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ABSTRACT
Predicting a phenotype and understanding which variables improve that prediction are
two very challenging and overlapping problems in the analysis of high-dimensional
(HD) data such as those arising from genomic and brain imaging studies. It is often
believed that the number of truly important predictors is small relative to the total
number of variables, making computational approaches to variable selection and
dimension reduction extremely important. To reduce dimensionality, commonly used
two-step methods first cluster the data in some way, and build models using cluster
summaries to predict the phenotype. It is known that important exposure variables
can alter correlation patterns between clusters of HD variables, that is, alter network
properties of the variables. However, it is not well understood whether such altered
clustering is informative in prediction. Here, assuming there is a binary exposure
with such network-altering effects, we explore whether the use of exposure-dependent
clustering relationships in dimension reduction can improve predictive modeling in
a two-step framework. Hence, we propose a modeling framework called ECLUST
to test this hypothesis, and evaluate its performance through extensive simulations.
With ECLUST, we found improved prediction and variable selection performance
compared to methods that do not consider the environment in the clustering step, or
to methods that use the original data as features. We further illustrate this modeling
framework through the analysis of three data sets from very different fields, each with
HD data, a binary exposure, and a phenotype of interest. Our method is available in
the eclust CRAN package.
K E Y W O R D S
gene-environment interaction, high-dimensional clustering, prediction models, topological overlap matrix,
penalized regression

1 INTRODUCTION
In this paper, we consider the prediction of an outcome vari-
able ! observed on " individuals from # variables, where #
is much larger than ". Challenges in this high-dimensional
(HD) context include not only building a good predictor which

will perform well in an independent data set, but also being
able to interpret the factors that contribute to the predictions.
This latter issue can be very challenging in ultra-HD predic-
tor sets. For example, multiple different sets of covariates may
provide equivalent measures of goodness of fit (Fan, Han,
& Liu, 2014), and therefore how does one decide which are
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important? If many variables are highly correlated, interpre-
tation may be improved by acknowledging the existence of an
underlying or latent factor generating these patterns. In con-
sequence, many authors have suggested a two-step procedure
where the first step is to cluster or group variables in the design
matrix in an interpretable way, and then to perform model
fitting in the second step using a summary measure of each
group of variables.

There are several advantages to these two-step methods.
Through the reduction of the dimension of the model, the
results are often more stable with smaller prediction variance,
and through identification of sets of correlated variables, the
resulting clusters can provide an easier route to interpretation.
From a practical point of view, two-step approaches are both
flexible and easy to implement because efficient algorithms
exist for both clustering (e.g., Müllner, 2013) and model fit-
ting (e.g., Friedman, Hastie, & Tibshirani, 2010; Kuhn, 2008;
Yang & Zou, 2014), particularly in the case when the outcome
variable is continuous.

This two-step idea dates back to 1957 when Kendall first
proposed using principal components in regression (Kendall,
1957). Hierarchical clustering based on the correlation of the
design matrix has also been used to create groups of genes
in microarray studies. For example, at each level of a hierar-
chy, cluster averages have been used as new sets of potential
predictors in both forward–backward selection (Hastie, Tib-
shirani, Botstein, & Brown, 2001) or the lasso (Park, Hastie,
& Tibshirani, 2007). Bühlmann et al. proposed a bottom-
up agglomerative clustering algorithm based on canonical
correlations and used the group lasso on the derived clus-
ters (Bühlmann, Rütimann, van de Geer, & Zhang, 2013).
A more recent proposal performs sparse regression on clus-
ter prototypes (Reid & Tibshirani, 2016), that is, extracting
the most representative gene in a cluster instead of averaging
them.

These two-step approaches usually group variables based
on a matrix of correlations or some transformation of the
correlations. However, when there are external factors, such
as exposures, that can alter correlation patterns, a dimension
reduction step that ignores this information may be subopti-
mal. Many of the HD genomic data sets currently being gener-
ated capture a possibly dynamic view of how a tissue is func-
tioning, and demonstrate differential patterns of coregulation
or correlation under different conditions. We illustrate this
critical point with an example of a microarray gene expres-
sion data set available in the COPDSexualDimorphism.data
package (Sathirapongsasuti, 2013) from Bioconductor. This
study measured gene expression in chronic obstructive pul-
monary disease (COPD) patients and controls in addition to
their age, gender, and smoking status. To see if there was any
effect of smoking status on gene expression, we plotted the
expression profiles separately for current and never smokers.
To balance the covariate profiles, we matched subjects from

each group on age, gender and COPD case status, resulting
in a sample size of 7 in each group. Heatmaps in Figure 1
show gene expression levels and the corresponding gene–gene
correlation matrices as a function of dichotomized smoking
status for 2,900 genes with large variability. Evidently, there
are substantial differences in correlation patterns between the
smoking groups (Figures 1a and 1b). However, it is diffi-
cult to discern any patterns or major differences between the
groups when examining the gene expression levels directly
(Figures 1c and 1d). This example highlights two key points:
(1) environmental exposures can have a widespread effect on
regulatory networks and (2) this effect may be more easily dis-
cerned by looking at a measure for gene similarity, relative to
analyzing raw expression data.

Many other examples of altered coregulation and phe-
notype associations can be found. For instance, in a pedi-
atric brain development study, very different correlation pat-
terns of cortical thickness within brain regions were observed
across age groups, consistent with a process of fine-tuning
an immature brain system into a mature one (Khundrakpam
et al., 2013). A comparison of gene expression levels in
bone marrow from 327 children with acute leukemia found
several differentially coexpressed genes in Philadelphia-
positive leukemias compared to the cytogenetically normal
group (Kostka & Spang, 2004). To give the third example, an
analysis of RNA-sequencing data from The Cancer Genome
Atlas (TCGA) revealed very different correlation patterns
among sets of genes in tumors grouped according to their
missense or null mutations in the TP53 tumor suppressor
gene (Oros Klein et al., 2016).

Therefore, in this paper, we pose the question whether clus-
tering or dimension reduction that incorporates known covari-
ate or exposure information can improve prediction models in
HD genomic data settings. Substantial evidence of dysregula-
tion of genomic coregulation has been observed in a variety of
contexts, however we are not aware of any work that carefully
examines how this might impact the performance of predic-
tion models. We propose a conceptual analytic strategy called
ECLUST, for prediction of a continuous or binary outcome
in HD contexts while exploiting exposure-sensitive data clus-
ters. We restrict our attention to two-step algorithms in order
to implement a covariate-driven clustering.

Specifically, we hypothesize that within two-step methods,
variable grouping that considers exposure information can
lead to improved predictive accuracy and interpretability. We
use simulations to compare our proposed method to compa-
rable approaches that combine data reduction with predictive
modeling. We are focusing our attention primarily on the per-
formance of alternative dimension reduction strategies within
the first step of a two-step method. Therefore, performance
of each strategy is compared for several appropriate Step 2
predictive models. We then illustrate these concepts more
concretely by analyzing three data sets. Our method and the
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F I G U R E 1 Heatmaps of correlations between genes (top) and gene expression data (bottom: rows are genes and columns are subjects) stratified
by smoking status from a microarray study of COPD (Sathirapongsasuti, 2013). The 20% most variable genes are displayed (2,900 genes)
Note: There are seven subjects in each group, matched on COPD case status, gender, and age. Data are available at Bioconductor in the
COPDSexualDimorphism.data package.

functions used to conduct the simulation studies have been
implemented in the R package eclust (Bhatnagar, 2017),
available on CRAN. Extensive documentation of the package
is available at http://sahirbhatnagar.com/eclust/.

