
This article was downloaded by: [University of Minnesota Libraries, Twin Cities]
On: 12 October 2013, At: 13:09
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Computational and Graphical
Statistics
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/ucgs20

An Efficient Algorithm for Computing the
HHSVM and Its Generalizations
Yi Yang a & Hui Zou a
a University of Minnesota , Minneapolis , MN , 55455-0213
Accepted author version posted online: 25 Apr 2012.Published
online: 30 May 2013.

To cite this article: Yi Yang & Hui Zou (2013) An Efficient Algorithm for Computing the HHSVM
and Its Generalizations, Journal of Computational and Graphical Statistics, 22:2, 396-415, DOI:
10.1080/10618600.2012.680324

To link to this article: http://dx.doi.org/10.1080/10618600.2012.680324

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/ucgs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2012.680324
http://dx.doi.org/10.1080/10618600.2012.680324
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Supplementary materials for this article are available online.
Please go to www.tandfonline.com/r/JCGS

An Efficient Algorithm for Computing the
HHSVM and Its Generalizations

Yi YANG and Hui ZOU

The hybrid Huberized support vector machine (HHSVM) has proved its advantages
over the ℓ1 support vector machine (SVM) in terms of classification and variable selec-
tion. Similar to the ℓ1 SVM, the HHSVM enjoys a piecewise linear path property and
can be computed by a least-angle regression (LARS)-type piecewise linear solution path
algorithm. In this article, we propose a generalized coordinate descent (GCD) algorithm
for computing the solution path of the HHSVM. The GCD algorithm takes advantage
of a majorization–minimization trick to make each coordinatewise update simple and
efficient. Extensive numerical experiments show that the GCD algorithm is much faster
than the LARS-type path algorithm. We further extend the GCD algorithm to solve a
class of elastic net penalized large margin classifiers, demonstrating the generality of
the GCD algorithm. We have implemented the GCD algorithm in a publicly available
R package gcdnet.

Key Words: Coordinate descent; Elastic net; Hubernet; Large margin classifiers;
Majorization–minimization; SVM.

1. INTRODUCTION

The support vector machine (SVM; Vapnik 1995) is a very popular large margin classifier.
Despite its competitive performance in terms of classification accuracy, a major limitation of
the SVM is that it cannot automatically select relevant variables for classification, which is
very important in high-dimensional classification problems such as tumor classification with
microarrays. The SVM has an equivalent formulation as the ℓ2 penalized hinge loss (Hastie,
Tibshirani, and Friedman 2001). Bradley and Mangasarian (1998) proposed the ℓ1 SVM
by replacing the ℓ2 penalty in the SVM with the ℓ1 penalty. The ℓ1 penalization (aka lasso)
(Tibshirani 1996) is a very popular technique for achieving sparsity with high-dimensional
data. There has been a large body of theoretical work to support the ℓ1 regularization. A
comprehensive reference is Bühlmann and van de Geer (2011). Wang, Zhu, and Zou (2008)
later proposed a hybrid Huberized support vector machine (HHSVM) that uses the elastic

Yi Yang (E-mail: yiyang@umn.edu) is Ph.D. student and Hui Zou (E-mail: zouxx019@umn.edu) is Associate
Professor in School of Statistics at University of Minnesota, Minneapolis, MN 55455-0213.

C⃝ 2013 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 22, Number 2, Pages 396–415
DOI: 10.1080/10618600.2012.680324

396

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

http://www.tandfonline.com/r/JCGS
http://www.amstat.org
http://www.galaxy.gmu.edu/stats/IFNA7.html
http://www.amstat.org/publications/jcgs
http://dx.doi.org/10.1198/jcgs.10.1080/10618600.2012.680324

AN ALGORITHM FOR COMPUTING THE HHSVM 397

net penalty (Zou and Hastie 2005) for regularization and variable selection and uses the
Huberized squared hinge loss for efficient computation. Wang, Zhu, and Zou (2008) showed
that the HHSVM outperforms the standard SVM and the ℓ1 SVM for high-dimensional
classification. Wang, Zhu, and Zou (2008) extended the least-angle regression (LARS)
algorithm for the lasso regression model (Osborne, Presnell, and Turlach 2000; Efron et al.
2004, Rosset and Zhu 2007) to compute the solution paths of the HHSVM.

The main purpose of this article is to introduce a new efficient algorithm for computing
the HHSVM. Our study was motivated by the recent success of using coordinate descent
algorithms for computing the elastic net penalized regression and logistic regression (Fried-
man, Hastie, and Tibshirani 2010; see also Van der Kooij 2007). For the lasso regression,
the coordinate descent algorithm amounts to an iterative cyclic soft-thresholding operation.
Despite its simplicity, the coordinate descent algorithm can even outperform the LARS
algorithm, especially when the dimension is much larger than the sample size (see table
1 of Friedman, Hastie, and Tibshirani 2010). Other articles on coordinate descent algo-
rithms for the lasso include Fu (1998), Daubechies, Defrise, and De Mol (2004), Friedman
et al. (2007), Genkin, Lewis, and Madigan (2007), Wu and Lange (2008), and among
others. The HHSVM poses a major challenge for applying the coordinate descent algo-
rithm, because the Huberized hinge loss function does not have a smooth first derivative
everywhere. As a result, the coordinate descent algorithm for the elastic net penalized
logistic regression (Friedman, Hastie, and Tibshirani 2010) cannot be used for solving the
HHSVM.

To overcome the computational difficulty, we propose a new generalized coordinate
descent (GCD) algorithm for solving the solution paths of the HHSVM. We also give a
further extension of the GCD algorithm to general problems. Our algorithm adopts the
majorization–minimization (MM) principle into the coordinate descent loop. We use an
MM trick to make each coordinatewise update simple and efficient. In addition, the MM
principle ensures the descent property of the GCD algorithm which is crucial for all co-
ordinate descent algorithms. Extensive numerical examples show that the GCD can be
much faster than the LARS-type path algorithm in Wang, Zhu, and Zou (2008). Here we
use the prostate cancer data (Singh et al. 2002) to briefly illustrate the speed advantage
of our algorithm (see Figure 1). The prostate data have 102 observations and each has
6033 gene expression values. It took the LARS-type path algorithm about 5 min to com-
pute the HHSVM paths, while the GCD used only 3.5 sec to get the identical solution
paths.

A closer examination of the GCD algorithm reveals that it can be used for solving other
large margin classifiers. We have derived a generic GCD algorithm for solving a class of
elastic net penalized large margin classifiers. We further demonstrate the generic GCD
algorithm by considering the squared SVM loss and the logistic regression loss. We study
through numeric examples how the shape and smoothness of the loss function affect the
computational speed of the generic GCD algorithm.

