated intercepts and dispersion parameters (ö↵0k, ö�0k, ö�k). The estimated order is öK =
argmin1fKfK bic2(K). Its performance is studied in the next section.
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7. Simulation study

We carry out a simulation study to examine the finite-sample performance of the proposed methods. Each feature vector x is
generated from a p-variate Gaussian distribution with mean zero and a covariance matrix with (i, j)-th element being .5i*j. The
corresponding design matrix will remain fixed throughout the data generation process. Given x, the response y is generated from
the moe

f (y;x,✓) =
3…
k=1

gk(x;↵) N (y;�k(x), �2k),

where N (�;� , �2) is the density function of Gaussian distribution with mean � and variance �2. Here, we have �k(x) = �0k + �Ò
k
x,

for k = 1, 2, 3, and the gating network

log
0
gk(x;↵)
g3(x;↵)

1
= ↵0k + ↵Ò

k
x, k = 1, 2, and

3…
k=1

gk(x;↵) = 1.

We have considered the following parameter settings with dimensions pn = n
� for � = .5, .6, .7, and the sample sizes n =

200, 300, 400. In all the cases, we set �2
k
= 1 for k = 1, 2, 3.

Setting (I): n = 200, pn = {15, 24, 42}
õ↵1 = (↵01,↵1

Ò)Ò = (*1, 0, 0,*1.5, 0, 0,*1.9,… , 0)Ò

õ↵2 = (↵02,↵2
Ò)Ò = (*1.5, 0, 0, 1.8, 0, 0, 1.2,… , 0)Ò

�1 = (2.5, 0, 0, 2.4, 0, 0,… , 0)Ò , �2 = (*2, 1.9, 0, 0, 1.5, 0,… , 0)Ò,
�3 = (0, 0,*2.0, 1.8, 0, 0,… , 0)Ò.

Setting (II): n = 300, pn = {17, 30, 60}
õ↵1 = (↵01,↵1

Ò)Ò = (*1, 0, 0,*1.5, 0, 0,*1.9,… , 0)Ò

õ↵2 = (↵02,↵2
Ò)Ò = (*1.5, 0, 0, 1.8, 0, 0, 1.2,… , 0)Ò

�1 = (2.5, 0, 0, 2.4, 0,*1.5,… , 0)Ò , �2 = (*2, 1.9, 0, 0, 1.5, 0, 2.0,… , 0)Ò,
�3 = (0, 0,*2.0, 1.8, 0, 0,*1.9,… , 0)Ò.

Setting (III) : n = 400, pn = {20, 36, 70}
õ↵1 = (↵01,↵1

Ò)Ò = (*1, 0, 0,*1.5, 0, 0,*1.9, 0, 1.0,… , 0)Ò

õ↵2 = (↵02,↵2
Ò)Ò = (*1.5, 0, 0, 1.8, 0, 0, 1.2, 0,*1.0,… , 0)Ò

�1 = (2.5, 0, 0, 2.4, 0,*1.5, 0, 1.5,… , 0)Ò , �2 = (*2, 1.9, 0, 0, 1.5, 0, 2.0,*1.8,… , 0)Ò

�3 = (0, 0,*2.0, 1.8, 0, 0,*1.9, 1.8,… , 0)Ò.

The total number of true non-zero regression coefficients in the above three settings are respectively 11,14 and 19. The dimension
of the parameter vector ✓ is dn = (2K * 1)(pn + 1) +K, see Section 2. The values of dn corresponding to each of the settings are given
in Tables 1 and 2 in the Appendix.

In the discussion below, let CIZ = # Correctly Identified Zero, CIN = # Correctly Identified Nonzero, IIZ = # Incorrectly Identified
Zero and IIN = # Incorrectly Identified Nonzero regression coefficients. The specificity (SP) and sensitivity (SE) are respectively
defined as SP = CIZ/(CIZ+IIN) and SE = CIN/(CIN+IIZ). We also report the empirical mean squared error (mse) for each estimated
regression parameter vector. Our results are based on R = 200 simulated samples from each of the above models, and are summarized
in Tables 1 and 2 in the Appendix. We report the results based on the Lasso, AdaLasso, and scad; the mcp results were similar to scad
and thus not reported here.

From Table 1, we can see that for each sample size and setting, as the dimension dn as a function of pn = n
� with � = .5, .6, .7,

increases, the mse also increases which is expected. The mse, corresponding to the same dimension dn when fixing � at each value
.5, .6, .7 and increasing n, decreases. Estimation of the gating parameters ↵k’s is more difficult than that of the experts parameters
�k’s, which is mainly due to the multinomial nature of the gating network. Overall, the method based on the scad performs better
than the Lasso and AdaLasso in terms of the mse.

From Table 2, we can see that the method based on all the three penalties performs well in terms of both specificity (SP) and
sensitivity (SE). For the largest dimension considered, corresponding to pn = n

.7, the Lasso outperforms the other two penalties
in terms of both (SP, SE) corresponding to the experts parameters. For the smaller dimensions corresponding to pn = n

.5 or .6, the
three penalties perform more or less similarly. When the SE values are low, the corresponding mse tends to be higher which is
also expected. In summary, the performance of the proposed method shows that it provides a reliable new estimation and feature
selection method for moes when the number p of features is comparable to the sample size.

Finally, we assess the performance of the bic in (25) for estimation of the mixture order K. For each simulated sample from
the above model with correct order K = 3, we fit moe models with K = 1,… , 5, and estimate the order using the bic. Our results
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are averaged over R = 200 simulated samples and are reported in Table 3. For the sample size n = 200, we can see that the bic
based on scad outperforms the other two penalties by detecting the correct K = 3 about 76% of times for all the three dimensions
dn = 83, 128, 218. As the sample size increases to n = 300, 400, the bic based on the three penalties performs well corresponding
to dimensions dn = 93,108, by detecting the correct mixture order about 86% to 98%. For dn = 158, 188, the Lasso and AdaLasso
outperform scad, and as dimension increases to dn = 308, 358 the bic based on Lasso is the winner but clearly the order estimation
becomes much harder for higher dimensions unless the sample size n increases.

8. Real data analysis

In this section we demonstrate the proposed methodology by analyzing a dataset available at http://jse.amstat.org/jse_data_
archive.htm. The data contains trunk and limb body girth measurements at 12 well-defined sites, skeletal diameter measurements
at nine well-defined body sites, as well as age, weight, height, and sex for 507 individuals; see Fig. 1, and the list of variables are
given in Table 4. Heinz et al. (2003) used linear regression models to analyze relationship between weight (the response variable)
and the aforementioned covariates. We re-analyze the data using sparse moes, as a generalization of linear models, allowing for
potential heterogeneity of the effects of the covariates (p = 24) on the response variable weight. To avoid numerical issues, we
standardize all the covariates to mean zero and variance one. We fit the sparse Gaussian moes with K = 1, 2, 3, 4 components and
compare the fitted models using the bic. Note that K = 1 corresponds to a linear model as fitted in Heinz et al. (2003) with more
covariates. The bic values for models with K = 3, 4 are larger than the ones corresponding to the models with K = 1, 2 components.
On the other hand, the former models are not very different and thus we report the selected sparse moe with K = 3. The selected
model is based on the scad penalty which results in a more interpretable and spare model compared to the other penalties. The
fitted Gaussian moe model is

f (y;x, ö✓) =
3…
k=1

gk(x; ö↵) N (y; ö�k(x), ö�2k),

where ö�1 = 1.68, ö�2 = 1.25, ö�3 = 1.23, and

ö�1(x) = 68.3 + 5.12x12 + 2.43x15 + 2.81x17 + 1.57x19 + 3.18x23 (26)

ö�2(x) = 68.3 + 3.35x10 + 2.37x11 + 1.70x12 + 3.57x14 + 2.87x18 + 2.96x23
ö�3(x) = 68.3 * 2.77x1 + 2.05x5 + 5.47x10 + 4.68x12 + 4.07x15 * 3.98x16

+ 3.86x17 + 3.87x23
and the gating network

log
0
g1(x; ö↵)
g3(x; ö↵)

1
= 1.70 * .632x2 * .970x11 (27)

log
0
g2(x; ö↵)
g3(x; ö↵)

1
= .401 + .302x2 * .302x11.

We also compute the so-called posterior probabilities (15) of each observation belonging to any of the three groups (experts)
indicated by the fitted model. Based on these probabilities, approximately, 66.4% of individuals were classified to group 1, 22.2%
to group 2, and 11.4% to group 3. Fig. 2 shows the scatter plots of the probabilities versus the weight (response), and Fig. 3 shows
the boxplots of the weights of individuals classified to any of the three groups according to the posterior probabilities. The average
weights in the three groups are: 64.59, 81.46, and 90.57 kg, respectively, which shows significant differences between the three
groups in terms of weights. Also, the percentages of female and male in the three groups are: (62%, 38%), (22%, 78%), and (15%, 85%),
respectively. It thus makes sense why the average weight in group 1 is smaller than the other two groups as the majority in this
group are female, whereas in the other two groups male are the majority. Since one of the selected covariates affecting the mean
weight of the three groups is height (x23), the average height of the three groups are respectively: 168.8, 179.2, and 177.6 cm. We
may conclude that, with respect to the weight and height, the individuals in group 1 which are the majority in this data are living
a healthy life, whereas those in group 2 may be considered as slightly overweight, and those in group 3 as obese.

We may interpret the selected covariates as follows. From (26), we can see that most of the selected covariates have positive
estimated effects on the mean response variable weight, and they are mostly girth measurements. The covariates Waist girth (x12)
and Height (x23) with positive estimated effects are selected in all the three mixture components. The two covariates x1 and x16
are selected with negative effects in the third component which could be due to an artefact of their high correlation with the other
selected covariates in the model. From (27), the only two covariates selected in the gating network {g1, g2, g3} are Biiliac diameter or
pelvic breadth (x2) and Chest girth (x11). We can see that the larger the values of either (x2, x11), the less likely that the corresponding
individual belongs to group 1, which is referred to as the group with a healthy life style. More specifically, individuals with larger
values of x2 are more likely in group 2, and those with larger values of x11 are more likely in group 3 (obese) which makes sense
as x11 shows the chest size.
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Fig. 1. Biacromial, Biiliac, and Bitrochanteric diameters (Heinz et al., 2003).

9. Discussion

We have introduced a penalized likelihood method for parameter estimation and feature selection in moe models together with a
grouped regularization technique for the gating network parameters. The proposed method is particularly useful when the number
of features is large. The grouping technique has provided a new perspective on how to obtain a sparse moe model, along with its
improved interpretability. We have established consistency of the methods in both estimation and feature selection. Numerically,
we have employed a modified em algorithm combined with the proximal gradient method and LLA (Nesterov, 2004), which results
in a convenient closed-form parameter update in the M-step of the algorithm.