2 METHODS
Assume that there is a single binary environmental factor $
of importance, and an " × # HD data set ! (" observations,
# features) of relevance. This could be genome-wide epige-
netic data, gene expression data, or brain imaging data, for
example. Assume that there is a continuous or binary pheno-
type of interest % and that the environment has a widespread
effect on the HD data, that is, affects many elements of the HD
data. The primary goal is to improve the prediction of % by
identifying interactions between $ and ! through a carefully
constructed data reduction strategy that exploits $-dependent
correlation patterns. The secondary goal is to improve identi-
fication of the elements of ! that are involved; we denote this
subset by &0. We hypothesize that a systems-based perspec-
tive will be informative when exploring the factors that are

associated with a phenotype of interest, and in particular we
hypothesize that incorporation of environmental factors into
predictive models in a way that retains a HD perspective will
improve results and interpretation.

2.1 Potential impacts of covariate-dependent
coregulation
Motivated by real-world examples of differential coexpres-
sion, we first demonstrate that environment-dependent corre-
lations in ! can induce an interaction model. Without loss of
generality, let # = 2 and the relationship between '1 and '2
depend on the environment such that

'(2 = )'(1$( + *(, (1)
where *( is an error term and ) is a slope parameter, that is,

'(2 =
{
)'(1 + *( when $( = 1
*( when $( = 0.

Consider the 3-predictor regression model
%( = +0 + +1'(1 + +2'(2 + +3$( + *∗( , (2)
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F I G U R E 2 An overview of our proposed method
Note: (1a) A measure of similarity is calculated separately for both groups and clustering is performed on a linear combination of these two matri-
ces. (1b) We reduce the dimension of each cluster by taking a summary measure. (2) Variable selection and regression is performed on the cluster
representatives, E, and their interaction with E

where *∗( is another error term which is independent of *(. At
first glance, (2) does not contain any interaction terms. How-
ever, substituting (1) for '(2 in (2) we get
%( = +0 + +1'(1 + +2)

(
'(1$(

)
+ +3$( + *(+2 + *∗( . (3)

The third term in (3) resembles an interaction model, with
+2) being the interaction parameter. We present the second
illustration showing how nonlinearity can induce interactions.
Suppose
%( = +0 + +1'(1 + +2'(2 + +3$( + +3 max

,∈{1,2}

(
'(, − '̄(

)2

+ *∗( . (4)
Substituting (1) for '(2 in (4), we obtain a nonlinear inter-
action term. Equation (4) provided partial motivation for the
model used in our third simulation scenario. Some motivation
for this model and a graphical representation are presented in
the Section 3.

2.2 Proposed framework and algorithm
We restrict attention to methods containing two phases as
illustrated in Figure 2(1a), a clustering stage where vari-
ables are clustered based on some measure of similarity,
Figure 2(1b), a dimension reduction stage where a summary
measure is created for each of the clusters, and Figure 2(2),
a simultaneous variable selection and regression stage on
the summarized cluster measures. Although this framework
appears very similar to any two-step approach, our hypoth-
esis is that allowing the clustering in Step 1a to depend on

the environment variable can lead to improvements in predic-
tion after Step 2. Hence, methods in Step 1a are adapted to
this end, as described in the following sections. Our focus in
this manuscript is on the clustering and cluster representation
steps. Therefore, we compare several well-known methods for
variable selection and regression that are best adapted to our
simulation designs and data sets.

2.2.1 Step 1a: Clustering using coexpression
networks that are influenced by the
environment
In agglomerative clustering, a measure of similarity between
sets of observations is required in order to decide which clus-
ters should be combined. Common choices include Euclidean,
maximum, and absolute distance. A more natural choice in
genomic or brain imaging data is to use the Pearson corre-
lation (or its absolute value) because the derived clusters are
biologically interpretable. Indeed, genes that cluster together
are correlated and thus likely to be involved in the same cellu-
lar process. Similarly, cortical thickness measures of the brain
tend to be correlated within predefined regions such as the left
and right hemisphere, or frontal and temporal regions (Sato
et al., 2013). However, the information on the connection
between two variables, as measured by the Pearson corre-
lation, for example, may be noisy or incomplete. Thus it
is of interest to consider alternative measures of pairwise
interconnectedness. Gene coexpression networks are being
used to explore the system-level function of genes, where
nodes represent genes and are connected if they are signif-
icantly coexpressed (Zhang & Horvath, 2005), and here we
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use their overlap measure (Ravasz, Somera, Mongru, Olt-
vai, & Barabási, 2002) to capture connectnedness between
two ' variables within each environmental condition. As
was discussed earlier, genes can exhibit very different pat-
terns of correlation in one environment versus the other (e.g.
Figure 1). Furthermore, measures of similarity that go beyond
pairwise correlations and consider the shared connectedness
between nodes can be useful in elucidating networks that
are biologically meaningful. Therefore, we propose to first
look at the topological overlap matrix (TOM) separately for
exposed ($ = 1) and unexposed ($ = 0) individuals (see sup-
plementary Section A for details on the TOM). We then seek
to identify nodes that are very different between environ-
ments. We determine differential coexpression using the abso-
lute difference ./0('diff) = |./0$=1 − ./0$=0| (Oros
Klein et al., 2016). We then use hierarchical clustering with
average linkage on the derived difference matrix to identify
these differentially coexpressed variables. Clusters are auto-
matically chosen using the dynamicTreeCut (Langfelder,
Zhang, & Horvath, 2008) algorithm. Of course, there could
be other clusters which are not sensitive to the environment.
For this reason, we also create a set of clusters based on
the TOM for all subjects denoted ./0('all). This will lead
to each covariate appearing in two clusters. In the sequel,
we denote the clusters derived from ./0('all) as the set
1all =

{
11,… ,12

}, and those derived from ./0('diff) as
the set 1diff =

{
12+1,… ,1!

}, where 2 < ! < #.

2.2.2 Step 1b: Dimension reduction via
cluster representative
Once the clusters have been identified in phase 1, we pro-
ceed to reduce the dimensionality of the overall problem
by creating a summary measure for each cluster. A low-
dimensional structure, that is, grouping when captured in
a regression model, improves predictive performance and
facilitates a model's interpretability. We propose to summa-
rize a cluster by a single representative number. Specifically,
we chose the average values across all measures (Bühlmann
et al., 2013; Park et al., 2007), and the first principal com-
ponent (Langfelder & Horvath, 2007). These representative
measures are indexed by their cluster, that is, the variables to
be used in our predictive models are !̃all =

{
'̃11

,… , '̃12

}

for clusters that do not consider $, as well as !̃diff ={
'̃12+1 ,… , '̃1!

}
for $-derived clusters. The tilde notation

on the' is to emphasize that these variables are different from
the separate variables in the original data.

2.2.3 Step 2: Variable selection and
regression
Because the clustering in phase 1 is unsupervised, it is pos-
sible that the derived latent representations from phase 2 will

not be associated with the response. We therefore use penal-
ized methods for supervised variable selection, including the
lasso (Tibshirani, 1996) and elasticnet (Zou & Hastie, 2005)
for linear models, and multivariate adaptive regression splines
(MARS; Friedman, 1991) for nonlinear models. We argue
that the selected nonzero predictors in this model will repre-
sent clusters of genes that interact with the environment and
are associated with the phenotype. Such an additive model
might be insufficient for predicting the outcome. In this case
we may directly include the environment variable, the sum-
mary measures, and their interaction. In the light of our goals
to improve prediction and interpretability, we consider the fol-
lowing model:

4(!) = +0 +
!∑
,=1

+,'̃1, + +$$ +
!∑
,=1

5,
(
'̃1,$

)
, (5)

where 4(⋅) is a known link function, ! = ![% |!,$,",#] and
'̃1, are linear combinations of ! (from Step 1b). The primary
comparison is models with !̃all only versus models with !̃all
and !̃diff. Given the context of either the simulation or the
data set, we use either linear models or nonlinear models. Our
general approach, ECLUST, can therefore be summarized by
the algorithm in Table 1.