In Section 2, we review the HHSVM and then introduce the GCD algorithm for comput-
ing the HHSVM. Section 3 studies the descent property of the GCD algorithm by making
an intimate connection to the MM principle. The analysis motivates us to further consider a
generic GCD algorithm for handling a class of elastic net penalized large margin classifiers.
Numerical experiments are presented in Section 5.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

398 Y. YANG AND H. ZOU

Figure 1. Solution paths and timings of the HHSVM on the prostate cancer data with 102 observations and 6033
predictors. The top panel shows the solution paths computed by the LARS-type algorithm in Wang, Zhu, and Zou
(2008); the bottom panel shows the solution paths computed by GCD. GCD is 87 times faster.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

AN ALGORITHM FOR COMPUTING THE HHSVM 399

2. THE HHSVM AND GCD ALGORITHM

2.1 THE HHSVM

In a standard binary classification problem, we are given n pairs of training data
{xi , yi} for i = 1, . . . , n where xi ∈ Rp are predictors and yi ∈ {−1, 1} denotes class labels.
The linear SVM (Vapnik 1995; Burges 1998; Evgeniou, Pontil, and Poggio 2000) looks for
the hyperplane with the largest margin that separates the input data for class 1 and class −1

min
(β0,β)

1
2
||β||2 + γ

n∑

i=1

ξi

subject to ξi ≥ 0, yi

(
β0 + xᵀ

i β
)

≥ 1 − ξi ∀i, (2.1)

where ξ = (ξ1, ξ2, . . . , ξn) are the slack variables and γ > 0 is a constant. Let λ = 1/(nγ).
Then (2.1) has an equivalent ℓ2 penalized hinge loss formulation (Hastie, Tibshirani, and
Friedman 2001)

min
(β0,β)

1
n

n∑

i=1

[
1 − yi

(
β0 + xᵀ

i β
)]

+ + λ

2
||β||22. (2.2)

The loss function L(t) = [1 − t]+ has the expression

[1 − t]+ =
{

0,

1 − t,

t > 1
t ≤ 1,

which is called the hinge loss in the literature. The SVM has very competitive performance
in terms of classification. However, because of the ℓ2 penalty the SVM uses all variables in
classification, which could be a great disadvantage in high-dimensional classification (Zhu
et al. 2004). The ℓ1 SVM proposed by Bradley and Mangasarian (1998) is defined by

min
(β0,β)

1
n

n∑

i=1

[
1 − yi

(
β0 + xᵀ

i β
)]

+ + λ

2
||β||1. (2.3)

Just like in the lasso regression model, the ℓ1 penalty produces a sparse β in (2.3). Thus the
ℓ1 SVM is able to automatically discard irrelevant features. In the presence of many noise
variables, the ℓ1 SVM has significant advantages over the standard SVM (Zhu et al. 2004).

The elastic net penalty (Zou and Hastie 2005) is an important generalization of the lasso
penalty. The elastic net penalty is defined as

Pλ1,λ2 (β) =
p∑

j=1

pλ1,λ2 (βj) =
p∑

j=1

(
λ1|βj | + λ2

2
β2

j

)
, (2.4)

where λ1, λ2 ≥ 0 are regularization parameters. The ℓ1 part of the elastic net is responsible
for variable selection. The ℓ2 part of the elastic net helps handle strong correlated variables,
which is common in high-dimensional data, and improves prediction.

Wang, Zhu, and Zou (2008) used the elastic net in the SVM classification:

min
(β0,β)

1
n

n∑

i=1

φc

(
yi

(
β0 + xᵀ

i β
))

+ Pλ1,λ2 (β). (2.5)

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

400 Y. YANG AND H. ZOU

Figure 2. (a) The Huberized hinge loss function (with δ = 2); (b) the Huberized hinge loss function (with
δ = 0.01); (c) the squared hinge loss function; (d) the logistic loss function.

Note that φc(·) in (2.5) is the Huberized hinge loss

φc(t) =

⎧
⎨

⎩

0,

(1 − t)2/2δ,

1 − t − δ/2,

t > 1
1 − δ < t ≤ 1
t ≤ 1 − δ,

where δ > 0 is a pre-specified constant. The default choice for δ is 2 unless specified other-
wise. Displayed in Figure 2 panel (a) is the Huberized hinge loss with δ = 2. The Huberized
hinge loss is very similar to the hinge loss in shape. In fact, when δ is small, the two loss func-
tions are almost identical. See Figure 2 panel (b) for a graphical illustration. Unlike the hinge
loss, the Huberized hinge loss function is differentiable everywhere and has continuous first
derivative. Wang, Zhu, and Zou (2008) derived a LARS-type path algorithm for comput-
ing the solution paths of the HHSVM. Compared with the LARS-type algorithm for the
ℓ1 SVM (Zhu et al. 2004), the LARS-type algorithm for the HHSVM has significantly lower
computational cost, thanks to the differentiability property of the Huberized hinge loss.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

AN ALGORITHM FOR COMPUTING THE HHSVM 401

2.2 A GENERALIZED COORDINATE DESCENT ALGORITHM

Besides the LARS-type algorithm, coordinate descent algorithms have been successfully
used to compute the elastic net penalized linear model and generalized linear models. See
the R package glmnet by Friedman, Hastie, and Tibshirani (2010). Despite its simplicity, the
coordinate descent can even outperform the more sophisticated LARS algorithm (Friedman,
Hastie, and Tibshirani 2010). Motivated by the great success of glmnet, we consider
developing a fast coordinate descent algorithm for computing the HHSVM, with the goal
to outperform the LARS-type algorithm derived in Wang, Zhu, and Zou (2008).

Without loss of generality assume that the input data are standardized: 1
n

∑n
i=1 xij =

0, 1
n

∑n
i=1 x2

ij = 1, for j = 1, . . . , p. For the HHSVM, we can write down the standard
coordinate descent algorithm as follows. Define the current margin ri = yi(β̃0 + xᵀ

i β̃) and

F (βj |β̃0, β̃) = 1
n

n∑

i=1

φc(ri + yixij (βj − β̃j)) + pλ1,λ2 (βj). (2.6)

For fixed λ1 and λ2, the standard coordinate descent algorithm (Tseng 2001) proceeds as
follows:

1. Initialization: (β̃0, β̃)

2. Cyclic coordinate descent: for j = 0, 1, 2, . . . , p: update β̃j by minimizing the ob-
jective function

β̃j = arg min
βj

F (βj |β̃0, β̃). (2.7)

3. Repeat Step 2 till convergence.

The major difficulty in using the above coordinate descent procedure is that the uni-
variate minimization problem in (2.7) does not have a closed form solution, unlike the
penalized least squares. The univariate ℓ1 penalized least squares has a neat solution by
soft-thresholding. However, solving (2.7) requires an iterative algorithm. The same problem
occurs when computing the elastic net penalized logistic regression. In glmnet, Friedman,
Hastie, and Tibshirani (2010) handled this difficulty by using the Newton–Raphson idea on
the top of the coordinate descent. After computing the partial derivatives and the Hessian
matrix of the logistic regression loss, we face an elastic net penalized weighted least squares
that can be easily solved by invoking an iterative coordinatewise soft-thresholding procedure
(Friedman, Hastie, and Tibshirani 2010). However, the Huberized hinge loss does not even
have the second derivative, so the idea in glmnet is not directly applicable in the HHSVM.

