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ABSTRACT
Withnowwell-recognizednonnegligiblemodel selectionuncertainty, data analysts shouldno longerbe sat-
isfiedwith the output of a single finalmodel from amodel selection process, regardless of its sophistication.
To improve reliability and reproducibility inmodel choice, one constructive approach is tomakegooduse of
a soundvariable importancemeasure. Although interesting importancemeasures are available and increas-
ingly used in data analysis, little theoretical justification has been done. In this article, we propose a new
variable importancemeasure, sparsity oriented importance learning (SOIL), for high-dimensional regression
from a sparse linear modeling perspective by taking into account the variable selection uncertainty via the
use of a sensible model weighting. The SOIL method is theoretically shown to have the inclusion/exclusion
property: When the model weights are properly around the true model, the SOIL importance can well sep-
arate the variables in the true model from the rest. In particular, even if the signal is weak, SOIL rarely gives
variables not in the truemodel significantly higher important values than those in the truemodel. Extensive
simulations in several illustrative settings and real-data examples with guided simulations show desirable
properties of the SOIL importance in contrast to other importance measures. Supplementary materials for
this article are available online.

1. Introduction

Variable importance has been an interesting research topic that
helps to identify which variables are most important for under-
standing, interpretation, estimation, or prediction purposes.
The potential usages of variable importance measures include:
(1) they help reduce the list of variables to be considered by
screening out those with importance values below a threshold.
This leads to cost and time saving in data analysis; (2) they also
help decision makers to obtain a more comprehensive under-
standing of the underlying data-generation process than trust-
ing any single model by a variable selection procedure; (3) they
offer a ranking of variables that can be used to consider model
selection or model averaging in a nested fashion, which simpli-
fies the consideration of all subsetmodels; (4) they can help deci-
sion makers to change or replace variables based on practical
considerations. See Feldman (2005), Louppe et al. (2013), Braun
andOswald (2011), Grömping (2015), Hapfelmeier et al. (2014),
Archer and Kimes (2008), and Strobl et al. (2007) for reference.

Under the linear regression setting, various methods have
been proposed for evaluating variable importance. The first type
includes simple measures based on a final selected model, for
example, t-test values, (standardized) regression coefficients,
and p-values of the variables. This approach has the severe draw-
back associated with any “winner takes all” variable selection
method. The variable selection uncertainty is totally ignored and
all the non-selected variables have zero importance.

Another approach is based on the R2 decomposition. Linde-
man, Merenda and Gold (1980) used the improved explained
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variance averaged over all possible orderings of predictors to
provide a ranking of the predictors. Feldman (2000) extended
it to the weighted version (PMVD). Several encouraging meth-
ods, such as dominance analysis (Budescu 1993), hierarchical
partitioning (Chevan and Sutherland 1991), information crite-
rion based method (Theil and Chung 1988) and the product of
standardized true coefficients and partial correlation (Hoffman
1960), have also been proposed.

Besides importancemeasuringwith parametricmodels, non-
parametric approaches are also available. For regression and
classification, random forest (Breiman 2001) and its variants
have attracted a lot of attention in many fields. Breiman (2001)
proposed two versions of variable importances for random
forest. Ishwaran (2007) studied the theoretical properties of
variable importance for binary regression with random for-
est. There, the variable importance is defined as the difference
between the prediction error before and after the variable is
noised up. Under proper assumptions, the variable importance
is shown to converge and suitably upper-bounded. Strobl et al.
(2008) proposed conditional variable importance for random
forest to correct the bias of variable importance when there
exist correlated variables. Ferrari and Yang (2015) assessed vari-
able importance from a variable selection confidence set (VSCS)
perspective.

In this article, we propose a sparsity oriented importance
learning (SOIL) for high-dimensional regression data. For our
approach, by assigning weights to the candidate linear models
(or generalized linear models for classification), we come up
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with measures of importance of the predictors in an absolute
scale in [0, 1].

Several features/advantages of our method can be concluded
as follows. First, it involves multiple high-dimensional variable
selection methods and combines all their solution path models,
which producesmany candidatemodels rather than being based
on only one model selection method. The resulting importance
values are thus more reliable than trusting one method alone.
Second, SOIL uses external weighting, which is independent
of the model selection methods. This can avoid possible bias
brought up by using a method both for coming up with candi-
date models and for assessing the models for weighting. Third,
from the main theorem in the article, we gain a theoretical
understanding of ourmethod.We prove that the importances of
the true variables will tend to 1 and the importances of the other
variables will tend to 0 as the sample size increases, as long as
the weighting is sensible. Last but not least, comparedwith other
importance measures, our method also shows excellent perfor-
mances in the numerical study, with desirable behaviors such as
exclusion, inclusion, order preserving, robustness, etc.

In the current era of rich high-dimensional data, with the
well-recognized severe problem of irreproducibility of scientific
findings (see, e.g., Ioannidis and Khoury 2011; McNutt 2014;
Stodden 2015), we believe the use of informative importance
measures can much improve the reliability of data analysis in
multiple ways:

1. First, if the data analyst has already chosen a set of covari-
ates for finalizing a model to be recommended, the SOIL
importance measure is helpful to put the model under a
more objective light. He/she can immediately inspect if
some variables deemed important by SOIL are missing
in the set or the other way around. If so, the analyst may
want to investigate on the matter. For instance, residu-
als from the model based on the current set of covari-
ates, when plotted against the missing variables, may
reveal their relevance.Models with/without the variables
in questions can be fit and compared for a better under-
standing on their usefulness.

2. Based on the theoretical properties of the SOIL, variables
most suitable for sparse modeling receive higher impor-
tance values. Thus, the SOIL can be naturally used to find
the best model for the data. In theory, any fixed cutoff in
(0, 1) leads to a good performance (see Theorem 2). But
the best cutoff depends on the purpose of thefinalmodel:
for prediction accuracy, the cutoff should be lower and
for identifying variables than can be validated at simi-
lar sample sizes in future studies, the cutoff should be
higher. See, e.g., Yang (2005) to understand the subtle
matter of the conflict between model identification and
estimation/prediction.

3. Whether one comes up with a set of covariates based on
SOIL importance (as described above) or not (e.g., using
a penalized likelihood based model selection method),
the SOIL importance values of the variables help the
data analyst get a sense on model selection uncertainty.
More specifically, if there are quite a few variables having
importance values similar to some in a final model
(obtained from a trustworthy process that has, at least
reasonably, justified the usefulness of the selected covari-
ates, e.g., based on cross-validation), it may indicate that

the model selection uncertainty is perhaps high for
the data and there are alternative choices of variables
that can give similar predictive performances. In such
a case, it is advantageous for the data analyst and the
decision maker to be well-informed on possible alterna-
tive models/covariates to be used. For instance, if some
covariates are much less costly for future experiments or
operations, they may be preferred to be included in the
final model even if their importance values are slightly
lower than some other ones in a good model.

4. When estimating the regression function or prediction
is the main goal, the understanding on degree of model
selection uncertainty, together with other model selec-
tion diagnostic tools (see, e.g., Nan andYang 2014 for ref-
erences), can help the data analyst decide on the choice
between model selection and model averaging (see Yang
2003; Chen, Giannakouros, and Yang 2007 for results
on comparison between model selection and model
averaging).

In summary, the SOILmethod is helpful in different stages of
model building. It can be used to narrow down the set of covari-
ates for further consideration and for reaching afinalmodelwith
sound considerations. Equally or even more importantly, it pro-
vides an objective view on reliability of themodel and themodel
selection uncertainty. This gives information unavailable in the
traditional practice of glorifying the final model and thus can
helpmuch improve reproducibility of data analysis that involves
variable selection.

The remainder of the article is organized as follows. In
Section 2, we introduce the proposed SOIL methodology and
provide a theoretical understanding on some key aspects.
Sections 3 and 4 present the details of choosing the candidate
models and the weighting for SOIL in practice. In Section 5, we
conduct several simulations that fairly and informatively com-
pare the performance of SOIL and three existing and commonly
used variable importance measures (LMG and two versions of
random forest importances). Furthermore,we apply thesemeth-
ods to three real datasets in Section 6. A discussion about vari-
able importance is then presented in Section 7, followed by the
proofs of the results in the Appendix.