3 SIMULATION STUDIES
We have evaluated the performance of our ECLUST method
in a variety of simulated scenarios. For each simulation
scenario, we compared ECLUST to the following analytic
approaches: (1) regression and variable selection is performed
on the model which consists of the original variables, $ and
their interaction with $ (SEPARATE), and (2) clustering is
performed without considering the environmental exposure
followed by regression and variable selection on the cluster
representations, $, and their interaction with $ (CLUST). A
detailed description of the methods being compared is sum-
marized in Table 2. We have designed six simulation scenarios
that illustrate different kinds of relationships between the vari-
ables and the response. For all scenarios, we have created HD
data sets with # predictors (# = 5, 000), and sample sizes of
" = 200. We also assume that we have two data sets for each
simulation—a training data set where the parameters are esti-
mated, and a testing data set where prediction performance
is evaluated, each of size "678(" = "69:6 = 200. The number
of subjects who were exposed ("$=1 = 100) and unexposed
("$=0 = 100) and the number of truly associated parameters
(|&0| = 500) remain fixed across the 6 simulation scenarios.
Let

% = % ∗ + 2 ⋅ *, (6)
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T A B L E 1 Details of ECLUST algorithm
Step Description, Softwarea and Reference
1a) i) Calculate ./0 separately for observations with $ = 0

and $ = 1 using WGCNA::TOMsimilarityFromExpr
(Langfelder & Horvath, 2008)

ii) Euclidean distance matrix of |./0$=1 − ./0$=0|
using stats::dist

iii) Run the dynamicTreeCut algorithm (Langfelder et al.,
2008; Langfelder, P., Zhang, B., & with contributions
from Steve Horvath, 2016) on the distance matrix to
determine the number of clusters and cluster
membership using dynamicTreeCut::cutreeDynamic
with minClusterSize = 50

1b) i) 1st PC or average for each cluster using stat::prcomp
or base::mean

ii) Penalized regression model: create a design matrix of
the derived cluster representatives and their
interactions with $ using stats::model.matrix

iii) MARS model: create a design matrix of the derived
cluster representatives and $

2) i) For linear models, run penalized regression on design
matrix from Step 1b using
glmnet::cv.glmnet (Friedman et al., 2010). Elasticnet
mixing parameter alpha=1 corresponds to the lasso and
alpha=0.5 corresponds to the value we used in our
simulations for elasticnet. The tuning parameter lambda
is selected by minimizing 10 fold cross-validated mean
squared error (MSE).

ii) For nonlinear effects, run MARS on the design matrix
from Step 1b using earth::earth (Milborrow. Derived
from mda:mars by T. Hastie and R. Tibshirani., 2011)
with pruning method pmethod = “backward” and
maximum number of model terms nk = 1000. The
degree=1,2 is chosen using 10 fold cross validation
(CV), and within each fold the number of terms in the
model is the one that minimizes the generalized cross
validated (GCV) error.

aAll functions are implemented in R (R Core Team, 2016). The naming convention
is as follows: package_name::package_function. Default settings used for all
functions unless indicated otherwise.

where % ∗ is the linear predictor, the error term * is generated
from a standard normal distribution, and 2 is chosen such that
the signal-to-noise ratio &;< = (= 87(% ∗)∕= 87(*)) is 0.2, 1
and 2 (e.g. the variance of the response variable % due to * is
1∕&;< of the variance of % due to % ∗).

3.1 The design matrix
We generated covariate data in blocks using the
simulateDatExpr function from the WGCNA package
in R (version 1.51). This generates data from a latent vector:
first a seed vector is simulated, then covariates are generated
with varying degree of correlation with the seed vector in a
given block. We simulated five clusters (blocks), each of size
750 variables, and labeled them by color (turquoise, blue,
red, green, and yellow), while the remaining 1,250 variables
were simulated as independent standard normal vectors
(gray) (Figure 3). For the unexposed observations ($ = 0),
only the predictors in the yellow block were simulated with
correlation, while all other covariates were independent
within and between blocks. The TOM values are very small
for the yellow cluster because it is not correlated with any of
its neighbors. For the exposed observations ($ = 1), all five
blocks contained predictors that are correlated. The blue and
turquoise blocks are set to have an average correlation of 0.6.
The average correlation was varied for both green and red
clusters > = {0.2, 0.9} and the active set &0, that are directly
associated with !, was distributed evenly between these
two blocks. Heatmaps of the TOM for this environment-
dependent correlation structure are shown in Figure 3 with
annotations for the true clusters and active variables. This
design matrix shows widespread changes in gene networks
in the exposed environment, and this subsequently affects the
phenotype through the two associated clusters. There are also
pathways that respond to changes in the environment but are
not associated with the response (blue and turquoise), while
others that are neither active in the disease nor affected by
the environment (yellow).

T A B L E 2 Summary of methods used in simulation study

General
approach

Summary
Measure of
feature clusters Descriptiona,b

SEPARATE NA Regression of the original predictors {'1,… ,'#
} on the response, i.e., no transformation

of the predictors is being done here
CLUST 1st PC, average Create clusters of predictors without using the environment variable {

11,… ,12
}. Use the

summary measure of each cluster as inputs of the regression model.
ECLUST 1st PC, average Create clusters of predictors using the environment variable {12+1,… ,1!

} where
2 < ! < #, as well as clusters without the environment variable {

11,… ,12
}. Use

summary measures of {11,… ,1!
} as inputs of the regression model.

aSimulations 1 and 2 used lasso and elasticnet for the linear models, and Simulation 3 used MARS for estimating nonlinear effects.
bSimulations 4–6 convert the continuous response generated in simulations 1–3, respectively, into a binary response.
cPC: principal component.
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F I G U R E 3 Topological overlap matrices (TOM) of simulated predictors based on subjects with (a) $ = 0, (b) $ = 1, (c) their absolute differ-
ence, and (d) all subjects
Note: Dendrograms are from hierarchical clustering (average linkage) of one minus the TOM for (a), (b), and (d) and the Euclidean distance for (c).
Some variables in the red and green clusters are associated with the outcome variable. The module annotation represents the true cluster membership
for each predictor, and the active annotation represents the truly associated predictors with the response.

3.2 The response
The first three simulation scenarios differ in how the linear
predictor % ∗ in (6) is defined, and also in the choice of regres-
sion model used to fit the data. In simulations 1 and 2, we use
lasso (Tibshirani, 1996) and elasticnet (Zou & Hastie, 2005)
to fit linear models; then we use MARS (Friedman, 1991)
in Simulation 3 to estimate nonlinear effects. In simulations
4–6, we use the GLM version of these models, respectively,
because the responses are binary.
3.2.1 Simulation 1
Simulation 1 was designed to evaluate performance when
there are no explicit interactions between X and E (see
Equation (3)). We generated the linear predictor from

% ∗ =
∑

,∈{1,…,250}
,∈ red, green block

+,', + +$$, (7)

where +, ∼ Unif[0.9, 1.1] and +$ = 2. That is, only the first
250 predictors of both red and green blocks are active. In this
setting, only the main effects model is being fit to the simu-
lated data.

3.2.2 Simulation 2
In the second scenario, we explicitly simulated interactions.
All nonzero main effects also had a corresponding nonzero
interaction effect with $. We generated the linear predictor
from

% ∗ =
∑

,∈{1,…,125}
,∈ red, green block

(
+,', + 5,',$

)
+ +$$, (8)

where +, ∼ Unif[0.9, 1.1], 5, ∼ Unif[0.4, 0.6] or 5, ∼ Unif
[1.9, 2.1], and +$ = 2. In this setting, both main effects and
their interactions with E are being fit to the simulated data.
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1st PC

f(Q
)

Y

1st PC

f(Q
)

Y

F I G U R E 4 Visualization of the relationship between the response, the first principal component of the main effects and ? (@() in (9) for $ = 0
(left) and $ = 1 (right) in simulation scenario 3
Note: This graphic also depicts the intuition behind model (4).