We show that the computational obstacle can be resolved by a neat trick. We approximate
the F function in (2.6) by a penalized quadratic function defined as

Q(βj |β̃0, β̃) =
∑n

i=1 φc(ri)
n

+
∑n

i=1 φ′
c(ri)yixij

n
(βj − β̃j)

+ 1
δ

(βj − β̃j)2 + pλ1,λ2 (βj), (2.8)

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

402 Y. YANG AND H. ZOU

where φ′
c(t) is the first derivative of φc(t). We can easily solve the minimizer of (2.8) by a

simple soft-thresholding rule (Zou and Hastie 2005):

β̂C
j = arg min

βj

Q(βj |β̃0, β̃)

=
S
(2

δ
β̃j −

∑n
i=1 φ′

c(ri)yixij

n
, λ1

)

2
δ

+ λ2
, (2.9)

where S(z, t) = (|z| − t)+sgn(z). We then set β̃j = β̂C
j as the new estimate.

We use the same trick to update intercept β0. Similarly to (2.8), we consider minimizing
a quadratic approximation

Q(β0|β̃0, β̃) =
∑n

i=1 φc(ri)
n

+
∑n

i=1 φ′
c(ri)yi

n
(β0 − β̃0) + 1

δ
(β0 − β̃0)2, (2.10)

which has a minimizer

β̂C
0 = β̃0 − δ

2

∑n
i=1 φ′

c(ri)yi

n
. (2.11)

We set β̃0 = β̂C
0 as the new estimate.

To sum up, we have a GCD algorithm for solving the HHSVM, see Algorithm 1.
The beauty of Algorithm 1 is that it is remarkably simple and almost identical to the
coordinate descent algorithm for computing the elastic net penalized regression. In Section
3, we provide a rigorous justification of the use of these Q functions and prove that each
univariate update decreases the objective function of the HHSVM.

Algorithm 1. The generalized coordinate descent algorithm for the HHSVM.

• Initialize (β̃0, β̃).

• Iterate 2(a)–2(b) until convergence:
– 2(a). Cyclic coordinate descent: for j = 1, 2, . . . , p,

∗ (2.a.1) Compute ri = yi(β̃0 + xᵀ
i β̃).

∗ (2.a.2) Compute

β̂C
j =

S
(

2
δ
β̃j −

∑n
i=1 φ′

c(ri)yixij

n
, λ1

)

2
δ

+ λ2
.

∗ (2.a.3) Set β̃j = β̂C
j .

– 2(b). Update the intercept term
∗ (2.b.1) Recompute ri = yi(β̃0 + xᵀ

i β̃).

∗ (2.b.2) Compute

β̂C
0 = β̃0 − δ

2

∑n
i=1 φ′

c(ri)yi

n
.

∗ (2.b.3) Set β̃0 = β̂C
0 .

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

AN ALGORITHM FOR COMPUTING THE HHSVM 403

2.3 IMPLEMENTATION

We have implemented Algorithm 1 in a publicly available R package gcdnet. As demon-
strated in glmnet, some implementation tricks can boost the speed of a coordinate descent
algorithm. We use these tricks in our implementation of Algorithm 1.

For each fixed λ2, we compute the solutions for a fine grid of λ1’s. We start with
λmax which is the smallest λ1 to set all βj , 1 ≤ j ≤ p to be zero. To compute λmax, we first
obtain estimates ŷ for the null model without any predictor:

ŷ = arg min
y

1
n

n∑

i=1

φc(yiy) = arg min
y

[n+

n
φc(y) + n−

n
φc(−y)

]
.

Then by the Karush–Kuhn–Tucker (KKT) conditions 1
n
|
∑n

i=1 φ′
c(ŷ)yixij | ≤ λ1 for all j =

1, . . . , p, we have

λmax = 1
n

max
j

|
n∑

i=1

φ′
c(ŷ)yixij |.

We set λmin = τλmax and the default value of τ is τ = 10−2 for n < p data and τ = 10−4 for
n ≥ p data. Between λmax and λmin, we place K points uniformly in the log-scale. The
default value for K is 98 such that there are 100 λ1 values.

We use the warm-start trick to implement the solution paths. Without loss of generality
let λ1[1] = λmax and λ1[100] = λmin. We already have β̂ = 0 for λ1[1]. For λ1[k + 1], the
solution at λ1[k] is used as the initial value in Algorithm 1.

For computing the solution at each λ1, we also use the active-set cycling idea. The
active-set contains those variables whose current coefficients are nonzero. After a complete
cycle through all the variables, we only apply coordinatewise operations on the active set
till convergence. Then we run another complete cycle to see if the active set changes. If the
active set is not changed, then the algorithm is stopped. Otherwise, the active-set cycling
process is repeated.

We need to repeatedly compute ri in Steps 2(a) and 2(b) of Algorithm 1. For that we use
an updating formula. For j = 1, . . . , p, 0, suppose βj is updated, let δj = β̂C

j − β̃j . Then
we update ri by ri = ri + yixijδj .

We mention the convergence criterion used in Algorithm 1. After each cyclic update, we
declare convergence if 2

δ
maxj (β̂current

j − β̂new
j)2 < ϵ, as done in glmnet (Friedman, Hastie,

and Tibshirani 2010). In glmnet, the default value for ϵ is 10−6. In gcdnet, we use 10−8 as
the default value of ϵ.

2.4 APPROXIMATING THE SVM

Although the default value of δ is 2 unless specified otherwise, Algorithm 1 works for
any positive δ. This flexibility allows us to explore the possibility of using Algorithm 1 to
obtain an approximate solution path of the elastic net penalized SVM. The motivation for
doing so comes from the fact that limδ→0 φc(t) = [1 − t]+. In Figure 2 panel (b), we show
the Huberized hinge functions with δ = 0.01, which is nearly identical to the hinge loss.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

404 Y. YANG AND H. ZOU

Define

R(β,β0) = 1
n

n∑

i=1

[
1 − yi

(
β0 + xᵀ

i β
)]

+ + Pλ1,λ2 (β),

and

R(β,β0|δ) = 1
n

n∑

i=1

φc

(
yi(β0 + xᵀ

i β)
)
+ Pλ1,λ2 (β).

