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Abstract: As a generalization of the classical linear regression, expectile
regression (ER) explores the relationship between the conditional expectile
of a response variable and a set of predictor variables. ER with respect to
different expectile levels can provide a comprehensive picture of the condi-
tional distribution of the response variable given the predictors. We adopt
an efficient estimation method called the envelope model ([8]) in ER, and
construct a novel envelope expectile regression (EER) model. Estimation
of the EER parameters can be performed using the generalized method of
moments (GMM). We establish the consistency and derive the asymptotic
distribution of the EER estimators. In addition, we show that the EER
estimators are asymptotically more efficient than the ER estimators. Nu-
merical experiments and real data examples are provided to demonstrate
the efficiency gains attained by EER compared to ER, and the efficiency
gains can further lead to improvements in prediction.
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1. Introduction

The classical linear regression is a commonly used method when we want to
study the relationship between a response variable Y and a p-dimensional pre-
dictor vector X. It depicts the linear dependence between the conditional mean
of Y and X. However, it assumes that the conditional distribution of Y given
X is homoscedastic, which is not always satisfied in real datasets. While the
condition mean gives important information on the conditional distribution of
Y and X, it does not provide a complete picture of the distribution, especially
for skewed distributions arising from price or income data. As a result, quan-
tile regression (QR), which can overcome the limitations, gained considerable
interest in recent years. QR studies the conditional quantile of Y given X. It
is a distribution free method and does not impose any assumption on the con-
ditional distribution of the response Y . Investigation of multiple quantile levels
gives us a comprehensive description of the distribution of Y conditional on X.

An alternative to QR is expectile regression (ER). The idea of expectile was
firstly studied in [32]. The πth expectile of Y , denoted by fπ(Y ), is defined as

fπ(Y ) = arg min
f∈R

E[φπ(Y − f)], π ∈ (0, 1),

where φπ(z) = |π − I(z < 0)|z2 is called the asymmetric least squares loss
function. When π = 0.5, φπ(z) is the least squares loss and fπ(Y ) = E[Y ]. ER
studies the conditional expectile of the response Y given the predictors X. It
has been explored in many statistics and econometric literature. [53] proposed
a local linear polynomial estimator of the conditional expectiles with a one-
dimensional predictor and established the corresponding asymptotic properties.
[25] developed the conditional autoregressive expectile models (CARE), which
investigated the impact of previous asset returns on the conditional expectile-
based Value at Risk (EVaR) of current asset returns, and allowed different
effects from positive and negative returns. They established the asymptotic
normality of the CARE estimators, and extended the results in [32] to sta-
tionary and weakly dependent data. [50] proposed a varying-coefficient expec-
tile model to estimate the conditional EVaR of asset returns. This approach
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allows the coefficients to change with an effect modifying risk factor and pro-
vides a more flexible way to model the data. They showed that the varying-
coefficient expectile model yields more stable estimators and more accurate
prediction intervals compared to the CARE models. In recent years, many ad-
vances have been taken place on model selection in expecile regression. [19]
studied the sparse expectile regression under high dimensional settings where
the penalty functions include the Lasso and nonconvex penalties. [43] intro-
duced a variety of model selection methods in semiparametric expectile re-
gression. [28] provided asymptotic distributions of penalized expectile regres-
sion with SCAD and adaptive LASSO penalties for both i.i.d. and non-i.i.d.
random errors. In addition, semiparametric ([37, 41, 40]) and nonparametric
([52, 51, 16, 22]) expectile estimation methods have been proposed in litera-
ture.

There are a lot of connections between QR and ER. Similar as QR, ER does
not impose any distributional assumption on the response Y as well, and it
can provide us with complete information on the conditional distribution of Y .
Therefore, both QR and ER are able to overcome the previously mentioned
limitation of the classical linear regression. Moreover, [53] pointed out there ex-
ists a one-to-one mapping between expectiles and quantiles. Hence ER can be
interpreted as a flexible QR. In addition, expectiles can be used to estimate a
quantile-based risk measure call expected shortfall [46]. However, at the same
time, we should not ignore some different properties between QR and ER. Re-
call that the αth quantile of the response Y , denoted by qα(Y ), is defined as
qα(Y ) = arg min

q∈R
E{τα(Y − q)}, where τα(z) = |α− I(z < 0)||z| is the check loss

function. Therefore quantiles minimize the expected check loss τα while expec-
tiles minimize the expected asymmetric least squares loss φπ. The check loss
function is not differentiable while the asymmetric least squares loss function is
differentiable because of the quadratic term. The difference in the loss functions
give QR and ER their respective advantages. The main advantage of QR is that
its results are easier to be interpreted and it is more robust to outliers than ER;
while the main advantage of ER over QR is that ER is more computationally
friendly, especially in a semiparametric model, as pointed out by [41]. Moreover,
ER is more sensitive to the extreme values in datasets because ER takes the
distance between an observation and the estimated expectile into account while
QR only considers whether an observation is greater or less than the estimated
quantile. This characteristic makes ER more desirable in many applications.
One example is on the risk measures in the fields of econometrics and finance.
Value at Risk (VaR) is a popular measure for evaluating portfolio risk based on
quantiles. It provides crucial information about the potential loss, however, it is
insensitive to the severity of more extreme realization since it does not depend
on the tail shape of the distribution ([11, 15]). [25] proposed the risk measure
EVaR and indicated EVaR can reflect the magnitude of the extreme losses for
the underlying risk. Therefore, given a set of risk factors, studying conditional
EVaR rather than conditional VaR may lead to a more proper respond to a
catastrophic loss. At last, for the special case with α = 0.5, QR degenerates
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to the conditional median regression. For the special case with π = 0.5, ER
degenerates to the standard linear regression.