2. General Methodology

In this section, we introduce the sparsity oriented impor-
tance learning (SOIL) procedure, which provides an objec-
tive and informative profile of variable importances for high-
dimensional regression and classification models. We consider
the regression setting first, and the generalization to the classifi-
cation model will be discussed later in Section 4.

Let X = (X1, . . . ,Xp) be the n × p design matrix with Xj =
(x1 j, . . . , xn j)ᵀ, j = 1, . . . , p, and y = (y1, . . . , yn)ᵀ be the
n-dimensional response vector. The design matrix can also be
written as X = (x1, . . . , xn)ᵀ, where xi = (xi1, . . . , xip)ᵀ, i =
1, . . . , n.We consider the following underlying linear regression
model:

y = Xβ∗ + ε,

where ε is the vector of n independent errors and
β∗ = (β∗

1 , . . . ,β
∗
p )

ᵀ is a p-dimensional vector of the true
underlying model that generates the data. In general, predictors
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may include those created by the original predictors observed,
such as

√
X1, X2

1 and X1X3. We adopt the sparsity assumption
that most regression coefficients β∗

j are zero. Denote by | · | the
cardinality of a set. We assume β∗ is r∗-sparse, where r∗ = |A∗|
withA∗ ≡ supp(β∗) = { j : β∗

j ̸= 0}.
SOIL importance depends on two ingredients: a manage-

able set of models (often based on a preliminary analysis) and
a reliable external weighting method on the models. Together
they can provide valuable information on importance of the
predictors.

Suppose that one can obtain a collection of models
A = {Ak}Kk=1, which can be either a full list of all-subset mod-
els when p is small, or a group of models obtained from high-
dimensional variable selection procedures such as Lasso (Tib-
shirani 1996), Adaptive Lasso (Zou 2006), SCAD (Fan and Li
2001) and MCP (Zhang 2010) etc., when p is large. We refer to
Ak, k = 1, . . . ,K as candidate models, and w = (w1, . . . ,wK )ᵀ

as the corresponding weighting vector, which is estimated from
the data.

Given the set A and the weighting w, we define the SOIL
importance measure for the jth variable, j ∈ {1, . . . , p}, as the
accumulated sum of weights of the candidate models Ak that
contains the jth variable. That is

SOIL Importance : S j ≡ S( j;w,A)=
K∑

k=1
wkI( j ∈ Ak).

2.1. Theoretical Properties

We will show consistency of the SOIL importance mea-
sure, under the condition that the weighting vector w =
(w1, . . . ,wK )ᵀ satisfies the following properties referred to as
weak consistency and consistency:

Definition 1 (Weak Consistency and Consistency). The weighting
vector w is weakly consistent if

∑K
k=1 wk|Ak∇A∗|

r∗
p→ 0, as n → ∞, (1)

and w is consistent if
K∑

k=1

wk|Ak∇A∗| p→ 0, as n → ∞,

where ∇ denotes the symmetric difference of two sets and | · |
denotes number counting.

Remark 1. Intuitively, both weak consistency and consistency
of weighting ensure that the weighting of the candidate mod-
els is concentrated enough around the true model, but to dif-
ferent degrees. Including the denominator r∗ in (1) makes the
weak consistency condition more likely to be satisfied than con-
sistency, when the true model size r∗ is allowed to increase
in dimension as n increases, as long as it satisfies the sparsity
assumption r∗ << n.

Remark 2. For a very poor candidate set A, there may not exist
any (weakly) consistent weighting vector.

Definition 2 (Path-consistent). A method is called path-
consistent if

P(A∗ ∈ ") → 1, as n → ∞,

where " denotes the whole solution path produced by the
method.

Remark 3. The definition of path-consistency provides an
option of obtaining a good candidate setA. We can consider the
solution paths of multiple path-consistent methods, which will
be further discussed in Section 3.1.

There are several different methods in the literature for pro-
viding the weight vector w = (w1, . . . ,wK )ᵀ for the candi-
date modelsA. For example, Buckland, Burnham, and Augustin
(1997) and Leung and Barron (2006) studied a weighting
method based on information criterion, such as AIC (Akaike
1973) and BIC (Schwarz et al. 1978); Hoeting et al. (1999) pro-
posed the weighting by Bayesian model averaging (BMA) from
aBayesian perspective; several attractive frequentistmodel aver-
aging approaches are also developed (e.g., Yang 2001; Hjort
and Claeskens 2003; Buckland, Burnham, and Augustin 1997;
Hansen 2007; Liang et al. 2011; Cheng, Ing, and Yu 2015; Cheng
andHansen 2015). In particular, Yang (2001) proposed aweight-
ing strategy by data splitting and cross-assessment, which is
referred to as the adaptive regression by mixing (ARM). He
proved that the weighting by ARM delivers the best rate of con-
vergence for regression estimation. One advantage of ARM is
that it can be applied to combine general regression procedures
(not limited to parametric models). The ARM weighting was
extended to the classification problems inYang (2000), Yuan and
Ghosh (2008), and Zhang, Lu, and Zou (2013).

Among the aforementioned weighting methods, there are
several that give consistent weights w. For example, when there
are a fixed number of models in the candidate model set, BMA
typically gives a consistent weighting. ARM also gives consis-
tent weighting when the data splitting ratio is properly chosen
(Yang 2007). Now, we prove that (a) under the assumption of
weakly consistent weighting, the sum of the SOIL importance of
the true variables will tend to the size of the true model r∗, while
the sum of the SOIL importance of the variables excluded by the
true model converges to 0; (b) a consistent weighting ensures
that the SOIL importance of any true variable tends to one as
the sample size n goes to infinity; while each variable outside
the true model will have the SOIL importance tend to 0.

Theorem 1.
(a) Under the assumption that the weighting w is weakly

consistent, we have:
∑

j∈A∗ S j

r∗
p→ 1,

∑
j/∈A∗ S j

r∗
p→ 0, as n → ∞;

(b) When the weighting w is consistent, we have:

min
j∈A∗

S j
p→ 1, max

j/∈A∗
S j

p→ 0, as n → ∞.

In some applications, one may set up a threshold value
c ∈ (0, 1) for the variable importance, and only keeps all the
variables whose importances are greater than c. Denote byAc =
{ j : S j > c} the model selected according to this criterion. The
property of Ac is shown in the following theorem, which indi-
cates that for any threshold c, the number of the true variables
missed by Ac and the number of the over-selected variables in
Ac will be relatively small as n grows large.
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Theorem 2. For any threshold c ∈ (0, 1), denoteAc = { j ∈ A∗ :
S j ≤ c, j = 1, . . . , p}, Ac = { j /∈ A∗ : S j > c, j = 1, . . . , p},
then if w is weakly consistent, we have

|Ac|
r∗

p→ 0,
|Ac|
r∗

p→ 0, as n → ∞.

As for the choice of threshold, its value depends on how
one intends to balance between the cost of overfitting and
under-fitting. Actually |Ac∇A∗| = |Ac ∪ Ac|. We can also get

that
|Ac∇A∗|

r∗
p→ 0 as n → ∞. The proofs of Theorem 1 and

Theorem 2 are presented in the Appendix.

3. Implementation

3.1. CandidateModels

Now, we discuss how to choose candidatemodels for computing
the SOIL importance. One approach is to use a complete collec-
tion of all-subset models as the candidate models, that is,

A = {∅, { j1}, . . . , { jp}, { j1, j2}, { j1, j3}, . . . , { j1, . . . , jp}},

where j1, . . . , jp ∈ {1, . . . , p}. However, in the high-
dimensional setting where p ≫ n, using the candidate models
with all subsets is computationally infeasible. Alternatively, we
obtain the candidate models using tools for high-dimensional
penalized regression

min
β∈Rp

1
n

n∑

i=1

(
yi − xᵀi β

)2 +
p∑

j=1

pλ(β j), (2)

where pλ(·) is a nonnegative penalty function with regulariza-
tion parameter λ ∈ (0,∞), such as, Lasso (Tibshirani 1996)
penalty pλ(u) = λw|u| in (2), and nonconvex penalties includ-
ing the smoothly clipped absolute deviation (SCAD) penalty
(Fan and Li 2001)

pλ(u) = λ|u|I(|u| ≤ λ) +
{
λ|u| − (λ− |u|)2

2(γ − 1)

}
I(λ < |u| ≤ γ λ)

+ (γ + 1)λ2

2
I(|u| > γ λ), (γ > 2),

or the minimax concave penalty (MCP, Zhang 2010)

pλ(u) = λ

(
|u| − u2

2γ λ

)
I(|u| ≤ γ λ) + γ λ2

2
I(|u| > γ λ),

(γ > 1).