As much as development has been made in this paper, there remains more work to be done in the study of sparse moes. Our
current theory studies conditions under which the proposed estimators are statistically optimal, i.e. consistency in both estimation
and feature selection. On the other hand, theoretical guarantees for converges of the EM algorithm is also an important research
question. Several seminal works have provided theoretical insights into the convergence of the EM algorithm. For example Xu and
Jordan (1996) studies convergence of the EM for Gaussian mixture models. Yi and Caramanis (2015) analyze the convergence and
consistency properties of a regularized EM algorithm toward understanding regularization techniques. Balakrishnan et al. (2017)
develops a theoretical framework for quantifying when and how fast EM-type iterates converge within a small neighborhood of a
global optimum of the population likelihood. Zhao et al. (2020) studies the convergence behavior of the EM algorithm in Gaussian
mixture models with an arbitrary number of mixture components and mixing weights. In our simulation study, we did not encounter
convergence issues of the proposed EM algorithm, and the results show reasonable performance of the algorithm. Nevertheless,
theoretical guarantees for converges of the proposed EM algorithm requires new theoretical tools beyond the scope of the current
work and is a topic of future research.

Extension of our theoretical results to high-dimensional settings when both pn and sn grow to infinity faster than the rates
s
4
n
= o(n) and snpn = o(n) considered in Theorems 1–4, and growing values of the regression parameters (�1,… , �K ,↵), as n grows, are

subjects of future research. It is also valuable to investigate non-asymptotic error bounds (Städler et al., 2010) as well as minimax
rate of convergence of the proposed estimators. In addition, it is interesting to investigate estimation of the number of experts
K simultaneously with feature selection. Information criterion such as the bic is commonly used for estimation of K. Its finite
sample performance in our simulation study (Section 7) is satisfactory. Although this method theoretically does not underestimate
K (Leroux, 1992), its consistency in estimating K is yet to be studied. Other potential future directions are statistical inference such
as hypothesis testing and confidence intervals for post-selection targets in sparse moes which is a topic of post-selection inference

Journal�of�Statistical�Planning�and�Inference�237��������106250�

12�



A. Khalili et al.

(PoSI, Berk et al., 2013; Javanmard and Montanari, 2014; Zhang et al., 2022). These developments will contribute to the study of
moes and their applications in real data analysis in various fields.
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Appendix A. Examples of the penalty function rn

Common choices of rn(�) includes the Lasso, AdaLasso, scad, and mcp:
Lasso : rn(✓; �) = n�✓

AdaLasso : rn(✓; �) = n�!✓

scad : rn(✓; �) =
h
n
l
nj

n�✓ , ✓ f �

*n(✓2 * 2a�✓ + �2)_[2(a * 1)] , � < ✓ f a�

n�
2(a + 1)_2 , ✓ > a�

mcp : rn(✓; �) =
T
n�(✓ * ✓2

2� � ) , ✓ < � �
n�

2
�_2 , ✓ g � �

for some constants a > 2, � > 0, and � g 0 is a tuning parameter that controls how light or heavy the penalty is on ✓. Fan and Li
(2001) suggested that the value a = 3.7 as a good choice in scad. The parameter � in mcp controls the concavity of the penalty, such
that when � ô ÿ the penalty becomes Lasso, and if � ô 0+ then it becomes the L0 penalty. In AdaLasso, ! is some pre-specified
(possibly random) weights.

Appendix B. Regularity conditions

Let f (v;✓) be the joint density of V = (x, Y ), with the parameter space ✓ À ⇥. Note that the conditional density function of
Y given x follows the moe model (1). In the regularity conditions that follow we write ✓ = ( 1,  2,… ,  dn ), where dn is the total
number of parameters in the model. The expected value E0 is with respect to the true distribution of V with the corresponding
parameter of interest ✓0.

R1 : The density f (v;✓) has common support in v for all ✓ À ⇥, and f (v;✓) is identifiable with respect to ✓.
R2 : There exists an open subset ⇥<

œ ⇥ containing the true parameter ✓0 such that for almost all v, f (v;✓) admits third partial
derivatives with respect to ✓ À ⇥<.

R3 : For all j , l = 1, 2,… , dn, the first and second derivatives of f (v;✓) satisfy:

E0

<
)

)  j
log f (v;✓)

ÛÛÛÛ✓=✓0

=
= 0;

E0

<
)

)  j
log f (v;✓) )

)  l
log f (v;✓)

ÛÛÛÛ✓=✓0

=
= E0

<
* )

2

)  j)  l
log f (v;✓)

ÛÛÛÛ✓=✓0

=
.

R4 : The Fisher information matrix is finite and positive definite at ✓ = ✓0:

In(✓) = E0

<0
)

)✓ log f (v;✓)
10

)

)✓ log f (v;✓)
1Ò=

,

and it has finite eigenvalues 0 < m < ⇢min{In(✓)} < ⇢max{In(✓)} < M < ÿ, for some finite constant m and M . Furthermore,
for j , l = 1, 2,… , dn, and for all ✓ À ⇥< in a neighborhood of ✓0,

E0

<
)
2

)  j)  l
log f (v;✓)

=2
< M2 , E0

<
) log f (v;✓)

)  j
) log f (v;✓)

)  l

=2
< M3

for some finite constants M2 and M3.
R5 : There exists integrable functions Bj (v),Bj l(v) and Bj l m(v) (possibly depending on ✓0), such that î ÿ

*ÿ Bj l m(v)f (v;✓0)dv < ÿ,
and for all ✓ À ⇥< in a neighborhood of ✓0, we have

ÛÛÛÛ
) f (v;✓)
)  j

ÛÛÛÛ f Bj (v), ÛÛÛÛ
)
2
f (v;✓)
)  j)  l

ÛÛÛÛ f Bj l(v), ÛÛÛÛ
)
3 log f (v;✓)
)  j)  l)  m

ÛÛÛÛ f Bj l m(v).

Appendix C. Tables and figures

See Tables 1–4 and Figs. 2 and 3.
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Table 1
Average empirical mean squared errors.

d
n

Method ö↵1 ö↵2 ö�1 ö�2 ö�3

Lasso 2.41 2.16 .090 .477 .514
n = 200 83 AdaLasso 1.54 1.37 .117 .563 .817

scad .497 .466 .036 .099 .194

Lasso 2.45 2.19 .108 .547 .666
Setting (I) 128 AdaLasso 2.19 1.78 .635 1.68 2.29

scad .690 .791 .038 .129 .664

Lasso 2.51 2.25 .160 .753 1.02
218 AdaLasso 2.20 2.41 .394 2.49 5.30

scad 1.39 1.70 .040 .183 1.99

Lasso 2.14 1.54 .156 .178 .313
n = 300 93 AdaLasso 1.05 .704 .061 .165 .476

scad .218 .187 .034 .068 .065

Lasso 2.15 1.53 .223 .185 .351
Setting (II) 158 AdaLasso 1.30 .918 .165 .646 1.83

scad .382 .262 .058 .070 .545

Lasso 2.38 1.57 .890 .220 .523
308 AdaLasso 2.48 2.48 1.62 2.26 2.43

scad 2.13 1.70 .387 .409 1.05

Lasso 3.04 2.46 .149 .246 .324
n = 400 108 AdaLasso 1.78 1.37 .063 .250 .259

scad .315 .275 .036 .071 .056

Lasso 3.06 2.46 .216 .270 .351
Setting (III) 188 AdaLasso 1.81 1.41 .228 .524 1.28

scad .471 .424 .036 .071 .106

Lasso 3.17 2.48 .597 .331 .448
358 AdaLasso 2.55 2.73 .544 4.75 3.28

scad 2.49 2.36 .080 .798 4.70

Table 2
Average specificity and sensitivity.

d
n

Method ö↵ = (ö↵1 , ö↵2) ö�1 ö�2 ö�3

sp se sp se sp se sp se
Lasso .990 1.00 .978 1.00 .912 1.00 .947 .985

n = 200 83 AdaLasso .986 .988 .952 .998 .896 .985 .919 .948
SCAD .985 .973 1.00 1.00 .998 1.00 .993 .988

Lasso .993 1.00 .984 1.00 .926 .998 .949 .975
Setting (I) 128 AdaLasso .981 .970 .938 .988 .900 .947 .929 .815

SCAD .985 .935 1.00 1.00 .997 .997 .987 .930

Lasso .995 .993 .987 .998 .932 .997 .953 .960
218 AdaLasso .986 .935 .914 .994 .922 .912 .950 .571

SCAD .990 .788 1.00 1.00 .996 .995 .980 .763

Lasso .999 1.00 .999 1.00 .977 1.00 .985 1.00
n = 300 93 AdaLasso .999 1.00 .986 1.00 .955 .998 .938 .995

SCAD .999 1.00 1.00 1.00 1.00 1.00 .999 1.00

Lasso .999 1.00 .998 1.00 .985 1.00 .985 1.00
Setting (II) 158 AdaLasso .999 1.00 .957 .998 .924 .988 .932 .920

SCAD .999 .980 .999 .997 1.00 1.00 .995 .962

Lasso .999 1.00 .999 .967 .985 1.00 .979 .997
308 AdaLasso .997 .922 .899 .942 .932 .844 .953 .370

SCAD .903 .997 .998 .977 .993 .984 .969 .585

Lasso .999 .962 .997 1.00 .988 1.00 .994 1.00
n = 400 108 AdaLasso 1.00 .980 .994 1.00 .973 .997 .966 1.00

SCAD .999 .982 1.00 1.00 1.00 1.00 1.00 1.00

Lasso 1.00 .963 .998 1.00 .992 1.00 .995 1.00
Setting (III) 188 AdaLasso 1.00 .987 .980 1.00 .942 .997 .960 .986

SCAD 1.00 .942 1.00 1.00 1.00 1.00 1.00 .998

Lasso 1.00 .943 1.00 .990 .992 1.00 .993 .998
358 AdaLasso .999 .908 .952 .994 .929 .911 .968 .497

SCAD .962 .977 1.00 .999 .998 .972 .980 .699
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Table 3
Order selection based on BIC: K = 3 is the correct mixture order.

d
n

Method öK

1 2 3 4 5

Lasso .000 .445 .515 .035 .005
n = 200 83 AdaLasso .005 .120 .675 .155 .045

SCAD .000 .115 .755 .120 .010

Lasso .000 .435 .520 .035 .010
Setting (I) 128 AdaLasso .010 .020 .695 .200 .075

SCAD .005 .115 .750 .130 .000

Lasso .005 .270 .600 .125 .000
218 AdaLasso .115 .095 .560 .170 .060

SCAD .040 .055 .765 .140 .000

Lasso .000 .000 .950 .040 .010
n = 300 93 AdaLasso .000 .010 .855 .110 .025

SCAD .000 .000 .940 .040 .020

Lasso .000 .035 .710 .100 .155
Setting (II) 158 AdaLasso .000 .055 .700 .100 .145

SCAD .005 .165 .480 .195 .155

Lasso .000 .050 .720 .185 .045
308 AdaLasso .090 .260 .200 .225 .225

SCAD .060 .475 .245 .190 .030

Lasso .000 .020 .960 .015 .005
n = 400 108 AdaLasso .000 .005 .900 .085 .010

SCAD .000 .000 .975 .010 .015

Lasso .000 .150 .780 .025 .045
Setting (III) 188 AdaLasso .000 .100 .650 .180 .070