3.2.3 Simulation 3
In the third simulation, we investigated the performance of the
ECLUST approach in the presence of nonlinear effects of the
predictors on the phenotype:
% ∗
( =

∑
,∈{1,…,250}

,∈ red, green block

+,'(, + +$$( + 5@$( ⋅ ? (@(), (9)

where
@( = − max

,∈{1,…,250}
,∈ red, green block

(
'(, − '̄(

)2 (10)

? (A() =
A( − min

(∈{1,…,"}
A(

− min
(∈{1,…,"}

A(
(11)

'̄( =
1
500

∑
,∈{1,…,250}

,∈ red, green block

'(, .

The design of this simulation was partially motivated by
considering the idea of canalization, where systems operate
within appropriate parameters until sufficient perturbations
accumulate (e.g., Gibson, 2009). In this third simulation, we
set +, ∼ Unif[0.9, 1.1], +$ = 2 and 5@ = 1. We assume that
the data have been appropriately normalized, and that the cor-
relation between any two features is greater than or equal to
0. In Simulation 3, we tried to capture the idea that an expo-
sure could lead to coregulation or disregulation of a cluster
of 's, which in itself directly impacts Y. Hence, we defined
coregulation as the's being similar in magnitude and disreg-
ulation, as the 's being very different. The @( term in (10) is
defined such that the higher values would correspond to strong
coregulation, whereas the lower values correspond to disreg-
ulation. For example, suppose @( ranges from −5 to 0. It will
be −5 when there are lots of variability (disregulation), and

0 when there is none (strong coregulation). The function ? (⋅)
in (11) simply maps @( to the [0,1] range. In order to get an
idea of the relationship in (9), Figure 4 displays the response
% as a function of the first principal component of ∑, +,'(,
(denoted by 1st PC) and ? (@(). We see that the lower values
of ? (@() (which implies disregulation of the features) lead to a
lower % . In this setting, although the clusters do not explicitly
include interactions between the' variables, the MARS algo-
rithm allows the possibility of two-way interactions between
any of the variables.

3.2.4 Simulations 4–6
We used the same simulation setup as above, except
that we took the continuous outcome % , defined # = 1∕
(1 + 9B#(−% )) and used this to generate a two-class out-
come C with Pr(C = 1) = # and Pr(C = 0) = 1 − #. The
true parameters were simulated as +, ∼ Unif[log(0.9),
log(1.1)], +$ = log(2), 5, ∼ Unif[log(0.4), log(0.6)] or
5, ∼ Unif[log(1.9), log(2.1)]. Simulations 4–6 are the binary
response versions of simulations 1–3, respectively. The larger
odds ratio for E compared to the odds ratio for X is motivated
by certain environmental factors that are well known to
have substantial impacts on disease risks and phenotypes.
For example, body mass index (BMI) has been estimated
to explain a large proportion of variation in bone mineral
density (BMD) in women (10–20%; Felson, Zhang, Hannan,
& Anderson, 1993). This can be converted to a slope of 0.31–
0.44 assuming variables are standardized, that is, changes of
0.3–0.4 standard deviations in BMD per standard deviation
change in weight. In contrast, the majority of single nucleotide
polymorphisms (SNPs) and rare variants have effect sizes
under 0.10 standard deviations on BMD (Kemp et al., 2017).

3.3 Measures of performance
Simulation performance was assessed with measures of
model fit, prediction accuracy, and feature stability. Several
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T A B L E 3 Measures of Performance
Measure Formula
Model fit

True-positive rate (TPR) |&̂ ∈ &0|∕|&0|
False-positive rate (TPR) |&̂ ∉ &0|∕|, ∉ &0|
Correct sparsity (Witten,

Shojaie, & Zhang, 2014)
1
#
∑#
,=1 E,

E, =
⎧
⎪
⎨
⎪⎩

1 if +̂, = +, = 0
1 if +̂, ≠ 0, +, ≠ 0
0 if else

Prediction accuracy
Root mean squared error

(RMSE)
‖‖"69:6 − !̂(!69:6)‖‖2

Area under the curve (AUC) Trapezoidal rule
Hosmer–Lemeshow test

(G = 10)
H2 test statistic

Feature stability using I-fold cross-validation on training set (Kalousis, Prados, & Hilario, 2007)
Pearson Correlation

(>) (Pearson, 1895)
(I
2

)−1 ∑
(,,∈{1,…,I},(≠,

JKL(+̂(() ,+̂(,))
M+̂(() M+̂(,)

Spearman Correlation
(7) (Spearman, 1904) (I

2

)−1 ∑
(,,∈{1,…,I},(≠,

[
1 − 6∑

N

(7N(()−7N(,) )
2

#(#2−1)

]

Jaccard Distance (Jaccard, 1912) |&̂(()∩&̂(,)|
|&̂(()∪&̂(,)|

a !̂: fitting procedure on the training set.
b &0: index of active set =

{
,; +0, ≠ 0

}
.

c &̂: index of the set of nonzero estimated coefficients =
{
,; +̂, ≠ 0

}
.

d |E|: is the cardinality of set E.

measures for each of these categories, and the specific
formulae used are provided in Table 3. We simulated both
a training data set and a test data set for each simulation: all
tuning parameters for model selection were selected using the
training sets only. Although most of the measures of model fit
were calculated on the test data sets, true-positive rate, false-
positive rate, and correct sparsity were calculated on the train-
ing set only. The root mean squared error is determined by pre-
dicting the response for the test set using the fitted model on
the training set. The area under the curve is determined using
the trapezoidal rule (Robin et al., 2011). The stability of fea-
ture importance is defined as the variability of feature weights
under perturbations of the training set, that is, small modi-
fications in the training set should not lead to considerable
changes in the set of important covariates (Toloşi & Lengauer,
2011). A feature selection algorithm produces a weight (e.g.,
" = (+1,… , +#)), a ranking (e.g., 78"2(") ∶ # = (71,… , 7N))
and a subset of features (e.g., $ = (:1,… , :#), :, =
!
{
+, ≠ 0

}, where ! {⋅} is the indicator function). In the
CLUST and ECLUST methods, we defined a predictor to be
nonzero if its corresponding cluster representative weight was
nonzero. Using 10-fold cross-validation (CV), we evaluated
the similarity between two features and their rankings using
Pearson and Spearman correlation, respectively. For each
CV fold we reran the models and took the average Pear-

son/Spearman correlations of the (10
2
) combinations of esti-

mated coefficients vectors. To measure the similarity between
two subsets of features, we took the average of the Jaccard
distance in each fold. A Jaccard distance of 1 indicates perfect
agreement between two sets while no agreement will result in
a distance of 0. For MARS models we do not report the Pear-
son/Spearman stability rankings due to the adaptive and func-
tional nature of the model (there are many possible combina-
tions of predictors, each of which are linear basis functions).

3.4 Results
All reported results are based on 200 simulation runs. We
graphically summarized the results across simulations 1–3
for model fit (Figure 5) and feature stability (Figure 6). The
results for simulations 4–6 are shown in supplementary
Section B, Figures S1– S6. We restrict our attention to
&;< = 1, > = 0.9, and 5, ∼ Unif[1.9, 2.1]. The model
names are labeled as summary measure_model (e.g.,
avg_lasso corresponds using the average of the features in
a cluster as inputs into a lasso regression model). When there
is no summary measure appearing in the model name that
indicates that the original variables were used (e.g., enet
means all separate features were used in the elasticnet model).
In Figure 5, panel A, we plot the true-positive rate against
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F I G U R E 5 Model fit results from simulations 1–3 with &;< = 1, > = 0.9, and 5, ∼ Unif[1.9, 2.1]
Note: SEPARATE results are in pink, CLUST in green and ECLUST in blue.

the false-positive rate for each of the 200 simulations. We see
that across all simulation scenarios, the SEPARATE method
has extremely poor sensitivity compared to both CLUST and
ECLUST, which do much better at identifying the active vari-
ables, though the resulting models are not always sparse. The
relatively few number of green points in panel A is due to the
small number of estimated clusters (supplementary Section
C, Figure S7) leading to very little variability in performance
across simulations. The better performance of ECLUST over
CLUST is noticeable as more points lie in the top left part of
the plot. The horizontal banding in panel A reflects the sta-
bility of the TOM-based clustering approach. ECLUST also
does better than CLUST in correctly determining whether a
feature is zero or nonzero (Figure 5, panel B). Importantly,
across all three simulation scenarios, ECLUST outperforms
the competing methods in terms of RMSE (Figure 5, panel

C), regardless of the summary measure and modeling proce-
dure. We present the distribution for the effective number of
variables selected in the supplementary material (Figures S8
and S9). We see that the median number of variables selected
from ECLUST is less than the median number of variables
selected from CLUST, though ECLUST has more variability.