We first apply a high-dimensional model selection method, e.g.,
SCAD, on the data to compute solution paths for a sequence of
tuning parameter {λ1, . . . , λL}. Let {̂βλ1 , . . . , β̂λL} be the esti-
mated coefficients of L different regularization levels for the
SCAD penalty and

ASCAD = {Aλ1,Aλ2 , . . . ,AλL}

be the resulting models with Aλl ≡ supp(̂β
λl
) = { j : β̂λlj ̸= 0}.

We then use the set ASCAD as the set of candidate models.
To further increase the chance of capturing the true/best

model, we can put together the resulting models from several
different penalties to form a larger set of candidate models, for

example, A = {ALasso,AAdaptiveLasso,ASCAD,AMCP}. The individ-
ual penalized methods for producing A do not have to all con-
tain the true model A∗. As long as there is at least one candi-
date model in the solution paths being (or very close to) the true
model, SOIL importance can still work well, provided that the
weighing is sensible. By considering multiple model selection
methods through merging their solution paths, the chance of
including the true model in A is enhanced.

3.2. Weighting

In this article, we focus on two kinds of weighting methods:
ARM weighting, which is a weighting strategy by data splitting
and cross-assessment, and BIC weighing by BIC or a modified
BIC information criterion (BIC-p) for high-dimensional data.
Yang and Barron (1998) pointed out that when we have expo-
nentially many models, we may consider the model complexity
in terms of the prior weight on the model. When the dimen-
sionality is large, a uniform prior penalty in ARM and BIC does
not performwell. Following the same approach inNan and Yang
(2014), we consider a non-uniform prior (or descriptive com-
plexity from a coding perspective) e−ψCk when computing both
then ARM weighting and the BIC weighting, where ψ is a posi-
tive constant andCk will be given in Algorithm 1.

Weighting using ARM with nonuniform priors. The ARM
weighting method randomly splits the data D = {(xi, yi)}ni=1
into a training setD1 and a test setD2 of equal size (for simplic-
ity, assume n is an even number). Then, the regression models
trained on D1 are used for prediction on D2. Then, the weights
w = (w1, . . . ,wK )ᵀ can be computed based on this prediction.
We consider the linear regression model,

yi = x⊤
i β∗ + ϵi, ϵi ∼N(0, σ 2).

Specifically, if we denote by β(k)
s the nonzero-coefficient sub-

vector of β(k) specified by the modelAk, and let x(k)
s ∈ R|Ak| be

the corresponding subset of predictors, we summarize the ARM
weighting method in Algorithm 1.

Algorithm 1 The procedure of the ARM weighting for the
regression case.

• Randomly split D into a training set D1and a test set D2 of equal size.
• For each Ak ∈ A, fit a standard linear regression of y on x(k)

s using the
training set D1 and get the estimated coefficient β̂

(k)
s and the estimated

standard deviation σ̂(k)
s .

• For each Ak, compute the prediction x(k)ᵀ
s β̂

(k)
s on the test set D2.

• Compute the weight wk for each candidate model:

wk=
e−ψCk

(
σ̂(k)
s

)−n/2 ∏
i∈D2 exp

(
−

(
σ̂(k)
s

)−2(yi − x(k)ᵀ
s,i β̂

(k)
s

)2
/2

)

∑K
l=1 e−ψCl

(
σ̂(l)
s

)−n/2 ∏
i∈D2 exp

(
− (̂σ(l)

s )−2
(
yi − x(l)ᵀ

s,i β̂
(k)
s

)2
/2

) ,

for k = 1, . . . ,K, where Ck = sk log
e·p
sk

+ 2 log(sk + 2) and sk = |Ak| is
the number of non-constant predictors for model k.

• Repeat the steps above (with random data splitting)L times to get w(l)
k

for l = 1, . . . ,L, and get wk = 1
L

∑L
l=1 w(l)

k .

Weighting using information criteria with nonuniform priors.
An alternative way of weighting is using BIC information cri-
teria. Define IBICk = −2 log ℓk + sk log n as the BIC information
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criterion, where ℓk is the maximized likelihood for model k and
sk = |Ak| denotes the number of nonconstant predictors. Then
weight wk for modelAk ∈ A is computed by

wk = exp
(

− Ik
2

− ψCk

)
/

K∑

l=1

exp
(

− Il
2

− ψCl

)
. (3)

We refer to the above approach with nonuniform priors as the
BIC-p weighting.

Besides the ARMandBIC-pweighting, one can also consider
another alternative weighting approach by using Fisher’s fiducial
idea from the generalized fiducial inference (Lai, Hannig, and
Lee 2015). The details are included in supplementary materials
Part A. We do not discuss this method in details since it only
applies to the regression settings.

Often consistency of a weighting method is proved when
all subset models are considered (e.g., Lai, Hannig, and Lee
2015). But when p is large, it is computationally infeasible to
include all the variables, so some screening methods may be
applied to reduce the number of variables. Next, we prove
that under certain assumptions, SOIL importance is consis-
tent on differentiating important variables from unimportant
ones:

Corollary 1. Under the assumption that the weighting w on the
all-subset candidate models A is consistent, as long as at least
one method is path-consistent, we have

min
j∈A∗

S( j;w′
,A′

)
p→ 1, max

j/∈A∗
S( j;w′

,A′
)

p→ 0, as n → ∞,

where w′ is the renormalized weighting on A′ , which is the col-
lection of models using union of solution paths.

3.3. Software

We provide our implementation of the SOIL importance mea-
sure in an official R package SOIL, which is publicly available
from the Comprehensive R Archive Network at https://cran.r-
project.org/web/packages/SOIL/index.html. The package is also
provided in the supplementary materials.

4. Extension to the Binary ClassificationModel

We extend the SOIL importance to the binary logistic regression
case. LetY ∈ {0, 1} be the response variable and X ∈ Rp be the
predictor vector. We assume thatY has a Bernoulli distribution
with conditional probabilities

Pr(Y = 1|X = x) = 1 − Pr(Y = 0|X = x) = exᵀβ∗

1 + exᵀβ∗ ,

(4)
where β∗ = (β∗

1 , . . . ,β
∗
p )

ᵀ is the vector corresponding to the
true underlying model. The ARM weighting for the logistic
regression can be computed by Algorithm 2.

Algorithm 2 The procedure of the ARM weighting for the
binary classification case.

• Randomly split D into a training set D1 and a test set D2 of equal size.
• For each Ak ∈ A, fit a standard logistic regression of y on x(k)

s using
the samples in D1. Obtain the estimated coefficients β̂

(k)
s and the cor-

responding function of predicted conditional probability:

p̂(k)(x) ≡ Pr(Y = 1|X (k)
s = x) = exp

(
xᵀβ̂

(k)
s

)
/
(
1 + exp

(
xᵀβ̂

(k)
s

))
, k = 1K.

• For eachAk, compute the predicted probability p̂(k)(x(k)
s,i ) on the test set

{i|i ∈ D2}.
• Compute the weight wk for each candidate model:

wk =
e−ψCk

∏
i∈D2 p̂

(k)(x(k)
s,i

)yi
(
1 − p̂(k)(x(k)

s,i
))1−yi

∑K
l=1 e−ψCl

∏
i∈D2

p̂(l)
(
x(l)
s,i

)yi
(
1 − p̂(l)

(
x(l)
s,i

))1−yi
,

for k = 1, . . . ,K, where Ck = sk log
e·p
sk

+ 2 log(sk + 2) and sk = |Ak| is
the number of nonconstant predictors for model k.