SCAD .000 .075 .660 .180 .085

Lasso .000 .220 .455 .285 .040
358 AdaLasso .015 .070 .330 .325 .260

SCAD .005 .145 .300 .390 .160

Table 4
List of the variables in the real data example (Heinz et al., 2003).
Covariates Description

Skeletal measurements:
x1 Biacromial diameter (see Fig. 1)
x2 Biiliac diameter, or ‘‘pelvic breadth’’ (see Fig. 1)
x3 Bitrochanteric diameter (see Fig. 1)
x4 Chest depth between spine and sternum at nipple level, mid-expiration
x5 Chest diameter at nipple level, mid-expiration
x6 Elbow diameter, sum of two elbows
x7 Wrist diameter, sum of two wrists
x8 Knee diameter, sum of two knees
x9 Ankle diameter, sum of two ankles

Girth measurements:
x10 Shoulder girth over deltoid muscles
x11 Chest girth, nipple line in males and just above breast tissue in females, mid-expiration
x12 Waist girth, narrowest part of torso below the rib cage, average of contracted and relaxed position
x13 Navel (or ‘‘Abdominal’’) girth at umbilicus and iliac crest, iliac crest as a landmark
x14 Hip girth at level of bitrochanteric diameter
x15 Thigh girth below gluteal fold, average of right and left girths
x16 Bicep girth, flexed, average of right and left girths
x17 Forearm girth, extended, palm up, average of right and left girths
x18 Knee girth over patella, slightly flexed position, average of right and left girths
x19 Calf maximum girth, average of right and left girths
x20 Ankle minimum girth, average of right and left girths
x21 Wrist minimum girth, average of right and left girths

Other measurements:
x22 Age (years)
x23 Height (cm)
x24 Sex (male = 1, female = 0)
y Weight (kg)
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Fig. 2. (a) Histogram of the weight; (b)–(d) Posterior probabilities of observations belonging to each of the three groups represented by the fitted moe model.
The blue vertical line indicates the average weight within each group. The red line shows probability value 0.5. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Boxplots of the weights of the three identified groups.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2024.106250.
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1 Regularity Conditions

Let f(v;✓) be the joint density function of V = (x, Y ), with the parameter space ✓ 2 ⇥. Note that

the conditional density function of Y given x follows the moe model (1). In the regularity conditions

that follow we write ✓ = ( 1, 2, · · · , dn), where dn is the total number of parameters in the model.

The expected value E0 is with respect to the true distribution of V with the corresponding parameter

of interest ✓0.

R1 : The density f(v;✓) has common support in v for all ✓ 2 ⇥, and f(v;✓) is identifiable with

respect to ✓.

R2 : There exists an open subset ⇥⇤ ⇢ ⇥ containing the true parameter ✓0 such that for almost all

v, f(v;✓) admits third partial derivatives with respect to ✓ 2 ⇥⇤.

R3 : For all j, l = 1, 2, · · · , dn, the first and second derivatives of f(v;✓) satisfy:

E0

⇢
@

@ j
log f(v;✓)

����
✓=✓0

�
= 0;
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E0

⇢
@

@ j
log f(v;✓)

@

@ l
log f(v;✓)

����
✓=✓0

�
= E0

⇢
� @

2

@ j@ l
log f(v;✓)

����
✓=✓0

�
.

R4 : The Fisher information matrix is finite and positive definite at ✓ = ✓0:

In(✓) = E0

⇢✓
@

@✓
log f(v;✓)

◆✓
@

@✓
log f(v;✓)

◆>�
,

and it has finite eigenvalues 0 < m < ⇢min{In(✓)} < ⇢max{In(✓)} < M < 1, for some finite

constant m and M . Furthermore, for j, l = 1, 2, · · · , dn, and for all ✓ 2 ⇥⇤ in a neighborhood

of ✓0,

E0

⇢
@
2

@ j@ l
log f(v;✓)

�2

< M2 , E0

⇢
@ log f(v;✓)

@ j

@ log f(v;✓)

@ l

�2

< M3

for some finite constants M2 and M3.

R5 : There exists integrable functions Bj(v),Bjl(v) and Bjlm(v) (possibly depending on ✓0), such

that
´1
�1 Bjlm(v)f(v;✓0)dv < 1, and for all ✓ 2 ⇥⇤ in a neighborhood of ✓0, we have

����
@f(v;✓)

@ j

����  Bj(v),

����
@
2
f(v;✓)

@ j@ l

����  Bjl(v),

����
@
3 log f(v;✓)

@ j@ l@ m

����  Bjlm(v).

These are standard conditions that one adopts when studying the asymptotic properties of

the general M-estimators. R1 is an identifiability condition on the true model which makes the

estimation problem of interest well-defined. Additionally, the common support condition facilitates

interchanging di↵erentiation and integration operations on the density. R2 is a smoothness condition

on the density required for asymptotic analyses while R3 guarantees the asymptotic existence of the

MPLEs of the model parameters. R4 posits the finiteness of the Fisher information while R5 allows

interchanging of the expectation and the limits due to the dominant convergence theorem.

2 Proofs

Proof of Theorem 1. Let �n =
q

pn
n (1 + an). It su�ces to show that for any ✏ > 0, there exists a

large constant C✏ such that

lim
n!1

P{ sup
kuk2=C✏

Ln(✓0 + �nu) < Ln(✓0)} � 1� ✏.
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This implies that for large n, with probability at least 1 � ✏, there is a local maximizer in {✓0 +

�nu; kuk2  C✏}, say b✓n, that satisfies kb✓n � ✓0k2 = Op(�n). We proceed as follows.

Using the penalized log-likelihood in (3) of the main manuscript, denote the di↵erence,

Dn(u) = Ln(✓0 + �nu)� Ln(✓0)

= [ln(✓0 + �nu)� ln(✓0)]� [Rn(✓0 + �nu)�Rn(✓0)]. (A.1)

By the definition of the penalty Rn(✓) in (5) of the main manuscript, and Condition C0 that

rn(0;�n) = rn(0;�⇤n) = 0,

Rn(✓0 + �nu)�Rn(✓0) �
KX

k=1

snkX

j=1

⇢
[rn(�

0
kj + �nukj ;�n)� rn(�

0
kj ;�n)]

�

+

s⇤nX

j=1

⇢
rn(

K�1X

k=1

(↵0
kj + �n⌫kj)

2

�1/2
;�⇤n)� rn(

K�1X

k=1

↵
02
kj

�1/2
;�⇤n)

�

+
K�1X

k=1

s⇤nX

j=1

⇢
⌧
⇤
n

2
[(↵0

kj + �n⌫kj)
2 � ↵

02
kj ]

�
= D2n(u) +D3n(u) +D4n(u).

where ukj and ⌫kj are all the elements of the vector u which is partitioned according to the K

experts and the K � 1 gating networks. Thus, by (A.1),

Dn(u)  [ln(✓0 + �nu)� ln(✓0)]�
4X

l=2

Dln(u) = D1n(u)�
4X

l=2

Dln(u). (A.2)

Next, we assess the limiting behaviour of the di↵erences Dln(u), l = 1, 2, 3, 4, as n ! 1. By Taylor’s

expansion,

D1n(u) = �n[l0n(✓0)]>u+ �2n
2 [u>

l
00
n(✓0)u] +

�3n
6 [u

> @l
00
n(✓

⇤
n)

@✓ u]u

= d1,1n(u) + d1,2n(u) + d1,3n(u), (A.3)

where ✓⇤
n lies between ✓0 and ✓0 + �nu.

By the regularity conditions R1-R5, l0n(✓0) = Op(
p
npn). Thus,

|d1,1n(u)|  Op(
p
npn)�nkuk2 = Op(n�

2
n)kuk2. (A.4)
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For d1,2n(u) we have that, by the regularity conditions R3 and R4, E0(l00n(✓0))/n = �In(✓0). On

the other hand, since p
2
n/

p
n ! 0, by applying the Cauchy-Schwartz inequality we have that

kl00n(✓0)/n� E(l00n(✓0))/nk2 = op(1/pn). Thus,

d1,2n(u) = n�2n
2 u>

⇢
1
n l

00
n(✓0)� 1

nE(l00n(✓0))� In(✓0)

�
u

= �n�2n
2 [u>In(✓0)u](1 + op(1)). (A.5)

Regarding d1,3n, by condition R5, and applying the Cauchy-Schwartz inequality, we have

|d1,3n(u)| =
�
3
n

6

����
pnX

j,k,l

@
3
ln(✓

⇤)

@ j@ k@ l
ujukul

���� =
�
3
n

6

����
pnX

j,k,l

nX

i=1

@
3 log f(vni;✓

⇤)

@ j@ k@ l
ujukul

����

 �
3
n

6

nX

i=1

⇢ pnX

j,k,l

B2
jkl(zi)

�1/2

kuk32 = Op(p
3/2
n �n) n�

2
n kuk22.

On the other hand, p3/2n �n = p2np
n
(1+an). Thus, since p2n/

p
n ! 0, and by condition C2, an = o(p�1/2

n ),

we have

d1,3n(u) = op(n�
2
n)kuk22. (A.6)

In summary, by the order assessments in (A.17)-(A.6), and since by Condition R4 the information

matrix In(✓0) is positive definite, for large n, from (A.16) we have that

D1n(u) = �n�
2
n

2
[u>In(✓0)u](1 + op(1)). (A.7)

Using the second-order Taylor’s expansion, for D2n(u) and D4n(u), we also have

D2n(u) =
KX

k=1

snkX

j=1

⇢
�nr

0
n(�

0
kj ;�nk)ukj +

�
2
n

2
r
00
n(�

0
kj ;�n)u

2
kj

�

D4n(u) =
K�1X

k=1

s⇤nX

j=1

⇢
⌧
⇤
n�n↵

0
kj⌫kj +

1

2
⌧
⇤
n�

2
n⌫

2
kj

�

By Condition C2, we have bn = o(1). Thus,

|D2n(u)|  Kn�
2
nkuk2 +

K

2
n�

2
nbnkuk22 = Kn�

2
nkuk2 + o(n�2n)kuk22 (A.8)
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By Condition C1,

|D4n(u)|  o(n�2n)kuk2 + o(n�2n)kuk22. (A.9)

To assess the order of D3n(u), which involves the grouping penalty, in what follows we also use

the second-order Taylor’s expansion.

D3n(u) =
K�1X

k=1

s⇤nX

j=1

�n↵
0
kj

k↵0
·jk2

r
0
n(k↵0

·jk2;�⇤n) ⌫kj

+
K�1X

k=1

s⇤nX

j=1

⇢
�
2
n

k↵0
·jk2

�
�
2
n↵

20
kj

k↵0
·jk32

�
r
0
n(k↵0

·jk2;�⇤n) ⌫2kj

+
K�1X

k=1

s⇤nX

j=1

�
2
n↵

20
kj

k↵0
·jk22

r
00
n(k↵0

·jk2;�⇤n) ⌫2kj �
K�1X

k 6=l

s⇤nX

j=1

�
2
n↵

0
kj↵

0
lj

k↵0
·jk32

r
0
n(k↵0

·jk2;�⇤n) ⌫kj⌫lj

+
K�1X

k 6=l

s⇤nX

j=1

�
2
n↵

0
kj↵

0
lj

k↵0
·jk22

r
00
n(k↵0

·jk2;�⇤n) ⌫kj⌫lj

= d3,1n(u) + d3,2n(u) + d3,3n(u) + d3,4n(u) + d3,5n(u).

