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3 ABSTRACT: In drug discovery, in vitro and in vivo experiments generate
4 biochemical activity data that are crucial for evaluating the efficacy and toxicity of
5 compounds. These data sets are massive, sparse, and ever-evolving. Quantitative
6 structure−activity relationship (QSAR) models, which predict biochemical activities
7 from compound structures, face challenges in integrating the evolving experimental
8 data agilely as studies progress. We developed QSAR-Complete (QComp), an
9 imputation framework, to address these challenges. While QSAR models are updated
10 at a slow pace through extensive retraining on enlarging data sets, QComp leverages
11 existing QSAR models to immediately exploit new experimental data and improves the
12 imputation of missing data. We demonstrate that the improvement is robust and
13 substantial for imputing in vivo assays with only in vitro experimental data.
14 Additionally, QComp assists in finding the optimal sequence of experiments by
15 quantifying the reduction in statistical uncertainty for specific end points, aiding in
16 rational decision-making throughout the drug discovery process.

1. INTRODUCTION
17 Quantitative structure−activity relationship (QSAR) modeling
18 is one of the most important approaches for data-driven
19 prediction of molecular properties,1−4 with recent progress led
20 by deep learning.5−10 Sophisticated deep learning methods can
21 model various chemical properties with a unified (multitask)
22 neural network model.5,11−14 QSAR finds major applications in
23 material and drug discovery,10,15 where QSAR models are
24 trained on existing data sets of molecules with known
25 properties. The models are then utilized for high-throughput
26 screening14,16 of a massive database of molecules. For virtual
27 screening, it is advantageous that QSAR takes only the
28 structure of a molecule to make the prediction. This simplicity
29 becomes less desirable in stages past virtual modeling, where
30 experimental data on a few chemical properties become
31 available for some compounds. QSAR models cannot
32 dynamically incorporate these newly acquired data toward
33 improved prediction.17 Extensive retraining of the models with
34 both the original training set and the newly acquired data has
35 to be carried out. Such retraining is not economical for large
36 deep learning QSAR models when the number of newly
37 acquired data is negligible compared to the size of the original
38 training set, a common scenario in industrial practice of
39 material and drug discovery due to the cost of experiments and
40 the massive size of historical data. Therefore, it is desirable to
41 have an imputation model that can leverage pre-existing QSAR
42 models and dynamically incorporate any amount of newly
43 acquired data without retraining imputation/QSAR models on
44 these new data.
45 For this purpose, we develop a QSAR-based imputation
46 framework, named “QSAR-Complete” or “QComp” for

47brevity. QComp treats biochemical activities y of a molecule
48as a probability distribution |y x( ) decided by the chemical
49structure x of the molecule. Typical structure-based QSAR

50models can be understood as to directly predict |y xargmax ( )y
51as a function of x. QComp addresses instead the case in which
52some entries of y are determined by newly acquired
53experimental data. To do so, QComp parameterizes the
54probability distribution of the missing entries of y as a function
55of known entries and x. The maximum likelihood of such a
56function yields optimal imputation. Moreover, QComp
57incorporates a pre-existing QSAR model in a natural way
58such that QComp can reproduce the structure-based QSAR
59prediction when y is entirely unknown. In other words, the
60maximum of the distribution |y x( ) as a function of free
61variable y is constructed as the prediction of a base QSAR
62model. With a partially missing data set, our approach models
63the conditional distribution of |y x( ) where some entries of y
64have been fixed by experimental data.
65Because QComp is based on leveraging an existing QSAR
66model, it is distinguished from general imputation algo-
67rithms18−24 that are built from scratch. Multivariate imputation
68by chained equations (MICE)22 and MissForest23 are leading
69members in the category of general iterative imputers. They
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70 model each feature as a function of others, starting by replacing
71 missing values with statistical means or the most frequent
72 values. Then, the imputed entries are updated iteratively in a
73 round-robin fashion. Another major category of imputers is
74 matrix factorization-based methods.25 Macau,24 a member of
75 this category, has been applied to drug discovery tasks.17
76 Although these general algorithms do not base imputation on
77 another predictive model, they are flexible enough to
78 incorporate additional information for improved performance
79 on sparse data sets, which allows fair comparison with QComp.
80 In addition to general methods, specific imputation methods
81 have been tailored for predicting chemical properties, such as
82 Alchemite26 and pQSAR.27,28 Alchemite, as an iterative
83 imputer, updates imputed values through a multitask neural
84 network with chemical structures and activities as input. Here,
85 directly utilizing a neural network for imputation raises
86 concerns about convergence,29,30 a typical issue for iterative
87 imputers. The risk of divergence is certain for a deep neural
88 network that often experiences overfitting and unreliable
89 extrapolation on insufficiently large data sets, a common
90 scenario for in vivo properties. pQSAR as appearing in ref
91 27,28 addresses a scenario different from the one targeted by
92 QComp. QComp mainly focuses on cases where there are a
93 fixed number of assays (or columns) in a long-standing data
94 set. One wants to better impute the sparse measurement of
95 new compounds (new rows) added to the data set by
96 leveraging well-developed existing QSAR models. pQSAR
97 focuses on an orthogonal scenario: new assays (columns) are
98 introduced to a long-standing data set. The new assays
99 accumulate few data points compared to long-standing assays,
100 and there are no trustworthy QSAR models directly trained on
101 these new assays. So, pQSAR establishes an indirect QSAR
102 model for new assays through partial-least-squares optimiza-
103 tion of a linear mapping from existing QSAR models of old
104 assays to the prediction of new assays. Apparently, pQSAR and
105 QComp cannot be directly applied to each other’s target
106 scenario, as there are missing base QSAR models in the former,
107 while in the latter, there have been nonlinear, multitask base
108 QSAR models8,31 that should work better than a linear
109 combination of single-task models.
110 In our target scenario, considering challenges in iterative
111 imputation, the QComp approach instead builds the
112 imputation on a probabilistic framework with a well-defined
113 optimum.
114 In this work, we mainly apply QComp to model the
115 absorption, distribution, metabolism, elimination, and toxicity
116 (ADMET) for small molecules. These properties are tightly
117 bound to the efficacy and safety of the drug candidates. We will
118 demonstrate that QComp systematically improves upon
119 structure-based QSAR for ADMET imputation. In particular,
120 we show that QComp is promising in improving the prediction
121 of in vivo assays with the knowledge of in vitro data, a feature
122 that is highly desirable in high-throughput screening. Mean-
123 while, QComp shows advantages in accuracy, robustness, and
124 interpretability compared to several standard imputation
125 methods fed with the same side information from the pre-
126 existing QSAR model. And we show that QComp leads to a
127 simple strategy for the optimization of decision-making in drug
128 discovery. In addition, because QComp itself is a general
129 algorithm, it is not limited to ADMET tasks. We demonstrate
130 the advantages of QComp also on the QM8 data set32 of
131 electronic structure, reported in the Supporting Information.

132The rest of the article is organized as follows. In Section 2,
133the QComp approach is formulated. In Section 3, we first
134introduce the data sets and the adopted base QSAR model.
135Then, we benchmark QComp against general imputers MICE
136and MissForest under multiple scenarios on a large ADMET
137data set with around 7,80,000 molecules. We also benchmark
138QComp on a public ADMET data set for reproducibility.
139Then, we show how QComp can assist decision-making in
140planning the sequence of experiments. In the end, we
141summarize our findings and conclude in Section 4.

2. METHODS
1422.1. Probabilistic Framework of QComp. We begin by
143formally defining the imputation problem using probabilistic
144terminology. For a molecule uniquely labeled as i in a
145molecular database , let x(i) be its chemical structure and the
146row vector y(i) = (y1(i), y2(i), ···, yp(i)) represents its p target
147activities. The QSAR is described by the probability
148distribution |y x( )i i( ) ( ) . In the database, some entries of y(i)
149were determined from experiments. We use yO(i) to denote the
150subvector (of length pO(i)) of y(i) containing those known
151(observed) activities from experiments, and yM(i) the subvector
152(of length pM(i) = p−pO(i)) containing unknown (missing)
153activities as random variables. So for arbitrary molecule i in
154the database, we have the partition y(i) = (yM(i), yO(i)).
155The task of QComp is to determine |y y x( , )

i i iM( ) O( ) ( ) as a
156conditional distribution of |y x( )i i( ) ( ) for each molecule i. The
157optimal imputation is the conditional expectation
158= |y y y x( , )

i i i iM( ) M( ) O( ) ( ) . Note that, when there is no
159known data, the imputation task falls back to the vanilla
160QSAR problem, i.e., determining |y x( )i i( ) ( ) entirely from
161chemical structures. The situation in a realistic pharmaceutical
162setting is the following. With all known data { | }iy iO( ) , one
163has already trained a set of deterministic QSAR models, giving

164access to an estimation of |y xargmax ( )i i
y

( ) ( ) as a function of
165x(i), denoted by f(i) = ( f1(x(i)), f 2(x(i)), ···, f p(x(i))). QComp
166utilizes this estimation and assumes that y(i) conditional on x(i)
167follows a multivariate Gaussian distribution y(i)|x(i) ∼ N(μ(i),
168Σ) with the probability density function |y x( )i i( ) ( ) given by

ikjjj y{zzz
| = | |y x

y y

( ) ((2 ) )

exp 1
2
( ) ( )

i i p

i i i i

( ) ( ) 1/2

( ) ( ) 1 ( ) ( )

169(1)

170This is not to be confused with assuming the activity y(i) itself
171is normally distributed, which is a much stronger assumption
172(see Section 3.2 for details). The row vector μ(i) = f(i)B + b is a
173linear transformation of the QSAR prediction f(i), serving as a
174multitask calibration of given QSAR models. B is a p × p
175matrix, and b a 1 × p vector. The covariance matrix Σ is a
176positive-definite p × p matrix. |Σ| denotes its determinant.
177Specifically, Σ is represented by its Cholesky decomposition,
178and only the resulting lower triangle matrix is treated as free
179parameters. In the following, we use θ to represent the group
180of parameters determining B, b, and Σ.
181For each i and the partition y(i) = (yM(i), yO(i)), the calibrated
182QSAR prediction μ(i) can be correspondingly partitioned as
183(μM(i), μO(i)). Note that the indices of the missing and observed
184elements of the vector y(i) can be different for different
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185 observation i. And the covariance matrix Σ can be partitioned
186 as the block matrixÄ

Ç
ÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
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i i

i i

MM( ) MO( )

MO( ) OO( )

187 (2)

188 Here, ΣMM(i) represents the pM(i) × pM(i) submatrix of Σ
189 associated with the covariance of yM(i). Similarly, ΣMO(i) is the
190 submatrix of Σ whose rows correspond to M(i) and columns
191 correspond to O(i), i.e., ΣMO(i) = Σ(M(i),O(i)). Finally, ΣOO(i)

192 represents the pO(i) × pO(i) submatrix of Σ corresponding to the
193 observed coordinates of y(i), i.e., ΣOO(i) = Σ(O(i),O(i)).
194 2.2. Training. Within the QComp model, the likelihood of
195 the observation yO(i) follows the marginal Gaussian distribution

| = |

=
| |

( )

dy x y x y

y y

( ) ( )

exp ( )( ) ( )