• Repeat the steps above (with random data splitting) L times to get w(l)
k

for l = 1, . . . , L, and get wk = 1
L

∑L
l=1 w(l)

k .

4.1. Weighting Using Information Criteria with
Nonuniform Priors

Similarly, the weight wk for model Ak ∈ A using BIC-p the
information criterion can be computed in the same way as in (3)
where IBICk = −2 log ℓk + 2sk log n, with sk = |Ak| and ℓk being
the maximized likelihood function for the logistic modelAk.

5. Simulations

In this section, we consider a number of simulation settings
to highlight the properties of SOIL in contrast to some other
importance measures. We compare SOIL using the ARM and
BIC-p weighting methods with three variable importance alter-
natives, which are denoted as LMG, RFI1, and RFI2. LMG is
the relative importance measure by averaging over all possi-
ble orderings for R2 decomposition (Lindeman, Merenda, and
Gold 1980). RFI1 and RFI2 are importance measures in ran-
dom forests proposed by Breiman (2001). Specifically, RFI1 is
computed from a normalized difference between the prediction
error on the out-of-bag (OOB) portion of the data and that on
the permuted OOB data for each predictor variable. RFI2 is the
total decrease in node impurities from splitting on a particular
variable, averaged over all trees. The node impurity is defined by
the Gini index for classification, and by residual sum of squares
for regression. Computationally, LMG can be obtained by the R
implementationrelaimpo (Grömping et al. 2006), while RFI1
and RFI2 can be obtained by R implementation randomFor-
est (Liaw and Wiener 2002). Since LMG can only handle the
linear case with up to about 20 variables due to its computa-
tional limitation, we are not able to get the relative importance
LMG in some of our examples. In all the simulations, we obtain
Alasso, ASCAD and AMCP separately on the whole dataset under
the default settings of the tuning parameters from the package
glmnet (lasso) and ncvreg (SCAD and MCP), respectively.
Then, we use the union of Alasso, ASCAD, and AMCP as our can-
didate set A.

https://cran.r-project.org/web/packages/SOIL/index.html
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Table . Simulation settings.

Example n p Model settings

Gaussian case

   β∗ =
(
4, 4, 4, −6

√
2, 4

3 , 0, ..., 0
)ᵀ

  + β∗ =
(
4, 4, 4, −6

√
2, 4

3 , 0, . . . , 0
)ᵀ . Add X15 = 0.5X1 + 2X4 + eand β∗

15 = 0,
where e ∼N(0, 0.01).

   β∗ = (0, . . . , 0)ᵀ

   β∗ = (1, . . . , 1)ᵀ

S   β∗ =
(
4, 4, 4, −6

√
2, 4

3 , 0, . . . , 0
)ᵀ

S  + β∗ =
(
4, 4, −6

√
2, 4

3 , 0, 0
)ᵀ . Add

(
X 2
1 , X 2

2 , X 2
3 , X 2

4 , X 2
5 , X 2

6
)
and corresponding

coefficients
(
β∗
7 ,β∗

8 , . . . ,β∗
12
)ᵀ = (4, 0, 1, 0, 0, 0)ᵀ .

S  + β∗ =
(
4, 4, −6

√
2, 4

3 , 0, 0
)ᵀ . Add

(
X1X2, X1X3, X1X4, X2X3, X2X4, X3X4

)

and corresponding coefficients
(
β∗
7 ,β∗

8 , . . . ,β∗
12
)ᵀ = (4, 2, 2, 0, 0, 0)ᵀ .

S   β∗ =
(
4, 4, 4, −6

√
2, 4

3 , 0, ..., 0
)ᵀ

Binomial case

   β∗ =
(
1, 1

2 ,
1
3 ,

1
4 , 1

5 ,
1
6 , 0

)ᵀ

   β∗ =
(
1, 1

2 ,
1
3 ,

1
4 , 1

5 ,
1
6 , 0

)ᵀ

S   β∗ =
(
4, 4, 4, −6

√
2, 4

3 , 0, ..., 0
)ᵀ

S   β∗ =
(
4, 4, 4, −6

√
2, 4

3 , 0, ..., 0
)ᵀ

In the following, we compare different variable importance
measures for Gaussian and Binomial cases under various set-
tings of sample sizes, dimensions, and feature correlations.

Model 1: Gaussian. The simulation data {yi, xi}ni=1 are gener-
ated from the linear model yi = xᵀi β∗ + ϵi, ϵi ∼N(0, σ 2) and
σ ∈ {0.1, 5}. We generate xi from multivariate normal distribu-
tion Np(0,)). For each element )i j of ), )i j = ρ|i− j|, that is,
the correlation of Xi and Xj is ρ|i− j|, with ρ ∈ {0, 0.9}.

Model 2: Binomial. The iid sample {yi, xi}ni=1 is generated
from the binomial model logit(pi) = xᵀi β∗, where pi = P(Y =
1|X = xi). And xi is generated in the same way as the Gaussian
case.

We summarize in Table 1 the model settings adopted in this
simulation. For each model setting with a specific choice of the
parameters (ρ, σ 2), we repeat the simulation 100 times and
compute the averaged variable importance measures for SOIL-
BIC-p, SOIL-ARM, LMG, RFI1, and RFI2.

The results for the simulations are shown in Figures 1–6 and
Figures S1–S6. Due to page restrictions, the figures of Exam-
ple S1–S6 are only provided in the supplementary materials,
while the summary of all the examples are discussed in themain
part of the article. For the scaling of the importance measures,
we standardize RFI1 and RFI2, dividing them by their respec-
tive maximum value of the variable importance among all the

Figure . Simulation results for Example , where n = 100, p = 1000. The true coefficients β∗ = (4, 4, 4, −6
√
2, 4

3 , 0, . . . , 0).
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Figure . Simulation results for Example , where n = 150, p = 14. The true coefficients β∗ = (4, 4, 4, −6
√
2, 4

3 , 0, . . . , 0). Add X15 = 0.5 ∗ X1 + 2 ∗ X4 + eand corre-
sponding β∗

15 = 0, where e ∼N(0, σ 2
e ).

Figure . Simulation results for Example , where n = 150, p = 8. The true coefficients β∗ = (0, . . . , 0)ᵀ .

variables for each realization of the data. As a result, in each fig-
ure, we can see that the maximum value of RFI1 or RFI2 (after
the standardization) is always one. For SOIL and LMG, we keep
their original values as being proposed. The fact that the LMG
importance values sum to one over the variables should be kept
in mind when comparing the different importance measures on
the graphs.

The choice of the prior ψ for the ARM and BIC-p weight-
ing can be specified by the users. To avoid cherry-picking, we
present the results with a fixed choice:ψ = 0.5. Our experience
is that ψ = 0.5 or 1 generally works quite well. We conduct a
sensitivity analysis on the choice ofψ , which is presented in Fig-
ure S6 in the Supplementary Materials. We tried eight different
values, that is,ψ ∈ {0, 0.5, 1, 1.5, 2, 3, 3.5, 10} on the low noise
(σ 2 = 0.01) and high correlation (ρ = 0.9) case of Example S6.

We can conclude that a too large valueψ = 10 leads to poor per-
formance of SOIL, that is, detecting nothing important, while
choices of too small ψ (0 or close to 0) may result in signifi-
cant SOIL importances of unimportant variables. Overall, SOIL
importances under ψ = 0.5 or ψ = 1 are stably reliable in our
simulations.

5.1. Relative Performances of ImportanceMeasures in
Several key Aspects

A summary of the relevant properties of different important
measures is provided in Table 2. In the following, we discuss
point-by-point these characteristics for the importance mea-
sures in comparison. For convenience, we call the variables with
nonzero coefficients the “true” variables.
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Figure . Simulation results for Example , where n = 150, p = 8. The true coefficients β∗ = (1, . . . , 1)ᵀ .

Figure . Simulation results for Example , where n = 80, p = 6. The true coefficients β∗ = (1, 1
2 ,

1
3 ,

1
4 , 1

5 ,
1
6 , 0)ᵀ .

Figure . Simulation results for Example , where n = 5000, p = 6. The true coefficients β∗ = (1, 1
2 ,

1
3 ,

1
4 , 1

5 ,
1
6 , 0)ᵀ .