In this paper we propose a new ER method, the envelope expectile regression
(EER), for efficient estimation of the parameters in ER. It is motivated by the
fact that some linear combinations of the predictors may be irrelevant to the
distribution of the response. Our method takes this data structure into account,
which results in more efficient estimation compared with the standard ER. We
call those irrelevant combinations the immaterial part and the remaining part
the material part. To identify the material part and the immaterial part, we em-
ploy a nascent technique called the envelope method. The immaterial part is then
excluded from the subsequent analysis, leading to efficiency gains in estimation.
To be noted, the immaterial part is different from the subset of inactive predic-
tors in the popular penalized variable selection methods. We can see that both
the penalized variable selection methods and the envelope method reduce the
number of free parameters in the model but they are based on different assump-
tions. The penalized variable selection methods assume a subset of individual
predictor variables are irrelevant to regression and thus have coefficients zero;
while the envelope method assumes some linear combinations of the predictors
are irrelevant to regression but all predictors can have nonzero coefficients. There
are different application scenarios for the penalized variable selection methods
and the envelope method. For example, suppose that a biologist wants to ana-
lyze the relationship between genes and a certain disease, given a dataset with
measurements on the severity of the disease (response) and the expression levels
of different genes (predictors). If the biologist believes only a few genes in the
dataset have effects on the disease, then he would apply the penalized variable
selection methods to identify those genes. On the other hand, if the biologist
feels like each gene in the dataset is related to the disease in some way, then he
would use dimension reduction methods such as principal component regression,
partial least squares or the envelope model to find the linear combination(s) of
the genes that affects the disease. The envelope method was first proposed in
([8]) under the context of multivariate linear regression for efficient estimation. It
is then applied to many contexts in multivariate analysis including partial least
squares ([6]), generalized linear models ([9]), elliptical linear regression ([17]),
reduced rank regression ([7]), variable selection ([45]), bayesian analysis ([24]),
matrix and tensor valued response ([12, 27]), and quantile regression ([13]). In
this paper, we apply the idea of envelope method to expectile regression. The
parameters are estimated by the generalized method of moments (GMM; [21]).
And we demonstrate that the EER estimators have smaller asymptotic variance
than the ER estimators both theoretically and numerically.

This paper is organized as follows. We derive the EER model in Section
2. Estimation of the EER model is discussed in Section 3. In Section 4, we
investigate the theoretical properties of the EER estimators, and prove that the
EER estimators are asymptotically more efficient than the ER estimators. We
use simulations to demonstrate the performance of the EER model in estimation
and prediction in Section 5. State murder rate data and S&P 500 index data
are analyzed in Section 6 as examples. The extension to semiparametric settings
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is discussed in Section 7. Section 8 concludes the paper with a discussion. All
technical proofs are deferred to the supplementary material [5].

The following notations will be used in our discussion. Let Rp×u be the set
of all p × u matrices. For any matrix A ∈ Rp×u, span(A) represents the sub-
space spanned by the columns of A. Let PA be the projection matrix onto
span(A) and QA = Ip −PA be the projection matrix onto its orthogonal com-
plement span(A)⊥ . For any subspace S in Rp, PS represents the projection
matrix onto S and QS represents the projection matrix onto S⊥ . Let “vec”
represent the vectorization operator that vectorizes a matrix columnwise and
“vech” represent the half-vectorization operator that vectorizes the lower trian-
gle of a symmetric matrix. We use ∥·∥ to represent Frobenius norm and † to

denote the Moore-Penrose inverse. We write
d−→ for convergence in distribution

and
p−→ for convergence in probability. Moreover, a subspace R in Rp is a re-

ducing subspace of a matrix M ∈ Rp×p if and only if M can be decomposed as
M = PRMPR + QRMQR.

2. Envelope expectile regression

2.1. Expectile regression

Consider a univariate response Y and a p-dimensional predictor vector X. The
standard ER considers the πth conditional expectile of Y as a linear function
of X

fπ(Y |X) = µπ + βT
πX, (2.1)

where fπ(Y |X) represents the πth conditional expectile of Y given X, µπ is the
intercept and βπ ∈ Rp contains the coefficients. When π = 0.5, f0.5 (Y |X) de-
generates to the conditional mean E(Y |X) and ER degenerates to the standard
linear regression.

To get the ER estimators, we use a property of the conditional expectile
discussed in [32] that

(µπ,βπ) = arg min
µ∈R, β∈Rp

E{φπ(Y − µ − βT X)|X},

where φπ(z) = |π − I(z < 0)|z2 is an asymmetric squared loss function. Given
the random samples {(Yi,Xi) : i = 1, . . . , n} of (Y,X), the ER estimators µ̂π

and β̂π can be obtained by solving

(µ̂π, β̂π) = arg min
µπ∈R, βπ∈Rp

1

n

n∑

i=1

φπ(Yi − µπ − βT
πXi).

Taking the first derivative with respect to (µπ, βT
π )T , the minimizer should

satisfy the following estimating equations

1

n

n∑

i=1

Wi(Yi − µπ − βT
πXi)

∣∣I(Yi < µπ + XT
i βπ) − π

∣∣ = 0, (2.2)

where Wi = (1,XT
i )T .
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2.2. Envelope expectile regression

EER is derived from the motivation that certain linear combinations of the
predictors are irrelevant to some conditional expectiles, e.g. E(Y |X), of the re-
sponse. For example, a stock index may be related to only a few combinations of
the economic factors, while these combinations are uncorrelated with the other
combinations that are not responsible for the variation in the index. Following
this observation, we suppose that there exists a subspace Sπ in the full predictor
space Rp such that the πth conditional expectile of the response Y is related to
the predictor vector X only through PSπX. Specifically, we assume that

(a) fπ(Y |X) = fπ(Y |PSπX) and (b) Cov(QSπX,PSπX) = 0. (2.3)

The conditions in (2.3) imply that QSπX does not provide any information to
the πth conditional expectile of Y neither from itself nor from its association
with PSπX. We call PSπX the material part of X and QSπX the immaterial
part of X.