(2 )

i i i i i

i i i i i

p i
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1
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196 (3)
197 We define the following log-likelihood loss function with
198 respect to θ = (B, b, Σ)

= | = |y x y x( ) log ( ) log ( )

i

i i

i

i iO( ) ( ) O( ) ( )

199 (4)
200 θ̂ = (B̂, b̂, Σ̂) denotes the optimal values of θ, defined as

201
= arg min ( ). This optimization problem can be solved by

202 performing a gradient descent on θ. The complexity of forward
203 propagation is bound by O N p( )3 . N is the number of
204 molecules in the training set. p is the total number of chemical
205 activities/assays. Once θ̂ is obtained, the calibrated QSAR
206 prediction is μ̂(i) = f(i)B̂ + b̂.
207 2.3. Imputation. After training QComp on a database, one
208 can get an estimation of θ̂ and use it to do one-shot
209 imputation. Note that yM(i) conditioned on yO(i) and x(i)
210 follows a Gaussian distributioni.e.,

| Ny y x, ( , )
i i i i iM( ) O( ) ( ) M( ) MM( )

211 (5)

212 where

= + y( ) ( ) ( ) ( )
i i i i i iM( ) M( )

MO( ) OO( )
1 O( ) O( )

213(6)

214and

= [ ]( )
i i i i iMM( ) MM( ) MO( ) OO( )

1
MO( )
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216The corresponding probability density function is
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218The optimal imputation given by QComp for the missing
219assays is therefore

| =y y x( , )
i i i iM( ) O( ) ( ) M( )

220(9)

221The complexity for imputing a data set of N rows is
222therefore bound by O N p( )3 . The imputation procedure
223 f1outlined above is illustrated in Figure 1.
224A comment on the imputation uncertainty is in order. Here,
225the uncertainty related to μ̃M(i) is not simply the diagonal of
226Σ̃MM(i), unless one can ignore the uncertainty embedded in the
227QSAR prediction, which is usually far from negligible. We
228construct a composite uncertainty in Section B of the
229Supporting Information to address this extra complication.
230However, even without further construction, here we are
231already able to have a clear idea of how much certainty one can
232gain on missing assays yM(i) by knowing the experimental
233measurements yO(i). The gain of certainty (GOC) is simply the
234diagonal terms in Σ̂MO(i)(Σ̂OO(i))−1[Σ̂MO(i)]Τ.

3. EXPERIMENTS
2353.1. Data and Model Details. 3.1.1. Data Sets. We apply
236our approach to one proprietary ADMET data set, one public
237ADMET data set compiled from various public sources,13,33−42

238and the QM8 data set.32 The proprietary data set (ADMET-
239780k data set) contains sparse data of 31 in vitro and in vivo
240ADMET assays for around 7,80,000 molecules, recorded
241internally at Merck & Co., Inc., Rahway, NJ. An earlier version
242of the proprietary data set has been used in ref 43 for QSAR
243modeling. The public ADMET data set contains data from 25

Figure 1. Imputation procedure of QComp. For a set of new compounds with assays y1, ···, and yp under consideration, QSAR predictions are
available for all assays, while experimental data is partially available. QComp utilizes both QSAR and sparse experimental data to predict the
probability distribution of the missing assays and the corresponding optimal imputation values.
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244 ADMET assays for nearly 1,10,000 molecules. The details of
245 ADMET data sets, including the list of biochemical activities
246 and the Pearson correlation between activities, can be found in
247 Section C of the Supporting Information. The diversity of the
248 ADMET-780k data set and the public ADMET data set is
249 compared against a small database of FDA-approved drugs
250 (3480 molecules).44 The metric of diversity is the average 5-
251 nearest-neighbor Tanimoto distance on Morgan fingerprints.
252 Randomly sampled subsets of size 3480 are obtained,
253 respectively, from the ADMET-780k data set and the public
254 data set, yielding scores of 0.48 and 0.50. The results imply
255 that both our data sets cover larger chemical space than the set
256 of FDA-approved drugs with a score of 0.36. The QM8 data
257 set consists of 16 quantum mechanical properties of 21,787
258 molecules.32 This data set serves to demonstrate the
259 applicability of QComp beyond drug discovery.
260 We will benchmark QComp on the largest ADMET-780k
261 data set, which is accumulated from consistent industrial drug
262 discovery practices. A similar benchmarking procedure is
263 performed for the public ADMET data set for the
264 reproducibility of the QComp approach. Finally, benchmark-
265 ing results on the QM8 data set are reported in Section G of
266 the Supporting Information.
267 3.1.2. Data Splitting Strategies. For the ADMET-780k data
268 set, we split the entire data set into a 90% training/validation
269 subset and 10% test subset using a compound-based temporal

270split. For the public ADMET data set, we perform 5-fold 80
271and 20% random splitting as the time stamp information is not
272available. The clustering-based splitting strategy associated
273with the supplemental benchmark not reported in the main
274text is detailed in the Supporting Information along with the
275benchmark results.
2763.1.3. Base QSAR Models. For ADMET-780k and the public
277ADMET data set, we train multitask Chemprop models as the
278base QSAR (see Section A of the Supporting Information for
279details). The Chemprop model utilizes a directed message-
280passing neural network (D-MPNN) to predict molecular
281properties based on the graph representation of molecules.8,31
282Training an ensemble of four Chemprop models on the
283ADMET-780k data set requires 78 h on an Nvidia V100 GPU.
284For the QM8 data set, we fine-tune the open-sourced
285pretrained Uni-Mol model45 as the base QSAR. The details
286are reported in Section G of the Supporting Information.
2873.1.4. Baseline Imputation Models. We compare the
288QComp approach to two baseline imputation methods:
289MICE22 and Missforest.23 Macau,24 also a representative
290imputation model, is not used for benchmarking here. Because
291Macau relies on sparse matrix factorization, it is much less
292efficient than MICE, Missforest, or QComp when working
293with the ADMET-780k training set (∼7,80,000 rows) due to
294the high cost of factorizing a very large matrix. We are not able
295to complete the imputation within a reasonable time. A

Figure 2. (a, b) Histograms of the “microsome Cl” assays for dogs and humans. (c) Heatmap of the joint distribution of “microsome Cl, dog” and
“microsome Cl, human”. (d, e) Histograms of the deviation of “microsome Cl” assays from the QSAR predictions. (f) The heatmap of the joint
distribution associated with the quantities in panels (d) and (e).
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296 workaround is to stack only a small subset of the training set
297 with the test set for imputation. The outcomes show poor
298 performance compared to that of all other methods. So
299 eventually, we do not use Macau for benchmarking. We
300 provide the two baseline methods, Mice and Missforest, with
301 the same QSAR predictions accessed by QComp. Specifically,
302 for MICE and MissForest, we extend the data set by appending
303 QSAR predictions as supplementary columns. For example, the
304 ADMET-780k data set, originally containing 31 assay columns,
305 is extended to 62 columns, where the extra 31 columns are
306 Chemprop predictions with no missing values. The details and
307 the parameters for these methods are provided in Section A of
308 the Supporting Information. These efforts ensure that all
309 methods have access to the same knowledge, facilitating
310 equitable comparisons and assessments of their respective
311 performance. Training of the three imputation models on the
312 ADMET-780k training set can be much less computationally
313 demanding than that of the base QSAR model. To have an
314 order-of-magnitude estimation, training QComp and MICE on
315 the ADMET-780k training set (∼7,80,000 rows) takes several
316 minutes on an Apple M3 Pro CPU chip. Training MissForest
317 with the same data set and CPU chip requires several hours.
318 For comparison, training a neural network-based QSAR model
319 on the ADMET-780k training set typically requires 10−100 h
320 of computing time on an Nvidia V100 GPU (or newer
321 models).
322 3.2. Validation of Assumption. Here, we examine the
323 basic assumption of QComp: the deviation of the experimental
324 value of an assay from the QSAR prediction is distributed
325 normally (see eq 1). Evidently, the assumed distribution is
326 subject to the quality of the QSAR model. For a trivial QSAR
327 model that gives constant predictions independent of chemical
328 structures, the distribution of (y(i) − μ(i)) can be far from being

f2 329 Gaussian. This is exemplified by Figure 2a,b, where we show
330 with histograms the plain distribution of the experimental
331 values of two assays, “microsome Cl dog” and “microsome Cl
332 human”, in the ADMET-780k data set. For both assays, the
333 peak of the histogram is located near the lower end of the
334 distribution, in sharp contrast to a typical Gaussian
335 distribution. Furthermore, the joint distribution of the two
336 assays (Figure 2c) is not close to a 2D Gaussian distribution.
337 The situation is different when the QSAR model is properly
338 trained. We examine the multitask Chemprop model (trained
339 on the same data set) that serves as the base μ(i). Figure 2d
340 (Figure 2e) shows with a histogram the distribution of the
341 “microsome Cl, dog (human)” component of (y(i) − μ(i)). The
342 distributions display a close resemblance to the 1D Gaussian
343 distribution centered at zero. Meanwhile, Figure 2f shows that
344 the joint distribution of the two assays is similar to a zero-
345 centered 2D Gaussian distribution with a positive off-diagonal
346 covariance. The nonzero off-diagonal covariance, i.e., the
347 correlation between different assays, is what is to be utilized by
348 QComp to exceed the capability of bare QSAR. Of course, not
349 all pairs of assays display nonzero off-diagonal covariance, since
350 two chemical properties cannot always be statistically
351 correlated.
352 Besides the two assays used as examples here, other pairs of
353 assays in all our data sets (listed in Section 3.1) also yield
354 satisfactory Gaussianity with a properly trained QSAR model.
355 These observations validate the assumption of QComp in
356 practical applications. Certainly, there are also cases where
357 QSAR models yield low accuracy and non-Gaussian deviation
358 from experimental data. In such a situation, QComp should