We now assess the order the terms d3,jn(u), j = 1, · · · , 5. By the Cauchy-Schwarz inequality,

|d3,1n(u)|  �n max
j2A⇤

n

��r0n(k↵0
·jk2;�⇤n)

��
s⇤nX

j=1

✓K�1X

k=1

⌫
2
kj

◆1/2


p
n�ns

⇤1/2
n ankuk2  n�

2
nkuk2.

By Conditions C1 and C2,

|d3,2n(u)| 
K�1X

k=1

s⇤nX

j=1

�
2
n

k↵0
·jk2

⇥
����r

0
n(k↵0

·jk2;�⇤n)
����⌫

2
kj

 n�
2
n

minj2A⇤
n
k↵0

·jk2
⇥ anp

n
kuk22 = o(n�2n)kuk22

|d3,3n(u)|  n�
2
n ⇥ bn ⇥ kuk22 = o(n�2n)kuk22

|d3,4n(u)| 
n�

2
n

minj2A⇤
n
k↵0

·jk2
⇥ anp

n
kuk22 = o(n�2n)kuk22

|d3,5n(u)|  n�
2
n ⇥ bn ⇥ kuk22 = o(n�2n)kuk22.
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The above order assessments imply that

|Dn3(u)|  n�
2
nkuk2 + o(n�2n)kuk22. (A.10)

Thus, by the order assessments in (A.7)-(A.10), and since by the regularity condition R4, the matrix

In(✓0) is positive definite, we have that

�1

2
n�

2
nu

>In(✓0)u

as a negative quantity, is the sole leading term on the right hand side of the inequality in (A.2).

Thus, for large n, Dn(u) < 0, in probability, as n ! 1, and this completes the proof. �

The result of Lemma 1 below is used to prove Part (i) of Theorem 2.

Lemma 1. Consider the partitioning ✓ = (✓1,✓2), where ✓2 corresponds to all the zero regression

coe�cients. Under the conditions of Theorem 2, for any ✓0 in the neighbourhood k✓ � ✓0k2 =

Op(
p
pn/n), with probability tending to one, as n ! 1, we have

Ln((✓1,✓2)) < Ln((✓1,0)). (A.11)

Proof of Lemma 1. By the definition of the penalized likelihood in (3) of the main manuscript,

we have that

Ln((✓1,✓2))� Ln((✓1,0)) = [ln((✓1,✓2))� ln((✓1,0))]� [Rn((✓1,✓2))�Rn((✓1,0))]. (A.12)

By the mean value theorem,

ln((✓1,✓2))� ln((✓1,0)) =


@ln((✓1, ⇠))

@✓2

�>
✓2

=
KX

k=1

pnX

j>snk

@ln((✓1, ⇠))

@�kj
�kj +

K�1X

k=1

pnX

j>s⇤nk

@ln((✓1, ⇠))

@↵kj
↵kj

(For simplicity in notation) =
dnX

j=1

@ln((✓1, ⇠))

@ j
 j
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where ⇠ is between 0 and ✓2, k⇠k2  k✓2k2 = O(
p
pn/n), and dim(✓2) = dn =

PK
k=1(pn � snk) +

PK�1
k=1 (pn � s

⇤
nk), i.e., the total number of potential zero regression coe�cients in the model. Note

that in the above notation,  j could be any of the regression parameters �kj or ↵kj .

An order assessment of the partial derivatives appeared in the above expression is required. By

the triangle inequality, for each j,

����
@ln(✓1, ⇠)

@ j
� @ln(✓

0
1,0)

@ j

���� 
����
@ln(✓1, ⇠)

@ j
� @ln(✓1,0)

@ j

����+
����
@ln(✓1,0)

@ j
� @ln(✓

0
1,0)

@ j

����. (A.13)

By a second-order Taylor’s expansion, for any j = 1, 2, · · · , dn,

@ln(✓1,0)

@ j
� @ln(✓01,0)

@ j
=

d0nX

l=1

@
2
ln(✓01,0)

@ l@ j
⇥ ( l �  

0
l )

+

d0nX

l=1

d0nX

h=1

@
3
ln(⇠

⇤
,0)

@ h@ l@ j
⇥ ( l �  

0
l )( h �  

0
h)

�

= (A) + (B)

where ⇠⇤ is between ✓1 and ✓01, and d
0
1 = dim(✓01). Each of the terms (A) and (B) are studied

below. For (A) we have,

(A) =

d0nX

l=1

⇢
@
2
ln(✓

0
1,0)

@ l@ j
� E


@
2
ln(✓

0
1,0)

@ l@ j

��
( l �  

0
l ) +

d0nX

l=1

E


@
2
ln(✓

0
1,0)

@ l@ j

�
( l �  

0
l )

= (A)1 + (A)2

By the definition of the information matrix In(✓0) in R4,

(A)2 =

d0nX

l=1

E


@
2
ln(✓

0
1,0)

@ l@ j

�
( l �  

0
l ) = n

d0nX

l=1

Ijl(✓0)( l �  
0
l ),

7



where Ijl(✓0) is jl-th element of the matrix In(✓0). By the Cauchy-Schwarz inequality,

|(A)1| 
⇢ d0nX

l=1

✓
@
2
ln(✓

0
1,0)

@ l@ j
� E


@
2
ln(✓

0
1,0)

@ l@ j

�◆2�1/2

k✓1 � ✓0
1k2

|(A)2|  n

✓ d0nX

l=1

I
2
jl(✓0)

◆1/2

k✓1 � ✓0
1k2

By the regularity condition R4 on the information matrix,

|(A)1|  Op(
p
npn)⇥O(

p
pn/n) =) (A)1 = Op(

p
npn)

|(A)2|  n⇥O(1)⇥O(
p

pn/n) =) (A)2 = O(
p
npn).

On the other hand, by the condition R5, and the Cauchy-Schwarz inequality

|(B)|  Op(npn)⇥O(pn/n) = Op(p
2
n) =) (B) = op(

p
npn).

Thus, by putting together the order assessments of (A) and (B), we have

@ln(✓1,0)

@ j
� @ln(✓

0
1,0)

@ j
= Op(

p
npn).

By a similar argument, we also have

@ln(✓1, ⇠)

@ j
� @ln(✓1,0)

@ j
= Op(

p
npn).

Also, by the regularity conditions R1-R5, @ln(✓
0
1,0)/@ j = Op(

p
npn). Therefore, by (A.13),

@ln(✓1, ⇠)

@ j
= Op(

p
npn).

Using this fact, the di↵erence in the log-likelihood can then be written as,

ln((✓1,✓2))� ln((✓1,0)) =
KX

k=1

pnX

j=snk+1

Op(
p
npn)|�kj |+

K�1X

k=1

pnX

j=s⇤n+1

Op(
p
npn)|↵kj |.

8



On the other hand,

Rn((✓1,✓2))�Rn((✓1,0)) =
KX

k=1

pnX

j>snk

rn(�kj ;�n) +
pnX

j>s⇤n

rn(k↵g,jk2;�⇤n)

+
⌧
⇤
n

2

K�1X

k=1

pnX

j=s⇤n+1

|↵kj |2.

Thus, by using the above two di↵erences, we arrive at

Ln((✓1,✓2))� Ln((✓1,0)) =
KX

k=1

pnX

j=snk+1

⇢
Op(

p
npn)|�kj |� rn(�kj ;�n)

�

+
K�1X

k=1

pnX

j=s⇤n+1

⇢
Op(

p
npn)|↵kj |�

⌧
⇤
n

2

r
pn

n
|↵kj |

�

�
pnX

j>s⇤n

r(k↵·jk2;�⇤n).

By the regularity condition C1 on the ridge parameter ⌧⇤n, we have that ⌧⇤n
2

q
pn
n = o(

p
npn). Hence,

Ln((✓1,✓2))� Ln((✓1,0)) =
KX

k=1

pnX

j=snk+1

⇢
Op(

p
npn)|�kj |� rn(�kj ;�n)

�

+
pnX

j=s⇤n+1

⇢
Op(

p
npn)

K�1X

k=1

|↵kj |� rn(k↵·jk2;�⇤n)
�
.

By the Cauchy-Schwarz inequality,
PK�1

k=1 |↵kj | = k↵·jk1 
p
K � 1⇥ k↵·jk2. Also, by condition C3,

for ↵kj and �kj in the shrinkage neighbourhood of zero,

rn(�kj ;�n) = ⌘n ⇥ |�kj | , rn(k↵·jk2;�⇤nk) = ⌘n ⇥ k↵·jk2 �
⌘np
K � 1

⇥ k↵·jk1

such that limn!1 ⌘n/
p
npn = 1, which implies that the two double sums in the above are negative.

Thus, with probability tending to one, Ln((✓1,✓2)) � Ln((✓1,0)) < 0, as n ! 1, as required in

(A.11). This completes the proof. �

Proof of Theorem 2.

Part (i). (Sparsity). It su�ces to show that for any ✓ = (✓1,✓2) in the neighbourhood

9



k✓ � ✓0k2 = O(
p
pn/n), with probability tending to one,

Ln((✓1,✓2)) < Ln(b✓n1,0),

where b✓n1 is the maximizer of Ln((✓1,0)). To show this, we have that

Ln((✓1,✓2))� Ln(b✓n1,0) = [Ln((✓1,✓2))� Ln(✓1,0)]� [Ln((✓1,0))� Ln(b✓n1,0)].

By Lemma 1 the first di↵erence is negative, and by the definition of b✓n1 the second di↵erence is also

negative, for large n. This completes the proof.

Part (ii). (Asymptotic normality). Given the result in Part (i), here we work with the penalized

log-likelihood function Ln((✓1,0)) which is considered as a function of ✓1 only. Thus, for simplicity

in notation we write Ln(✓1). By Theorem 2, there exists a
p
n/pn-consistent local maximizer of

Ln(✓1), say b✓n1, such that

L
0
n(b✓n1) = l

0
n(b✓n1)�R0

n(b✓n1) = 0,

where L
0(·), l0n(·) and R0

n(·) are the partial derivatives of the Ln(✓1), ln(✓1) and Rn(✓1) with respect

to ✓1. By a first-order Taylor’s expansion,

[l0n(✓
0
1)�R0

n(✓
0
1)] + [l00n(✓

⇤
1)�R00

n(✓
⇤
1)](b✓n1 � ✓0

1) = 0,

where ✓⇤
1 is between ✓0

1 and b✓n1. The above expression can be re-written as

1

n

⇢
E{l00n(✓01)}�R00

n(✓01)

�
(b✓n1 � ✓01)�

R0
n(✓01)

n
+Dn(✓01,✓

⇤
1) = � l

0
n(✓01)

n
, (A.14)

where

Dn(✓01,✓
⇤
1) =

1

n

⇢
[l00n(✓

⇤
1)� E{l00n(✓01)}]� [R00

n(✓
⇤
1)�R00

n(✓01)]

�
(b✓n1 � ✓01).