Remark 1. Conditions in (2.3) incorporate the idea of sufficient dimension
reduction in expectile regression. When π = 0.5 and the conditions in (2.3)
are superimposed, model (2.1) is the envelope-based partial least squares (PLS)
regression of Y on X ([6]). It is well known that PLS regression improves pre-
diction performance over ordinary least squares regression (e.g., [1, 4, 23]). For
general π ∈ (0, 1), conditions in (2.3) establish a general asymmetric envelope-
based PLS regression framework, which improves estimation efficiency and en-
hances prediction performance over ER both theoretically and numerically as
evidenced in Sections 4-6.

Under the parameterization of ER (2.1), condition (2.3a) is equivalent to (i)
βπ ∈ Sπ, and condition (2.3b) holds if and only if (ii) Sπ is a reducing subspace
of ΣX ([8]), where ΣX is the covariance matrix of X. If we find such a subspace
Sπ, we can identify the immaterial part QSπX when evaluating the relationship
between fπ(Y |X) and X. Then estimation efficiency gains can be achieved by
accounting for the immaterial variation in subsequent analysis. There may exist
more than one subspace satisfying (i) and (ii). For instance, the full space Rp

always satisfies (i) and (ii). To achieve the most efficiency gains, we focus on the
smallest subspace (i.e., the subspace with smallest dimension) that satisfies (i)
and (ii), such that we can identify all the immaterial information. We call this
subspace the ΣX-envelope of βπ, and denote it by EΣX(βπ) or Eπ if it appears
in subscripts. The dimension of the envelope subspace EΣX(βπ) is denoted by
uπ (0 ≤ uπ ≤ p). [8] discussed the existence and uniqueness of the envelope
subspace EΣX(βπ).

Before deriving the EER model, we first discuss the parameterization of the
envelope subspace EΣX(βπ). The envelope subspace can be determined by its
basis. However, there can be many bases of EΣX(βπ). To make the parameters
identifiable, we define one representative basis Γπ for each envelope subspace:
Take an arbitrary basis Gπ of the envelope subspace EΣX(βπ). Since the di-
mension of the envelope subspace EΣX(βπ) is uπ, Gπ has rank uπ and we can
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find uπ rows in Gπ that constitute a nonsingular matrix. If there are multiple
combinations of such uπ rows, we take the rows with smallest indices. Without
loss of generality, we assume that the first uπ rows of Gπ constitute a non-
singular matrix, and we write Gπ as (GT

1π,GT
2π)T , where G1π ∈ Ruπ×uπ and

G2π ∈ R(p−uπ)×uπ . Define the representative basis Γπ = GπG
−1
1π ≡ (Iuπ ,AT )T ,

where A ∈ R(p−uπ)×uπ . It can be shown that the representing basis defined as
above is unique for EΣX(βπ). Therefore we have established a one-to-one corre-
spondence between A and the envelope subspace EΣX(βπ). And if we know A,
we can completely decide EΣX(βπ). The following lemma shows that the basis
of the orthogonal complement of EΣX(βπ) can also be expressed as a function of
A, which is useful for establishing the EER model. The proof is given in Section
1.1 of the supplementary material.

Lemma 1. If Γπ = (Iuπ ,AT )T is a basis of EΣX(βπ), then Γ0π = (−A, Ip−uπ )T

is a basis of EΣX(βπ)⊥ .

Using the representative bases Γπ and Γ0π, we reparametrize βπ and ΣX

to derive the EER model. Since βπ ∈ EΣX(βπ), there exists a uπ-dimensional
coordinate vector ηπ such that βπ = Γπηπ. Because EΣX(βπ) is a reducing
subspace of ΣX, ΣX can be decomposed as ΣX = PEπΣXPEπ + QEπΣXQEπ ,
where PEπΣXPEπ is the variance of the material part PEπX and QEπΣXQEπ

is the variance of the immaterial part QEπX. With Γπ and Γ0π defined in
Lemma 1, the coordinate form of the EER model is as follows

fπ(Y |X) = µπ + ηT
πΓ

T
πX

ΣX = ΓπΩπΓ
T
π + Γ0πΩ0πΓ

T
0π.

(2.4)

In the EER model, we can see the predictor vector X affects the conditional
expectile fπ(Y |X) only through its linear combinations ΓT

πX. The number of the
linear combinations is uπ because Γπ has uπ columns. Therefore, uπ represents
the number of relevant linear combinations of the predictors, rather than the
number of active predictors in penalized models. The uπ-dimensional vector
ηπ carries the coordinates of βπ relative to Γπ. The positive definite matrix
Ωπ ∈ Ruπ×uπ carries the coordinates of ΣX relative to Γπ and the positive
definite matrix Ω0π ∈ R(p−uπ)×(p−uπ) carries the coordinates of ΣX relative to
Γ0π. The parameter vector in the EER model is then ζ = (µπ, ηT

π , vec(A)T ,

vech(Ωπ)T , vech(Ω0π)T , µT
X)T , where µX is the mean of X. Here, we include

µX in the parameter vector since it is involved in the estimating equations in
Section 3. The total number of parameters is 1 + uπ + p + p(p + 1)/2. The
parameter count is as follows: µπ has 1 parameter, ηπ has uπ parameters, A
has uπ(p−uπ) parameters, Ωπ and Ω0π are both symmetric matrices, and they
have uπ(uπ+1)/2 and (p−uπ)(p−uπ+1)/2 parameters respectively, and µX has
p parameters. When uπ = p, the EER model degenerates to the ER model (2.1).
The parameters in ER are µπ and βπ. In this paper, we also consider ΣX and
µX as parameters in ER to make it comparable with the EER model when
asymptotic covariance of the estimators is concerned. The parameter vector in
ER is θ = (µπ, βT

π , vech(ΣX)T , µT
X)T , and the total number of parameters is
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1 + 2p + p(p + 1)/2. Comparing the number of parameters, we can see that the
EER model reduces the number of parameters by p − uπ.