359not be applied. Instead, efforts should be made to improve the
360performance of the base QSAR model itself. In principle,
361Gaussianity is reflected by kurtosis (Fisher’s definition) κ
362associated with a distribution of QSAR-experiment deviation.
363However, κ is very sensitive to outliers. In practice, we find that
364calculating κ after excluding outliers outside two standard
365deviations yields reasonable results that agree with the visual
366comparison of Gaussianity between assays. Empirically, |κ| < 1
367may be considered acceptable Gaussianity. The majority of
368assays in our data sets fall in this range.
3693.3. Benchmarking QComp for ADMET Imputation.
3703.3.1. ADMET-780k Data Set. We benchmark QComp with
371other two imputation methods on the ADMET-780k data set.
372The data set is divided into a 90% training subset and a 10%
373test subset using a compound-based temporal split. Here, we
374choose temporal split over random split because the latter may
375lead to overestimation of generalization capabilities.46 We train
376the multitask Chemprop model as the base QSAR model on
377the training set (see Section A in the Supporting Information
378for details). Then, QComp, MICE, and Missforest models are
379trained on the same training set with the QSAR predictions
380from Chemprop as the side information. Then, these
381imputation methods are evaluated on the test set (around
38277,000 molecules) with the following protocol. For any assay-i,
383we mask the column of assay-i in the test set as totally missing
384and impute this column with all other columns. The imputed
385column is then compared against available experimental data of
386assay-i with multiple metrics, including the squared Pearson
387correlation coefficient r2, the coefficient of determination R2,
388the mean absolute error (MAE), and the mean-squared error
389(MSE). In the following, we will mainly discuss results on r2
390and MSE. Results on R2 and MAE provide similar insights;
391therefore, they are reported in the Supporting Information
392instead.
393The r2 score obtained by the three imputation methods on
394 t1the test set is reported in Table 1. Overall, the base QSAR
395model achieves a mean r2 score (averaged over all 32 assays) of
3960.441. QComp, MICE, and Missforest achieve a mean r2 score
397of 0.596, 0.530, and 0.530, respectively. QComp outperforms
398other methods with a 35% improvement over the base. MICE
399and Missforest yield the same 20% improvement.
400Then, to examine the r2 score on the individual assay, we
401consider a simple criterion: a successful imputation method
402should not reduce the r2 score from the base QSAR model by
403more than 0.01. QComp meets the requirements for all assays.
404In contrast, all other methods can yield r2 scores significantly
405lower than the base. “PAMPA” and “PXR activation” are
406outstanding examples where MICE reduces the base r2 score in
407the order of 0.1. The comparison shows the excellent
408robustness of QComp. The robustness of QComp can be
409understood for those relatively isolated assays (such as
410CYP2C8, CYP2C9, CPY2D6, CYP3A4) that have negligible
411correlation with all other assays; the correction from QComp
412(second term on the right-hand side of eq 6) will be
413suppressed by vanishing terms in the covariance matrix. This
414keeps the imputed values of isolated assays close to the base
415QSAR prediction.
416Moreover, QComp outperforms other imputation methods
417for all assays except ″microsome Cl, dog”, “CYP2C8”, “Fu,p,
418human”, “PAMPA”, and “SOLY7”, where QComp loses by a
419small margin and serves as the second best. Similarly,
420systematic advantages of QComp are found for other metrics,
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421 including R2, MAE, and MSE (see Section E of the Supporting
422 Information).
423 So far, the benchmarking results give access only to the
424 performance of QComp in the long term because the metrics
425 are evaluated on the entire test set with around 77,000 entries,
426 a number much greater than the typical number of newly
427 acquired data obtained within a time frame of a few months. In
428 practice, QComp will be mainly applied to the latter scenario
429 for the agile development of new drugs. To evaluate its
430 performance in such a scenario, we further partitioned the test
431 set into 50 bins with time splitting. Each bin contains 1500
432 molecules, corresponding to experimental data collected within
433 1−2 months. For each bin, we computed the changes in
434 Pearson r2 score and MSE brought by the imputation method
435 over the base Chemprop model. We denote the former by Δr2
436 and the latter by ΔMSE. The mean and the error bars of these

f3 437 changes are calculated over the 50 bins and reported in Figure
f3 438 3 for QComp, MICE, and MissForest, respectively.

439 Here, we find in the cases of imputing small data sets,
440 QComp still robustly outperforms other imputation methods.
441 The average improvement over the base QSAR model is
442 statistically significant for almost half of the assays. And the
443 results are consistent with the results in Table 1.

444Furthermore, we apply the same benchmarking protocol to
445the ADMET-780k data set with clustering-based splitting (five
446clusters). The details are reported in Section F of the
447Supporting Information. Again, we find that QComp system-
448atically outperforms other imputation methods, showing the
449advantage that QComp may generalize to chemical space that
450is not covered by the training set.
451Comparing QComp, MICE, and Missforest, the success of
452QComp may be due to its constrained way of utilizing the
453correlation among ADMET properties: the simple Gaussian
454model adopted by QComp disregards nonlinear correlations
455and greatly reduces overfitting. This drastic simplification,
456however, should not impair much the capability of QComp
457since we are modeling the deviation of the assay from QSAR
458predictions. The nonlinear correlation between assays has been
459largely captured by the nonlinear base QSAR model. The
460importance of the base QSAR model can also be seen from
461another perspective: the mean r2 scores obtained by MICE and
462Missforest will be significantly smaller if we do not provide
463QSAR predictions as side information.
4643.3.2. Public ADMET Data Set.We benchmark QComp also
465on the public ADMET data set for the reproducibility of this
466work. We will demonstrate whether the enhancement brought
467by QComp is robust over an ensemble of QSAR models
468trained on different splitting of the same data set. We perform
469a 5-fold random split (80% training sets and 20% test sets) of
470the public ADMET data set. For each fold, we first train a
471Chemprop model as the base QSAR and then a QComp
472model with the same training set. Next, we evaluated the
473performance of QComp models on their respective test sets
474 f4with the general protocol introduced previously. In Figure 4,
475we report the average change of the Pearson r2 score (Δr2) and
476the MSE (ΔMSE) achieved by these five models on their
477respective test set (see the Supporting Information for more
478details). The error bars are computed accordingly for the five
479models. Similar results showing advantages of QComp are also
480found for other metrics (R2, MAE, and MSE) and for
481clustering-based split (see Sections E and F of the Supporting
482Information).
483Again, QComp shows systematic improvement over the base
484QSAR model for half of the assays. Note that the public
485ADMET data set is compiled from multiple sources with many
486nonoverlapping compounds. Therefore, some assays rarely or
487never gain experimental data simultaneously for the same
488compound in the public data set. The covariance among these
489exclusive assays cannot be accurately determined, which lowers
490the performance of QComp. The degradation of performance
491is especially severe when biologically closely related assays,
492such as pharmacokinetic properties associated with the same
493animal, have few or no overlaps in the public data set. For
494example, only two compounds in the public data set have “CL
495microsome, rat” and “CL total, rat” data simultaneously.
496Therefore, for biochemical properties that are present in both
497ADMET-780k data set and the public data set, such as “CL
498microsome” (“microsome Cl” in ADMET-780k) and “Vd, rat”,
499the performance of QComp appears significantly better on the
500ADMET-780k data set. We believe that the single-source
501ADMET-780k data set should provide a more real-world
502setting than the public ADMET data set.
5033.4. Imputing In Vivo Assays with In Vitro Data. In the
504last section, the simple benchmarking protocol adopted
505disregards the complication that the location of missing entries
506is not randomly distributed. In practice, some assays are

Table 1. Pearson r2 Scores of the Base QSAR Model
Chemprop, MICE, Missforest, and QComp on ADMET-
780k Data set with Compound-Based Temporal Splittinga

assay name Chemprop MICE Missforest QComp
Papp 0.721 0.714 0.713 0.725

CaV 1.2 0.352 0.357 0.352 0.372
NaV 1.5 0.347 0.358 0.339 0.361
Cl, dog 0.222 0.397 0.289 0.469
Cl, rat 0.387 0.965 0.893 0.993

hepatocyte Cl, dog 0.430 0.532 0.426 0.571
microsome Cl, dog 0.494 0.621 0.472 0.619

hepatocyte Cl, human 0.413 0.509 0.410 0.534
microsome Cl, human 0.472 0.545 0.514 0.599
hepatocyte Cl, rat 0.365 0.510 0.357 0.527
microsome Cl, rat 0.499 0.617 0.559 0.661

CYP2C8 0.442 0.455 0.432 0.453
CYP2C9 0.400 0.422 0.394 0.422
CYP2D6 0.224 0.242 0.151 0.247
CYP3A4 0.405 0.415 0.413 0.433

CYP,TDI,3A4,ratio 0.140 0.151 0.138 0.152
EPSA 0.816 0.804 0.792 0.813

halflife, dog 0.334 0.530 0.719 0.753
halflife, rat 0.224 0.422 0.721 0.752

hERG MK499 0.470 0.373 0.466 0.469
Fu,p, human 0.596 0.630 0.585 0.616

LogD 0.837 0.840 0.842 0.847
PAMPA 0.494 0.004 0.519 0.493

PXR activation 0.384 0.218 0.300 0.384
Fu,p, rat 0.637 0.658 0.638 0.687

Fassif Solub 0.384 0.384 0.435 0.463
Vd, rat 0.582 0.958 0.857 0.995

MRT, dog 0.366 0.712 0.845 0.916
MRT, rat 0.165 0.990 0.683 0.991
SOLY7 0.585 0.609 0.691 0.671
PGP, rat 0.494 0.497 0.484 0.501

aFor each assay, the highest r2 score among different imputation
methods is marked in bold. The second-highest r2 score in imputation
methods is marked in bold and italic.
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507 typically simultaneously present or missing in a data set
508 because they are measured from the same experiment. For
509 example, in the ADMET-780k data set, the in vivo “MRT”,
510 “half-life”, “Cl”, and “Vd” assays associated with the same
511 animal are measured in the same experiment. In vitro assays in
512 this data set have no such issue. Our benchmarking protocol so
513 far does not incorporate such constraints. When we use

514QComp to impute an in vivo assay like “MRT, rat” of a
515compound, available experimental data on ″half-life, rat”, “Cl,
516rat”, and “Vd, rat” of the same compound are utilized.
517Therefore, our previous benchmarking yields unrealistically
518large improvements to the base QSAR model for in vivo assays.
519Although it demonstrated how effective QComp is in utilizing
520assay−assay correlation, such improvement should not be

Figure 3. Average and error bar of the change on the Pearson r2 score (a positive change means improvement) and MSE (a negative change means
improvement) over the base QSAR model. The average and the error bar are calculated from the 50-bin splitting of the test set.