Although the approach using all separate original variables
(SEPARATE) produce sparse models, they are sensitive to
small perturbations of the data across all stability measures
(Figure 6), that is, similar data sets produce very different
models. Although the median for the CLUST approach is
always slightly better than the median for ECLUST across all
stability measures, CLUST results can be much more vari-
able, particularly when stability is measured by the agreement
between the value and the ranking of the estimated coefficients
across CV folds (Figure 6, panels B and C). The number of
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F I G U R E 6 Stability results from simulations 1–3 for &;< = 1, > = 0.9, and 5, ∼ Unif[1.9, 2.1]
Note: SEPARATE results are in pink, CLUST in green and ECLUST in blue.

estimated clusters, and therefore the number of features in the
regression model, tends to be much smaller in CLUST com-
pared to ECLUST, and this explains its poorer performance
using the stability measures in Figure 6, because there are
more coefficients to estimate. Overall, we observe that the rel-
ative performance of ECLUST versus CLUST in terms of sta-
bility is consistent across the two summary measures (average
or principal component) and across the penalization proce-
dures. The complete results for different values of >, &;<
and 5, (when applicable) are available in the supplementary
Section D, Figures S10– S15 for Simulation 1, Figures S16–
S21 for Simulation 2, and Figures S22– S25 for Simulation
3. They show that these conclusions are not sensitive to the
&;<, >, or 5, . Similar conclusions are made for a binary out-
come using logistic regression versions of the lasso, elasticnet,
and MARS. ECLUST and CLUST also have better calibration
than the SEPARATE method for both linear and nonlinear

models (supplementary Section B, Figures S3– S6). The dis-
tributions of Hosmer–Lemeshow (HL)O -values do not follow
uniformity. This is in part due to the fact that the HL test has
low power in the presence of continuous-dichotomous vari-
able interactions (Hosmer, Hosmer, Le Cessie, & Lemeshow,
1997). Upon inspection of the Q–Q plots, we see that the mod-
els have difficulty predicting risks at the boundaries which is
a known issue in most models. We also have a small sample
size of 200, which means there are on average only 20 subjects
in each of the 10 bins. Furthermore, the HL test is sensitive to
the choice of bins and method of computing quantiles. Never-
theless, the improved fit relative to the SEPARATE analysis
is quite clear.

We also ran all our simulations using the Pearson corre-
lation matrix as a measure of similarity in order to compare
its performance against the TOM. The complete results are in
supplementary Section E, Figures S26– S31 for Simulation 1,
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Figures S32– S37 for Simulation 2, and Figures S38– S41 for
Simulation 3. In general, we see slightly better performance
of CLUST over ECLUST when using Pearson correlations.
This result is probably due to the imprecision in the estimated
correlations. The exposure-dependent similarity matrices are
quite noisy, and the variability is even larger when we examine
the differences between two correlation matrices. Such large
levels of variability have a negative impact on the clustering
algorithm's ability to detecting the true clusters.

4 ANALYSIS OF THREE DATA SETS
In this section we demonstrate the performance of ECLUST
on three HD data sets with contrasting motivations and fea-
tures. In the first data set, normal brain development is exam-
ined in conjunction with intelligence scores. In the second
data set, we aim to identify molecular subtypes of ovarian
cancer using gene expression data. The investigators' goal in
the third data set is to examine the impact of gestational dia-
betes mellitus (GDM) on childhood obesity in a sample of
mother–child pairs from a prospective birth cohort. The data
sets comprise a range of sample sizes, and both amount of
clustering in the HD data and strength of the effects of the
designated exposure variables vary substantially. Due to the
complex nature of these data sets, we decided to use MARS
models for Step 2 of our algorithm for all three data sets,
as outlined in Table 1. In order to assess performance in
these data sets, we have computed the 0.632 estimator (Efron,
1983) and the 95% confidence interval of the <2 and RMSE
from 100 bootstrap samples. The <2 reported here is defined
as the squared Pearson correlation coefficient between the
observed and predicted response (Kvålseth, 1985), and the
RMSE is defined as in Table 3. Because MARS models can
result in unstable predictors (Kuhn, 2008), we also report
the results of bagged MARS from P = 50 bootstrap samples,
where bagging (Breiman, 1996) refers to averaging the predic-
tions from each of the MARS models fit on the P bootstrap
samples.

4.1 NIH MRI study of normal brain
development
The NIH MRI Study of Normal Brain Development, started
in 2001, was a 7-year longitudinal multisite project that
used magnetic resonance technologies to characterize brain
maturation in 433 medically healthy, psychiatrically normal
children aged 4.5–18 (Evans, A. C., & Brain Development
Cooperative Group, 2006). The goal of this study was to
provide researchers with a representative and reliable source
of healthy control subject data as a basis for understanding
atypical brain development associated with a variety of
developmental, neurological, and neuropsychiatric disorders

affecting children and adults. Brain imaging data (e.g.,
cortical surface thickness, intracranial volume), behavioral
measures (e.g., IQ scores, psychiatric interviews, behavioral
ratings), and demographics (e.g., socioeconomic status) were
collected at two year intervals for three time points and are
publicly available upon request. Previous research using these
data found that level of intelligence and age correlate with
cortical thickness (Khundrakpam et al., 2013; Shaw et al.,
2006), but to our knowledge no such relation between income
and cortical thickness has been observed. We therefore
used these data to see the performance of ECLUST in the
presence (age) and absence (income) of an effect on the
correlations in the HD data. We analyzed the 10,000 most
variable regions on the cortical surface from brain scans
corresponding to the first sampled time point only. We used
binary age (166 ≤ 11.3 and 172 > 11.3) and binary income
(142 high and 133 low income) indicator as the environment
variables and standardized IQ scores as the response. We
identified 22 clusters from ./0('all) and 57 clusters from
./0('diff) when using age as the environment, and 86
clusters from ./0('all) and 49 clusters from ./0('diff)
when using income as the environment. Results are shown in
Figure 7, panels C and D. The method that uses all individual
variables as predictors (pink) has better <2 but also worse
RMSE compared to CLUST and ECLUST, likely due to
overfitting. There is a slight benefit in performance for
ECLUST over CLUST when using age as the environment
(panel D). Importantly, we observe very similar performance
between CLUST and ECLUST across all models (panel C),
suggesting very little impact on the prediction performance
when including features derived both with and without the $
variable, in a situation where they are unlikely to be relevant.