3. Estimation

In this section, we derive the EER estimators. Since there is no distributional as-
sumption on the predictors or the response, the maximum likelihood estimation
is not applicable for the EER model. Instead we adopt the generalized method
of moments (GMM; [21]) to obtain the EER estimators.

We first present the estimating equations under ER, and then reparameterize
the equations for the estimation of the EER model. The estimating equations
under ER are constructed from (2.2) and the moment conditions of X:

en(θ) =

⎛

⎝
1
n

∑n
i=1 Wi(Yi − µπ − XT

i βπ)
∣∣I(Yi < µπ + XT

i βπ) − π
∣∣

vech(ΣX) − vech(SX)
µX − X̄

⎞

⎠= 0,

(3.1)
where X̄ =

∑n
i=1 Xi/n is the sample mean and SX =

∑n
i=1(Xi − µX)(Xi −

µX)T /n is the sample covariance matrix given µX. Let θ̃ denote the ER esti-
mator by solving (3.1).

Under the EER model (2.4), we have βπ = Γπηπ and ΣX = ΓπΩπΓ
T
π +

Γ0πΩ0πΓ
T
0π. Then we can build a map ψ between the EER parameter vector

ζ and the ER parameter vector θ, i.e., ψ(ζ) = θ. Then we can reparameterize
(3.1) to get the estimating equations for the EER model:

e∗n(ζ) =

⎛

⎝
1
n

∑n
i=1 Wi(Yi − µπ − XT

i Γπηπ)
∣∣I(Yi < µπ + XT

i Γπηπ) − π
∣∣

vech(ΓπΩπΓπ
T + Γ0πΩ0πΓ0π

T ) − vech(SX)
µX − X̄

⎞

⎠= 0.

(3.2)

Note that in the EER model (2.4), other than ζ = (µπ, ηT
π , vec(A)T , vech(Ωπ)T ,

vech(Ω0π)T , µT
X)T , the dimension of the envelope subspace uπ is also an impor-

tant parameter. Here we first discuss the estimation of ζ assuming uπ is known.
In the estimating equation (3.2), there are 1 + 2p + p(p + 1)/2 equations and
1 + uπ + p + p(p + 1)/2 unknown parameters. As a result, it is possible that
no solution exists. We then apply the GMM approach ([21]) to obtain the EER
estimator ζ̂. Let Z = (XT , Y )T and W = (1,XT )T . Define s(Z;θ) to be the
population version of the moment conditions in (3.1):

s(Z;θ) =

⎛

⎝
s1(Z;θ)
s2(Z;θ)
s3 (Z;θ)

⎞

⎠=

⎛

⎝
W(Y − µπ − XTβπ)

∣∣I(Y < µπ + XTβπ) − π
∣∣

vech(ΣX) − vech{(X − µX)(X − µX)T }
µX − X

⎞

⎠.

(3.3)
The estimation procedure can be summarized in the following steps.

Step 1: Get the intermediate estimator ζ̂
∗

by minimizing e∗n(ζ)T e∗n(ζ).
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Step 2: Compute the scale matrix

∆̂ =

[
1

n

n∑

i=1

s(Zi;ψ(ζ̂
∗
))s(Zi;ψ(ζ̂

∗
))T

]−1

.

Step 3: Obtain the GMM estimator ζ̂ by minimizing e∗n(ζ)T ∆̂e∗n(ζ).

Once we obtain ζ̂, the EER estimators of βπ and ΣX are β̂π = Γ̂πη̂π and

Σ̂X = Γ̂πΩ̂πΓ̂
T

π + Γ̂0πΩ̂0πΓ̂
T

0π. And we use θ̂ to denote the EER estimator of

θ: θ̂ = (µ̂π, β̂
T

π , vech(Σ̂X)
T
, µ̂T

X)T . An analysis of the computational burden of
the estimation procedure is given in Section 8 of the Supplement.

Remark 2. In some envelope literature, e.g., [8], a different parameterization is
adopted for Γπ: Γπ is required to be a semi-orthogonal matrix, i.e., ΓT

πΓπ = Iuπ .
In this case, span(Γπ) is a point on a p × uπ Grassmann manifold, where a
p × uπ Grassmann manifold is the set of all uπ-dimensional subspaces in a p-
dimensional space. The above procedure can still be used to estimate the param-
eters, except that Step 1 and Step 3 involve Grassmann manifold optimization,
which could be complicated and slow in sizable problems. For more information
about Grassmann manifold optimization algorithms, please refer to [14, 29].

Now we discuss the selection of uπ. Similar to other dimension reduction
based methods (such as principal component analysis, partial least squares or
reduced rank regression), the model selection for the EER model (2.4) is es-
sentially the selection of the dimension uπ. In existing envelope models and
methods, the dimension uπ is usually chosen by AIC, BIC or log-likelihood ra-
tio testing. Since AIC, BIC as well as log-likelihood ratio testing all requires a
likelihood function, they are not applicable in the context of the EER model.
As a result, we adopt a nonparameteric method, robust cross validation (RCV;
[33]), for the selection of uπ. Following [18, page 244], we use the “one-standard
error” rule with RCV to choose the most parsimonious model which has about
the same predictive accuracy as the best model. RCV is performed in the fol-
lowing steps:

Step 1: Randomly split the data into K folds. Usually K takes the value of 5
or 10. Successively use the kth fold for testing and the remaining folds
for training, k = 1, . . . , K.

Step 2: For each possible uπ (0 ≤ uπ ≤ p), compute the mean expectile loss

RCV(uπ) = 1
n

∑n
i=1 φπ(Yi− µ̂π,−k(i)− β̂

T

π,−k(i)Xi), where µ̂π,−k(i) and

β̂π,−k(i) are the EER estimators using the data excluding the kth fold
that contains the ith observation.