Inclusion/exclusion. The inclusion/exclusion aspect addresses
the issue if an importance measure can give a proper sense if
a predictor is likely to be needed in the best model to describe
the data. These two criteria for importance have been dis-
cussed in Grömping (2015). Recall that given enough data for
SOIL importance, the true variables in the model have large
importances (inclusion) and the variables that are not in the
true model have importances around zero (exclusion). In all

examples, we can see that the SOIL-BIC-p and SOIL-ARM have
the inclusion/exclusion property. For example in Figure S1, all
the true variables (X1, . . . ,X5) have their SOIL importances
around one, even though their coefficients are different, i.e.
(β∗

1 , . . . ,β
∗
5 ) = (4, 4, 4,−6

√
2, 4

3 ). In contrast, the other three
measures LMG, RFI1, and RFI2 do not have the inclusion
property when ρ = 0 and σ 2 = 0.01 (they all undervalue the
importance of X5, which has a small coefficient). LMG, RFI1,
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and RFI2 do not have the exclusion property either. We can see
that in Figure 2 the noise variable X15 confuses LMG, RFI1, and
RFI2. In Figure S2 when ρ = 0.9, LMG, RFI1, and RFI2 assign
relatively high values on the noise variable X8. In Figure S3,
when ρ = 0.9 and σ 2 = 25, LMG, RFI1, and RFI2 fail on the
noise variable X10.

SOIL is certainly incapable of giving high importance to very
weak variables in the true model. For example Figure 5 shows
that in a binomial model with the decreasing coefficient vector
β∗ = (1, 1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6 , 0)

ᵀ, the true variable X6’s SOIL impor-
tance is only around 0.1, not much above that of the noise
variable X7). However, this problem is alleviated as the sam-
ple increases: Figure 6 shows that the SOIL-ARM and SOIL-
BIC-p importances of six true variables (X1, . . . ,X6) become
closer to one when n increases from 80 to 5000. In contrast, the
LMG, RFI1, and RFI2 stay basically the same as the sample size
increases.

Tuning in to information. For high-dimensional data,more often
than not (to say the least), sparsity is a reluctant acceptance
that the info and/or computational limit only allows us a sim-
ple model for application. The optimal sparsity should depend
on the sample size and noise level. Therefore, it is desirable to
have an importance measure to honor this perspective. When
the sample size increases or the noise decreases, we should have
more information. Thus, the importance obtained from the data
should change due to the enrichment of information. Therefore
in most examples, when the correlation ρ and σ 2 are low, one
may hope the variable importances delineate the true model.
Comparing Examples 5 and 6, which differ only in the sample
size, as shown in Figure 5 and 6, only SOIL-BIC-p and SOIL-
ARM react to the much increased information due to sample
size increase, while the other three importances are not tuned in
to the information change.

Robustness to feature correlation. SOIL importances show
robustness against noise increase and higher feature correlation.
For example in Figure 1, 2, and Figures S1–S5 in Supplemen-
tary Materials Part B, even when there is high feature corre-
lation (ρ = 0.9, σ 2 = 0.01) or strong noise (ρ = 0, σ 2 = 25)
in the data, the SOIL-BIC-p and SOIL-ARM still give relatively
large importance values to the true variable X5, while the other
methods consider X5 as unimportant. But in a case of both high
feature correlation and strong noise (ρ = 0.9, σ 2 = 25), none
of the importance measures in comparison can quite clearly

Table . Comparison of the characteristics for the importancemeasures. A “
√
”indi-

cates that a specified method has the given property. A blank space indicates the
absence of a property.

SOIL-ARM SOIL-BIC-p LMG RFI RFI

Inclusion/Exclusion
√ √

Tuning in to information
√ √

Robustness to feature correlation
√ √

Robustness against confuser
√ √

Sensitivity to high-order terms
√ √

Pure relativeness
√ √ √

Order preserving
√ √

High-dimensionality
√ √ √ √

Non-parametricness
√ √

Non-negativity
√ √ √ √

selectX5 as an important variable because the information is too
limited.

Robustness against confusers. A confuser refers to a variable that
is closely related to a true variable or some linear combination of
the true variables but not to the extent of serving as a valid alter-
native. An importance measure oriented towards sparse model-
ing should assign near zero importances on the confusers. The
simulation results show that the SOIL importance measures are
much more robust to confusers than LMG, RFI1, and RFI2. In
Example 2, we generate a confuser X15 = 0.5X1 + 2X4 + e with
Gaussian noise e ∼N(0, 0.01). The results in Figure 2 show that
LMG, RFI1 and RFI2 fail to assign small importance to X15 (not
in the true model) and view it more important than some true
variables. In contrast, small ARM and BIC-p importances for
X15 correctly indicate that it is unimportant.

Sensitivity to higher-order terms. The SOIL importance mea-
sures are more sensitive to inclusion of higher-order terms in
the model. In Example S2 and S3, we add quadratic terms X2

1 ,
X2
2 , X2

3 , X2
4 , X2

5 , X2
6 and pairwise interactions X1X2, X1X3, X1X4,

X2X3, X2X4, X3X4 respectively, where the coefficients for X1X2,
X1X3, X1X4 and X2

1 , X2
3 are nonzero in the true models. Results

in Figure S2 and S3 show that the ARM and BIC-p methods
can select both true main-effect variables and true higher-order
terms, whereas LMG, RFI1, and RFI2 fail to select some of the
main-effect variables when interactions or quadratic terms are
included.

Pure relativity. An importance measure is said to be purely rela-
tive if the values individually do not have a sensible meaning on
their own. One drawback of an importance measure with pure
relativity is that it does not differentiate between equal impor-
tance and equal unimportance cases. All coefficients in Example
3 and 4 have the same relative size, which are β∗ = (0, . . . , 0)ᵀ
and β∗ = (1, . . . , 1)ᵀ, respectively. We find that LMG, RFI1,
and RFI2 do not offer any clue on importance of each vari-
able itself. Variables (X1, . . . ,X6) in Example 3 have very sim-
ilar LMG and RFI2 values to those in Example 4. And RFI1
behaves wildly as it assigns very much different importances to
the variables in the independence case (ρ = 0) of Example 3.
The importance values are even significantly negative for some
variables. In contrast, SOIL-BIC-p and SOIL-ARM nicely sepa-
rate the two examples.

Order preserving. Order preserving refers to the property that
the importance reflects the “order” of the variables or not: (1)
for the true variables (standardized) with not too high correla-
tions with others, it may be natural to expect the ones with larger
coefficients to have larger importances (up to one of course);
(2) the true variables should have larger importances compared
to the noise ones. In the case that the sample size is too small
for some true variables to be detectable, the order preserving
property demands that the noise variables should not receive
significantly higher importance values than these subtle true
variables. SOIL-BIC-p and SOIL-ARM exhibit the order pre-
serving property in all the cases. LMG behaves poorly when
there exists a confuser as in Figure 2. RFI1 and RFI2 do not
preserve the order when correlation ρ = 0.9 and/or noise σ 2 is
large.
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Figure . Simulation results for SOIL-tree on Example .

High-dimensionality. SOIL-BIC-p, SOIL-ARM, RFI1, and RFI2
can work for high-dimensional data when p > n as shown in
Figure 1 and S5. The exclusion and inclusion properties still hold
for SOIL-BIC-p and SOIL-ARM in the high-dimensional case
(inclusion of a weak variable requires that σ 2 is not too high). In
contrast, LMG does not support high-dimensional data.

Nonnegativity. SOIL-BIC-p, SOIL-ARM, LMG, and IMG2
always yield nonnegative importance value. However, RFI1 does
not satisfy this criterion.

Nonparametricness. Among the importance measures, only the
two from random forest are not limited to parametric modeling.

5.2. Comparison of SOIL with Lasso and Stability Selection

Meinshausen and Bühlmann (2010) proposed a stability selec-
tion (SS)method to improve the Lasso variable selection. SSmay
be regarded as an importancemeasure. In SupplementaryMate-
rials Part C, we present a comparison of SS importance to our
SOIL approach. Additionally, in Supplementary Materials Part
D, we present a stability comparison of Lasso and SOIL. Due to
the worse performances of SS and Lasso compared with SOIL,
together with the fact that themain goals of SS and Lasso are not
on variable importance, we do not consider SS or Lasso in our
main simulation.