Let (β̂
svm

, β̂svm
0) be the minimizer of R(β,β0). Algorithm 1 gives the unique minimizer of

R(β,β0|δ) for each given δ. Denote the solution as (β̂(δ), β̂0(δ)). We notice that

φc(t) ≤ (1 − t)+ ≤ φc(t) + δ/2 ∀t,

which yields the following inequalities

R(β,β0|δ) ≤ R(β,β0) ≤ R(β,β0|δ) + δ/2. (2.12)

From (2.12), we conclude that

inf
β,β0

R(β,β0) ≤ R(β̂(δ), β̂0(δ)) ≤ inf
β,β0

R(β,β0) + δ/2. (2.13)

Here is a quick proof of (2.13):

inf
β,β0

R(β,β0) ≤ R(β̂(δ), β̂0(δ))

≤ R
(
β̂(δ), β̂0(δ)|δ

)
+ δ/2

≤ R
(
β̂

svm
, β̂svm

0 |δ
)
+ δ/2

≤ R
(
β̂

svm
, β̂svm

0

)
+ δ/2

= inf
β,β0

R(β,β0) + δ/2.

The two inequalities in (2.13) are independent of λ1, λ2. They suggest that we can use
Algorithm 1 to compute the solution of a HHSVM with a tiny δ (say, δ = 0.01) and then
treat the outcome of Algorithm 1 as a good approximation to the solution of the elastic
net penalized SVM. We have observed that a smaller δ results in a longer computing time.
Our experience suggests that δ = 0.01 delivers a good trade-off between approximation
accuracy and computing time.

3. GCD AND THE MM PRINCIPLE

In this section, we show that Algorithm 1 is a genuine coordinate descent algorithm.
These Q functions used in each univariate update are closely related to the MM principle
(De Leeuw and Heiser 1977; Lange, Hunter, and Yang 2000; Hunter and Lange 2004).
The MM principle is a more liberal form of the famous expectation-maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977) in that the former often does not work with
“missing data” (see Wu and Lange (2010) and references therein).

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

AN ALGORITHM FOR COMPUTING THE HHSVM 405

We show that the Q function in (2.8) majorizes the F function in (2.6):

F (βj |β̃0, β̃) ≤ Q(βj |β̃0, β̃), (3.1)

F (β̃j |β̃0, β̃) = Q(β̃j |β̃0, β̃). (3.2)

With (3.1) and (3.2), we can easily verify the descent property of majorization update given
in (2.9):

F (β̂C
j |β̃0, β̃) = Q

(
β̂C

j |β̃0, β̃
)
+ F

(
β̂C

j |β̃0, β̃
)
− Q

(
β̂C

j |β̃0, β̃
)

≤ Q
(
β̂C

j |β̃0, β̃
)

≤ Q(β̃j |β̃0, β̃)

= F (β̃j |β̃0, β̃).

We now prove (3.1) (note that (3.2) is trivial). By the mean value theorem

φc(ri + yixij (βj − β̃j)) = φc(ri) + φ′
c(ri + t∗yixij (βj − β̃j))yixij (βj − β̃j) (3.3)

for some t∗ ∈ (0, 1). Moreover, we observe that the difference of the first derivatives for
the function φ satisfies

|φ′
c(a) − φ′

c(b)| =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if (a > 1, b > 1) or (a < 1 − δ, b < 1 − δ),
|a − b|/δ if (1 − δ < a ≤ 1, 1 − δ < b ≤ 1),
|a − (1 − δ)|/δ if (1 − δ < a ≤ 1, b < 1 − δ),
|b − (1 − δ)|/δ if (1 − δ < b ≤ 1, a < 1 − δ),
|a − 1|/δ if (1 − δ < a ≤ 1, b > 1),
|b − 1|/δ if (1 − δ < b ≤ 1, a > 1).

Therefore we have

|φ′
c(a) − φ′

c(b)| ≤ |a − b|/δ ∀a, b, (3.4)

and hence,

|φ′
c(ri + t∗yixij (βj − β̃j)) − φ′

c(ri)| ≤ 1/δ|t∗yixij (βj − β̃j)| (3.5)

≤ 1/δ|yixij (βj − β̃j)|. (3.6)

Combining (3.3) and (3.6), we have

φc(ri + yixij (βj − β̃j)) = φc(ri) + φ′
c(ri)yixij (βj − β̃j)

+
(
φ′

c(ri + t∗yixij (βj − β̃j)) − φ′
c(ri)

)
yixij (βj − β̃j)

≤ φc(ri) + φ′
c(ri)yixij (βj − β̃j) + 1/δ

(
yixij (βj − β̃j)

)2
.

Summing over i at the both sides of the above inequality and using y2
i = 1, 1

n

∑n
i=1 x2

ij = 1,
we get (3.1).

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

406 Y. YANG AND H. ZOU

4. A FURTHER EXTENSION OF THE GCD ALGORITHM

In this section, we further develop a generic GCD algorithm for solving a class of large
margin classifiers. Define an elastic net penalized large margin classifier as follows:

min
(β0,β)

1
n

n∑

i=1

L(yi(β0 + xᵀ
i β)) + Pλ1,λ2 (β), (4.1)

where L(·) is a convex loss function. The coordinate descent algorithm cyclically minimizes

F (βj |β̃0, β̃) = 1
n

n∑

i=1

L(ri + yixij (βj − β̃j)) + pλ1,λ2 (βj) (4.2)

with respect to βj , where ri = yi(β̃0 + xᵀ
i β̃) is the current margin. The analysis in Section

3 shows that the foundation of the GCD algorithm for the HHSVM lies in the fact that for
the Huberized hinge loss, the F function has a simple quadratic majorization function. To
generalize the GCD algorithm, we assume that the loss function L satisfies the following
quadratic majorization condition

L(t + a) ≤ L(t) + L′(t)a + M

2
a2 ∀t, a. (4.3)

Under (4.3), we have

F (βj |β̃0, β̃)

≤ 1
n

n∑

i=1

[L(ri) + L′(ri)yixij (βj − β̃j) + M

2
x2

ij (βj − β̃j)] + pλ1,λ2 (βj)

=
∑n

i=1 L(ri)
n

+
∑n

i=1 L′(ri)yixij

n
(βj − β̃j) + M

2
(βj − β̃j)2 + pλ1,λ2 (βj)

= Q(βj |β̃0, β̃),

which means that Q is a quadratic majorization function of F. Therefore, like in Algorithm
1, we set the minimizer of Q as the new update

β̂C
j = arg min

βj

Q(βj |β̃0, β̃)

and the solution is given by

β̂C
j =

S(Mβ̃j −
∑n

i=1 L′(ri)yixij

n
, λ1)

M + λ2
.