Figure 4. Average and the error bar of the change on the Pearson r2 score (a positive change means improvement) and MSE (a negative change
means improvement) over the base QSAR model. The average and the error bar are calculated over the five QComp models trained with a 5-fold
random split.
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521 expected in practice. Next, we address this issue with realistic
522 considerations.
523 Specifically, in drug discovery, in vitro experiments typically
524 precede in vivo experiments. Carrying out the latter is often
525 expensive and restricted. It is then highly desirable to impute in
526 vivo assays with a knowledge of in vitro assays. In the
527 following, we demonstrate that QComp can achieve such a
528 goal. The tasks are to impute the seven in vivo assays (“MRT,
529 rat”, “half-life, rat”, “Cl, rat”, and “Vd, rat”, “MRT, dog”, “half-
530 life, dog”, “Cl, dog”) in the ADMET-780k data set with only
531 available data of in vitro assays. Hence, all of the in vivo data in
532 the test set are masked as missing values. We then imputed
533 these missing entries and compared them against the
534 experimental values. This addresses the underlying issue of
535 previous general benchmarking protocols and puts the
536 imputation tasks in a practical context.

t2 537 With the setup introduced above, we report in Table 2 the
538 Pearson r2 scores for in vivo assays, obtained by QComp,

539 Missforest, MICE, and the base QSAR model, on the entire
540 test set of the ADMET-780k data set. For all seven in vivo
541 assays, QComp systematically improves over the base QSAR
542 model and exceeds the performance of all other imputation
543 methods. The improvement is roughly of the order of 10% by
544 percentile for each assay. In contrast to the exaggerated

545enhancement on predicting in vivo assays reported by Table 1,
546the results here reflect a reasonable gain from which one can
547benefit from imputation. Reasonable improvement is also
548found for R2, MAE, and MSE, as reported in Section E of the
549Supporting Information.
550Next, to confirm the statistical significance of the improve-
551ment brought by imputation, we again partitioned equally the
552test set into 50 bins with time splitting. We study the changes
553in the Pearson r2 score and MSE brought by the imputation
554method over the base QSAR model. The mean and error bars
555of these changes are calculated over the 50 bins and reported
556 f5in Figure 5. In contrast to other imputation methods that often
557cannot keep up with the accuracy of the base QSAR model, the
558improvement brought by QComp is systematic and substantial
559for predicting in vivo assays. Such a conclusion applies also to
560the same data set with clustering-based splitting (see Section F
561of the Supporting Information). These results suggest that
562QComp is indeed a useful tool for high-throughput screening,
563where in vivo experiments are not carried out on a large scale.
5643.5. Imputing In Vitro Assays without In Vivo Data. In
565addition to imputing in vivo assays with in vitro data, we
566address here another realistic scenario that is imputing missing
567in vitro data with only other available in vitro data. In fact, this
568situation holds for a large part of compounds in the ADMET-
569780k data sets. We mask all of the in vivo data as missing
570values in the test set. Then, to examine the performance of
571imputation for any in vitro assay-i, we also mask the column of
572assay-i in the test set as totally missing and impute it. The
573imputed column is then compared against available exper-
574imental data of assay-i with the squared Pearson correlation
575coefficient r2 as a metric.
576The benchmarking results on the test set are reported in
577 t3Table 3. The improvement on the Pearson r2 score brought by
578QComp is largely consistent with the improvement calculated
579from the general protocol used in Section 3.3.1. In Section
5803.3.1, while in vivo data are also used to impute in vitro assays,
581QComp achieves an average r2 score of 0.526 on in vitro
582assays, which decreases slightly to 0.518 when in vivo data are
583not utilized. For comparison, the average r2 score obtained by
584the base QSAR model is 0.475 for in vitro assays, signifying a
585roughly 10% improvement achieved by QComp in both cases.

Table 2. Pearson r2 Scores of the Base QSAR Model
Chemprop, MICE, Missforest, and QComp on ADMET-
780k Data set with Compound-Based Temporal Splittinga

assay name Chemprop MICE Missforest QComp
Cl, dog 0.222 0.241 0.219 0.242
Cl, rat 0.387 0.432 0.385 0.437

halflife, dog 0.334 0.304 0.330 0.342
halflife, rat 0.224 0.193 0.214 0.238
Vd, rat 0.582 0.538 0.570 0.613

MRT, dog 0.366 0.284 0.353 0.390
MRT, rat 0.165 0.178 0.156 0.181

aOnly in vitro data are utilized for imputation. For each assay, the
highest r2 score among different imputation methods is marked in
bold. The second-highest r2 score in imputation methods is marked in
bold and italic.

Figure 5. Average and the error bar of the change in the Pearson r2 score (a positive change means improvement) and MSE (a negative change
means improvement) over the base QSAR model for in vivo assays. The average and the error bar are calculated from the 50-bin splitting of the test
set.
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586This shows that in vivo assays only marginally help in imputing
587in vitro assays. This is expected considering that in vivo
588properties involve a lot of biochemical processes that cannot be
589characterized by a few in vitro assays.
590Next, following the same protocol of partitioning the test set
591into 50 bins as used in Sections 3.3.1 and 3.4, we study the
592mean and the error bars of the changes in the Pearson r2 score
593and MSE brought by the imputation method over the base
594 f6QSAR model. The results as reported by Figure 6 validate the
595statistical significance of the improvement brought by QComp
596for about one-third of in vitro assays, including “hepatocyte
597Cl”, “microsome Cl”, “Fassif Solub”, and “SOLY7”. Similar
598conclusions are also drawn for other metrics (R2, MAE) and
599for clustering-based split (see Sections E and F of the
600Supporting Information).
6013.6. Rational Decision-Making with QComp. When
602QComp predicts a missing assay, it also gives the GOC
603brought by available experimental data. GOC quantifies the
604reduction in the statistical uncertainty of a QComp prediction
605compared with the corresponding base QSAR prediction. In
606practice, the GOC can be used as an indicator of how effective
607an imputation process is.
608Within our framework, GOC is a statistical quantity that
609does not depend on the chemical structures of the individual
610compounds. Specifically, for imputing a missing assay-k of an
611arbitrary compound, the GOC depends only on the indices of
612the other assays with available experimental data for this
613compound. This allows a convenient greedy scheme for the
614decision-making procedure in the experimental ADMET
615studies.
616We consider the scenario that the assay-k is of primary
617interest for a new compound with no experimental data yet.
618We assume that the direct measurement of assay-k is expensive.
619For example, assay-k is an in vivo property. The goal here is to
620measure a few in vitro assays instead and impute in vivo assay-k

Table 3. Pearson r2 Scores of the Base QSAR Model
Chemprop, MICE, Missforest, and QComp on ADMET-
780k Data set with Compound-Based Temporal Splittinga

assay name Chemprop MICE Missforest QComp
Papp 0.721 0.723 0.714 0.723

CaV 1.2 0.352 0.362 0.353 0.371
NaV 1.5 0.347 0.361 0.340 0.362

hepatocyte Cl, dog 0.430 0.493 0.414 0.517
microsome Cl, dog 0.494 0.598 0.466 0.594

hepatocyte Cl, human 0.413 0.512 0.414 0.537
microsome Cl, human 0.472 0.548 0.514 0.600
hepatocyte Cl, rat 0.365 0.476 0.357 0.473
microsome Cl, rat 0.499 0.620 0.559 0.642

CYP2C8 0.442 0.457 0.434 0.453
CYP2C9 0.400 0.423 0.395 0.422
CYP2D6 0.224 0.245 0.152 0.247
CYP3A4 0.405 0.429 0.413 0.433

CYP,TDI,3A4,ratio 0.140 0.153 0.140 0.152
EPSA 0.816 0.811 0.792 0.814

hERG MK499 0.470 0.453 0.467 0.469
Fu,p, human 0.596 0.632 0.587 0.616

logD 0.837 0.841 0.842 0.847
PAMPA 0.494 0.002 0.518 0.495

PXR activation 0.384 0.314 0.302 0.384
Fu,p, rat 0.637 0.641 0.623 0.645

Fassif Solub 0.384 0.443 0.436 0.463
SOLY7 0.585 0.620 0.691 0.671
PGP, rat 0.494 0.499 0.485 0.501

aOnly in vitro data are utilized for the input of in vitro assays. For
each assay, the highest r2 score among different imputation methods is
marked in bold. The second-highest r2 score in imputation methods is
marked in bold and italic.

Figure 6. Average and the error bar of the change in the Pearson r2 score (a positive change means improvement) and MSE (a negative change
means improvement) over the base QSAR model for in vitro assays. The average and the error bar are calculated from the 50-bin splitting of the
test set.
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621 with the acquired in vitro data and the pre-existing QSAR
622 prediction. For such circumstances, we propose a scheme that
623 predicts the sequence of in vitro assays to be measured for
624 maximizing the short-term gain. The scheme first prioritizes
625 the measurement of the in vitro assay-k0 that brings the highest
626 GOC for assay-k. Then, after assay-k0 gains experimental data,
627 the GOC for assay-k with respect to the measurement of other
628 in vitro assays changes. One can recalculate the GOC and
629 prioritize again the assay that brings the highest GOC for
630 assay-k. This procedure repeats until the GOC for assay-k is
631 ignorable for any remaining missing in vitro assay, meaning we
632 cannot significantly improve the quality of imputation
633 anymore.
634 We illustrate this greedy scheme with the ADMET-780k
635 data set. We let “MRT, rat” be the assay of primary interest.
636 We assume that all in vivo experimental data (“half-life, rat”,
637 “Cl, rat”, “Vd,rat”, “half-life, dog”, “MRT, dog”, “Cl, dog”) are
638 not available, and we allow all in vitro assays to be measured.
639 Within the greedy scheme, we determined the optimal
640 sequence of in vitro assays to be measured. The results,

f7 641 along with the accumulated GOC, are given in Figure 7. The
642 accumulated GOC is the cumulative sum of the GOC of each
643 new measurement along the sequence.
644 We find that the top three assays in the optimal sequence are
645 “hepatocyte Cl, rat”, “microsome Cl, rat”, and “Fu,p, rat”. They
646 contribute to more than 80% of the final accumulated GOC.
647 The types of the top three assays also align seamlessly with the
648 empirical expectation that the in vitro properties directly
649 associated with rats should efficiently improve the imputation
650 of “MRT, rat”. Compared to the top three assays, other in vitro
651 assays bring only marginal GOC. The accumulated GOC
652 saturates around the “PAMPA” assay. Therefore, in practice,
653 the termination of the experimental sequence can be set at any
654 point between “Fu,p, rat” and “PAMPA”, depending on the
655 budget and the cost of individual experiments.
656 The optimal sequence is also largely consistent with a direct
657 ranking of assays by their covariance with the end point “MRT,
658 rat”, which can be extracted from the trained covariance matrix
659 Σ. The overall consistency can be understood as the definition
660 of GOC for one end point is essentially a normalized sum of
661 covariance between the end point and other assays. The
662 optimal sequence therefore reveals the inner structure of the
663 covariance matrix in a straightforward way for the chosen end
664 point.