4.2 Gene expression study of ovarian cancer
Differences in gene expression profiles have led to the
identification of robust molecular subtypes of ovarian cancer;
these are of biological and clinical importance because they
have been shown to correlate with overall survival (Tothill
et al., 2008). Improving prediction of survival time based on
gene expression signatures can lead to targeted therapeutic
interventions (Helland et al., 2011). The proposed ECLUST
algorithm was applied to gene expression data from 511
ovarian cancer patients profiled by the Affymetrix Human
Genome U133A 2.0 Array. The data were obtained from
the TCGA Research Network: http://cancergenome.nih.gov/
and downloaded via the TCGA2STAT R library (Wan,
Allen, Anderson, & Liu, 2015). Using the 881 signature
genes from Helland et al. (2011), we grouped subjects into
two groups based on the results in this paper, to create a
“positive control” environmental variable expected to have
a strong effect. Specifically, we defined an environment
variable in our framework as: $ = 0 for subtypes C1 and

http://cancergenome.nih.gov/
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F I G U R E 7 Model fit measures from analysis of three data sets: (A) gestational diabetes birth-cohort, (B) TCGA Ovarian Cancer study, (C) NIH
MRI Study with income as the environment variable, and (D) NIH MRI Study with age as the environment variable

C2 (" = 253), and $ = 1 for subtypes C4 and C5 (" = 258).
Overall survival time (log-transformed) was used as the
response variable. Because these genes were ascertained
on survival time, we expected the method using all genes
without clustering to have the best performance, and hence
one goal of this analysis was to see if ECLUST performed
significantly worse as a result of summarizing the data into a
lower dimension. We found three clusters from ./0('all)
and three clusters from ./0('diff); results are shown in
Figure 7, panel C. Across all models, ECLUST performs
slightly better than CLUST. Furthermore, it performs almost
as well as the separate variable method, with the added advan-
tage of dealing with a much smaller number of predictors
(881 with SEPARATE compared to 6 with ECLUST).

4.3 Gestational diabetes, epigenetics, and
metabolic disease
Events during pregnancy are suspected to play a role in
childhood obesity development but only little is known about
the mechanisms involved. Indeed, children born to women

who had GDM in pregnancy are more likely to be overweight
and obese (Wendland et al., 2012), and evidence suggests epi-
genetic factors are important piece of the puzzle (Bouchard
et al., 2010, 2012). Recently, methylation changes in placenta
and cord blood were associated with GDM (Ruchat et al.,
2013), and here we explore how these changes are associated
with obesity in the children at the age of about 5. DNA
methylation in placenta was measured with the Infinium
HumanMethylation450 BeadChip (Illumina, Inc.; Bibikova
et al., 2011) microarray in a sample of 28 women, 20 of whom
had a GDM-affected pregnancy, and here we used GDM
status as our $ variable, assuming that this has widespread
effects on DNA methylation and on its correlation patterns.
Our response, % , is the standardized BMI in the offspring at
the age of 5. In contrast to the previous two examples, here
we had no particular expectation of how ECLUST would
perform. Using the 10,000 most variable probes, we found 2
clusters from ./0('all) and 75 clusters from ./0('diff).
The predictive model results from a MARS analysis are
shown in Figure 7, panel A. When using <2 as the measure
of performance, ECLUST outperforms both SEPARATE
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T A B L E 4 Ingenuity Pathway Analysis results—top-ranked diseases and disorders, and physiological system development and function epigen-
tically affected by gestational diabetes mellitus and associated with childhood body mass index

Category Name $ values %a

Diseases and disorders Hepatic system disease [9.61e−7 to 5.17e−7] 75
Physiological system development and function

Behavior [1.35e−2 to 7.82e−8] 33
Embryonic development [1.35e−2 to 2.63e−8] 26
Nervous system development and function [1.35e−2 to 2.63e−8] 43
Organ development [1.35e−2 to 2.63e−8] 20
Organismal development [1.35e−2 to 2.63e−8] 34

aNumber of genes involved in each pathway.

and CLUST methods. When using RMSE as the measure of
model performance, performance tended to be better with
CLUST rather than ECLUST perhaps in part due to the small
number of clusters derived from ./0('all) relative to
./0('diff). Overall, the ECLUST algorithm with bagged
MARS and the first PC of each cluster performed best, that is,
it had a better <2 than CLUST with comparable RMSE. The
sample size here is very small, and therefore the stability of
the model fits is limited. The probes in these clusters mapped
to 164 genes and these genes were selected to conduct path-
way analyses using the Ingenuity Pathway Analysis (IPA)
software (Ingenuity System). IPA compares the selected
genes to a reference list of genes included in many biological
pathways using a hypergeometric test. Smaller O values are
evidence for overrepresented gene ontology categories in
the input gene list. The results are summarized in Table 4
and provide some biological validation of our ECLUST
method. For example, the hepatic system is involved with
the metabolism of glucose and lipids (Saltiel & Kahn, 2001),
and behavior and neurodevelopment are associated with
obesity (Epstein, Paluch, Kilanowski, & Raynor, 2004).
Furthermore, it is interesting that embryonic and organ devel-
opment pathways are involved because GDM is associated
with macrosomia (Ehrenberg, Mercer, & Catalano, 2004).

5 DISCUSSION
The challenge of precision medicine is to appropriately fit
treatments or recommendations to each individual. Data such
as gene expression, DNA methylation levels, or magnetic res-
onance imaging (MRI) signals are examples of HD measure-
ments that capture multiple aspects of how a tissue is func-
tioning. These data often show patterns associated with dis-
ease, and major investments are being made in the genomics
research community to generate such HD data. Analytic tools
increasing prediction accuracy are needed to maximize the
productivity of these investments. However, the effects of
exposures have usually been overlooked, but these are cru-

cial because they can lead to ways to intervene. Hence, it is
essential to have a clear understanding of how exposures mod-
ify HD measures, and how the combination leads to disease.
Existing methods for prediction (of disease), which are based
on HD data and interactions with exposures, fall far short of
being able to obtain this clear understanding. Most methods
have low power and poor interpretability, and furthermore,
modeling and interpretation problems are exacerbated when
there is interest in interactions. In general, power to estimate
interactions is low, and the number of possible interactions
could be enormous. Therefore, here we have proposed a strat-
egy to leverage situations where a covariate (e.g., an expo-
sure) has a widespread effect on one or more HD measures,
for example, GDM on methylation levels. We have shown
that this expected pattern can be used to construct dimension-
reduced predictor variables that inherently capture the sys-
temic covariate effects. These dimension-reduced variables,
constructed without using the phenotype, can then be used
in predictive models of any type. In contrast to some com-
mon analysis strategies that model the effects of individual
predictors on outcome, our approach makes a step toward a
systems-based perspective that we believe will be more infor-
mative when exploring the factors that are associated with
disease or a phenotype of interest. We have shown, through
simulations and real data analysis, that incorporation of envi-
ronmental factors into predictive models in a way that retains
a HD perspective can improve results and interpretation for
both linear and nonlinear effects.

We proposed two key methodological steps necessary to
maximize predictive model interpretability when using HD
data and a binary exposure: (1) dimension reduction of HD
data built on exposure sensitivity and (2) implementation of
penalized prediction models. In the first step, we proposed to
identify exposure-sensitive HD pairs by contrasting the TOM
between exposed and unexposed individuals; then we clus-
ter the elements in these HD pairs to find exposure-sensitive
coregulated sets. New dimension-reduced variables that cap-
ture exposure-sensitive features (e.g., the first principal com-
ponent of each cluster) were then defined. In the second step
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we implemented linear and nonlinear variable selection meth-
ods using the dimension-reduced variables to ensure stabil-
ity of the predictive model. The ECLUST method has been
implemented in the eclust (Bhatnagar, 2017) R package
publicly available on CRAN. Our method along with com-
putationally efficient algorithms, allows the analysis of up to
10,000 variables at a time on a laptop computer.