Likewise, the intercept is updated by

β̂C
0 = β̃0 −

∑n
i=1 L′(ri)yi

Mn
.

To sum up, we now have a generic GCD algorithm for a class of large margin classifiers
whose loss function satisfies the quadratic majorization condition, see Algorithm 2.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

AN ALGORITHM FOR COMPUTING THE HHSVM 407

We now show that the quadratic majorization condition is actually satisfied by popular
margin-based loss functions.

Lemma 1. (a) If L is differentiable and has Lipschitz continuous first derivative, that is,

|L′(a) − L′(b)| ≤ M1|a − b| ∀a, b. (4.4)

then L satisfies the quadratic majorization condition with M = 2M1.
(b) If L is twice differentiable and has bounded second derivative, that is,

L′′(t) ≤ M2 ∀t,

then L satisfies the quadratic majorization condition with M = M2.

Proof. For part (a) of Lemma 1, we notice that

L(t + a) = L(t) + L′(t1)a = L(t) + L′(t)a + (L′(t1) − L′(t))a

for some t1 between t and t + a. Using (4.4), we have

|(L′(t1) − L′(t))a| ≤ M1|(t1 − t)a| ≤ M1a
2,

which implies

L(t + a) ≤ L(t) + L′(t)a + 2M1

2
a2.

For part (b), we simply use Taylor’s expansion to the second order

L(t + a) = L(t) + L′(t)a + L′′(t2)
2

a2 ≤ L(t) + L′(t)a + M2

2
a2.

Figures 2 and 3 show several popular loss functions and their derivatives. We use Lemma
1 to show that those loss functions satisfy the quadratic majorization condition.

In Section 3, we have shown that the Huberized hinge loss has Lipschitz continuous first
derivative in (3.4) where M1 = 1/δ. By Lemma 1, it satisfies the quadratic majorization
condition with M = 2/δ. In this case, Algorithm 2 reduces to Algorithm 1.

The squared hinge loss function has the expression L(t) = [(1 − t)+]2 and its derivative
is L′(t) = −2(1 − t)+. Direct calculation shows that (4.4) holds for the squared hinge loss
with M1 = 2. By Lemma 1, it satisfies the quadratic majorization condition with M = 4.

The logistic regression loss has the expression L(t) = log(1 + e−t) and its derivative
is L′(t) = −(1 + et)−1. The logistic regression loss is actually twice differentiable and its
second derivative is bounded by 1/4: L′′(t) =

∑n
i=1

et

(1+et)2 ≤ 1
4 . By Lemma 1, it satisfies

the quadratic majorization condition with M = 1/4.
We have implemented both Algorithms 1 and 2 in an R package gcdnet. In this article,

we use hubernet, sqsvmnet, and logitnet to denote the funcion in gcdnet for computing
the solution paths of the elastic net penalized Huberized SVM, squared SVM, and logistic
regression.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

408 Y. YANG AND H. ZOU

Figure 3. (a) The first derivative of the Huberized hinge loss function (with δ = 2); (b) the first derivative of the
Huberized hinge loss function (with δ = 0.01); (c) the first derivative of the squared hinge loss function; (d) the
first derivative of the logistic loss function.

5. NUMERICAL EXPERIMENTS

5.1 COMPARING TWO ALGORITHMS FOR THE HHSVM

We compare the run-times of hubernet and a competing algorithm by Wang, Zhu, and
Zou (2008) for the HHSVM. The latter method is a LARS-type path algorithm that exploits
the piecewise linearity of the HHSVM solution paths. The source code is available at
http://www.stat.lsa.umich.edu/∼jizhu/code/hhsvm/ .

For notation convenience, the LARS-type algorithm is denoted by WZZ. For each given
λ2, WZZ finds the piecewise linear solution paths of the HHSVM. WZZ automatically
generates a sequence of λ1 values. To make a fair comparison, the same λ1 sequence is
used in hubernet. All numerical experiments were carried out on an Intel Xeon X5560
(Quad-core 2.8 GHz) processor.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

http://www.stat.lsa.umich.edu/jizhu/code/hhsvm/

AN ALGORITHM FOR COMPUTING THE HHSVM 409

Algorithm 2. The generic GCD algorithm for a class of large margin classifiers.

• Initialize (β̃0, β̃).

• Iterate 2(a)–2(b) until convergence:
– 2(a) Cyclic coordinate descent: for j = 1, 2, . . . , p,

∗ (2.a.1) Compute ri = yi(β̃0 + xᵀ
i β̃).

∗ (2.a.2) Compute

β̂C
j =

S
(
Mβ̃j −

∑n
i=1 L′(ri)yixij

n
, λ1

)

M + λ2
.

∗ (2.a.3) Set β̃j = β̂C
j .

– 2(b) Update the intercept term
∗ (2.b.1) Recompute ri = yi(β̃0 + xᵀ

i β̃).

∗ (2.b.2) Compute

β̂C
0 = β̃0 −

∑n
i=1 L′(ri)yi

Mn
.

∗ (2.b.3) Set β̃0 = β̂C
0 .

We first use the FHT model introduced in Friedman, Hastie, and Tibshirani (2010) to
generate simulated data with n observations and p predictors from the following model:

Z =
p∑

j=1

Xjβj + k · N (0, 1),

where the covariance between predictors Xj and Xj ′ has the same correlation ρ, with
ρ ranging from 0 to 0.95 and βj = (−1)j exp(−(2j − 1)/20). We choose k such that the
signal-to-noise ratio is 3.0. Generate a binary response Y according to Pr(Y = −1) =
1/(1 + exp(−Z)) and Pr(Y = +1) = 1/(1 + exp(Z)).

For each λ2 in (0, 10−4, 10−2, 1), we used WZZ and hubernet to compute the solution
paths of the HHSVM over the same grid of λ1 values. The process was repeated 10 times
over 10 independent datasets. Tables 1 and 2 compare the run-times of hubernet and WZZ,
where tWZZ

thubernet
is the ratio of their run-times.

In Table 1, n = 5000 and p = 100, which corresponds to the traditional moderate-
dimension larger-sample-size case. We see that hubernet is about 25–30 times faster than
WZZ. It is also interesting to note that the relative improvement in speed is nearly indepen-
dent of the correlation level and λ2, although the two factors have noticeable impact on the
actual computing times.