Step 3: Instead of choosing the ũπ which achieves the smallest mean expectile
loss RCV(ũπ), we select the smallest ûπ whose mean expectile loss is
less than one standard error above RCV(ũπ).

We provide an implementation of the EER model in the R package expectEnv
which is available at https://github.com/chentuo1993/expectEnv. Using the

https://github.com/chentuo1993/expectEnv
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GMM approach, this package provides the EER estimator for parameters ζ and
θ. It also implements RCV for the selection of the envelope dimension uπ and
computes bootstrap standard deviations for the EER estimators.

4. Theoretical results

In this section, we prove the EER estimator θ̂ is asymptotically more efficient
than or as efficient as the ER estimator θ̃. We first derive the asymptotic dis-
tribution of θ̃. [32] proved that the ER estimator β̃π is consistent and asymp-
totically normal under some regularity conditions. We extend this result from
β̃π to θ̃ in Theorem 1. Next we establish the asymptotic distribution of θ̂ in
Theorem 2, and show that the EER estimator is at least as efficient as the ER
estimator by comparing the asymptotic covariance matrices. Because of the non-
smoothness in the estimating equations and the EER model does not impose
any assumptions on the distribution of Y , the traditional likelihood approach
in envelope literature cannot be applied to derive the asymptotic distribution
of θ̂. Furthermore, there is over-parameterization in the estimating equation in
the sense that the number of equations are greater than the number of the pa-
rameters. The theoretical tools we use to overcome these issues are Theorem 2.1
in [31] and Proposition 4.1 in [39]. To simplify the notations, we use avar(

√
nθ̃)

to denote the asymptotic covariance matrix of θ̃ and avar(
√

nθ̂) to denote the
asymptotic covariance matrix of θ̂ hereafter.

First we derive the asymptotic distribution of the ER estimator, and the
following regularity conditions are assumed.

(C1) For each sample size n, Zi = (XT
i , Yi)T is independent and identically

distributed. Let f1 be the conditional density of Y given X and f2 be the
marginal density function of X. Then Zi has a probability density func-
tion f1(Yi|Xi)f2(Xi) with respect to a measure µZ. Also, the conditional
density f1(Y |X) is continuous in Y for almost all X.

(C2) There is a constant d ≥ 0 and a measurable function α(Z) that satisfy
f1(Y |X) ≤ α(Z),

∫
|Z|4+dα(Z)f2(X)dµZ ≤ +∞, and

∫
α(Z)f2(X)dµZ ≤

+∞.
(C3) E(XXT ) is nonsingular.
(C4) Let θ0 be the true value of θ. The expectation Eθ0 [s(Z;θ)] is twice differ-

entiable at θ0 with
∂Eθ0 [s(Z;θ)]

∂θT

∣∣∣∣
θ=θ0

having full rank and a finite Frobe-

nius norm. The matrix Eθ0 [s(Z;θ0)s(Z;θ0)T ] is positive definite and has
a finite Frobenius norm.

(C5) The support Θ of θ is a compact set and θ0 is an interior point of Θ.

Conditions (C1)–(C3) are the conditions used in Theorem 3 of [32] to prove
the consistency of the expectile estimator β̃π in ER. Let θ1 = (µπ, βT

π )T ,

θ2 = (vech(ΣX)T , µT
X)T , and let θ10 and θ20 be the true value of θ1 and

θ2 respectively. Then the dependence of s1, s2 and s3 in (3.3) on θ can be
specified as s1(Z;θ) = s1(Z;θ1), s2(Z;θ) = s2(Z;θ2) and s3 (Z;θ) = s3 (Z;θ2).
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Theorem 1. Assume the above regularity conditions (C1)–(C5) are satisfied,
then we have √

n(θ̃ − θ0)
d−→ N (0,C−1GC−1),

where

C =
∂Eθ0 [s(Z;θ)]

∂θT

∣∣∣∣
θ=θ0

=

⎛

⎜⎜⎝
−Eθ0

[
WWT

∣∣I(Y < WTθ10) − π
∣∣
]

0 0

0 Ip(p+1)/2 0
0 0 Ip

⎞

⎟⎟⎠

and

G = Eθ0 [s(Z;θ0)s(Z;θ0)
T ] =

⎛

⎝
G1,1 0 0

0 G2,2 G2,3

0 GT
2,3 G3 ,3

⎞

⎠

with

G1,1 = Eθ0

[
WWT (Y − WTθ10)2

∣∣I(Y < WTθ10) − π
∣∣2
]
,

G2,2 = Varθ0{vech[(X − µ0)(X − µ0)
T ]},

G2,3 = Eθ0{vech[(X − µ0)(X − µ0)
T ](µ0 − X)T },

G3 ,3 = Varθ0(X).

The proof of Theorem 1 is given in Section 1.2 of the supplementary mate-

rial. Since both C and G are block diagonal, θ̃1 = (µ̃π, β̃
T

π )T is asymptotically

independent of θ̃2 = (vech(Σ̃X)
T
, µ̃T

X)T . Theorem 1 provides the asymptotic
distribution for all the parameters, and the asymptotic distribution of β̃π agrees
with the results in Theorem 3 of [32]. Now we established the asymptotic dis-
tribution of the EER estimator.

Theorem 2. Suppose that the EER model (2.4) holds. Under the regularity

conditions (C1)–(C5), if
∂Eθ0 [s(Z;θ)s(Z;θ)T ]

∂θT

∣∣∣∣
θ=θ0

has a finite Frobenius norm

and the support of ζ is compact, then

√
n(θ̂ − θ0)

d−→ N (0,Ψ(ΨT CG−1CΨ)†ΨT),

where Ψ = ∂ψ(ζ)/∂ζ.