10



In what follows we first show that Dn(✓01,✓
⇤
1) = op(n�1/2). Note that

Dn(✓01,✓
⇤
1) =

⇢
1

n
[l00n(✓

⇤
1)� l

00
n(✓01)] +

1

n
[l00n(✓01)� E{l00n(✓01)}]�

1

n
[R00

n(✓
⇤
1)�R00

n(✓01)]

�

⇥(b✓n1 � ✓01)

= (E1 + E2 � E3)(b✓n1 � ✓01),

where E1, E2 and E3 represent the three di↵erences inside the bracket in the above expression. We

have that

kE1 + E2 � E3k22  2kE1k22 + 2kE2k22 + 2kE3k22.

By the Condition C0 on the penalty,

kE3k22  Ak✓⇤
1 � ✓01k22 = Op(pn/n).

By the regularity condition R4, and the Chebyshev’s inequality,

P{kE2k � ✏

pn
} = P

⇢����
1

n
l
00
n(✓01)�

1

n
E{l00n(✓01)}

���� � ✏

pn

�

 p
2
n

✏n2
E

����l
00
n(✓01)� E{l00n(✓0

1)}
����
2

= O(
p
2
n

✏n2
⇥ np

2
n) = o(1).

Thus kE2k = op(
1
pn
).

Also,

kE1k22 =
����
1

n
[l00n(✓

⇤
1)� l

00
n(✓01)]

����
2

2

=
X

i,j

E
2
1,ij ,

where E1,ij are the elements of the matrix E1. By using the mean value theorem on each E1,ij , and

the regularity Condition R5 on the third derivatives of the log-likelihood function, it can be seen

that E2
1,ij = Op(pn/n), and since p

5
n/n ! 0,

kE1k22 =
X

i,j

E
2
1,ij = Op(p

3
n/n) = op

✓
1

p2n

◆
.

Therefore,

kDk2  kE1 + E2 � E3k2 ⇥ kb✓n1 � ✓01k2 = op(1/pn)⇥Op(
p

pn/n),
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which implies that Dn(✓01,✓
⇤
1) = op(n�1/2). Therefore, since In(✓01) = �E{l00n(✓0

1)}, from (A.14)

we have that

p
n Bn I�1/2

n (✓01)

⇢
In(✓01) +

p00
n(✓01)

n

�
(b✓n1 � ✓01) +

p0
n(✓01)

n

�

= Bn I�1/2
n (✓01)⇥

l
0
n(✓01)p

n
+ op(1) =

nX

i=1

Wni + op(1),

where Wni = n
�1/2Bn I�1/2

n (✓01)[@log f(vi;✓01)/@✓1] are independent and identically distributed

random vectors. The Lindeberg-Feller central limit theorem will be used to find the asymptotic

distribution of
Pn

i=1Wni. For any ✏ > 0,

nX

i=1

E{kWnik2I(kWnik > ✏)} = nE{kWn1k2I(kWn1k > ✏)}

 n{E(kWn1k4)P (kWn1k > ✏)}1/2.

By the Chebyshev’s inequality, Conditions R3-R4, and that BnB
>
n ! B, for a positive definite

matrix B, using a similar argument as in Fan and Peng (2004), we have

P (kWn1k > ✏)  O

✓
1

n

◆
, E(kWn1k4)  O

✓
p
2
n

n2

◆
.

Thus,
nX

i=1

E{kWik2I(kWik > ✏)} = n

⇢
O

✓
p
2
n

n2

◆
O

✓
1

n

◆�1/2

= o(1).

Also,
nX

i=1

Cov(Wi) = n Cov(W1) = BnB
>
n ! B as n ! 1.

By the Lindeberg-Feller central limit theorem the result in Part (ii) follows. �

Proof of Theorem 3. The logic of the proof of this theorem is similar to the one of Theorem

1. It, however, requires a detailed order assessment of all the terms in Taylor’s expansion which

makes the proof much more complex. To simplify the already lengthy proof of this theorem, we

assume that the dispersion parameters are known and we write h(y; ⌘k(x),�k) = h(y; ⌘k(x)), where

⌘k(x) = �0k + x>�k. Thus, the unknown parameters of the model are the regression parameters

12



�k, for k = 1, 2, · · · ,K, and ↵k, for k = 1, 2, · · · ,K � 1, including intercepts. Otherwise, the order

assessments of the first, second, and third partial derivatives of the log-likelihood with respect to �k

follow the same order assessment with respect to other parameters given below.

Let �⇤n =
p

sn
n (1 + an). It su�ces to show that for any ✏ > 0, there exists a large constant C✏

such that

lim
n!1

P{ sup
kuk2=C✏

Ln(✓0 + �
⇤
nu) < Ln(✓0)} � 1� ✏ (A.15)

This implies that for large n, with probability at least 1 � ✏, there is a local maximizer in {✓0 +

�
⇤
nu; kuk2  C✏}, say b✓n, that satisfies kb✓n � ✓0k2 = Op(�⇤n).

We proceed as follows. Consider

D
⇤
n(u) = Ln(✓0 + �

⇤
nu)� Ln(✓0)

= [ln(✓0 + �
⇤
nu)� ln(✓0)]� [Rn(✓0 + �

⇤
nu)�Rn(✓0)]

= D
⇤
1n(u)�D

⇤
2n(u), (A.16)

where D
⇤
1n(u) and D

⇤
2n(u) are the di↵erences in the log-likelihood and the penalty functions,

respectively.

Our claim is that the di↵erence D
⇤
n(u) in (A.16) is negative, in probability, as n ! 1. This

then verifies the probability statement of interest in (A.15), and that concludes the proof. The claim

is investigated by an order assessment of the two di↵erences D⇤
1n(u) and D

⇤
2n(u), in probability, as

n ! 1.

We first focus on the di↵erence D
⇤
1n(u). By the third-order Taylor’s expansion,

D
⇤
1n(u) = �

⇤
n[l

0
n(✓0)]

>u+
�
⇤2
n

2


u>

l
00
n(✓0)u

�
+
�
⇤3
n

6


u>@l

00
n(✓̃n)

@✓
u

�
u

= d
⇤
1,1n(u) + d

⇤
1,2n(u) + d

⇤
1,3n(u) (A.17)

where ✓̃n lies between ✓0 and ✓0 + �
⇤
nu.

Each of the terms d⇤1,jn(u), j = 1, 2, 3, in (A.17) are studied below. First, we focus on d
⇤
1,1n(u).
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The elements of the gradient vector l0n(✓), for k = 1, 2, · · · ,K or K � 1 are,

@ln(✓)

@�k
=

nX

i=1

gk(xi;↵)
h
0(yi; ⌘k(xi))

f(yi;xi,✓)
xi =

nX

i=1

!ik(✓)
h
0(yi; ⌘k(xi))

h(yi; ⌘k(xi))
xi

@ln(✓)

@↵k
=

nX

i=1

⇢
!ik(✓)� gk(xi;↵)

�
xi,

where

h
0(yi; ⌘k(xi)) = @h(yi; ⌘k(xi))/@⌘k

!ik(✓) = gk(xi;↵)h(yi; ⌘k(xi))/f(yi;xi,✓) , k = 1, · · · ,K.

Thus,

d
⇤
1,1n(u) = �

⇤
n

KX

k=1

nX

i=1

gk(xi;↵0)h0(yi; ⌘k(xi))

f(yi;xi,✓0)
x>
i uk

+�⇤n

K�1X

k=1

nX

i=1

[!ik(✓0)� gk(xi;↵0)]x
>
i ⌫k,

where uk’s and ⌫k’s are the subvector partitions of the master vector u. Now, for each k, consider

x>
i uk = x>

i,u,Iuk,I + x>
i,u,IIuk,II , x>

i ⌫k = x>
i,⌫,I⌫k,I + x>

i,⌫,II⌫k,II (A.18)

such that: kxi,u,Ik0 = snk, kxi,u,IIk0 = pn � snk, kxi,⌫,Ik0 = s
⇤
nk, kxi,⌫,IIk0 = pn � s

⇤
nk, where k · k0

represents the L0-norm or equivalently the dimension of a subvector. Then,

d
⇤
1,1n(u) = �

⇤
n

KX

k=1

nX

i=1

gk(xi;↵0)h0(yi; ⌘k(xi))

f(yi;xi,✓0)
⇥ (x>

i,u,Iuk,I + x>
i,u,IIuk,II)

+ �
⇤
n

K�1X

k=1

nX

i=1

⇢
!ik(✓0)� gk(xi;↵0)

�
⇥ (x>

i,⌫,I⌫k,I + x>
i,⌫,II⌫k,II)

= d
⇤
1,1n,1(u) + d

⇤
1,1n,2(u) + d

⇤
1,1n,3(u) + d

⇤
1,1n,4(u).

It is worth noting that the mixing probabilities gk(xi;↵0) depend only on xi and the weights !ik(✓0)

14



depend on both (xi, yi). By using the double conditional expectation technique, it can be seen that

E0

⇢
gk(xi;↵0)h0(yi; ⌘k(xi))

f(yi;xi,✓0)
⇥ xi

�
= 0 , E0

✓
[!ik(✓0)� gk(xi;↵0)]⇥ xi

◆
= 0,

where E0 is the expectation with respect to the true joint density function of (x, Y ). Since

sn = max{max1kK snk, s
⇤
n}, we have that

|d⇤1,1n,1(u)|  �
⇤
n

KX

k=1

Op(
p
nsnk)kuk,Ik2  �

⇤
nOp(

p
nsn)

KX

k=1

kuk,Ik2

|d⇤1,1n,2(u)|  �
⇤
n

KX

k=1

Op(
p
n)kuk,IIk1 = n�

⇤2
n

KX

k=1

Op(1)p
sn

kuk,IIk1

= n�
⇤2
n

KX

k=1

d
⇤
1,1n,2,k(uk,II)

|d⇤1,1n,3(u)|  �
⇤
n

K�1X

k=1

Op(
p
ns⇤nk)k⌫k,Ik2  �

⇤
nOp(

p
nsn)

K�1X

k=1

k⌫k,Ik2

|d⇤1,1n,4(u)|  �
⇤
n

K�1X

k=1

Op(
p
n)k⌫k,IIk1 = n�

⇤2
n

KX

k=1

Op(1)p
sn

k⌫k,IIk1

= n�
⇤2
n

KX

k=1

d
⇤
1,1n,4,k(⌫k,II),

where k · k1 and k · k2 are the L1- and L2-norms of a subvector, respectively.