4. CONCLUSIONS
665We developed the QComp approach for reliable imputation.
666QComp can dynamically exploit newly acquired data to
667improve the prediction of missing data without retraining the
668numerical model.
669We benchmarked QComp for ADMET imputation. QComp
670systematically improves upon structure-based QSAR models
671Chemprop and outperforms standard iterative imputation
672methods, including MICE and Missforest, when they are all
673provided with the same side information. Notably, for assays
674where imputation approaches do not show an advantage over
675plain QSAR prediction, QComp yields similar r2 scores as the
676base QSAR. Other imputation methods, however, may suffer
677from catastrophic failure. Moreover, we show that QComp
678improves by roughly 10% the prediction of all in vivo assays in
679our data set when only in vitro data are utilized, suggesting a
680promising potential of QComp for practical application. An
681extra advantage of QComp is providing a simple yet useful
682scheme for rational decision-making in preclinical drug
683discovery research, where acquiring in vivo assays is
684considerably more convenient than acquiring in vitro assays.
685Moreover, through the study of the QM8 data set (in the
686Supporting Information), we see the broad applicability of
687QComp in the future.
688These results demonstrate that QComp is accurate, robust,
689interpretable, and versatile. These advantages allow QComp to
690be integrated into most QSAR workflows of preclinical studies
691without restructuring the inference stage of the existing QSAR
692models. In other words, QComp can be performed after base
693QSAR inference. QComp is also of low cost considering the
694O(p3) scaling for imputing a new row of data. The bottleneck
695is mainly the cubic-scaled Cholesky inverse of covariance
696matrices. For a typical AMDET data set, p is between 1 to a
697few hundred. So, the Cholesky inverse can be done very
698efficiently. For example, with an Apple M3 Pro CPU chip, it
699takes only a few seconds to impute the test set (around 77,000
700rows with ∼83% data missing) of the 31-column ADMET-
701780k data set. We hence foresee more systematic incremental
702applications of QComp in drug discovery.
703Further development of QComp may focus on overcoming
704the stringent assumption on the base QSAR model, i.e., the
705QSAR-experiment deviations should consistently obey a
706correlated, normal distribution over relevant chemical spaces.
707Case studies reported in this paper, by and large, follow such
708an assumption. However, there is no systematic way to enforce
709these assumptions for generic tasks. To address this issue, a
710possible generalization of QComp is to allow a structure-

Figure 7. Gain of certainty accumulated along the optimal (gray) sequence of in vitro assays when setting “MRT, rat” as the target assay.
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711 dependent covariance matrix Σ, such that the correlation
712 between assays can vary over chemical spaces. The training of
713 such Σ can be incorporated into the current likelihood-based
714 training framework. It follows that the GOC can also be
715 estimated with structure dependence, making it a more useful
716 tool for decision-making.
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A Model details

Chemprop Chemprop consists of (1) a message passing network in which a graph structure

of a molecule is transformed into a molecular latent representation and (2) a feed forward

network which makes property predictions from the latent representation. A multitask model

is employed to predict all ADMET assays simultaneously as former studies have shown that

multitask models achieve better performance than single-task models when multiple tasks

are correlated with each other.1,2 For the ADMET-780k dataset, the model is trained with

an ensemble of 4 models, each initialized with a di↵erent random seed, and an epoch of 60.

10% of the training set is randomly chosen as a validation set and used to determine the

best epoch for the model during training. A hidden size of 600 and a depth of 4 are selected

for the message-passing network. A hidden size of 1300 and a depth of 4 are selected for the

feed-forward network. A normalized sum is used to aggregate the atomic embedding into a

molecular embedding during the message-passing phase. For the public ADMET dataset,

the models are trained using the same hyperparameters and ensembles with an epoch of 40.

QComp The parameters of a QComp model are initialized as follows:

• B: A p⇥ p identity matrix. p is the total number of biochemical activities.

• b: A zero vector of size p.

• ⌃: ⌃ is parameterized by its Cholesky decomposition ⌃ = LLT . The lower triangle

matrix L is initialized as a p⇥ p diagonal matrix, where the i-th diagonal term is the

standard deviation of the available data of the i-th biochemical activity.

To train the QComp model for the ADMET-780k dataset, we let the total number of

epochs be 5 and the batch size be 5000. We use the ADAM optimizer3 for gradient descent

in all our studies. Here, the initial learning rate is 0.01. The learning rate decays by 0.5

every epoch. For the public ADMET dataset, the number of epoch is 10, with a batch size

of 100. We use an initial learning rate of 0.001. The learning rate decays by 0.5 every epoch.
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MICE We use the IterativeImputer implemented in the fancyimpute4 package for MICE5

imputation. All parameters are default values (max iter=10, tol=0.001).

Missforest Missforest is an iterative imputation method similar to MICE. The di↵er-

ence is that the regression model in Missforest is random forest. In our study, we use

the class “IterativeImputer” in the scikit-learn package for Missforest imputation. The re-

gression model (estimator) is the random forest regressor (n estimators=4, max depth=10.

max samples=0.5) in scikit-learn. The maximal iteration for iterative imputation is 25 with

tol=0.1.

B Composite Uncertainty

We let the uncertainty of f (i) be denoted by �(i) = (�(i)
1
, �(i)

2
, · · · , �(i)

p ). In practice, both

f (i) and �(i) are calculated from an ensemble of deterministic QSAR models trained on the

same dataset but initialized di↵erently. f (i) and �(i) are respectively the ensemble average

and the standard deviation of QSAR predictions. Assuming the components of �(i) are not

correlated with each other, the ensemble covariance matrix associated with f (i) is a diagonal

matrix ⌃
(i)
f with (�(i)

j )2 as j-th diagonal terms. Through propagation of uncertainty, the

ensemble covariance matrix of µ(i) is ⌃
(i)
µ = B

>
⌃

(i)
f B. We can use ⌃

(i)
µ to compute the

ensemble deviation associated with µ̃M(i). But before that, we need to define some extra

notations. Let (y(i))j be an arbitrary missing assay and (y(i))k any known assay. 1  j, k  p

are the indices of the assays in the whole collection of p assays. In terms of the partition

y
(i) = (yM(i),yO(i)), we use jM(i) to denote the index of the assay-j in the sub-vector yM(i),

and kO(i) the index of the assay-k in y
O(i). So there is an one-to-one mapping between j and

jM(i), k and kO(i). Additionally, we define D(i) = ⌃
MO(i)(⌃OO(i))�1. So we can express the
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ensemble deviation associated to µ̃M(i) in simple terms:

(�(i)

µ̃M)
2

jM(i) = (⌃(i)
µ )jj +

p
(i)
OX

kO(i)=1

(D(i)

jM(i)kO(i))
2(⌃(i)

µ )kk. (1)

To incorporate the Gaussian statistical uncertainty assumed by QComp, we construct the

composite uncertainty

(&(i)
µ̃M)

2

jM(i) = (�(i)

µ̃M)
2

jM(i) + (e⌃
MM(i)

)jM(i)jM(i) . (2)

This final expression serves as a practical but rough estimation for the error of optimal

imputation.
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C Dataset details

C.1 Proprietary ADMET-780k dataset

Figure S1: ADMET-780k dataset: Pearson correlation heatmap.
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We split the dataset temporally according to the synthesis date of each compound.

Table S1: ADMET-780k dataset: Number of compounds in training and test sets for
compound-based temporal split

Assay Short Name Train Size Test Size Description

Absorption Papp Papp 49272 5774 Apparent permeability through cell monolayers
Ca Na Ion Channel CaV 1.2 Inhibition CaV 1.2 142473 11266 Inhibition of CaV1.2 ion channels
Ca Na Ion Channel NaV 1.5 Inhibition NaV 1.5 135994 11449 Inhibition of NaV1.5 ion channels
Clearance Dog Cl, dog 19633 2203 In vivo plasma clearance in dog
Clearance Rat Cl, rat 64395 11505 In vivo plasma clearance in rat
CLint Dog hepatocyte hepatocyte Cl, dog 7232 1144 In vitro dog hepatocyte intrinsic clearance
CLint Dog microsome microsome Cl, dog 3946 467 In vitro dog microsome intrinsic clearance
CLint Human hepatocyte hepatocyte Cl, human 36476 5717 In vitro human hepatocyte intrinsic clearance
CLint Human microsome microsome Cl, human 44252 4443 In vitro human microsome intrinsic clearance
CLint Rat hepatocyte hepatocyte Cl, rat 33531 5644 In vitro rat hepatocyte intrinsic clearance
CLint Rat microsome microsome Cl, rat 41609 4240 In vitro rat microsome intrinsic clearance
CYP Inhibition 2C8 CYP2C8 58548 11791 Inhibition of CYP2C8
CYP Inhibition 2C9 CYP2C9 211790 11087 Inhibition of CYP2C9
CYP Inhibition 2D6 CYP2D6 211776 8732 Inhibition of CYP2D6
CYP Inhibition 3A4 CYP3A4 213576 10146 Inhibition of CYP3A4
CYP TDI 3A4 Ratio CYP,TDI,3A4,ratio 38477 1848 Time-dependent CYP3A4 inhibition via NADPH IC50 shift
EPSA EPSA 18863 21937 Exposed polarity measurement (Experimental Polar Surface Area)
Halflife Dog halflife, dog 21541 2345 Half-life in vivo in dog
Halflife Rat halflife, rat 70892 11996 Half-life in vivo in rat
hERG MK499 hERG MK499 349226 14993 Binding to the HERG channel through the displacement of MK499
Human fraction unbound plasma-current Fu,p, human 19478 2775 Fraction of unbound drug in human plasma
LogD HPLC pH 7.0 LogD 457038 2663 LogD at pH 7
PAMPA PAMPA 2907 1094 Parallel artificial membrane permeability assay
PXR activation PXR activation 219501 14739 PXR receptor activation
Rat fraction unbound plasma-current Fu,p, rat 43382 11081 Fraction of unbound drug in rat plasma
Solubility Fassif Fassif Solub 247693 68504 Solubility in FaSSIF (Fasted State Simulated Intestinal Fluid)
Volume of Distribution Rat Vd, rat 64431 11490 In vivo volume of distribution in rat
Dog MRT MRT, dog 17506 2196 Mean residence time in dog
Rat MRT MRT, rat 60538 11467 Mean residence time in rat
SOLY 7 SOLY7 412744 58766 Kinetic solubility at pH 7
Rat PGP 1uM PGP, rat 25214 2417 Rat BA:AB e✏ux ratio P-gp
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C.2 Public ADMET dataset

The public dataset (Sec. D) used in this work is compiled from various public sources

including Ref. 6 (ChEMBL, CC BY-SA 3.0 DEED), Ref. 7 (CC-BY-NC-ND 4.0), Ref.

8(PubChem), Ref. 9 (from PharmaPendium and ChEMBL), Ref. 10 (CC BY 4.0 DEED),

Ref. 11 (ChEMBL), Ref. 12(ChEMBL), Ref. 13(ChEMBL), Ref. 14, Ref. 15(CC BY 4.0

DEED), and Ref. 16(CC BY 4.0 DEED).

Each assay data is converted to an appropriate unit as indicated in the Table S2. The

SMILES identifiers from di↵erent data sources are validated and canonicalized using RD-

Kit.17 The mean values are used when multiple data points are found for the same compound.