The proof of Theorem 2 is given in Section 1.3 of the supplementary ma-
terial. Theorem 2 indicates that the EER estimator is

√
n-consistent, and is

asymptotically normal. Since we have the explicit form of the asymptotic co-
variance matrices of the ER estimator and the EER estimator, we can compare
the efficiency of the two estimators.

Corollary 1. Under the same conditions in Theorem 2, avar(
√

nθ̂) ≤
avar(

√
nθ̃).
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The proof of Corollary 1 is given in Section 1.4 of the supplementary material.
Corollary 1 asserts that the EER estimator is asymptotically more efficient than
or as efficient as the ER estimator.

5. Simulations

In this section, we demonstrate the estimation efficiency gains of the EER model
via numerical experiments. In the simulations and examples in Section 6, we
consider a set of expectile levels of the distribution, and estimation is performed
for one level at a time instead of all levels simultaneously. Schnabel and Eilers
[38] describes how to determine the complete distribution from a set of expectiles
using penalized least squares.

We consider the following simulation settings:

Yi = 3 + αT
1 Xi + (8 + αT

2 Xi)ϵi, for i = 1, . . . , n.

We set p = 12 and uπ = 2. Both α1 and α2 were p-dimensional vectors. All
elements in α1 were 4. The first p/2 elements in α2 were 0.1 and the rest
p/2 elements were 0. Four types of error distribution were used to generate ϵ:
standard normal distribution ϵ ∼ N (0, 1), student’s t-distribution with 4 degrees
of freedom ϵ ∼ t4, mixed normal distribution ϵ ∼ 0.9N (0, 1) + 0.1N (1, 5), and
exponential distribution with mean 1, i.e., ϵ ∼ Exp(1).

Based upon the settings, the πth conditional expectile of Y had the following
form

fπ(Y |X) = 3 + αT
1 X + (8 + αT

2 X)fπ(ϵ) = 3 + 8fπ(ϵ) + (α1 + α2fπ(ϵ))T X,

where fπ(ϵ) represented the πth expectile of the error distribution. The slope
coefficients are contained in βπ = α1 + α2fπ(ϵ) and the intercept is µπ =
3 + 8fπ(ϵ). The predictor vector X followed a normal distribution with mean
0 and covariance matrix ΣX = ΦΛΦT + Φ0Λ0Φ

T
0 , where Λ was a uπ × uπ

diagonal matrix with diagonal elements 100 and 9, and Λ0 was a (p − uπ)
× (p − uπ) identity matrix. The matrix Φ ∈ Rp1×uπ was a semi-orthogonal
matrix with the first p/2 rows being (

√
6/6, 0) and the remaining p/2 rows

being (0,
√

6/6). And the matrix Φ0 ∈ Rp×(p−uπ) was a semi-orthogonal matrix
that satisfied ΦTΦ0 = 0. Since α1 = Φ ·(4

√
6, 4

√
6)T and α2 = Φ ·(

√
6/10, 0)T ,

we have βπ ∈ span(Φ) = EΣX(βπ). Thus fπ(Y |X) and X satisfied the EER
model (2.4).

We varied the sample size n from 50 to 800. For each sample size, 100 repli-
cations were generated. For each replication, we computed the EER estimator,
the ER estimator, the boosting estimator (componentwise gradient boosting
expectile regression assuming each predictor has a linear effect) as well as the
sparse ER estimator ([19]) of βπ. The boosting estimator was computed by
R package expectreg [42] with its default settings, i.e. the maximum num-
ber of boosting iterations is 4000, and cross validation is used to determine
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the optimal amount of boosting iterations between 1 and 4000. The sparse ER
estimator was computed by R package SALES [20]. We use the default choice
of the tuning parameter, i.e. the largest value whose cross validation error is
within one standard error of the minimum cross validation error. An alterna-
tive choice of the tuning parameter is the value that gives the minimum cross
validation error. Results based on this alternative choice is included in Section
10 of the supplementary materials. For each element in βπ, we computed the
sample standard deviation for the 100 EER estimators, 100 ER estimators, 100
boosting estimators and 100 sparse ER estimators. We took expectile levels
0.10, 0.25, 0.50, 0.75 and 0.90 as examples. The results of a randomly cho-
sen element in βπ with π = 0.50 and π = 0.90 are summarized in Figure 1.
They reflect the mean and the upper tail properties of the response. The results
of other expectile levels are given in Section 7 of the supplementary materi-
als.

Figure 1 shows substantial efficiency gains achieved by the EER model in
the estimation of βπ. With all error distributions and expectile levels π, the
sample standard deviations of the EER estimators are much smaller than the
sample standard deviations of the ER estimators, the boosting estimators and
the sparse ER estimators for all sample sizes. Take the first plot as an example
(normal errors and π = 0.5), with sample size 200, the standard deviation of the
EER estimator is already smaller than the asymptotic standard deviation of the
ER estimator. The asymptotic standard deviation of the ER estimator in this
case is 0.27 and the asymptotic standard deviation of the EER estimator is 0.12.
We notice that the boosting estimator and the sparse ER estimator have about
the same sample standard deviations as the ER estimator. This is because the
variation from the immaterial part affects these two methods in a similar way
as to ER. The sample standard deviations of the ER estimators and EER esti-
mators both approach their corresponding asymptotic standard deviations as n
increases, which confirms the asymptotic distributions established in Theorem 1
and Theorem 2.

Moreover, we computed the bootstrap standard deviations of the four esti-
mators for each component in βπ using the paired bootstrap method with 100
bootstrap repetitions. For demonstration purpose, we use the normal error as
an example and include the results for π = 0.5 and π = 0.9 in Figure 2. The re-
sults indicate that the bootstrap standard deviation is a good approximation to
the actual sample standard deviation. Therefore we use the bootstrap standard
deviation as an estimator of the actual standard deviation in data analysis in
Section 6.