The methods that we have proposed here are currently only
applicable when three data elements are available. Specifi-
cally a binary environmental exposure, an HD data set that can
be affected by the exposure, and a single phenotype. When
comparing the TOM and Pearson correlations as a measure
of similarity, our simulations showed that the performance
of ECLUST was worse with correlations. This speaks to the
potential of developing a better measure than the difference of
two matrices. For example, we are currently exploring ways in
which to handle continuous exposures or multiple exposures.
The best way to construct an exposure-sensitive distance
matrix that can be used for clustering is not obvious in these
situations. One possible solution relies on a nonparametric
smoothing based approach where weighted correlations are
calculated. These weights can be derived from a kernel-based
summary of the exposure covariates (e.g., Qiu, Han, Liu,
& Caffo, 2016). Then, contrasting unweighted and weighted
matrices will allow construction of covariate-sensitive clus-
ters. The choice of summary measure for each cluster also
warrants further study. Although principal components and
averages are well understood and easy to implement, the main
shortcoming is that they involve all original variables in the
group. As the size of the groups increase, the interpretabil-
ity of these measures decreases. Nonnegative matrix factor-
ization (Lee & Seung, 2001) and sparse principal component
analysis (SPCA; Witten, Tibshirani, & Hastie, 2009) are alter-
natives that find sparse and potentially interpretable factors.
Furthermore, structured SPCA (Jenatton, Obozinski, & Bach,
2010) goes beyond restricting the cardinality of the contribut-
ing factors by imposing some a priori structural constraints
deemed relevant to model the data at hand.

We are all aware that our exposures and environments
impact our health and risks of disease, however detecting how
the environment acts is extremely difficult. Furthermore, it is
very challenging to develop reliable and understandable ways
of predicting the risk of disease in individuals, based on HD
data such as genomic or imaging measures, and this challenge
is exacerbated when there are environmental exposures that
lead to many subtle alterations in the genomic measurements.
Hence, we have developed an algorithm and an easy-to-use
software package to transform analysis of how environmental
exposures impact human health, through an innovative signal-
extracting approach for HD measurements. Evidently, the
model fitting here is performed using existing methods; our
goal is to illustrate the potential of improved dimension reduc-
tion in two-stage methods, in order to generate discussion

and new perspectives. If such an approach can lead to more
interpretable results that identify gene–environment interac-
tions and their effects on diseases and traits, the resulting
understanding of how exposures influence the high-volume
measurements now available in precision medicine will have
important implications for health management and drug dis-
covery.
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A Supplemental Methods

A.1 Description of Topological Overlap Matrix

Starting with a similarity measure sij = |cor(i, j)| between node i and node j, one could apply
a hard threshold to determine if this pair is considered connected or not resulting in an un-
weighted network (a matrix of 0’s and 1’s). Instead, Zhang and Horvath (Zhang and Horvath,
2005) propose a soft thresholding framework that assigns a connection weight to each gene pair
using a power adjacency function aij = |sij |� . The parameter � determines the sensitivity and
specificity of the pairwise connection strengths e.g. a larger � will result in fewer connected
nodes which can reduce noise in the network but can also eliminate signal if too large. A
measure of similarity is then derived using the symmetric and non-negative topological overlap
matrix (Ravasz et al., 2002) (TOM) ⌦ = [!ij ]:

!ij =
lij + aij

min {ki, kj}+ 1� aij
(1)

1



where lij =
P

u aiuauj , ki =
P

u aiu is the node connectivity, and the index u runs across all
nodes of the network. Basically, !ij is a measure of similarity in terms of the commonality of
the nodes they connect to. If i and j are unconnected and do not share any neighbors then
!ij = 0. An !ij = 1 means that i and j are connected, and the neighbors of the node with
fewer connections are also neighbors of the other node.
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Figure S5: Hosmer-Lemeshow p-values from simulation 5 for SNR = 1, ⇢ = 0.9, and
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Figure S6: Hosmer-Lemeshow p-values from simulation 6 for SNR = 1, ⇢ = 0.9, and
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C Analysis of Clusters

Figure S7: Number of estimated clusters from applying the dynamicTreeCut algorithm to
hierarchical clustering of the dissimilarity matrix with average linkage. Left panel: CLUST
uses 1 � Cor(Xall) and ECLUST uses the euclidean distance of Cor(Xdi↵) as measures of
dissimilarity. Right panel: CLUST uses 1 � TOM(Xall) and ECLUST uses the euclidean
distance of TOM(Xdi↵) as measures of dissimilarity. Empirical distributions based on 200
simulation runs.
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Figure S8: E↵ective number of selected variables for simulations 1-3 for SNR = 1, ⇢ = 0.9. A
variable was considered “selected” if its corresponding cluster representative was selected.
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Figure S9: E↵ective number of selected variables for simulations 4-6 for SNR = 1, ⇢ = 0.9 and
↵j ⇠ Unif [log(1.9), log(2.1)]. A variable was considered “selected” if its corresponding cluster
representative was selected.

9



D Simulation Results Using TOM as a Measure of Similarity

D.1 Simulation 1

Figure S10: Simulation 1 – Root mean squared error on an independent test set using the
TOM as a measure of similarity from 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S11: Simulation 1 – Correct Sparsity based on the training set using the TOM as a
measure of similarity from 200 simulation runs. Vertical panels represent varying correlation
between active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S12: Simulation 1 – True positive rate vs. false positive rate based on the training set
using the TOM as a measure of similarity. Each point represents 1 simulation run (there are
a total of 200 simulation runs). Vertical panels represent varying correlation between active
clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S13: Simulation 1 – Average Jaccard Index from 10 CV folds of the training set using the
TOM as a measure of similarity. We fit the model to each of the 10 CV folds resulting in 10 sets of
selected predictors. We then calculate the Jaccard Index between all

�10
2

�
possible combinations

of these sets and take the average. This process is repeated for each of the 200 simulation
runs. Vertical panels represent varying correlation between active clusters. Horizontal panels
represent di↵erent signal-to-noise ratios.
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Figure S14: Simulation 1 – Average Spearman correlation from 10 CV folds of the training set
using the TOM as a measure of similarity. We fit the model to each of the 10 CV folds resulting in
10 sets of estimated regression coe�cients. We then calculate the Spearman correlation between
all

�10
2

�
possible combinations of these sets and take the average. This process is repeated for

each of the 200 simulation runs. Vertical panels represent varying correlation between active
clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S15: Simulation 1 – Average Pearson correlation from 10 CV folds of the training set
using the TOM as a measure of similarity. We fit the model to each of the 10 CV folds resulting
in 10 sets of estimated regression coe�cients. We then calculate the Pearson correlation between
all

�10
2

�
possible combinations of these sets and take the average. This process is repeated for

each of the 200 simulation runs. Vertical panels represent varying correlation between active
clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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D.2 Simulation 2

Figure S16: Simulation 2 – Root mean squared error on an independent test set using
the TOM as a measure of similarity from 200 simulation runs. (A) ↵j ⇠ Unif [0.4, 0.6],
(B) ↵j ⇠ Unif [1.9, 2.1]. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S17: Simulation 2 – Correct Sparsity based on the training set using the TOM as a
measure of similarity from 200 simulation runs. (A) ↵j ⇠ Unif [0.4, 0.6], (B) ↵j ⇠ Unif [1.9, 2.1].
Vertical panels represent varying correlation between active clusters. Horizontal panels represent
di↵erent signal-to-noise ratios.
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Figure S18: Simulation 2 – True positive rate vs. false positive rate based on the training set
using the TOM as a measure of similarity. (A) ↵j ⇠ Unif [0.4, 0.6], (B) ↵j ⇠ Unif [1.9, 2.1]. Each
point represents 1 simulation run (there are a total of 200 simulation runs). Vertical panels
represent varying correlation between active clusters. Horizontal panels represent di↵erent
signal-to-noise ratios.
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Figure S19: Simulation 2 – Average Jaccard Index from 10 CV folds of the training set using
the TOM as a measure of similarity. (A) ↵j ⇠ Unif [0.4, 0.6], (B) ↵j ⇠ Unif [1.9, 2.1]. We fit the
model to each of the 10 CV folds resulting in 10 sets of selected predictors. We then calculate
the Jaccard Index between all

�10
2

�
possible combinations of these sets and take the average.