In Table 2, n = 100 and p = 5000, which corresponds to the high-dimension lower-
sample-size case. When λ2 = 0, the HHSVM uses the lasso penalty. In this case, the correla-
tion has little impact on the speed of WZZ while higher correlation slightly increases the tim-
ing of hubernet. Nevertheless, hubernet is about 4–7 times faster than WZZ. When λ2 > 0,
the HHSVM uses a true elastic net penalty. We see that the advantage of hubernet over

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

410 Y. YANG AND H. ZOU

Table 1. Timings (in seconds) for WZZ and hubernet for n = 5000, p = 100 data. Total time over the same grid
of λ1 values chosen by WZZ, averaged over 10 independent runs

n = 5000, p = 100

ρ 0 0.1 0.2 0.5 0.8 0.95

λ2 = 0
WZZ 88.42 85.51 86.97 86.56 96.24 113.83
hubernet 2.97 2.87 2.93 2.84 3.21 4.03

tWZZ
thubernet

29.79 29.68 30.48 29.98 28.25 28.25

λ2 = 10−4

WZZ 87.87 84.93 86.43 86.08 95.78 113.24
hubernet 2.99 2.87 2.93 2.86 3.24 4.05

tWZZ
thubernet

29.39 29.59 29.50 30.10 29.56 27.96

λ2 = 10−2

WZZ 80.53 76.65 79.38 78.73 87.45 107.24
hubernet 2.68 2.59 2.65 2.57 2.96 3.81

tWZZ
thubernet

30.05 29.59 29.95 30.63 29.54 28.15

λ2 = 1
WZZ 12.43 12.37 12.37 12.37 12.54 27.54
hubernet 0.45 0.48 0.49 0.50 0.53 1.03

tWZZ
thubernet

27.62 25.77 25.24 24.74 23.66 26.74

WZZ increases as λ2 becomes larger. A closer examination shows that WZZ is significantly
lowered down by a larger λ2, while λ2 has a much weaker impact on hubernet’s timings.

We now use some popular benchmark datasets to compare WZZ and hubernet. Five
datasets were considered in this study (see Table 3 for details). The first dataset Arcene

Table 2. Timings (in seconds) for WZZ and hubernet for n = 100, p = 5000 data. Total time over the same grid
of λ1 values chosen by WZZ, averaged over 10 independent runs

n = 100, p = 5000

ρ 0 0.1 0.2 0.5 0.8 0.95

λ2 = 0
WZZ 5.86 5.67 5.93 5.56 5.73 5.54
hubernet 0.87 0.82 0.86 0.86 1.01 1.16

tWZZ
thubernet

6.74 6.91 6.90 6.47 5.67 4.78

λ2 = 10−4

WZZ 208.39 208.13 203.15 208.46 203.87 188.75
hubernet 2.71 2.69 2.70 2.76 2.94 3.01

tWZZ
thubernet

76.90 77.37 75.24 75.53 69.34 62.71

λ2 = 10−2

WZZ 256.96 256.76 255.94 257.79 252.89 234.48
hubernet 2.97 2.96 3.03 2.95 2.95 2.96

tWZZ
thubernet

86.52 86.74 84.47 87.39 85.73 79.22

λ2 = 1
WZZ 292.75 292.87 292.91 292.84 291.45 282.51
hubernet 2.63 2.64 2.61 2.56 2.46 2.41

tWZZ
thubernet

111.31 110.94 112.23 114.39 118.48 117.22

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

AN ALGORITHM FOR COMPUTING THE HHSVM 411

Table 3. Timings (in seconds) of WZZ and hubernet for some benchmark real data, averaged over 10 runs

HHSVM on benchmark datasets

Data n p WZZ hubernet tWZZ
thubernet

Arcene 100 10000 37.17 2.46 15.09
Breast cancer 42 22283 3.16 0.46 6.85
Colon 62 2000 14.17 0.42 33.96
Leukemia 72 7128 52.20 1.42 36.69
Prostate 102 6033 302.91 3.47 87.2

is obtained from UCI Machine Learning Repository (Frank and Asuncion 2010). We also
considered the breast cancer data in Graham et al. (2010), the colon cancer data in Alon et al.
(1999), the leukemia data in Golub et al. (1999), and the prostate cancer data in Singh et al.
(2002). For each dataset, we randomly split the data into a training set and a test set with
ratio 4:1. The HHSVM was trained and tuned by five-fold cross-validation on the training
set. Note that we did a two-dimensional cross-validation to find the best pair of (λ2, λ1) that
incurs minimal misclassification error. Let λCV

2 denote the chosen λ2 by cross-validation.
We reported the timing of WZZ and hubernet for computing solution paths of the HHSVM
with λ2 = λCV

2 . The whole process was repeated 10 times. As can be seen from Table 3,
hubernet is much faster than WZZ in all examples. It is also interesting to see that hubernet
is very fast on all five datasets but WZZ can be very slow on prostate data.

5.2 COMPARING HUBERNET, SQSVMNET, AND LOGITNET

As shown in Section 4, the GCD algorithm provides a unified solution to three elastic
net penalized large margin classifiers using Huberized hinge loss, squared hinge loss, and
logistic regression loss. Here we compare the run times of hubernet for the HHSVM,
sqsvmnet for the elastic net penalized squared hinge loss, and logitnet for the elastic net
penalized logistic regression. We want to see how the loss function affects the computing
time of GCD.

For the elastic net penalized logistic regression, Friedman, Hastie, and Tibshirani (2010)
had developed a very efficient algorithm by combining Newton–Raphson and penalized
weighted least squares. Their software is available in the R package glmnet. However glmnet
uses a different form of the elastic net penalty: Pλ,α(β) = λ

∑p
j=1

[
1
2 (1 − α)β2

j + α|βj |
]
.

Fortunately, the glmnet code can be easily modified for the elastic net penalty Pλ1,λ2 (β) in
(2.4). We have reimplemented glmnet and denote it by logitnet-FHT for notation conve-
nience.