Now we compared the prediction performance of the EER model with the ER
model, the boosting model and the sparse ER model. Under the same simulation
settings, we fixed the sample size at n = 800 and generated 300 replications. For
each replication, 400 samples were used for training and another 400 samples
were used for testing. With each of the four models, we first fitted the model to
the training samples. Then for each (Xi, Yi) in the testing samples, we computed
f̂π(Yi|Xi), the predicted πth conditional expectile of Yi given Xi. The prediction
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Fig 1: Comparison of the sample standard deviations. Red lines mark the ER
estimator. Blue lines mark the sparse ER estimator. Green lines mark the boost-
ing estimator. Black lines mark the EER estimator. The horizontal lines mark
the asymptotic standard deviations of the ER estimator (the upper line in each
panel) and the EER estimator (the lower line in each panel).
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Fig 2: Sample standard deviations and bootstrap standard deviations. Red lines
mark the ER estimator. Blue lines mark the sparse ER estimator. Green lines
mark the boosting estimator. Black lines mark the EER estimator. Lines with
“+” mark the bootstrap standard deviations for the corresponding estimators.

performance is measured by the root mean square error (RMSE) defined as

RMSE =

√√√√ 1

400

400∑

i=1

[
fπ(Yi|Xi) − f̂π(Yi|Xi)

]2
.

Table 1 and Figures 3–6 summarize the RMSEs under the four models with
different error distributions. The EER estimator shows a superior prediction
performance in all the cases. The boosting estimator and the ER estimator has
comparable performance. Among the four models, the prediction performance of
the sparse ER model is the worst because it tends to fit an overly sparse model,
which introduces bias to its estimator. Take π = 0.5 as an example, the EER
reduces the average RMSE by 37.7% to 46.3% compared to ER estimator, 37.7%
to 46.5% compared to the boosting estimator, and 67.4% to 76.4% compared to
the sparse ER estimator.

As shown in Section 8 of the supplementary material, the computation com-
plexity of the EER estimator is a polynomial function of the number of the
predictors p. Here we outline a comparison on the run time of the ER estima-
tor, the EER estimator, the sparse ER estimator and the boosting estimator
under the same setting that produced Table 1 with ϵ ∼ N (0, 1) and π = 0.10.
Table 2 displays the average run time for each estimator in the 300 replications.
We notice that the ER estimator takes the least time to compute. Compare to
the ER estimator, the EER estimator takes about three times longer to compute
(assuming uπ is known), the sparse ER estimator takes about 30 times longer to
compute and the boosting estimator takes about 700 times longer to compute.
The trend is similar for other error distributions and expectile levels.

In addition, we examined the performance of RCV in the selection of uπ.
In the same settings that generated Figure 1, we applied RCV to choose the
envelope dimension uπ. We performed 100 replications for each sample size. The
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Table 1
Comparison of the RMSEs, averaged over 300 replications.

(a) ϵ ∼ N (0, 1)

EER ER Boosting Sparse ER

π = 0.10 1.04 1.85 1.86 2.99

π = 0.25 0.93 1.60 1.60 2.79

π = 0.50 0.90 1.52 1.52 2.76

π = 0.75 0.95 1.61 1.62 2.88

π = 0.90 1.10 1.87 1.91 3.17

(b) ϵ ∼ t4

EER ER Boosting Sparse ER

π = 0.10 1.84 3.49 3.50 6.62

π = 0.25 1.28 2.46 2.47 5.27

π = 0.50 1.15 2.14 2.15 4.88

π = 0.75 1.31 2.44 2.45 5.39

π = 0.90 1.85 3.46 3.51 7.00

(c) ϵ ∼ 0.9N (0, 1) + 0.1N (1, 5)

EER ER Boosting Sparse ER

π = 0.10 1.20 2.21 2.22 3.95

π = 0.25 1.05 1.87 1.87 3.69

π = 0.50 1.05 1.86 1.87 3.88

π = 0.75 1.24 2.21 2.22 4.59

π = 0.90 1.75 3.14 3.18 6.05

(d) ϵ ∼ Exp(1)

EER ER Boosting Sparse ER

π = 0.10 0.70 0.76 0.79 1.96

π = 0.25 0.77 1.07 1.07 2.58

π = 0.50 0.96 1.54 1.54 3.40

π = 0.75 1.34 2.27 2.28 4.51

π = 0.90 1.99 3.37 3.40 6.03

Table 2
The run time (in seconds) of the EER estimator, the ER estimator, the boosting estimator
and the sparse ER estimator given ϵ ∼ N (0, 1) and π = 0.10 in the prediction performance

comparison simulation.

ER EER Sparse ER Boosting

0.042 0.13 1.32 29.44
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Fig 3: Boxplots of the RMSEs under the four models with ϵ ∼ N (0, 1).

Fig 4: Boxplots of the RMSEs under the four models with ϵ ∼ t4.

fraction that RCV selects the true dimension uπ = 2 is summarized in Table 3.
RCV shows a stable performance in the selection of uπ. With a small sample size
25, RCV selects the true dimension more than 75% of the time. And its accuracy
increases to 90% when sample size reaches 50. When RCV does not pick the
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Fig 5: Boxplots of the RMSEs under the four models with ϵ ∼ 0.9N (0, 1) +
0.1N (1, 5).