Regarding d
⇤
1,2n(u) in (A.17), we have that

d
⇤
1,2n(u) =

n�
⇤2
n

2

⇢ KX

k=1

u>
k


1

n

@
2
ln(✓0)

@�k@�k

�
uk + 2

X

k<l

u>
k


1

n

@
2
ln(✓0)

@�k@�l

�
ul

+
K�1X

k=1

⌫>
k


1

n

@
2
ln(✓0)

@↵k@↵k

�
⌫k + 2

K�1X

k<l

⌫>
k


1

n

@
2
ln(✓0)

@↵k@↵l

�
⌫ l

+
X

k

u>
k


1

n

@
2
ln(✓0)

@�k@↵k

�
⌫k + 2

X

k<l

u>
k


1

n

@
2
ln(✓0)

@�k@↵l

�
⌫ l

�

or

d
⇤
1,2n(u) =

n�
⇤2
n

2

⇢
Q1(u) +Q2(u) +Q3(u) +Q4(u) +Q5(u) +Q6(u)

�
,

where Qj(u)’s represent the quadratic terms in the above expression. We now perform an order
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assessment of Qj(u), j = 1, · · · , 6. Note that,

1

n

@
2
ln(✓0)

@�k@�k
=

1

n

nX

i=1

gk(xi;↵)h00(yi; ⌘k(xi))

f(yi;xi,✓)
xix

>
i � 1

n

nX

i=1

⇢
gk(xi;↵)h0(yi; ⌘k(xi))

f(yi;xi,✓)

�2

xix
>
i

1

n

@
2
ln(✓0)

@�k@�l
= � 1

n

nX

i=1

gk(xi;↵)gl(xi;↵)
h
0(yi; ⌘k(xi))h0(yi; ⌘l(xi))

f2(yi;xi,✓)
xix

>
i , k 6= l

1

n

@
2
ln(✓0)

@↵k@↵k
=

1

n

nX

i=1

⇢
!ik(✓0)(1� !ik(✓0))� gk(xi;↵0)(1� gk(xi;↵0))

�
xix

>
i

1

n

@
2
ln(✓0)

@↵k@↵l
= � 1

n

nX

i=1

⇢
!ik(✓0)!il(✓0)� gk(xi;↵0)gl(xi;↵0))

�
xix

>
i , k 6= l

1

n

@
2
ln(✓0)

@�k@↵k
=

1

n

nX

i=1

!ik(✓0)(1� !ik(✓0))
h
0(yi; ⌘k(xi))

h(yi; ⌘k(xi))
xix

>
i

1

n

@
2
ln(✓0)

@�l@↵k
= � 1

n

nX

i=1

gl(xi;↵)gk(xi;↵)
h(yi; ⌘k(xi))h0(yi; ⌘l(xi))

f2(yi;xi,✓)
xix

>
i , k 6= l.

We first focus on the first two terms. Note that

Q1(u) =
KX

k=1

⇢
1

n

nX

i=1

gk(xi;↵)h00(yi; ⌘k(xi))

f(yi;xi,✓)
(u>

k xi)
2

� 1

n

nX

i=1


gk(xi;↵)h0(yi; ⌘k(xi))

f(yi;xi,✓)
(u>

k xi)

�2�
=

KX

k=1


E

Q1
k,1(uk)� E

Q1
k,2(uk)

�
.

Thus, we have that

Q1(u) +Q2(u) =
KX

k=1


E

Q1
k,1(uk)� E

Q1
k,2(uk)

�

� 2
X

k<l

⇢
1

n

nX

i=1

gk(xi;↵)gl(xi;↵)
h
0(yi; ⌘k(xi))h0(yi; ⌘l(xi))

f2(yi;xi,✓)
(x>

i uk)(x
>
i ul)

�

=
KX

k=1

E
Q1
k,1(uk)�

1

n

nX

i=1

⇢ KX

k=1

gk(xi;↵)h0(yi; ⌘k(xi))

f(yi;xi,✓)
(u>

k xi)

�2

.

On the other hand, using the inequality 2
Pm

i<j aiaj  m
Pm

i=1 a
2
i , for any ai 2 R,

2
X

k<l

⇢
1

n

nX

i=1

gk(xi;↵0)gl(xi;↵0)
h
0(yi; ⌘k(xi))h0(yi; ⌘l(xi))

f2(yi;xi,✓0)
(u>

k xi)(x
>
i ul)

�
<

K

KX

k=1

⇢
1

n

nX

i=1


gk(xi;↵0)h0(yi; ⌘k(xi))

f(yi;xi,✓0)

�2
(u>

k xi)
2

�
= K

KX

k=1

E
Q1
k,2(uk).
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This implies that

1

n

nX

i=1

⇢ KX

k=1

gk(xi;↵0)h0(yi; ⌘k(xi))

f(yi;xi,✓0)
(u>

k xi)

�2

= (1 +Op(1))
KX

k=1

E
Q1
k,2(uk).

Hence,

Q1(u) +Q2(u) =
KX

k=1

E
Q1
k,1(uk)�

KX

k=1

E
Q1
k,2(uk)(1 +Op(1)).

For each k = 1, 2, · · · ,K, and using the partitioning (A.18) for xi and uk,

E
Q1
k,1(uk) =

1

n

nX

i=1

gk(xi;↵0)h00(yi; ⌘k(xi))

f(yi;xi,✓0)
(u>

k,Ixi,u,I + u>
k,IIxi,u,II)

2

=
1

n

nX

i=1

gk(xi;↵0)h00(yi; ⌘k(xi))

f(yi;xi,✓0)

⇢
(u>

k,Ixi,u,I)
2 + (u>

k,IIxi,u,II)
2+

2(u>
k,Ixi,u,I)(u

>
k,IIxi,u,II)

�
= E

Q1
k,1,I(uk) + E

Q1
k,1,II(uk) + E

Q1
k,1,III(uk).

By the regularity conditions,

|EQ1
k,1,I(uk)|  Op(n

�1/2
snk) kuk,Ik22  Op(n

�1/2
sn) kuk,Ik22

|EQ1
k,1,II(uk)|  Op(n

�1/2) kuk,IIk21

|EQ1
k,1,III(uk)|  Op(

p
snk/n) kuk,Ik2 ⇥ kuk,IIk1  Op(

p
sn/n) kuk,Ik2 kuk,IIk1.

Also, for each k = 1, 2, · · · ,K, and using the partitioning (A.18) for xi and uk,

E
Q1
k,2(uk) =

1

n

nX

i=1


gk(xi;↵0)h0(yi; ⌘k(xi))

f(yi;xi,✓0)

�2
(u>

k xi)
2

� 1

n

nX

i=1


gk(xi;↵0)h0(yi; ⌘k(xi))

f(yi;xi,✓0)

�2⇢
(u>

k,Ixi,u,I)
2 + 2(u>

k,Ixi,u,I)(u
>
k,IIxi,u,II)

�

= E
Q1
k,2,I(uk) + E

Q1
k,2,II(uk).

By the regularity conditions and s
2
n/

p
n ! 0, there exists a constant C > 0 such that

E
Q1
k,2,I(uk) > C{1 + op(1)}⇥ kuk,Ik22

E
Q1
k,2,II(uk)  Op(

p
snk)⇥ kuk,Ik2kuk,IIk1  Op(

p
sn)⇥ kuk,Ik2 kuk,IIk1.
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For Q3(u), we have that

Q3(u) =
K�1X

k=1

⇢
1

n

nX

i=1


!ik(✓0)(1� !ik(✓0))� gk(xi;↵0)(1� gk(xi;↵0))

�
(⌫>

k xi)
2

�

=
K�1X

k=1

⇢
1

n

nX

i=1


!ik(✓0)� gk(xi;↵0)

�
(⌫>

k xi)
2 � 1

n

nX

i=1


!
2
ik(✓0)� g

2
k(xi;↵0)

�
(⌫>

k xi)
2

�

=
K�1X

k=1

⇢
1

n

nX

i=1

[!ik(✓0)� gk(xi;↵0)](⌫
>
k xi)

2 � 2

n

nX

i=1

gk(xi;↵0)[!ik(✓0)� gk(xi;↵0)](⌫
>
k xi)

2

� 1

n

nX

i=1


!ik(✓0)� gk(xi;↵0)

�2
(⌫>

k xi)
2

�

=
K�1X

k=1

⇢
E

Q3
k,1(⌫k)� E

Q3
k,2(⌫k)� E

Q3
k,3(⌫k)

�
.

Also,

Q4(u) = �2
X

k<l

⇢
1

n

nX

i=1


!ik(✓0)!il(✓0)� gk(xi;↵0)gl(xi;↵0)

�
(⌫>

k xi)(x
>
i ⌫ l)

�

= �2
X

k<l

⇢
1

n

nX

i=1


gk(xi;↵0)(!il(✓0)� gl(xi;↵0))

�
(⌫>

k xi)(x
>
i ⌫ l)

�

� 2
X

k<l

⇢
1

n

nX

i=1


gl(xi;↵0)(!ik(✓0)� gk(xi;↵0))

�
(⌫>

k xi)(x
>
i ⌫ l)

�

� 2
X

k<l

⇢
1

n

nX

i=1


(!ik(✓0)� gk(xi;↵0))(!il(✓0)� gl(xi;↵0))

�
(⌫>

k xi)(x
>
i ⌫ l)

�

=
X

k<l

⇢
�E

Q4
k,l,1(⌫k,⌫ l)� E

Q4
k,l,2(⌫k,⌫ l)� E

Q4
k,l,3(⌫k,⌫ l)

�
.

It is seen that

Q3(u) +Q4(u) =
K�1X

k=1

[EQ3
k,1(⌫k)� E

Q3
k,2(⌫k)]�

X

k<l

[EQ4
k,l,1(⌫k,⌫ l) + E

Q4
k,l,2(⌫k,⌫ l)]

� 1

n

nX

i=1

⇢K�1X

k=1

[!ik(✓0)� gk(xi;↵0)](x
>
i ⌫k)

�2

.

We also have that

X

k<l

E
Q4
k,l,3(⌫k,⌫ l) < K

K�1X

k=1

1

n

nX

i=1

[!ik(✓0)� gk(xi;↵0)]
2(x>

i ⌫k)
2 = K

K�1X

k=1

E
Q3
k,3(⌫k),
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which implies that

1

n

nX

i=1

⇢K�1X

k=1

[!ik(✓0)� gk(xi;↵0)](x
>
i ⌫k)

�2

= (1 +Op(1))
K�1X

k=1

E
Q3
k,3(⌫k).

Hence,

Q3(u) +Q4(u) =
K�1X

k=1

[EQ3
k,1(⌫k)� E

Q3
k,2(⌫k)]�

X

k<l

[EQ4
k,l,1(⌫k,⌫ l) + E

Q4
k,l,2(⌫k,⌫ l)]

� (1 +Op(1))
K�1X

k=1

E
Q3
k,3(⌫k).

For each k = 1, 2, · · · ,K � 1, and using the partitioning (A.18) for xi and ⌫k,

E
Q3
k,1(⌫k) =

1

n

nX

i=1


!ik(✓0)� gk(xi;↵0)

�
(⌫>

k,Ixi,⌫,I + ⌫>
k,IIxi,⌫,II)

2

=
1

n

nX

i=1


!ik(✓0)� gk(xi;↵0)

� ⇢
(⌫>

k,Ixi,⌫,I)
2 + (⌫>

k,IIxi,⌫,II)
2+

2(⌫>
k,Ixi,⌫,I)(⌫

>
k,IIxi,⌫,II)

�
= E

Q3
k,1,I(⌫k) + E

Q3
k,1,II(⌫k) + E

Q3
k,1,III(⌫k).