5.3. Influence of theWeightingMethod on treeModels

Are the advantages of the SOIL approach compared to random
forest seen so far mainly due to the data driven model averaging
instead of the simple averaging as in random forest? We here
investigate the SOIL type weighting on the tree models. Like the
BIC weighting methods, we use the cost complexity of a tree,
Iα(Tk) = )

|T |
m=1NmQm(Tk) + α|Tk|, to calculate the weights for

the kth tree Tk, where |Tk| is the number of terminal nodes in
the treeTk,Nm is the number of observations in each terminal of
the tree, α is the tuning parameter (selected by cross-validation)

andQm(Tk) is the deviance (node impurity if it is a classification
tree) of the mth terminal node in Tk. Every tree produces a list
of variable importance and we use the weighted sum of these
lists of tree variable importances as the final importance mea-
sure, whichwe call SOIL-tree.We apply thismeasure in Example
2. Figure 7 shows the results. Comparing the SOIL-ARM/BIC-
p with SOIL-tree, we can see the SOIL-ARM/BIC-p perform
better than SOIL-tree in differentiating the true important vari-
ables. Comparing the RFI1/RFI2 with SOIL-tree, we see that the
SOIL weighting improves the performances of random forest
in the high correlation high noise case. The former comparison
indicates that the differences between SOIL and RF1/RF2 goes
beyond the weighting difference in SOIL and random forest and
the latter suggests that the SOIL weighting strategy can improve
the performance of tree-model based importances in the high-
correlation and high-noise case.

6. Real Data Examples

We apply the variable importance measures to three real
datasets:

BGS data. We first consider a dataset with small p from the
Berkeley Guidance Study (BGS) by Tuddenham and Snyder
(1954). The dataset includes 66 registered newborn boys whose
physical growth measures are followed for 18 years. Follow-
ing Cook and Weisberg (2009, p. 179) we consider a regres-
sion model of age 18 height on p = 6 predictors: weights at
ages two (WT2) and nine (WT9), heights at ages two (HT2)
and nine (HT9), age nine leg circumference (LG9), and age 18
strength (ST18). The corresponding SOIL-ARM, SOIL-BIC-p,
LMG, RFI1, and RFI2 importances for each variable are com-
puted and summarized in Table 3. We found that HT9 is the
most important variable according to all methods. But different
methods produce different second-most important variables.

Then, we conduct a “credibility check” for the above results
of various importance measures. To do so, we use a guided sim-
ulation or cross-examination (Li, Lue, and Chen 2000; Rolling
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Table . Importancemeasures of the variables inBGSdata. The top twomost impor-
tant variables according to each measure are in bold.

WT HT WT HT LG ST

SOIL-ARM . . . 1.00 0.62 .
SOIL-BIC-p . . . 1.00 0.63 .
LMG . 0.13 . 0.65 . .
RFI . . . 55.66 4.12 .
RFI . . . 2126.64 . 127.74

and Yang 2014), in which the performances of the importance
measures are tested using data that are simulated from mod-
els recommended by the importance measures respectively. The
basic idea of cross-examination is that one usually anticipates
that a goodmethod should have a better performance than other
methods on the simulated data that are constructed from the
method itself. In our context, if we compute the variable impor-
tances SA1 , . . . , SAp on a real dataset using measure A, and con-
struct a suggested model (with top rated important variables)
and simulate a new dataset from this model, then on the new
dataset, the variable importances S̃A1 , . . . , S̃Ap using measure A
should be more similar to SA1 , . . . , SAp than the variable impor-
tances S̃B1 , . . . , S̃Bp usingmeasureB. Otherwise, one can naturally
question the adequacy of applyingmeasureA to the original real
data.

The cross-examination procedure is as follows:
1. Choose one measure from SOIL-ARM, SOIL-BIC-p,

LMG, RFI1, and RFI2 as the base measure, and select
the resulting top twomost important variables (e.g., HT9
and LG9 if SOIL-ARM is the base measure).

2. Fit linear regression using only the selected variables as
predictors, and obtain the estimated coefficients β̂ and
standard deviation σ̂ .

3. Generate the new response according to the model:
Ynew = Xβ̂ + σ̂N(0, 1).

4. Compute the SOIL-ARM, SOIL-BIC-p, LMG, RFI1,
and RFI2 importance measures using the new dataset
(X,Ynew).

5. Repeat the above steps 100 times and take the average of
each importance.

6. Go to Step 1 until all measures have served as the base
measure.

Table . Classical significance (p-value) analysis of the BGS data.

Intercept WT HT WT HT LG ST

p-Value E− . . . .E− . .

The results are depicted in Figure 8. Overall, SOIL-ARM and
SOIL-BIC-p perform reasonably better than the other impor-
tance measures. In the home-game (where the variables are
selected based on the base measure) of SOIL-ARM, SOIL-BIC-
p, and RFI1, we can see that LMG and random forest (RFI1 or
RFI2) do not support the true variable LG9, while SOIL-ARM
or SOIL-BIC-p clearly indicate, correctly, HT9 and LG9 as the
important ones (although with less confidence on LG9). In fact,
LMG,RFI1, andRFI2 all viewHT2 asmore important than LG9,
a mistake seemingly caused by the higher correlation of HT2
(0.57) to HT18 than LG9 (0.37). In the home-game of LMG, all
methods single out only HT9 as the most important (but not
HT2). However, SOIL-ARM and SOIL-BIC-p assign the sec-
ond largest importance to HT2, which is consistent with the
aforementioned Order Preserving property. The random for-
est importance measures do not show this property. The home-
game of RFI2 is similar to the home-game of LMG, where the
Order Preserving property still holds for SOIL-ARM and SOIL-
BIC-p but not for the others.

We also perform a linear regression analysis on the full
model directly in the BGS application. The p-values for the vari-
able are presented in Table 4. If we compare the p-values with
significance level α = 0.1, the only significant variables are the
intercept and “HT9”. Consistently, HT9 is declared important
according to all the variable importances we considered. In
terms of p-value, HT2 is the second most important variable,
which agrees with LMG, but is different from both the random
forest and SOIL importances in Table 3. Based on the earlier
guided simulation results, together with the intuition that given
HT9, HT2 is unlikely to be that useful for predicting height at
age 18, we tend to think the significance analysis based on the
full model is less trustworthy. In general, as is well-known, p-
value can be quite sensitive to the model used to fit the data, and
thus may not be reliable to measure variable importance.

Bardet Data. For a dataset with large p, we consider the
Bardet dataset. It collects tissue samples from the eyes of 120

Figure . Results of cross-examination for BGS data.
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Table . Top ten genes for different variable importance measures for Bardet data.

Rank ARM BIC-p RFI RFI

 25141 . 25141 . 25141 . 21907 .
 28967 . 28967 . 21907 . 25141 .
 28680 . 28680 . 11711 . 11711 .
 30141 . 30141 . 11719 . 25105 .
  .  . 25105 . 24565 .
  .  . 9303 . 28680 .
  .  . 28680 . 25403 .
  .  . 25425 . 9303 .
  .  . 16569 . 22029 .
  .  . 22029 . 24087 .

twelve-week-old male rats, which are the offspring of inter-
crossed F1 animals. For each tissue, the RNAs of 31,042 selected
probes are measured by the normalized intensity valued. The
gene intensity values are in log scale.

To investigate the genes that are related to gene TRIM32,
which causes the Bardet–Biedl syndrome according to Chiang
et al. (2006), a screening method (Huang, Ma, and Zhang 2008)
is applied to the original probes, which gives us a dataset with
200 probes for each of 120 tissues. Specifically, 3000 out of the
31,042 probes are selected with the largest variances. Then, we
select 200 probes with the largest marginal correlation with the
response TRIM32 to obtain the reduced dataset, which is avail-
able upon request. We use this screened dataset to carry out our
importance measure analysis.