Figure S2: The public dataset: Pearson correlation heatmap. Blank blocks indicate missing
values (assays appearing mutually exclusively in the dataset).
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Table S2: Public dataset: size, assay name mapping, units and authoritative descriptions

Assay Data Count Short Name Units Description

CL microsome human 5218 CL microsome, human log10(mL/min/kg) In vitro intrinsic clearance measured in hu-
man microsomes

CL microsome mouse 663 CL microsome, mouse log10(mL/min/kg) In vitro intrinsic clearance measured in
mouse microsomes

CL microsome rat 1798 CL microsome, rat log10(mL/min/kg) In vitro intrinsic clearance measured in rat
microsomes

CL total dog 284 CL total, dog log10(mL/min/kg) Total body clearance in dog
CL total human 741 CL total, human log10(mL/min/kg) Total body clearance in human
CL total monkey 129 CL total, monkey log10(mL/min/kg) Total body clearance in monkey
CL total rat 387 CL total, rat log10(mL/min/kg) Total body clearance in rat
CYP2C8 inhibition 328 CYP2C8 log10(nM IC50) Inhibition of CYP2C8
CYP2C9 inhibition 2374 CYP2C9 log10(nM IC50) Inhibition of CYP2C9
CYP2D6 inhibition 2539 CYP2D6 log10(nM IC50) Inhibition of CYP2D6
CYP3A4 inhibition 4403 CYP3A4 log10(nM IC50) Inhibition of CYP3A4
Dog fraction unbound plasma 179 Fu,p, dog log10(fraction) Fraction of drug unbound in dog plasma
Human fraction unbound plasma 2717 Fu,p, human log10(fraction) Fraction of drug unbound in human plasma
Monkey fraction unbound plasma 88 Fu,p, monkey log10(fraction) Fraction of drug unbound in monkey plasma
Rat fraction unbound plasma 237 Fu,p, rat log10(fraction) Fraction of drug unbound in rat plasma
Papp Caco2 6457 Papp log10(10�6 cm/s) Apparent permeability coe�cient across

Caco-2 cell monolayers
Pgp human 2073 PGP, human log10(e✏ux ratio) Human BA:AB e✏ux ratio P-gp
hERG binding 5108 hERG log10(nM IC50) hERG binding a�nity
LogD pH 7.4 4190 LogD pH7.4 log10(M/M) logD measured at pH 7.4
kinetic logSaq 74895 Kinetic aqueous logS log10(M) High-throughput (kinetic) aqueous solubility
thermo logSaq 11804 Thermo aqueous logS log10(M) Equilibrium (thermodynamic) aqueous solu-

bility
VDss dog 274 Vd, dog log10(L/kg) Steady-state volume of distribution deter-

mined in dogs
VDss human 751 Vd, human log10(L/kg) Steady-state volume of distribution deter-

mined in humans
VDss monkey 125 Vd, monkey log10(L/kg) Steady-state volume of distribution deter-

mined in monkeys
VDss rat 351 Vd, rat log10(L/kg) Steady-state volume of distribution deter-

mined in rats
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D Results on public ADMET dataset

Table S3: Improvement brought by QComp on the public ADMET dataset with 5-fold
random splitting. The second column is the Pearson r2 scores of Chemprop, averaged over
five folds. The third column is the Standard error of the mean (SEM) of the r2 scores. The
fourth column is the average improvement of r2 scores brought by QComp. The fifth column
is the corresponding SEM.

Assay name Chemprop SEM �r2 SEM

CL microsome, human 0.618 0.012 -0.004 0.003
CL microsome, mouse 0.602 0.015 -0.015 0.009
CL microsome, rat 0.616 0.017 0.006 0.006
CL total, dog 0.380 0.030 -0.003 0.030
CL total, human 0.355 0.020 0.073 0.016
CL total, monkey 0.452 0.046 0.148 0.015
CL total, rat 0.344 0.033 0.049 0.035
CYP2C8 0.364 0.072 -0.001 0.004
CYP2C9 0.451 0.026 0.014 0.008
CYP2D6 0.445 0.021 0.012 0.005
CYP3A4 0.574 0.012 0.008 0.004
Fu,p, dog 0.479 0.096 0.070 0.029
Fu,p, human 0.712 0.011 0.001 0.001
Fu,p, monkey 0.589 0.066 0.050 0.029
Fu,p, rat 0.535 0.071 0.054 0.011
Papp 0.684 0.011 0.002 0.001
PGP, human 0.460 0.014 0.004 0.004
hERG 0.645 0.007 0.000 0.001
LogD pH7.4 0.811 0.006 -0.003 0.003
Thermo aqueous logS 0.870 0.004 0.000 0.000
Vd, dog 0.424 0.056 0.034 0.033
Vd, human 0.526 0.029 0.071 0.010
Vd, monkey 0.512 0.052 0.119 0.033
Vd, rat 0.495 0.064 0.067 0.025

We adopt a 5-fold random split for the public ADMET dataset. Five base QSAR models

yield an average r2 score of 0.548 for all assays. The QComp models improve the mean r2

score by 0.03, amounting to a ⇠ 5% improvement.

Among all assays, “CL total” (clearance total), “Fu,p” (fraction unbound in plasma), and

“Vd” (volume of distribution), associated with dog, human, monkey, and rat (12 assays in

total), benefit considerably from QComp imputation with an average 0.061 gain in Pearson
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r2 scores. For assays in this category, �r2 is typically larger than half of the SEM of the r2

scores obtained by the base QSAR model, suggesting the improvement brought by QComp

is statistically significant. The assays not in this category, such as “Cl microsome” and

“Papp”, do not receive considerable improvement from QComp. At the same time, no harm

is done by QComp either — �r2 and the associated SEM shows no statistical significance

compared to the r2-SEM obtained by Chemprop.

We conclude that QComp works on the public dataset also robustly and e�ciently, with-

out one case of catastrophic imputation displayed previously by other methods on the pro-

prietary ADMET-780k dataset. QComp is also robust against the deviation of base QSAR

models trained on di↵erent splitting of the dataset. Note that, the public dataset is com-

piled from multiple resources, which does not represent a typical use case of QComp in the

industrial setting as reported in the main text.
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E Other evaluation metrics for compound-based tem-

poral split

E.1 Benmarking QComp on ADMET-780k dataset

Figure S3: The average and the error bar of the change on R2 score (a positive change means
improvement) and MAE (a negative change means improvement) over the base QSAR model.
The average and the error bar are calculated from the 50-bin splitting of the test set.
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Table S4: R2
scores of the base QSAR model Chemprop, MICE, Missforest and QComp on

ADMET-780k dataset with compound-based temporal splitting. For each assay, the highest
R2 score among di↵erent imputation methods is marked in bold. The second highest R2

score in imputation methods is marked in bold and grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.646 0.628 0.628 0.646

CaV 1.2 -0.221 -0.267 -0.255 -0.170

NaV 1.5 0.322 0.331 0.293 0.335

Cl, dog 0.169 0.354 0.247 0.428

Cl, rat 0.291 0.944 0.882 0.992

hepatocyte Cl, dog 0.320 0.452 0.308 0.518

microsome Cl, dog 0.401 0.561 0.389 0.542

hepatocyte Cl, human 0.408 0.502 0.388 0.524

microsome Cl, human 0.471 0.543 0.510 0.597

hepatocyte Cl, rat 0.322 0.465 0.299 0.482

microsome Cl, rat 0.493 0.610 0.554 0.650

CYP2C8 0.416 0.421 0.384 0.417

CYP2C9 0.381 0.393 0.364 0.396

CYP2D6 0.202 0.223 0.024 0.223

CYP3A4 0.394 0.397 0.388 0.419

CYP,TDI,3A4,ratio 0.119 0.116 0.086 0.123

EPSA 0.812 0.802 0.776 0.803

halflife, dog 0.285 0.507 0.716 0.741

halflife, rat 0.198 0.414 0.715 0.744

hERG MK499 0.383 0.145 0.358 0.368

Fu,p, human 0.542 0.589 0.533 0.581

LogD 0.819 0.817 0.819 0.825

PAMPA 0.406 -0.447 0.385 0.372

PXR activation 0.372 -0.114 -0.020 0.370

Fu,p, rat 0.631 0.651 0.628 0.682

Fassif Solub 0.378 0.370 0.422 0.455

Vd, rat 0.559 0.958 0.855 0.995

MRT, dog 0.320 0.687 0.828 0.909

MRT, rat 0.000 0.988 0.623 0.986

SOLY7 0.584 0.603 0.690 0.670

PGP, rat 0.477 0.468 0.441 0.470
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Table S5: Mean absolute error (MAE) of the base QSAR model Chemprop, MICE,
Missforest and QComp on ADMET-780k dataset with compound-based temporal splitting.
For each assay, the lowest MAE among di↵erent imputation methods is marked in bold.
The second lowest MAE in imputation methods is marked in bold and grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.364 0.387 0.379 0.370

CaV 1.2 0.466 0.475 0.450 0.450

NaV 1.5 0.410 0.402 0.395 0.395

Cl, dog 0.716 0.633 0.682 0.593

Cl, rat 0.637 0.170 0.209 0.050

hepatocyte Cl, dog 0.531 0.477 0.516 0.442

microsome Cl, dog 0.622 0.510 0.612 0.530

hepatocyte Cl, human 0.624 0.563 0.620 0.547

microsome Cl, human 0.603 0.558 0.567 0.522

hepatocyte Cl, rat 0.695 0.613 0.703 0.602

microsome Cl, rat 0.593 0.522 0.553 0.486

CYP2C8 0.444 0.441 0.442 0.443
CYP2C9 0.462 0.454 0.457 0.452

CYP2D6 0.421 0.432 0.454 0.411

CYP3A4 0.329 0.339 0.322 0.319

CYP,TDI,3A4,ratio 0.651 0.650 0.661 0.647

EPSA 0.261 0.284 0.276 0.265

halflife, dog 0.737 0.585 0.360 0.324

halflife, rat 0.703 0.563 0.363 0.349

hERG MK499 0.466 0.511 0.469 0.468

Fu,p, human 0.383 0.353 0.377 0.354

LogD 0.245 0.254 0.253 0.250

PAMPA 0.547 0.976 0.496 0.568

PXR activation 0.514 0.643 0.631 0.506

Fu,p, rat 0.387 0.375 0.384 0.357

Fassif Solub 0.580 0.551 0.510 0.517

Vd, rat 0.506 0.148 0.222 0.040

MRT, dog 0.635 0.420 0.288 0.229

MRT, rat 0.708 0.062 0.375 0.078

SOLY7 0.423 0.409 0.338 0.373

PGP, rat 0.495 0.498 0.504 0.496
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Table S6: Mean square error (MSE) of the base QSAR model Chemprop, MICE, Miss-
forest and QComp on ADMET-780k dataset with compound-based temporal splitting. For
each assay, the lowest RMSE among di↵erent imputation methods is marked in bold. The
second lowest RMSE in imputation methods is marked in bold and grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.341 0.358 0.358 0.340

CaV 1.2 0.396 0.411 0.408 0.380

NaV 1.5 0.423 0.417 0.441 0.415

Cl, dog 0.895 0.696 0.811 0.616

Cl, rat 0.736 0.058 0.122 0.008

hepatocyte Cl, dog 0.463 0.373 0.471 0.328

microsome Cl, dog 0.585 0.429 0.596 0.448

hepatocyte Cl, human 0.647 0.544 0.669 0.521

microsome Cl, human 0.619 0.535 0.573 0.472

hepatocyte Cl, rat 0.763 0.602 0.789 0.582

microsome Cl, rat 0.580 0.447 0.510 0.400

CYP2C8 0.395 0.392 0.416 0.395

CYP2C9 0.520 0.510 0.534 0.508

CYP2D6 0.700 0.682 0.856 0.682

CYP3A4 0.341 0.340 0.345 0.328

CYP,TDI,3A4,ratio 0.848 0.851 0.880 0.844

EPSA 0.217 0.229 0.259 0.228

halflife, dog 0.928 0.640 0.369 0.336

halflife, rat 0.851 0.622 0.302 0.272

hERG MK499 0.383 0.531 0.399 0.393

Fu,p, human 0.254 0.228 0.259 0.232

LogD 0.168 0.170 0.168 0.163

PAMPA 0.561 1.366 0.580 0.593

PXR activation 0.497 0.881 0.808 0.498

Fu,p, rat 0.257 0.243 0.259 0.221

Fassif Solub 0.771 0.781 0.716 0.675

Vd, rat 0.461 0.044 0.151 0.006

MRT, dog 0.678 0.312 0.171 0.091

MRT, rat 0.909 0.011 0.342 0.013

SOLY7 0.375 0.357 0.279 0.297

PGP, rat 0.418 0.425 0.447 0.424
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E.2 Benmarking QComp on public ADMET dataset

Figure S4: The average and the error bar of the change on R2 score (a positive change means
improvement) and MAE (a negative change means improvement) over the base QSAR model,
for in vitro assays. The average and the error bar are calculated over the five QComp models
trained with 5-fold random split.
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E.3 Imputing in vivo assays with in vitro data on ADMET-780k

dataset

Table S7: R2 scores of the base QSAR model Chemprop, MICE, Missforest, and QComp
on ADMET-780k dataset with compound-based temporal splitting. Only in vitro data are
utilized for imputation. For each assay, the highest R2 score among di↵erent imputation
methods is marked in bold. The second highest R2 score in imputation methods is marked
in bold and grey.