We first use the FHT model to generate simulation data with n = 100, p = 5000. Table 4
shows the run times (in seconds) of hubernet (δ = 2), hubernet (δ = 0.01), sqsvmnet,
logitnet, and logitnet-FHT. Each method solves the solution paths for 100 λ1 values for each
(λ2, ρ) combination. First of all, Table 4 shows that all these methods are computationally
efficient. Relatively speaking, the Huberized hinge loss (δ = 2) and squared hinge loss lead
to the fastest classifiers computed by GCD. As argued in Section 2.4, hubernet (δ = 0.01)
can be used to approximate the elastic net penalized SVM. Compared with the default
hubernet (with δ = 2), hubernet (δ = 0.01) is about 10 times slower.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

412 Y. YANG AND H. ZOU

Table 4. Timings (in seconds) for hubernet (δ = 2), hubernet (δ = 0.01), sqsvmnet, logitnet, and logitnet-FHT
in the elastic net penalized classification methods for n = 100, p = 5000 data. Total time for 100 values of λ1,
averaged over 10 independent runs

ρ 0 0.1 0.2 0.5 0.8 0.95

λ2 = 0
hubernet (δ = 2) 0.64 0.63 0.65 0.65 0.81 0.89
hubernet (δ = 0.01) 6.25 5.46 5.87 7.21 9.11 8.92
sqsvmnet 0.49 0.47 0.48 0.50 0.59 0.65
logitnet 3.85 3.85 3.82 4.77 6.06 8.02
logitnet-FHT 0.48 0.50 0.54 0.62 0.81 1.24

λ2 = 10−4

hubernet (δ = 2) 0.64 0.62 0.64 0.67 0.81 0.88
hubernet (δ = 0.01) 6.20 5.62 5.71 6.76 8.60 8.94
sqsvmnet 0.50 0.50 0.50 0.53 0.62 0.68
logitnet 3.78 3.81 3.79 4.69 6.07 8.05
logitnet-FHT 0.48 0.50 0.54 0.62 0.81 1.23

λ2 = 10−2

hubernet (δ = 2) 0.83 0.72 0.80 0.78 0.79 0.87
hubernet (δ = 0.01) 6.07 5.31 5.38 7.05 9.47 9.39
sqsvmnet 0.51 0.47 0.47 0.50 0.58 0.63
logitnet 4.24 4.18 4.49 5.11 7.29 8.14
logitnet-FHT 0.51 0.52 0.56 0.63 0.80 1.15

λ2 = 1
hubernet (δ = 2) 0.76 0.75 0.72 0.72 0.76 0.76
hubernet (δ = 0.01) 12.92 13.29 13.69 15.69 20.99 11.45
sqsvmnet 0.64 0.61 0.60 0.62 0.74 0.73
logitnet 4.89 4.63 4.53 4.69 4.98 5.17
logitnet-FHT 0.78 0.74 0.76 0.75 0.71 0.77

We also observe that logitnet-FHT is about 8–10 times faster than logitnet. A possible
explanation is that logitnet-FHT takes advantages of the Hessian matrix of the logistic
regression model in its Newton–Raphson step, while logitnet simply uses 1/4 to replace
the second derivatives, which can be conservative. On the other hand, hubernet (δ = 2) and
sqsvmnet are at least comparable to logitnet-FHT and the former two even have noticeable
advantages when the correlation is high.

We now compare timings and classification accuracy of hubernet (δ = 2), hubernet
(δ = 0.01), sqsvmnet, logitnet, and logitnet-FHT on the five benchmark datasets (See details
in Table 5). Each model was trained and tuned in the same way as described in Section 5.1.
Average misclassification error on the test set from 10 independent splits is reported. Also
reported is the run time (in seconds) for computing the solution paths with λ2 chosen by
five-fold cross-validation. We can see that the hubernet with δ = 2 or δ = 0.01 has better
classification accuracy than other classifiers on Arcene, Colon, Leukemia, and Prostate,
while sqsvmnet has the smallest error on breast cancer. In terms of timings, there are
three datasets for which sqsvmnet is the winner and logitnet-FHT wins on the other two.
The timing results for hubernet (δ = 2) are very close to those of sqsvmnet and logitnet-
FHT. Overall, hubernet (δ = 2) delivers very competitive performance on these benchmark
datasets.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

AN ALGORITHM FOR COMPUTING THE HHSVM 413

Table 5. Testing error (%) and timings (in seconds) for some benchmark real data. The timings are for computing
solution paths for hubernet (δ = 2), hubernet (δ = 0.01), sqsvmnet, logitnet, and logitnet-FHT with λ2 chosen by
cross-validation and over the grid of 100 λ1 values, averaged over 10 runs

Classification methods comparison on real data

Arcene Breast cancer Colon Leukemia Prostate

Method Error Time Error Time Error Time Error Time Error Time

hubernet (δ = 2) 21.00 1.35 19.71 1.12 17.90 0.23 3.16 0.73 9.35 0.77
hubernet (δ = 0.01) 23.58 23.92 19.71 15.36 15.10 7.35 2.41 5.55 8.47 6.12
sqsvmnet 23.00 1.13 19.14 1.15 19.30 0.18 3.25 0.54 8.88 0.66
logitnet 25.00 9.71 19.57 6.53 21.20 1.13 3.91 6.23 9.05 4.77
logitnet-FHT 25.00 1.85 19.57 1.08 21.20 0.14 3.91 0.65 9.05 0.67

6. DISCUSSION

In this article, we have presented a GCD algorithm for efficiently computing the solution
paths of the HHSVM. We also generalized the GCD to other large margin classifiers and
demonstrated their performances. The GCD algorithm has been implemented in an R
package gcdnet, which is publicly available from The Comprehensive R Archive Network
at http://cran.r-project.org/web/packages/gcdnet/index.html.

As pointed out by a referee, in the optimization literature, there are other efficient al-
gorithms for solving the HHSVM and the elastic net penalized squared SVM, logistic
regression. Tseng (2009) proposed a coordinate gradient descent method for solving ℓ1 pe-
nalized smooth optimization problems. Nesterov (2007) proposed the composite gradient
mapping idea for minimizing the sum of a smooth convex function and a nonsmooth con-
vex function such as the ℓ1 penalty. These algorithms can be applied to the large margin
classifiers considered in this article. We do not argue here that GCD is superior than these
alternatives. The message we wish to convey is that the marriage between coordinate de-
scent and MM principle could yield an elegant, stable, and yet very efficient algorithm for
high-dimensional classification.

SUPPLEMENTARY MATERIALS

The supplementary materials are available in a single zip file, which contains the R package
gcdnet and a readme file (README.txt).

ACKNOWLEDGMENTS

The authors thank the editor, an associate editor, and two referees for their helpful comments and suggestions.
This work is supported in part by NSF grant DMS-08-46068.

[Received October 2011. Revised March 2012.]

REFERENCES

Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D., and Levine, A. (1999), “Broad Patterns of Gene
Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide
Arrays,” Proceedings of the National Academy of Sciences, 96, 6745–6750. [411]

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

http://cran.r-project.org/web/packages/gcdnet/index.html

414 Y. YANG AND H. ZOU

Bradley, P., and Mangasarian, O. (1998), “Feature Selection via Concave Minimization and Support Vector
Machines,” in Machine Learning Proceedings of the Fifteenth International Conference (ICML’98), pp.
82–90.