Similarly, for EQ3
k,2(⌫k),

E
Q3
k,2(⌫k) =

1

n

nX

i=1

gk(xi;↵0)


!ik(✓0)� gk(xi;↵0)

�
(⌫>

k,Ixi,⌫,I + ⌫>
k,IIxi,⌫,II)

2

=
1

n

nX

i=1

gk(xi;↵0)


!ik(✓0)� gk(xi;↵0)

� ⇢
(⌫>

k,Ixi,⌫,I)
2 + (⌫>

k,IIxi,⌫,II)
2+

2(⌫>
k,Ixi,⌫,I)(⌫

>
k,IIxi,⌫,II)

�
= E

Q3
k,2,I(⌫k) + E

Q3
k,2,II(⌫k) + E

Q3
k,2,III(⌫k)

By the regularity conditions, we have the bounds

|EQ3
k,j,I(⌫k)|  Op(n

�1/2
s
⇤
nk) k⌫k,Ik22  Op(n

�1/2
sn) k⌫k,Ik22

|EQ3
k,j,II(⌫k)|  Op(n

�1/2) k⌫k,IIk21

|EQ3
k,j,III(⌫k)|  Op(

q
s⇤nk/n) k⌫k,Ik2 ⇥ k⌫k,IIk1  Op(

p
sn/n) k⌫k,Ik2 ⇥ k⌫k,IIk1,

for j = 1, 2.
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On the other hand, for each k = 1, 2, · · · ,K � 1,

E
Q3
k,3(⌫k) =

1

n

nX

i=1


!ik(✓0)� gk(xi;↵0)

�2
(⌫>

k xi)
2

=
1

n

nX

i=1

⇢
!ik(✓0)� gk(xi;↵0)

�2
(⌫>

k xi)
2

� E0|xi


(!ik(✓0)� gk(xi;↵0))(⌫

>
k xi)

�2�
+

1

n

nX

i=1


V ar0|xi

(!ik(✓0))

�
(⌫>

k xi)
2

= E
Q3
k,3,I(⌫k) + E

Q3
k,3,II(⌫k),

where E0|xi
and V ar0|xi

are the conditional mean and variance, respectively, under the true

conditional moe density function f(yi;xi,✓0).

By using the partitioning in (A.18) we have that

E
Q3
k,3,I(⌫k) =

1

n

nX

i=1

⇢
!ik(✓0)� gk(xi;↵0)

�2
� E0|xi


!ik(✓0)� gk(xi;↵0)

�2�

⇥
⇢
(⌫>

k,Ixi,⌫,I)
2 + (⌫>

k,IIxi,⌫,II)
2 + 2(⌫>

k,Ixi,⌫,I)(⌫
>
k,IIxi,⌫,II)

�

= E
Q3
k,3,I,1(⌫k) + E

Q3
k,3,I,2(⌫k) + E

Q3
k,3,I,3(⌫k)

such that by the regularity conditions we have:

|EQ3
k,3,I,1(⌫k)|  Op(n

�1/2
s
⇤
nk) k⌫k,Ik22  Op(n

�1/2
sn) k⌫k,Ik22

|EQ3
k,3,I,2(⌫k)|  Op(n

�1/2) k⌫k,IIk21

|EQ3
k,3,I,3(⌫k)|  Op(

q
s⇤nk/n) k⌫k,Ik2 ⇥ k⌫k,IIk1  Op(

p
sn/n) k⌫k,Ik2 ⇥ k⌫k,IIk1.

On the other hand,

E
Q3
k,3,II(⌫k) =

1

n

nX

i=1


V ar0|xi

(!ik(✓0))

�
(⌫>

k,Ixi,⌫,I + ⌫>
k,IIxi,⌫,II)

2

� 1

n

nX

i=1


V ar0|xi

(!ik(✓0))

�⇢
(⌫>

k,Ixi,⌫,I)
2 + 2(⌫>

k,Ixi,⌫,I)(⌫
>
k,IIxi,⌫,II)

�

= E
Q3
k,3,II,1(⌫k) + E

Q3
k,3,II,2(⌫k)
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By the regularity conditions and s
2
n/

p
n ! 0, there exists a constant C > 0 such that

E
Q3
k,3,II,1(⌫k) > C(1 + op(1))k⌫k,Ik22

|EQ3
k,3,II,2(⌫k)|  Op(

p
s⇤nk)k⌫k,Ik2k⌫k,IIk1  Op(

p
sn)⇥ k⌫k,Ik2 k⌫k,IIk1.

Also, by using the partitioning (A.18) for xi,⌫k and ⌫ l, we have

E
Q4
k,l,1(⌫k,⌫ l) =

2

n

nX

i=1


gk(xi;↵0)(!il(✓0)� gl(xi;↵0))

�

⇥ (⌫>
k,Ixi,⌫,I + ⌫>

k,IIxi,⌫,II)(⌫
>
l,Ixi,⌫,I + ⌫>

l,IIxi,⌫,II)

= E
Q4
k,l,1,I(⌫k,I ,⌫ l,I) + E

Q4
k,l,1,II(⌫k,II ,⌫ l,II) + E

Q4
k,l,1,III(⌫k,I ,⌫ l,II)

+ E
Q4
k,l,1,IV (⌫k,II ,⌫ l,I).

A similar expansion holds for EQ4
k,l,2(⌫k,⌫ l). By the regularity conditions, for j = 1, 2, we have the

bounds

|EQ4
k,l,j,I(⌫k,I ,⌫ l,I)|  Op(n

�1/2
s
⇤
nk) k⌫k,Ik2 ⇥ k⌫ l,Ik2  Op(n

�1/2
sn) k⌫k,Ik2 ⇥ k⌫ l,Ik2

|EQ4
k,l,j,II(⌫k,II ,⌫ l,II)|  Op(n

�1/2) k⌫k,IIk1 ⇥ k⌫ l,IIk1

|EQ4
k,l,j,III(⌫k,I ,⌫ l,II)|  Op(

q
s⇤nk/n) k⌫k,Ik2 ⇥ k⌫ l,IIk1  Op(

p
sn/n) k⌫k,Ik2 ⇥ k⌫ l,IIk1

|EQ4
k,l,j,IV (⌫k,II ,⌫ l,I)|  Op(

q
s⇤nk/n) k⌫k,IIk2 ⇥ k⌫ l,Ik1  Op(

p
sn/n) k⌫k,IIk2 ⇥ k⌫ l,Ik1.

Now we study the fifth and sixth quantities.

By the Cauchy-Schwartz inequality, and the fact that 0  !ik(✓0)  1, we have

|Q5(u)| 
X

k

⇢
1

n

nX

i=1


gk(xi;↵)h0(yi; ⌘k(xi))

f(yi;xi,✓)

�2
(u>

k xi)
2

�1/2⇢ 1

n

nX

i=1

(⌫>
k xi)

2

�1/2

|Q6(u)|  2
X

k<l

⇢
1

n

nX

i=1


gk(xi;↵)h0(yi; ⌘k(xi))

f(yi;xi,✓)

�2
(u>

k xi)
2

�1/2⇢ 1

n

nX

i=1

(⌫>
l xi)

2

�1/2

.
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Thus,

|Q5(u)| 
X

k

E
Q1
k,2(uk)

1/2

⇢
1

n

nX

i=1

(⌫>
k xi)

2

�1/2

|Q6(u)|  2
X

k<l

E
Q1
k,2(uk)

1/2

⇢
1

n

nX

i=1

(⌫>
l xi)

2

�1/2

.

By the boundedness assumption of the design matrix, the above inequalities imply that

Q5(u) = Op(
KX

k=1

E
Q1
k,2(uk)) , Q6(u) = Op(

KX

k=1

E
Q1
k,2(uk)).

The order assessment of the third term in (A.17) is given below. We have that

d
⇤
1,3n(u) =

n�
⇤3
n

6


1

n
u>@l

00
n(✓̃n)

@✓
u

�>
u

=
n�

⇤3
n

6

pnX

j,l,m

1

n

nX

i=1

Qjlm(xi, yi; ✓̃n)⇥ [(xijuj)(xilul)(ximum)],

where Qjlm(xi, yi; ✓̃n) are the third derivatives of the log-likelihood function with respect to the

elements of all the parameters (�k,↵k)’s.

By partitioning the covariates corresponding to the non-zero and zero e↵ects in both the experts

and gating parameters, and also by the regularity conditions and the boundedness of the covariates
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we have that,

|d⇤1,3n(u)| 
KX

k=1

⇢
Op(n�

⇤3
n s

3/2
nk )kuk,Ik32 +Op(n�

⇤3
n )kuk,IIk31

�

+
K�1X

k=1

⇢
Op(n�

⇤3
n s

⇤3/2
nk )k⌫k,Ik32 +Op(n�

⇤3
n )k⌫k,IIk31

�

 n�
⇤2
n

⇢ KX

k=1

Op(�
⇤
ns

3/2
n )kuk,Ik32 +

KX

k=1

Op(�
⇤
n)kuk,IIk31

+
K�1X

k=1

Op(�
⇤
ns

3/2
n )k⌫k,Ik32 +

K�1X

k=1

Op(�
⇤
n)k⌫k,IIk31

�

= n�
⇤2
n

⇢ KX

k=1

[d⇤1,3n,1(uk,I) + d
⇤
1,3n,2(uk,II)]

+
K�1X

k=1

[d⇤1,3n,3(⌫k,I) + d
⇤
1,3n,4(⌫k,II)]

�
.

The other term to be assessed in (A.16) is the di↵erence D
⇤
2n(u) which is based on the penalty

function rn(·). By using the fact that rn(·) is non-negative and also rn(0;�nk) = rn(0;�⇤n) = 0, we

have that

D
⇤
2n(u) = Rn(✓0 + �

⇤
nu)�Rn(✓0)

�
KX

k=1

snkX

j=1

⇢
rn(�

0
kj + �

⇤
nukj ;�nk)� rn(�

0
kj ;�nk)

�
+

KX

k=1

pnX

j=snk+1

rn(�
⇤
nukj ;�nk)

+

s⇤nX

j=1

⇢
rn(

K�1X

k=1

(↵0
kj + �

⇤
n⌫kj)

2

�1/2
;�⇤n)� rn(

K�1X

k=1

(↵20
kj)

�1/2
;�⇤n)

�

+
pnX

j=s⇤n+1

rn(�
⇤
nk⌫jk2;�⇤n) +

⌧
⇤
n

2

K�1X

k=1

s⇤nX

j=1

⇢
(↵0

kj + �
⇤
n⌫kj)

2 � ↵
02
kj

�

= D
⇤
2n,1(u) +D

⇤
2n,2(u) +D

⇤
2n,3(u) +D

⇤
2n,4(u) +D

⇤
2n,5(u).
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Since �⇤n ! 0, by the regularity condition C3 on the penalty function rn(·), we have that

rn(�
⇤
nukj ;�nk) = ⌘n ⇥ �

⇤
n|ukj | ; j = snk + 1, · · · , pn , k = 1, 2, · · · ,K

rn(�
⇤
nk⌫jk2;�⇤n) = ⌘n ⇥ �

⇤
nk⌫jk2 � ⌘n�

⇤
n ⇥ k⌫jk1p

K � 1
; j = s

⇤
n + 1, · · · , pn.

such that by C3, limn!1 ⌘n/
p
npn = 1. Therefore,

D
⇤
2n,2(u) =

KX

k=1

⌘n�
⇤
nkuk,IIk1 =

n�
⇤2
n

1 + an

KX

k=1

⌘nkuk,IIk1p
nsn

=
n�

⇤2
n

1 + an

KX

k=1

D
⇤
2n,2,k(uk,II)

D
⇤
2n,4(u) �

pnX

j=s⇤n+1

⌘n�
⇤
n

k⌫jk1p
K � 1

=
n�

⇤2
n

1 + an

K�1X

k=1

⌘nk⌫k,IIk1p
nsn

=
n�

⇤2
n

1 + an

K�1X

k=1

D
⇤
2n,4,k(⌫k,II).