Assay name Chemprop MICE Missforest QComp

Cl, dog 0.169 0.172 0.177 0.204

Cl, rat 0.291 0.144 0.315 0.357

halflife, dog 0.285 0.232 0.299 0.306

halflife, rat 0.198 0.185 0.178 0.207

Vd, rat 0.559 0.311 0.520 0.586

MRT, dog 0.320 0.190 0.327 0.366

MRT, rat 0.000 0.140 -0.031 0.002

Table S8: MAE of the base QSAR model Chemprop, MICE, Missforest, and QComp on
ADMET-780k dataset with compound-based temporal splitting. Only in vitro data are
utilized for imputation. For each assay, the lowest MAE among di↵erent imputation methods
is marked in bold. The second lowest MAE in imputation methods is marked in bold and

grey.

Assay name Chemprop MICE Missforest QComp

Cl, dog 0.716 0.717 0.718 0.700

Cl, rat 0.637 0.704 0.631 0.609

halflife, dog 0.737 0.776 0.725 0.728

halflife, rat 0.703 0.715 0.712 0.698

Vd, rat 0.506 0.660 0.529 0.488

MRT, dog 0.635 0.709 0.625 0.611

MRT, rat 0.708 0.708 0.718 0.699
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Table S9: MSE of the base QSAR model Chemprop, MICE, Missforest, and QComp on
ADMET-780k dataset with compound-based temporal splitting. Only in vitro data are
utilized for imputation. For each assay, the lowest MSE among di↵erent imputation methods
is marked in bold. The second lowest MSE in imputation methods is marked in bold and

grey.

Assay name Chemprop MICE Missforest QComp

Cl, dog 0.895 0.892 0.886 0.857

Cl, rat 0.736 0.890 0.712 0.668

halflife, dog 0.928 0.997 0.911 0.901

halflife, rat 0.851 0.865 0.872 0.842

Vd, rat 0.461 0.720 0.502 0.432

MRT, dog 0.678 0.808 0.671 0.632

MRT, rat 0.909 0.781 0.937 0.906

Figure S5: The average and the error bar of the change in R2 score (a positive change means
improvement) and MAE (a negative change means improvement) over the base QSAR model,
for in vivo assays. The average and the error bar are calculated from the 50-bin splitting of
the test set.
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E.4 Imputing in vitro assays without in vivo data on ADMET-

780k dataset

Table S10: R2 scores of the base QSAR model Chemprop, MICE, Missforest, and QComp
on ADMET-780k dataset with compound-based temporal splitting. Only in vitro data are
utilized for imputation. For each assay, the highest R2 score among di↵erent imputation
methods is marked in bold. The second highest R2 score in imputation methods is marked
in bold and grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.646 0.637 0.629 0.646

CaV 1.2 -0.221 -0.243 -0.252 -0.171

NaV 1.5 0.322 0.336 0.295 0.337

hepatocyte Cl, dog 0.320 0.385 0.296 0.436

microsome Cl, dog 0.401 0.514 0.383 0.513

hepatocyte Cl, human 0.408 0.505 0.391 0.526

microsome Cl, human 0.471 0.546 0.510 0.598

hepatocyte Cl, rat 0.322 0.426 0.298 0.420

microsome Cl, rat 0.493 0.612 0.554 0.635

CYP2C8 0.416 0.424 0.387 0.418

CYP2C9 0.381 0.396 0.365 0.396

CYP2D6 0.202 0.228 0.028 0.224

CYP3A4 0.394 0.416 0.388 0.419

CYP,TDI,3A4,ratio 0.119 0.119 0.089 0.123

EPSA 0.812 0.808 0.776 0.804

hERG MK499 0.383 0.333 0.358 0.367

Fu,p, human 0.542 0.590 0.538 0.580

LogD 0.819 0.817 0.819 0.825

PAMPA 0.406 -0.158 0.384 0.373

PXR activation 0.372 0.218 -0.018 0.370

Fu,p, rat 0.631 0.634 0.612 0.637

Fassif Solub 0.378 0.437 0.423 0.455

SOLY7 0.584 0.616 0.690 0.671

PGP, rat 0.477 0.470 0.442 0.470
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Table S11: MAE of the base QSAR model Chemprop, MICE, Missforest, and QComp on
ADMET-780k dataset with compound-based temporal splitting. Only in vitro data are
utilized for imputation. For each assay, the lowest MAE among di↵erent imputation methods
is marked in bold. The second lowest MAE in imputation methods is marked in bold and

grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.364 0.378 0.379 0.369

CaV 1.2 0.466 0.468 0.449 0.450

NaV 1.5 0.410 0.396 0.395 0.393

hepatocyte Cl, dog 0.531 0.508 0.516 0.479

microsome Cl, dog 0.622 0.540 0.614 0.545

hepatocyte Cl, human 0.624 0.561 0.618 0.545

microsome Cl, human 0.603 0.555 0.567 0.521

hepatocyte Cl, rat 0.695 0.636 0.703 0.637

microsome Cl, rat 0.593 0.520 0.553 0.499

CYP2C8 0.444 0.438 0.441 0.442
CYP2C9 0.462 0.451 0.457 0.452

CYP2D6 0.421 0.427 0.453 0.412

CYP3A4 0.329 0.328 0.322 0.319

CYP,TDI,3A4,ratio 0.651 0.649 0.660 0.647

EPSA 0.261 0.278 0.276 0.264

hERG MK499 0.466 0.472 0.469 0.468

Fu,p, human 0.383 0.352 0.376 0.355

LogD 0.245 0.254 0.253 0.250

PAMPA 0.547 0.964 0.496 0.568

PXR activation 0.514 0.570 0.630 0.506

Fu,p, rat 0.387 0.384 0.392 0.381

Fassif Solub 0.580 0.534 0.510 0.517

SOLY7 0.423 0.404 0.338 0.372

PGP, rat 0.495 0.497 0.503 0.496
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Table S12: MSE of the base QSAR model Chemprop, MICE, Missforest, and QComp on
ADMET-780k dataset with compound-based temporal splitting. Only in vitro data are
utilized for imputation. For each assay, the lowest MSE among di↵erent imputation methods
is marked in bold. The second lowest MSE in imputation methods is marked in bold and

grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.341 0.350 0.357 0.340

CaV 1.2 0.396 0.404 0.407 0.380

NaV 1.5 0.423 0.414 0.440 0.414

hepatocyte Cl, dog 0.463 0.418 0.479 0.383

microsome Cl, dog 0.585 0.475 0.603 0.476

hepatocyte Cl, human 0.647 0.541 0.665 0.518

microsome Cl, human 0.619 0.531 0.574 0.471

hepatocyte Cl, rat 0.763 0.646 0.789 0.652

microsome Cl, rat 0.580 0.444 0.511 0.418

CYP2C8 0.395 0.389 0.415 0.394

CYP2C9 0.520 0.507 0.534 0.507

CYP2D6 0.700 0.678 0.853 0.681

CYP3A4 0.341 0.329 0.345 0.327

CYP,TDI,3A4,ratio 0.848 0.848 0.877 0.844

EPSA 0.217 0.222 0.259 0.226

hERG MK499 0.383 0.414 0.398 0.393

Fu,p, human 0.254 0.227 0.256 0.233

LogD 0.168 0.170 0.168 0.163

PAMPA 0.561 1.093 0.581 0.592

PXR activation 0.497 0.619 0.805 0.498

Fu,p, rat 0.257 0.255 0.270 0.252

Fassif Solub 0.771 0.698 0.715 0.675

SOLY7 0.375 0.346 0.279 0.296

PGP, rat 0.418 0.423 0.446 0.423
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Figure S6: The average and the error bar of the change on R2 score (a positive change means
improvement) and MAE (a negative change means improvement) over the base QSAR model,
for in vitro assays. The average and the error bar are calculated from the 50-bin splitting of
the test set.
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F Results of Clustering-based Split

In this section, we present the experiments using datasets with clustering-based split. We

applied k-means clustering using Morgan fingerprints to partition the compounds into five

clusters. For the internal ADMET-780k dataset, we selected one cluster as the test set, with

the split details summarized in Table S13. For the public ADMET dataset, we performed

five di↵erent train-test splits based on the clusters.

Table S13: ADMET-780k dataset: Number of compounds in training and test sets for
clustering-based split

Assay Train Size Test Size Test Size[%]

Papp 41092 13954 25.35
CaV 1.2 111810 41929 27.27
NaV 1.5 106747 40696 27.60
Cl, dog 14202 7634 34.96
Cl, rat 57555 18345 24.17
hepatocyte Cl, dog 5872 2504 29.89
microsome Cl, dog 3618 795 18.01
hepatocyte Cl, human 31328 10865 25.75
microsome Cl, human 38414 10281 21.11
hepatocyte Cl, rat 29165 10010 25.55
microsome Cl, rat 35718 10131 22.10
CYP2C8 50586 19753 28.08
CYP2C9 172650 50227 22.54
CYP2D6 171722 48786 22.12
CYP3A4 173944 49778 22.25
CYP,TDI,3A4,ratio 30439 9886 24.52
EPSA 33784 7016 17.20
halflife, dog 15721 8165 34.18
halflife, rat 62483 20405 24.62
hERG MK499 286177 78042 21.43
Fu,p, human 15708 6545 29.41
LogD 366587 93114 20.26
PAMPA 2480 1521 38.02
PXR activation 179565 54675 23.34
Fu,p, rat 41169 13294 24.41
kinetic FaSSIF solub 252622 63575 20.11
Vd, rat 57580 18341 24.16
MRT, dog 12559 7143 36.26
MRT, rat 54301 17704 24.59
SOLY7 376008 95502 20.25
PGP, rat 21281 6350 22.98
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F.1 Benchmarking results on ADMET-780k dataset

The training and imputing processes follow the same protocol stated in the main text. The

results are reported using four evaluation metrics: Pearson r2 score, coe�cient of determi-

nation R2, MAE, and MSE.