Since LMG is not feasible to handle caseswith p > 20, it is not
included in our analysis below. The corresponding SOIL-ARM,
SOIL-BIC-p, RFI1, and RFI2 importances for most impor-
tant variable are summarized in Table 5. We present the top
ten variables according to the different importance measures,
respectively. The name of each gene is too long, so for conve-
nience we record the corresponding EST number instead. From
Table 5, we can see that different importancemeasures have very
different results.

Notice that X25141 is the most important variable according
to Table 5. Random forest is unstable in the sense that each time

we compute the random forest importance on the data, the top
ten variables obtained tended to be quite different in terms of
their rankings. For SOIL-BIC-p and SOIL-ARM, the top four
genes always have the same rank and the importance values
are pretty much the same in different runs. Also, a striking fea-
ture for the random forest in this data example is that the val-
ues of the importances are quite close to each other and decay-
ing gradually, making it hard to judge which variables are really
important.

We carry out a guided simulation study similar to that for the
BGS data, except that LMG is not included. Based on the infor-
mation inTable 5, the top 4 variables are selected for SOIL-BIC-p
(SOIL-ARM), and the top 10 for RFI1 and RFI2, respectively.

In Figure 9, we only present the variable importances of the
“true” genes due to space limitation. RFI1 and RFI2 are all nor-
malized. In the home-game of SOIL-ARM and SOIL-BIC-p,
both can correctly select all the true variables if the cut-off value
is set at 0.4. For random forest, however, the maximum RFI1
and RFI2 values among the unimportant ones exceed the most
important ones respectively, indicating that the random forest
has difficulty differentiating the really important and unimpor-
tant variables.

In the home-game of RFI1 and RFI2, none of the com-
petitors performs very well. With the generating model being
larger, with the limited information in the data (in conjunc-
tion with the complicated correlation among the genes), the
importance measures simply cannot reveal all the true vari-
ables. Only the true variable X25414 is differentiated clearly by all
methods. From the SOIL perspective, it is willing to support at
most threemore variables with some confidence. Random forest
gives more true variables significant importance values. A draw-
back is that some noise variables receive relatively large impor-
tance values, which are even higher than almost half of the true
variables.

From the guided simulations, the Order Preserving property
fails in all the cases for the random forest importance measures.
For SOIL, in the home-game of ARM and BIC-p, it holds for

Figure . Simulation results for cross-examination.
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Figure . Results of cross-examination for lung cancer data.

both SOIL-ARM and SOIL-BIC-p; but in the home-game of
RFI1 or RFI2, the property does not hold exactly, but it does
hold in the sense that the maximum importance of the noise
variables is still very small (and it is not meaningful to rank the
variables with tiny importance values). The key point here is that
while SOIL certainly can miss subtle variables in the true model
when the sample size is small, it typically does not recommend
an unimportant variable as important. The same cannot be said
for the other importance measures.

Lung Cancer Data. We analyze a lung cancer gene expression
dataset (Subramanian et al. 2005) with 62 patients and 5217
genes. As more and more genomics studies have been done,
analyzing and interpreting genome-wide expression data have
become a key task, including the aspect of feature selection. The
basic scientific question of interest here for the lung cancer data
is: which genes were most linked to the lung cancer?

Perhaps, the most popular way would be to apply a penal-
ized regression method. For instance, Lasso selected 12 genes.
However, the reliability of such results is a big issue, as men-
tioned already (see, e.g., Nan and Yang 2014). Two alternative
approaches may be taken to address the question: via random
forest importances and multiple hypothesis testing (Subrama-
nian et al. 2005). As is pointed out in Subramanian et al. (2005),
no genes are considered significantly related to the response
at a 5% significance level by multiple hypothesis testing. From
Table 6 (only top 5 are shown), random forest considers a num-
ber of genes to be more or less equally important, which does
not seem to be very helpful in terms of telling the researcher if
any gene(s) could be said to be far more important than the rest.
In addition, the two random forest importance measures differ
substantially in ranking of the genes. Thus, the two methods do
not seem to reliably single out a few genes as most important to
the lung cancer. Can SOIL bring some new insight?

Table. Top  variables for different variable importancemeasures of the LungCan-
cer Data.

ARM BIC-p RFI RFI

ENO(.) ENO(.) ILRB(.) PAICS(.)
RHOG(.) RHOG(.) UBEC(.) PSMA(.)
PGAM(.) PGAM(.) EEFA(.) RHOG(.)
MICB(.) MICB(.) DPF(.) ILRB(.)
DBP(.) DBP(.) PHA(.) UBEC(.)

We present two SOIL importances also in Table 6. SOIL-
ARM views ENO2 absolutely important for the response, and
SOIL-BIC-p also gives it an importance value much larger than
all other genes (in this example, the BIC-p weighting seems too
aggressive in pursuing parsimony, giving a large weight on the
nullmodel with intercept only). RHOGcomes next, with impor-
tance values by SOIL-ARM/BIC-p much smaller than those of
ENO2 but larger relative to the rest. Given the really small-
sample size, RHOG might be potentially important should a
larger sample size be used in a future study. We emphasize that
SOIL importance is not meant to offer the final say, but it pro-
vides stable insight on which covariates are most important for
explaining the response in the parametric modeling.

To further support the results of SOIL importances in Table 6,
we carry out a cross-examination, in which the top two genes
for SOIL-ARM (SOIL-BIC-p) and top five genes for RFI1(RFI2)
are selected as the true variables, respectively (note that using
more variables based on random forest gives even less reliable
results for random forest). A Bernoulli distribution with proba-
bility p̂ is used to generate the new responseYnew, where the esti-
mated probabilities via logistic regression and vote proportion
in random forest are used as the p̂ for the home-game of SOIL
and random forest, respectively. Figure 10 shows that the SOIL
methods are self-consistent in the sense that it can identify the
important variables in their home-game. Random forests are not
self-consistent since the maximum variable importance of the
unimportant variables is larger than those important ones. In the
home-game of RFI1 and RFI2, SOIL does not recognize any true
variables as important. The main reason is that the underlying
generating process is nonparametric (with very weak signal), for
which SOIL is not intended to be applicable. Overall, the SOIL
importance measures seem to be well-supported in the multiple
aspects above.

7. Conclusion and Discussion

Variable importance is aimed to find the important variables
for explanation or prediction of the response. The motiva-
tion is most natural but the task of devising an importance
measure is quite tricky. Several challenges immediately arrive:
(1) importance depends on the goal of the analysis and applica-
tion. Different goalsmay require different importancemeasures.
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(2) Should importance be based on parametric models or non-
parametric models? Both seem to be valuable in our view. (3)
Should the importance measure be purely relative to compare
different variables or should their values have some meaning on
their own?

The topic is even controversial, with attitude ranging from
enthusiasm in research and/or application, to reluctant accep-
tance as a practical approach to deal with many predictors, to
total pessimism on the topic that dismisses the possibility of
general successes. The different opinions are all valid, properly
reflecting the complexity and multi-facet nature of the problem.

In our opinion, there are two important facts to keep inmind.
One is that people crave for importance measures, love ranking,
and they put them in use. This calls for more research on the
topic. The other is that the currently dominating practice is still
“winner-takes-all”, which is definitely a culprit of irreproducibil-
ity of many research results. For reasonably complex data, mak-
ing inference and decision based on a final selected model can
lead to severely biased conclusions. A reliable importance mea-
sure can provide much needed complementary information to
that from a final model and substantially improve the reliability
of data analysis.

We have investigated the variable importance in linear
regression and classification cases. The proposed new variable
importancemeasure (SOIL) is driven bymodel combination for
considering more than a single model, thus giving us an under-
standing of all the variables, instead of only the “important” ones
in view of a single model. It is seen from both the simulation
results and the real-data examples that the SOIL approach has
several desirable features such as exclusion/inclusion, order pre-
serving and robustness in several aspects, and performs very
well compared to other variable importance measures consid-
ered.