Also, by the second-order Taylor’s expansion, and Condition C2,

D
⇤
2n,1(u)  n�

⇤2
n

KX

k=1

⇢
kuk,Ik2 + o(1)kuk,Ik22

�
= n�

⇤2
n

KX

k=1

⇢
D

⇤
2n,1,1(uk,I) +D

⇤
2n,1,2(uk,I)

�

D
⇤
2n,3(u)  n�

⇤2
n

K�1X

k=1

⇢
k⌫k,Ik2 + o(1)k⌫k,Ik22

�
= n�

⇤2
n

K�1X

k=1

⇢
D

⇤
2n,3,1(⌫k,I) +D

⇤
2n,3,2(⌫k,I)

�

D
⇤
2n,5(u)  n�

⇤2
n

K�1X

k=1

⇢
o(1)k⌫k,Ik2 + o(1)k⌫k,Ik22

�
= n�

⇤2
n

K�1X

k=1

⇢
D

⇤
2n,5,1(⌫k,I) +D

⇤
2n,5,2(⌫k,I)

�
.

At this point, we have the order assessment of all the terms involved in the di↵erence D
⇤
n(u) in

(A.16). The last step in our proof, that follows, is to identify the leading (or dominant) terms in

(A.16).

It can be seen that

⇢
E

Q1
k,2,I(uk), E

Q3
k,3,II,1(⌫k)

�
, which are both positive quantities, dominate all

the quantities

⇢
E

Q1
k,1,I(uk), E

Q3
k,1,I(⌫k), E

Q3
k,2,I(⌫k), E

Q3
k,3,I,1(⌫k), E

Q4
k,l,1,I(⌫k,I ,⌫ l,I),

E
Q4
k,l,2,I(⌫k,I ,⌫ l,I), d

⇤
1,3n,1(uk,I), d

⇤
1,3n,3(⌫k,I), D

⇤
2n,1,2(uk,I),

D
⇤
2n,3,2(⌫k,I), D

⇤
2n,5,2(⌫k,I)

�
.

On the other hand, the {D⇤
2n,2,k(uk,II), D⇤

2n,4,k(⌫k,II)} which are both positive quantities, domi-
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nate all the quantities

⇢
d
⇤
1,1n,2,k(uk,II), d⇤1,1n,4,k(⌫k,II),

d
⇤
1,3n,2(uk,II), d⇤1,3n,4(⌫k,II), E

Q1
k,1,II(uk,II), E

Q1
k,1,III(uk,II), E

Q1
k,2,II(uk), E

Q3
k,1,II(⌫k),

E
Q3
k,2,II(⌫k), E

Q3
k,1,III(⌫k), E

Q3
k,2,III(⌫k), E

Q3
k,3,I,2(⌫k), E

Q3
k,3,I,3(⌫k), E

Q3
k,3,II,2(⌫k),

E
Q4
k,l,1,II(⌫k,II ,⌫ l,II), E

Q4
k,l,2,II(⌫k,II ,⌫ l,II), E

Q4
k,l,1,III(⌫k,I ,⌫ l,II), E

Q4
k,l,2,III(⌫k,I ,⌫ l,II),

E
Q4
k,l,1,IV (⌫k,II ,⌫ l,I), E

Q4
k,l,2,IV (⌫k,II ,⌫ l,I)

�
.

The remaining terms to be assessed are

⇢
d
⇤
1,1n,1(u), d

⇤
1,1n,3(u), D

⇤
2n,1,1(uk,I), D

⇤
2n,3,1(⌫k,I), D

⇤
2n,5,1(⌫k,I)

�
.

These terms are dominated by the positive quantities

⇢
E

Q1
k,2,I(uk), E

Q3
k,3,II,1(⌫k)

�

or ⇢
D

⇤
2n,2,k(uk,II), D

⇤
2n,4,k(⌫k,II)

�

depending on the sizes of the subvectors (uk,I ,⌫k,I) and (uk,II ,⌫k,II). If kuk,IIk1 < C✏/2 and

k⌫k,IIk1 < C✏/2 then kuk,Ik2 > C✏/2 and k⌫k,Ik2 > C✏/2 which implies that

⇢
E

Q1
k,2,I(uk), E

Q3
k,3,II,1(⌫k)

�

are the dominant terms. If kuk,IIk1 > C✏/2 and k⌫k,IIk1 > C✏/2 then

⇢
D

⇤
2n,2,k(uk,II),D⇤

2n,4,k(⌫k,II)

�

are the dominant terms.

In summary, in (A.16), the negative quantities�
⇢
E

Q1
k,2,I(uk), E

Q3
k,3,II,1(⌫k)

�
and�

⇢
D

⇤
2n,2,k(uk,II),

D
⇤
2n,4,k(⌫k,II)

�
are the dominant terms, which implies that D⇤

n(u) < 0, in probability, as n ! 1.

This completes the proof. �

The result of Lemma 2 below is used to prove Part(i) of Theorem 4. The Lemma shows that

for any ✓ = (✓1,✓2) in a
p

sn
n -shrinkage neighbourhood of the truth ✓0 = (✓01,0), the maximum of

the penalized log-likelihood Ln(·) is achieved at the sparse point (✓1,0).

Lemma 2. Consider the partitioning ✓ = (✓1,✓2), where ✓2 is corresponding to all the zero regression

coe�cients. Under the conditions of Theorem 4, for any ✓ in the neighbourhood k✓ � ✓0k2 =
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Op(
p
sn/n), with probability tending to one, as n ! 1, we have

Ln((✓1,✓2)) < Ln((✓1,0)). (A.19)

Proof of Lemma 2. The general idea of the proof is similar to the one of Lemma 1. The order

assessments are, however, di↵erent. Thus we summarize our proof as follows. By the definition of

the penalized likelihood function in (6), we have that

Ln((✓1,✓2))� Ln((✓1,0)) = [ln((✓1,✓2))� ln((✓1,0))]� [Rn((✓1,✓2))�Rn((✓1,0))]. (A.20)

By the mean value theorem,

ln((✓1,✓2))� ln((✓1,0)) =


@ln((✓1, ⇠

⇤))

@✓2

�>
✓2 =

KX

k=1

pnX

j=snk+1


@ln((✓1, ⇠

⇤))

@�kj

�
�kj

+
K�1X

k=1

pnX

j=s⇤nk+1


@ln((✓1, ⇠

⇤))

@↵kj

�
↵kj

(for simplicity in notation) =
dnX

j=1


@ln((✓1, ⇠

⇤))

@ j

�
 j ,

where ⇠⇤ is between 0 and ✓2, k⇠⇤k2  k✓2k2 = O(
p
sn/n), and dim(✓2) = dn =

PK
k=1(pn � snk) +

PK�1
k=1 (pn � s

⇤
nk).

An order assessment of the partial derivatives appeared in the above expression is required. By

the triangle inequality, for each j,

����
@ln(✓1, ⇠

⇤)

@ j
� @ln(✓

0
1,0)

@ j

���� 
����
@ln(✓1, ⇠

⇤)

@ j
� @ln(✓1,0)

@ j

����+
����
@ln(✓1,0)

@ j
� @ln(✓

0
1,0)

@ j

����. (A.21)

Using a similar argument as in Lemma 1, we have

@ln(✓1,0)

@ j
� @ln(✓

0
1,0)

@ j
= Op(

p
nsnpn)

@ln(✓1, ⇠
⇤)

@ j
� @ln(✓1,0)

@ j
= Op(

p
nsnpn),
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and since @ln(✓
0
1,0)/@ j = Op(

p
nsnpn), thus

@ln(✓1, ⇠)

@ j
= Op(

p
nsnpn). (A.22)

On the other hand,

Rn((✓1,✓2))�Rn((✓1,0)) =
KX

k=1

pnX

j>snk

rn(�kj ;�nk) +
pnX

j>s⇤n

rn(k↵g,jk2;�⇤n)

+
⌧
⇤
n

2

K�1X

k=1

pnX

j=s⇤n+1

|↵kj |2.

Thus, by using the above two di↵erences, we arrive at

Ln((✓1,✓2))� Ln((✓1,0)) =
KX

k=1

pnX

j=snk+1

⇢
Op(

p
nsnpn)|�kj |� rn(�kj ;�nk)

�

+
K�1X

k=1

pnX

j=s⇤n+1

⇢
Op(

p
nsnpn)|↵kj |�

⌧
⇤
n

2

r
sn

n
|↵kj |

�

�
pnX

j=s⇤n+1

r(k↵·jk2;�⇤n).

By the regularity condition C1 on the ridge parameter ⌧⇤n, we have ⌧⇤n
2

p
sn
n = o(

p
nsnpn). Hence,

Ln((✓1,✓2))� Ln((✓1,0)) =
KX

k=1

pnX

j=snk+1

⇢
Op(

p
nsnpn)|�kj |� rn(�kj ;�nk)

�

+
pnX

j=s⇤n+1

⇢
Op(

p
nsnpn)

K�1X

k=1

|↵kj |� rn(k↵·jk2;�⇤n)
�
.

By the Cauchy-Schwarz inequality,
PK�1

k=1 |↵kj | = k↵·jk1 
p
K � 1⇥k↵·jk2. Also, by condition

C⇤
3 , for ↵kj and �kj in the shrinkage neighbourhood of zero,

rn(�kj ;�nk) = ⌘n ⇥ |�kj | , rn(k↵·jk2;�⇤nk) = ⌘n ⇥ k↵·jk2 �
⌘np
K � 1

⇥ k↵·jk1

such that limn!1 ⌘n/
p
nsnpn = 1, which implies that the two double sums in the above are

negative. This completes the proof. �
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Proof of Theorem 4. We omit the proof since it is similar to the proof of Theorem 3 except

that we work with the
p
n/sn-consistent estimator b✓n1. Note that here we work with the penalized

log-likelihood function Ln(✓1) which is constructed based on the reduced model with the covariate

vectors of maximum dimension sn. The implication is that in the proof of Theorem 3 we replace pn

with sn and then the results follow. �
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