This process is repeated for each of the 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S20: Simulation 2 – Average Spearman correlation from 10 CV folds of the training set
using the TOM as a measure of similarity. (A) ↵j ⇠ Unif [0.4, 0.6], (B) ↵j ⇠ Unif [1.9, 2.1]. We
fit the model to each of the 10 CV folds resulting in 10 sets of estimated regression coe�cients.
We then calculate the Spearman correlation between all

�10
2

�
possible combinations of these sets

and take the average. This process is repeated for each of the 200 simulation runs. Vertical pan-
els represent varying correlation between active clusters. Horizontal panels represent di↵erent
signal-to-noise ratios.
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Figure S21: Simulation 2 – Average Pearson correlation from 10 CV folds of the training set
using the TOM as a measure of similarity. (A) ↵j ⇠ Unif [0.4, 0.6], (B) ↵j ⇠ Unif [1.9, 2.1]. We
fit the model to each of the 10 CV folds resulting in 10 sets of estimated regression coe�cients.
We then calculate the Pearson correlation between all

�10
2

�
possible combinations of these sets

and take the average. This process is repeated for each of the 200 simulation runs. Vertical pan-
els represent varying correlation between active clusters. Horizontal panels represent di↵erent
signal-to-noise ratios.
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D.3 Simulation 3

Figure S22: Simulation 3 – Root mean squared error on an independent test set using the
TOM as a measure of similarity from 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S23: Simulation 3 – Correct Sparsity based on the training set using the TOM as a
measure of similarity from 200 simulation runs. Vertical panels represent varying correlation
between active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S24: Simulation 3 – True positive rate vs. false positive rate based on the training set
using the TOM as a measure of similarity. Each point represents 1 simulation run (there are
a total of 200 simulation runs). Vertical panels represent varying correlation between active
clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S25: Simulation 3 – Average Jaccard Index from 10 CV folds of the training set using the
TOM as a measure of similarity. We fit the model to each of the 10 CV folds resulting in 10 sets of
selected predictors. We then calculate the Jaccard Index between all

�10
2

�
possible combinations

of these sets and take the average. This process is repeated for each of the 200 simulation
runs. Vertical panels represent varying correlation between active clusters. Horizontal panels
represent di↵erent signal-to-noise ratios.
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E Simulation Results Using Pearson Correlations as a Measure

of Similarity

E.1 Simulation 1

Figure S26: Simulation 1 – Root mean squared error on an independent test set using the
Correlation as a measure of similarity from 200 simulation runs. Vertical panels represent
varying correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise
ratios.
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Figure S27: Simulation 1 – Correct Sparsity based on the training set using the Pearson cor-
relation as a measure of similarity from 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S28: Simulation 1 – True positive rate vs. false positive rate based on the training set
using the Pearson correlation as a measure of similarity. Each point represents 1 simulation run
(there are a total of 200 simulation runs). Vertical panels represent varying correlation between
active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S29: Simulation 1 – Average Jaccard Index from 10 CV folds of the training set using
the Pearson correlation as a measure of similarity. We fit the model to each of the 10 CV folds
resulting in 10 sets of selected predictors. We then calculate the Jaccard Index between all

�10
2

�

possible combinations of these sets and take the average. This process is repeated for each of
the 200 simulation runs. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S30: Simulation 1 – Average Spearman correlation from 10 CV folds of the training
set using the Pearson correlation as a measure of similarity. We fit the model to each of the
10 CV folds resulting in 10 sets of estimated regression coe�cients. We then calculate the
Spearman correlation between all

�10
2

�
possible combinations of these sets and take the average.

This process is repeated for each of the 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S31: Simulation 1 – Average Pearson correlation from 10 CV folds of the training set
using the Pearson correlation as a measure of similarity. We fit the model to each of the
10 CV folds resulting in 10 sets of estimated regression coe�cients. We then calculate the
Pearson correlation between all

�10
2

�
possible combinations of these sets and take the average.

This process is repeated for each of the 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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E.2 Simulation 2

Figure S32: Simulation 2 – Root mean squared error on an independent test set using the
Pearson correlation as a measure of similarity from 200 simulation runs. (A) ↵j ⇠ Unif [0.4, 0.6],
(B) ↵j ⇠ Unif [1.9, 2.1]. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S33: Simulation 2 – Correct Sparsity based on the training set using the Pear-
son correlation as a measure of similarity from 200 simulation runs. (A) ↵j ⇠ Unif [0.4, 0.6],
(B) ↵j ⇠ Unif [1.9, 2.1]. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S34: Simulation 2 – True positive rate vs. false positive rate based on the train-
ing set using the Pearson correlation as a measure of similarity. (A) ↵j ⇠ Unif [0.4, 0.6],
(B) ↵j ⇠ Unif [1.9, 2.1]. Each point represents 1 simulation run (there are a total of 200 simu-
lation runs). Vertical panels represent varying correlation between active clusters. Horizontal
panels represent di↵erent signal-to-noise ratios.
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Figure S35: Simulation 2 – Average Jaccard Index from 10 CV folds of the training set using the
Pearson correlation as a measure of similarity. (A) ↵j ⇠ Unif [0.4, 0.6], (B) ↵j ⇠ Unif [1.9, 2.1].
We fit the model to each of the 10 CV folds resulting in 10 sets of selected predictors. We then
calculate the Jaccard Index between all

�10
2

�
possible combinations of these sets and take the

average. This process is repeated for each of the 200 simulation runs. Vertical panels represent
varying correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise
ratios.
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Figure S36: Simulation 2 – Average Spearman correlation from 10 CV folds of the train-
ing set using the Pearson correlation as a measure of similarity. (A) ↵j ⇠ Unif [0.4, 0.6],
(B) ↵j ⇠ Unif [1.9, 2.1]. We fit the model to each of the 10 CV folds resulting in 10 sets of
estimated regression coe�cients. We then calculate the Spearman correlation between all

�10
2

�

possible combinations of these sets and take the average. This process is repeated for each of
the 200 simulation runs. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S37: Simulation 2 – Average Pearson correlation from 10 CV folds of the train-
ing set using the Pearson correlation as a measure of similarity. (A) ↵j ⇠ Unif [0.4, 0.6],
(B) ↵j ⇠ Unif [1.9, 2.1]. We fit the model to each of the 10 CV folds resulting in 10 sets of
estimated regression coe�cients. We then calculate the Pearson correlation between all

�10
2

�

possible combinations of these sets and take the average. This process is repeated for each of
the 200 simulation runs. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent di↵erent signal-to-noise ratios.
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E.3 Simulation 3

Figure S38: Simulation 3 – Root mean squared error on an independent test set using the Pear-
son correlation as a measure of similarity from 200 simulation runs. Vertical panels represent
varying correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise
ratios.
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Figure S39: Simulation 3 – Correct Sparsity based on the training set using the Pearson cor-
relation as a measure of similarity from 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S40: Simulation 3 – True positive rate vs. false positive rate based on the training set
using the Pearson correlation as a measure of similarity. Each point represents 1 simulation run
(there are a total of 200 simulation runs). Vertical panels represent varying correlation between
active clusters. Horizontal panels represent di↵erent signal-to-noise ratios.
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Figure S41: Simulation 3 – Average Jaccard Index from 10 CV folds of the training set using
the Pearson correlation as a measure of similarity. We fit the model to each of the 10 CV folds
resulting in 10 sets of selected predictors. We then calculate the Jaccard Index between all

�10
2

�

possible combinations of these sets and take the average. This process is repeated for each of
the 200 simulation runs. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent di↵erent signal-to-noise ratios.
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F Visual Representation of Similarity Matrices

F.1 Pearson Correlation Matrix

(a) Cor(XE=0) (b) Cor(XE=1)

(c) |Cor(XE=1)� Cor(XE=0)| (d) Cor(Xall)

Figure S42: Pearson correlation matrices of simulated predictors based on subjects with (a)
E = 0, (b) E = 1, (c) their absolute di↵erence and (d) all subjects. Dendrograms are from
hierarchical clustering (average linkage) of one minus the correlation matrix for a, b, and d and
the euclidean distance for c. The module annotation represents the true cluster membership for
each predictor, and the active annotation represents the truly associated predictors with the
response.
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