As Grömping (2015) pointed out in her article, there is
no commonly accepted theoretical framework in the variable
importance area. Not surprisingly, many critiques on variable
importance measures come up. Ehrenberg (1990) pointed out
that one should focus on the underneath causal mechanism
instead of the relative importance. We think SOIL is satisfactory
in this regard. First, given enough information, SOIL assigns
variable importance close to one for these true predictors, which
is consistent with revealing the causal relationship between the
response and the predictors. Second, the SOIL importance of a
variable goes beyond relative assessment of the variables and it
gives an absolute sense on how much a variable is needed in the
linear modeling with the available information. In regression
settings, data analysts often use t statistic or p-value to see
if a variable is significant or not. Kruskal and Majors (1989)
pointed out that this pertains to a different concept. In their
view, variable importance is a population property, while sig-
nificance is a property of both population and sample. To us,
since all models are only approximations to model the data,
there is advantage to treat variable importance measures as
data-dependent quantities that reflect the nature of the data.
SOIL intends to do just that.

Note that the two importance measures by the random fore-
cast are not based on parametric modeling. When the GLM
framework does not work for the data, our SOIL approach may

not provide valuable information while random forest based
ones may.

To be fair, it may be debatable if a variable that has some pre-
dictive power (one way or another) but is not needed in the best
model should be given significant (reasonably strong) impor-
tance or not.Our view is that it seems rare to consider the covari-
ates only individually and thus it is better to reflect the goal of
finding the best set of covariates to explain the response in the
importancemeasures. From this angle, while giving out relevant
variables is certainly useful, it may not be most essential from a
modeling perspective.

Through our simulation work, we have shown that the other
methods often give clearly higher importance to variables that
are not in the truemodel and/or give lower values for some vari-
ables in the true model when the covariates are correlated, error
variance is large, or there are interaction terms. In real applica-
tions, these situations occur rather commonly. Thus, the results
seem to suggest that when sparse modeling is the goal, those
importance measures may not directly provide objective vari-
able assessment information.

Appendix

Proof of Theorem .

Proof. Denote byA∗\Ak the set of variables contained inA∗ but not inAk.
Since

∑K
k=1 wk|A∗\Ak|

r∗
=

∑K
k=1 wk

∑
j∈A∗ I( j /∈ Ak)

r∗

=
∑

j∈A∗
∑K

k=1 wkI( j /∈ Ak)

r∗

=
∑

j∈A∗
∑K

k=1 wk(1 − I( j ∈ Ak))

r∗

=
∑

j∈A∗ (1 − S j )

r∗
.

and by the definition of weak consistency,

0 ≤
∑K

k=1 wk|A∗\Ak|
r∗

≤
∑K

k=1 wk|Ak∇A∗|
r∗

p→ 0.

Hence,

∑
j∈A∗ (1 − S j )

r∗
p→ 0.

On the other hand,

∑
j/∈A∗ S j

r∗
=

∑
j/∈A∗

∑K
k=1 wkI( j ∈ Ak)

r∗

=
∑K

k=1 wk
∑

j/∈A∗ I( j ∈ Ak)

r∗

=
∑K

k=1 wk|Ak\A∗|
r∗

≤
∑K

k=1 wk|Ak∇A∗|
r∗

p→ 0.

!
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Proof of Theorem .

Proof. Assume
|Ac|
r∗

does not converge to 0 in probability asn tends to infin-
ity (r∗ may or may not depend on n), then there exists a positive constant

ϵ0, such that P(
|Ac|
r∗

≥ ϵ0) does not converge to 0. On the other hand,

∑
j∈A∗ (1 − S j )

r∗
=

∑
j∈A∗,S j≤c(1 − S j )

r∗
+

∑
j∈A∗,S j>c(1 − S j )

r∗

≥
∑

j∈A∗,S j≤c(1 − S j )

r∗

≥
∑

j∈A∗,S j≤c(1 − c)
r∗

= (1 − c)
∑

j∈A∗ I(S j ≤ c)
r∗

= (1 − c)
|Ac|
r∗

.

So we have P(

∑
j∈A∗ (1 − S j )

r∗
≥ (1 − c)ϵ0) ≥ P(

|Ac|
r∗

≥ ϵ0), which does
not converge to 0. But this contradicts with Theorem 1. Hence, we have
|Ac|
r∗

p→ 0. Similarly, we can prove
|Ac|
r∗

p→ 0. !
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Part B: Additional simulation results.

In this part, we provide the results of Example S1-S6, whose settings are described in Table

1 of the main body of the article. These results support our conclusions as discussed in

Section 5.1.
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Figure S3: Simulation results for Example S3, where n = 150, p = 6. The true coe�cient
�⇤ = (4, 4,�6

p
2, 34 , 0, 0)
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Figure S4: Simulation results for Example S4, where n = 150, p = 20. The true coe�cients
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Figure S5: Simulation results for Example S5, where n = 100, p = 200. The true coe�cients
�⇤ = (4, 4, 4,�6

p
2, 34 , 0, ..., 0).
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Figure S6: Sensitivity analysis of  , where n = 100, p = 200. The true coe�cients �⇤ =
(4, 4, 4,�6

p
2, 34 , 0, ..., 0).

Part C: Comparison with stability selection.

In this subsection, we present a comparison of SS (Meinshausen & Bühlmann 2010) impor-

tance and our SOIL importance.

The simulation data {yi,xi}ni=1 is generated from the linear model yi = x
|
i�

⇤ + ✏i, ✏ ⇠
N(0, �2). We generate xi from multivariate normal distribution Np(0,⌃). For each element

5



⌃ij of ⌃, ⌃ij = ⇢|i�j|, i.e. the correlation of Xi and Xj is ⇢|i�j|. We consider two cases, the

settings of which are listed in Table S1.

Example n p ⇢ �2 Coe�cients
1 100 20 0 0.01 �⇤

= (4, 4, 4,�6
p
2, 34 , 0, ..., 0)

|

2 100 20 0.7 0.1 �⇤
= (4, 0, 4,�6

p
2, 34 , 0, ..., 0)

|

Table S1: Simulation settings for SS

It can be seen from Tables S2 and S3 that SS does not give enough importance to the

true variable X5 in Example 1 while it more strongly supports the noise variable X2 than

the true variable X5 in Example 2, which leads to unavoidable incorrect variable selection

regardless of the cuto↵ to be used to decide if a variable is in or out based on its importance.

In contrast, SOIL-ARM and SOIL-BIC-p pick all the important variables and leave noise

variables out. From these results, together with the fact that the main goal of SS is not on

variable importance, we have not considered stability selection in the main simulations in

this work.

Method/Variable X1 X2 X3 X4 X5 max of rest
SOIL-ARM 1.00 1.00 1.00 1.00 1.00 0.12
SOIL-BIC-p 1.00 1.00 1.00 1.00 1.00 0.07
Stability Selection 0.99 0.99 0.99 1.00 0.02 0.002

Table S2: Variable importance for Example 1.

Method/Variable X1 X2 X3 X4 X5 max of rest
SOIL-ARM 1.00 0.15 1.00 1.00 1.00 0.14
SOIL-BIC-p 1.00 0.06 1.00 1.00 1.00 0.05
Stability Selection 1.00 0.44 0.94 1.00 0.26 0.05

Table S3: Variable importance for Example 2.

Part D: Stability comparison of SOIL and Lasso.

We conduct a stability comparison of our methods and Lasso at a reduced sample size to show

that our method is more stable than Lasso against small changes in the data. The simulation

data {yi,xi}ni=1 is generated from the linear model yi = x
|
i�

⇤+✏i, ✏i ⇠ N(0, �2) and �2 = 0.01.

xi is generated from Np(0,⌃), where ⌃ij = ⇢|i�j| and ⇢ = 0.5. We set n = 50, p = 200 and

6



�⇤ = (4, 4,�6
p
2, 4/3, 0, 0, 4, 0, 1, 0, . . . , 0)|. We randomly remove 10 observations from the

dataset and use the remaining data to compute the corresponding SOIL-BIC-p importances

and the Lasso coe�cients. The results are recorded over 100 replications and shown in

Figure S7. We can see that, for each run with the reduced sample size, the result for

the SOIL importance is pretty consistent, while the result for the Lasso coe�cients varies

considerably, indicating that the SOIL importance has the continuity property with respect

to a reduced sample size and is more stable than Lasso.
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