Table S14: Pearson r2 scores of the base QSAR model Chemprop, MICE, Missforest and
QComp on ADMET-780k dataset with clustering-based splitting. For each assay, the highest
r2 score among di↵erent imputation methods is marked in bold. The second highest r2 score
in imputation methods is marked in bold and grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.849 0.849 0.845 0.851

CaV 1.2 0.654 0.657 0.646 0.670

NaV 1.5 0.573 0.586 0.557 0.588

Cl, dog 0.350 0.513 0.416 0.578

Cl, rat 0.438 0.959 0.900 0.982

hepatocyte Cl, dog 0.663 0.694 0.637 0.711

microsome Cl, dog 0.614 0.683 0.590 0.702

hepatocyte Cl, human 0.546 0.597 0.542 0.619

microsome Cl, human 0.683 0.736 0.700 0.765

hepatocyte Cl, rat 0.555 0.631 0.554 0.647

microsome Cl, rat 0.651 0.724 0.665 0.744

CYP2C8 0.567 0.579 0.557 0.580

CYP2C9 0.612 0.618 0.605 0.623

CYP2D6 0.513 0.521 0.473 0.523

CYP3A4 0.695 0.642 0.694 0.703

CYP,TDI,3A4,ratio 0.634 0.636 0.632 0.637

EPSA 0.799 0.772 0.786 0.798

halflife, dog 0.451 0.640 0.765 0.803

halflife, rat 0.382 0.601 0.715 0.755

hERG MK499 0.630 0.627 0.623 0.635

Fu,p, human 0.676 0.716 0.674 0.724

LogD 0.904 0.907 0.904 0.907

PAMPA 0.477 0.103 0.408 0.485

PXR activation 0.583 0.575 0.576 0.587

Fu,p, rat 0.718 0.738 0.726 0.772

Fassif Solub 0.416 0.481 0.459 0.492

Vd, rat 0.551 0.953 0.909 0.981

MRT, dog 0.510 0.909 0.851 0.917

MRT, rat 0.500 0.982 0.846 0.987

SOLY7 0.687 0.701 0.719 0.729

PGP, rat 0.768 0.770 0.765 0.771
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Table S15: R2 scores of the base QSAR model Chemprop, MICE, Missforest and QComp on
ADMET-780k dataset with clustering-based splitting. For each assay, the highest R2 score
among di↵erent imputation methods is marked in bold. The second highest R2 score in
imputation methods is marked in bold and grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.849 0.849 0.845 0.851

CaV 1.2 0.648 0.655 0.644 0.664

NaV 1.5 0.573 0.584 0.549 0.587

Cl, dog 0.348 0.512 0.409 0.568

Cl, rat 0.427 0.956 0.891 0.982

hepatocyte Cl, dog 0.662 0.694 0.631 0.709

microsome Cl, dog 0.600 0.679 0.576 0.690

hepatocyte Cl, human 0.544 0.597 0.533 0.619

microsome Cl, human 0.681 0.735 0.695 0.763

hepatocyte Cl, rat 0.551 0.629 0.546 0.646

microsome Cl, rat 0.649 0.721 0.660 0.741

CYP2C8 0.567 0.579 0.553 0.579

CYP2C9 0.610 0.605 0.595 0.621

CYP2D6 0.512 0.518 0.454 0.522

CYP3A4 0.693 0.634 0.694 0.702

CYP,TDI,3A4,ratio 0.621 0.630 0.625 0.622
EPSA 0.799 0.771 0.786 0.798

halflife, dog 0.429 0.625 0.759 0.798

halflife, rat 0.361 0.599 0.712 0.755

hERG MK499 0.630 0.624 0.621 0.635

Fu,p, human 0.675 0.714 0.669 0.724

LogD 0.903 0.907 0.904 0.906

PAMPA 0.389 -1.167 0.322 0.392

PXR activation 0.580 0.571 0.572 0.584

Fu,p, rat 0.717 0.737 0.724 0.771

Fassif Solub 0.413 0.474 0.447 0.491

Vd, rat 0.550 0.951 0.907 0.981

MRT, dog 0.498 0.906 0.849 0.913

MRT, rat 0.485 0.982 0.840 0.986

SOLY7 0.686 0.698 0.715 0.728

PGP, rat 0.766 0.769 0.764 0.768
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Table S16: MAE of the base QSAR model Chemprop, MICE, Missforest and QComp on
ADMET-780k dataset with clustering-based splitting. For each assay, the lowest MAE
among di↵erent imputation methods is marked in bold. The second lowest MAE in im-
putation methods is marked in bold and grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.281 0.281 0.284 0.280

CaV 1.2 0.465 0.450 0.456 0.454

NaV 1.5 0.410 0.407 0.398 0.406

Cl, dog 0.589 0.521 0.567 0.487

Cl, rat 0.547 0.133 0.191 0.046

hepatocyte Cl, dog 0.391 0.367 0.396 0.358

microsome Cl, dog 0.471 0.412 0.440 0.409

hepatocyte Cl, human 0.475 0.447 0.472 0.433

microsome Cl, human 0.425 0.386 0.398 0.368

hepatocyte Cl, rat 0.494 0.451 0.491 0.439

microsome Cl, rat 0.447 0.395 0.427 0.383

CYP2C8 0.465 0.455 0.461 0.458

CYP2C9 0.460 0.454 0.451 0.453

CYP2D6 0.355 0.351 0.357 0.352

CYP3A4 0.349 0.353 0.331 0.344

CYP,TDI,3A4,ratio 0.601 0.591 0.577 0.599
EPSA 0.157 0.174 0.161 0.158

halflife, dog 0.571 0.445 0.311 0.276

halflife, rat 0.566 0.435 0.341 0.311

hERG MK499 0.424 0.422 0.425 0.422

Fu,p, human 0.355 0.328 0.358 0.326

LogD 0.174 0.171 0.173 0.174
PAMPA 0.604 1.324 0.624 0.604

PXR activation 0.416 0.415 0.416 0.414

Fu,p, rat 0.366 0.347 0.361 0.330

Fassif Solub 0.424 0.386 0.387 0.383

Vd, rat 0.516 0.141 0.171 0.048

MRT, dog 0.545 0.227 0.271 0.220

MRT, rat 0.554 0.053 0.273 0.050

SOLY7 0.359 0.344 0.324 0.338

PGP, rat 0.377 0.370 0.370 0.376
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Table S17: MSE of the base QSAR model Chemprop, MICE, Missforest and QComp on
ADMET-780k dataset with clustering-based splitting. For each assay, the lowest MSE among
di↵erent imputation methods is marked in bold. The second lowest MSE in imputation
methods is marked in bold and grey.

Assay name Chemprop MICE Missforest QComp

Papp 0.193 0.193 0.198 0.190

CaV 1.2 0.465 0.456 0.470 0.444

NaV 1.5 0.450 0.439 0.475 0.435

Cl, dog 0.650 0.487 0.589 0.431

Cl, rat 0.603 0.047 0.115 0.019

hepatocyte Cl, dog 0.273 0.247 0.298 0.235

microsome Cl, dog 0.377 0.303 0.400 0.292

hepatocyte Cl, human 0.395 0.349 0.405 0.330

microsome Cl, human 0.335 0.278 0.321 0.249

hepatocyte Cl, rat 0.420 0.347 0.425 0.332

microsome Cl, rat 0.356 0.284 0.346 0.263

CYP2C8 0.451 0.439 0.465 0.439

CYP2C9 0.456 0.462 0.473 0.443

CYP2D6 0.460 0.455 0.514 0.451

CYP3A4 0.363 0.433 0.363 0.353

CYP,TDI,3A4,ratio 0.723 0.707 0.715 0.720
EPSA 0.071 0.081 0.076 0.072

halflife, dog 0.589 0.388 0.249 0.209

halflife, rat 0.593 0.372 0.267 0.228

hERG MK499 0.340 0.345 0.348 0.336

Fu,p, human 0.267 0.236 0.273 0.227

LogD 0.081 0.078 0.080 0.079

PAMPA 0.617 2.185 0.684 0.613

PXR activation 0.365 0.372 0.372 0.361

Fu,p, rat 0.265 0.246 0.259 0.214

Fassif Solub 0.472 0.423 0.444 0.409

Vd, rat 0.494 0.054 0.102 0.021

MRT, dog 0.521 0.098 0.157 0.091

MRT, rat 0.551 0.020 0.171 0.015

SOLY7 0.289 0.278 0.262 0.250

PGP, rat 0.243 0.240 0.245 0.241
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Figure S7: The average and the error bar of the change on Pearson r2 score, R2 score, MAE
and MSE over the base QSAR model. The average and the error bar are calculated from
the 100-bin splitting of the test set.
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F.2 Benchmarking results on public ADMET dataset

Figure S8: The average and the error bar of the change on Pearson r2 score, R2 score, MAE
and MSE over the base QSAR model. The average and the error bar are calculated over the
QComp models trained with 5 di↵erent train-test cluster splits.
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F.3 Imputing in vivo assays with in vitro data on ADMET-780k

dataset

Figure S9: The average and the error bar of the change on Pearson r2 score, R2 score, MAE
and MSE over the base QSAR model, for in vivo assays. The average and the error bar are
calculated from the 100-bin splitting of the test set.
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F.4 Imputing in vitro assays without in vivo data on ADMET-

780k dataset

Figure S10: The average and the error bar of the change on Pearson r2 score, R2 score, MAE
and MSE over the base QSAR model, for in vivo assays. The average and the error bar are
calculated from the 100-bin splitting of the test set.
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G Results on QM8 dataset

Here, we explore the broader applicability of QComp. We study the imputation of the quan-

tum chemistry dataset QM8.18 We split the QM8 dataset into an 80% training/validation

subset and a 20% test subset using random split. As for the base QSAR model, we adopt

a pre-trained, state-of-the-art Uni-Mol model.19 We fine-tune the Uni-Mol model with the

training set. And we train QComp using the same training set. The results from imputation

is shown in Figure S11. The average MSE, MAE, Pearson r2 and R2 of the Uni-Mol model

are 0.019, 0.009, 0.853 and 0.847, respectively. The average MSE, MAE, Pearson r2 and R2

achieved by QComp imputation are 0.013, 0.006, 0.923 and 0.922.

Note that the benchmarking results in the Uni-Mol paper were obtained using a sca↵old-

based split, while we use a random split for simplicity. Thus, the reported performance of

Uni-Mol in our experiments is better than the published SOTA score.

Our results show success of QComp on tasks other than ADMET. Again, the success

relies on the fact that there are correlations between chemical properties (see Figure S12),

and on well-behaved base QSAR model (see Figure S13).
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Figure S11: The MSE, MAE, Pearson r2 and R2 score of QComp and the base QSAR model
(Uni-Mol) for 16 tasks in the QM8 dataset.
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Figure S12: The QM8 dataset: Pearson correlation heatmap.

Figure S13: Upper panel: Histograms of “E1-PBE0” and “E2-PBE0”; the heatmap of the
joint distribution of them. Lower panel: Histograms of the deviation of “E1-PBE0” and “E2-
PBE0” properties from the base QSAR (Uni-Mol) predictions; the corresponding heatmap
of the joint distribution.
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