Bühlmann, P., and van de Geer, S. (2011), Statistics for High Dimensional Data, Heidelberg: Springer. [396]

Burges, C. (1998), “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge
Discovery, 2, 121–167. [399]

Daubechies, I., Defrise, M., and De Mol, C. (2004), “An Iterative Thresholding Algorithm for Linear Inverse
Problems With a Sparsity Constraint,” Communications on Pure and Applied Mathematics, 57, 1413–1457.
[397]

De Leeuw, J., and Heiser, W. (1977), “Convergence of Correction Matrix Algorithms for Multidimensional
Scaling,” in Geometric Representations of Relational Data, ed. J. C. Lingoes, Ann Arbor, MI: Mathesis Press,
pp. 735–752.

Dempster, A., Laird, N., and Rubin, D. (1977), “Maximum Likelihood From Incomplete Data via the EM
Algorithm,” Journal of the Royal Statistical Society, Series B, 39, 1–38. [404]

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004), “Least Angle Regression,” The Annals of Statistics,
32, 407–451. [397]

Evgeniou, T., Pontil, M., and Poggio, T. (2000), “Regularization Networks and Support Vector Machines,”
Advances in Computational Mathematics, 13, 1–50. [399]

Frank, A., and Asuncion, A. (2010), “Arcene Data Set: UCI” Machine Learning Repository, Available at
http://archive.ics.uci.edu/ml/datasets/Arcene.

Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R. (2007), “Pathwise Coordinate Optimization,” The Annals
of Applied Statistics, 1, 302–332. [397]

Friedman, J., Hastie, T., and Tibshirani, R. (2010), “Regularization Paths for Generalized Linear Models via
Coordinate Descent,” Journal of Statistical Software, 33, 1. [397,401,403,409,411]

Fu, W. (1998), “Penalized Regressions: The Bridge Versus the Lasso,” Journal of Computational and Graphical
Statistics, 7, 397–416. [397]

Genkin, A., Lewis, D., and Madigan, D. (2007), “Large-Scale Bayesian Logistic Regression for Text Categoriza-
tion,” Technometrics, 49, 291–304. [397]

Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J.,
Caligiuri, M., Bloomfield, C., and Lander, E. (1999), “Molecular Classification of Cancer: Class Discovery
and Class Prediction by Gene Expression Monitoring,” Science, 286, 531–537. [411]

Graham, K., de las Morenas, A., Tripathi, A., King, C., Kavanah, M., Mendez, J., Stone, M., Slama, J., Miller,
M., Antoine, G., Willers, H., Sebastiani, P., and Rosenberg, C. (2010), “Gene Expression in Histologically
Normal Epithelium From Breast Cancer Patients and From Cancer-Free Prophylactic Mastectomy Patients
Shares a Similar Profile,” British Journal of Cancer, 102, 1284–1293. [411]

Hastie, T., Tibshirani, R., and Friedman, J. (2001), The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, New York: Springer Verlag. [396,399]

Hunter, D., and Lange, K. (2004), “A Tutorial on MM Algorithms,” The American Statistician, 58, 30–
37. [404]

Lange, K., Hunter, D., and Yang, I. (2000), “Optimization Transfer Using Surrogate Objective Functions,” Journal
of Computational and Graphical Statistics, 9, 1–20. [404]

Nesterov, Y. (2007), “Gradient Methods for Minimizing Composite Objective Function,” Technical Report, Center
for Operations Research and Econometrics (CORE), Catholic University of Louvain (UCL).

Osborne, M., Presnell, B., and Turlach, B. (2000), “A New Approach to Variable Selection in Least Squares
Problems,” IMA Journal of Numerical Analysis, 20, 389–404. [397]

Rosset, S., and Zhu, J. (2007), “Piecewise Linear Regularized Solution Paths,” The Annals of Statistics, 35,
1012–1030. [397]

Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., Ladd, C., Tamayo, P., Renshaw, A., D’Amico, A., Richie,
J., Lander, E. S., Loda, M., Kantoff, P. W., Golub, T. R., and Sellers, W. R. (2002), “Gene Expression
Correlates of Clinical Prostate Cancer Behavior,” Cancer Cell, 1, 203–209. [397,411]

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

http://archive.ics.uci.edu/ml/datasets/Arcene

AN ALGORITHM FOR COMPUTING THE HHSVM 415

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society,
Series B, 58, 267–288. [396]

Tseng, P. (2001), “Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization,”
Journal of Optimization Theory and Applications, 109, 475–494. [401]

Tseng, P., and Yun, S. (2009), “A coordinate Gradient Descent Method for Nonsmooth Separable Minimization,”
Mathematical Programming, 117, 387–423. [413]

Van der Kooij, A. (2007), “Prediction Accuracy and Stability of Regression With Optimal Scaling Transforma-
tions,” Ph.D. thesis, Child & Family Studies and Data Theory (AGP-D), Department of Education and Child
Studies, Faculty of Social and Behavioural Sciences, Leiden University.

Vapnik, V. (1995), The Nature of Statistical Learning Theory, New York: Springer-Verlag. [396,399]

Wang, L., Zhu, J., and Zou, H. (2008), “Hybrid Huberized Support Vector Machines for Microarray Classification
and Gene Selection,” Bioinformatics, 24, 412–419. [396,397,399,400,401,408]

Wu, T. T., and Lange, K. (2008), “Coordinate Descent Algorithms for Lasso Penalized Regression,” The Annals
of Applied Statistics, 2, 224–244. [397]

——— and Lange, K. (2010), “The MM Alternative to EM,” Statistical Science, 25, 492–505. [404]

Zhu, J., Rosset, S., Hastie, T., and Tibshirani, R. (2004), “1-Norm Support Vector Machines,” The Annual
Conference on Neural Information Processing Systems, 16.

Zou, H., and Hastie, T. (2005), “Regularization and Variable Selection via the Elastic Net,” Journal of the Royal
Statistical Society, Series B, 67, 301–320. [397,399,402]

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
rie

s,
Tw

in
 C

iti
es

] a
t 1

3:
09

 1
2

O
ct

ob
er

 2
01

3

	An Efficient Algorithm for Computing the HHSVM and Its Generalizations
	INTRODUCTION
	THE HHSVM AND GCD ALGORITHM
	The HHSVM
	A Generalized Coordinate Descent Algorithm
	Implementation
	Approximating the SVM

	GCD AND THE MM PRINCIPLE
	A FURTHER EXTENSION OF THE GCD ALGORITHM
	NUMERICAL EXPERIMENTS
	Comparing Two Algorithms for the HHSVM
	Comparing hubernet, sqsvmnet, and logitnet

	DISCUSSION