Fig 6: Boxplots of the RMSEs under the four models with ϵ ∼ Exp(1).

correct dimension, it always overestimates the dimension. A bigger uπ yields
a more conservative model, the resulting EER estimator loses some efficiency
(compared to the EER model with the correct uπ), but it keeps all the material
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information and does not introduce bias. Therefore we use RCV to choose uπ

in data analysis examples.
In this section, the data is generated from an EER model, and the EER

estimator can achieve efficiency gains in estimation and better prediction per-
formance over the boosting model and the sparse ER model. However, the results
can be different if the data were generated from a different underlying struc-
ture. Since the boosting model and the sparse ER model are variable selection
methods, if the sparsity structure rather than the envelope structure is present,
or in other words, some predictors are inactive and have coefficients zero, these
two models can be more efficient than the EER model by making use of the
sparsity structure. A simulation under such setting is included in Section 2 of
the supplementary materials. Therefore we cannot conclude if the EER estima-
tor is more efficient or less efficient than the boosting estimator and the sparse
ER estimator in general. It depends on the underlying relationship between
the response and the predictors, if the envelope structure holds or the sparsity
structure holds. If a particular predictor has coefficient zero, then the sparsity
structure holds. If βπ is contained in the subspace spanned by some eigenvectors
of ΣX, then the envelope structure holds. A potentially interesting scenario is
that the data have both the envelope structure and the sparsity structure at the
same time. A simulation under such setting is included in Section 3 of the sup-
plementary materials. For completion, a simulation with no immaterial part is
included in Section 4 of the supplement. In such case, any non-degenerate EER
model (uπ < p) does not hold. However we can still expect to have a smaller
mean squared error (MSE) from an approximate EER estimator in some cases
due to the bias-variance tradeoff. Since quantiles and expectiles have a one-to-
one mapping [53], we also computed the envelope quantile regression estimator
[13] and compared it with the EER estimator using the same simulation setting
in this section and the S&P 500 data. Details are included in Section 9 of the
supplement.

6. Data analysis

6.1. state.x77

The dataset “state.x77” (contained in datasets package in R) contains eight
measurements including population, average income, illiteracy, life expectancy,
murder rate, high-school graduates percentage, land area and frost level for the
50 states in the United States of America. The dataset has been used in [36] as
an example of multiple linear regression. Following [36], we took the murder rate
as response, and population, average income, illiteracy rate and frost levels as
the predictors. The density plot of murder rate indicated it was a bimodal distri-
bution. In addition, we fitted a standard linear regression model on the dataset
and checked for the homoscedasticity by Breush-Pagan test [2]. A p-value of
0.03 showed evidence of heteroskedasticity. Therefore, ER is more appropriate
to fit the dataset compared to the standard linear regression. We fitted the data
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Table 3
The fraction that RCV selects the true uπ with different error distributions.

(a) ϵ ∼ N (0, 1)

π = 0.10 π = 0.25 π = 0.50 π = 0.75 π = 0.90

n = 25 76% 80% 81% 79% 86%

n = 50 90% 92% 90% 94% 91%

n = 100 98% 99% 100% 100% 98%

n = 200 100% 100% 100% 100% 100%

n = 400 100% 100% 100% 100% 100%

n = 800 100% 100% 100% 100% 100%

(b) ϵ ∼ t4

π = 0.10 π = 0.25 π = 0.50 π = 0.75 π = 0.90

n = 25 85% 87% 83% 84% 79%

n = 50 94% 92% 96% 94% 93%

n = 100 96% 98% 98% 100% 96%

n = 200 100% 100% 100% 100% 100%

n = 400 100% 100% 100% 100% 100%

n = 800 100% 100% 100% 100% 100%

(c) ϵ ∼ 0.9N (0, 1) + 0.1N (1, 5)

π = 0.10 π = 0.25 π = 0.50 π = 0.75 π = 0.90

n = 25 85% 89% 89% 92% 90%

n = 50 98% 98% 95% 92% 92%

n = 100 95% 100% 98% 97% 97%

n = 200 100% 100% 100% 100% 100%

n = 400 100% 100% 100% 100% 99%

n = 800 100% 100% 100% 100% 100%

(d) ϵ ∼ Exp(1)

π = 0.10 π = 0.25 π = 0.50 π = 0.75 π = 0.90

n = 25 79% 82% 78% 83% 81%

n = 50 91% 96% 96% 94% 91%

n = 100 100% 100% 100% 100% 99%

n = 200 100% 100% 100% 100% 98%

n = 400 100% 100% 100% 100% 100%

n = 800 100% 100% 100% 100% 100%
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Table 4
The estimated regression coefficients for the standardized predictors given by the EER

model, the ER model, the boosting model and the sparse ER model.

EER ER

Population Income Illiteracy Frost Population Income Illiteracy Frost

π = 0.10 0.949 -0.349 1.382 -1.056 1.288 -0.698 2.010 -0.480

π = 0.25 0.755 -0.683 1.372 -1.345 1.152 -0.403 2.227 -0.280

π = 0.50 0.667 -0.648 1.327 -1.298 0.999 0.040 2.525 0.030

π = 0.75 0.954 -0.023 1.451 -1.074 0.921 0.338 2.729 0.271

π = 0.90 0.379 -0.404 0.820 -0.829 0.791 0.441 2.794 0.410

Boosting Sparse ER

Population Income Illiteracy Frost Population Income Illiteracy Frost

π = 0.10 1.272 -0.689 1.965 -0.520 0.506 0.000 1.444 -0.490

π = 0.25 1.029 -0.253 2.187 -0.262 0.361 0.000 1.763 -0.153

π = 0.50 0.846 0.000 2.313 0.000 0.000 0.000 1.472 0.000

π = 0.75 0.529 0.000 2.045 0.000 0.000 0.000 1.293 0.000

π = 0.90 0.283 0.000 1.780 0.000 0.000 0.000 0.563 0.000

Table 5
Dimension selection results and efficiency comparison among the EER estimator, the ER
estimator, the boosting estimator and the sparse ER estimator. Columns 3-4 contain the

bootstrap standard deviation ratios of the ER estimator versus the EER estimator. Columns
5-6 contain the bootstrap standard deviation ratios of the sparse ER estimator versus the
EER estimator. And columns 7-8 contain the bootstrap standard deviation ratios of the

boosting estimator versus the EER estimator.

ûπ
ER to EER Sparse ER to EER Boosting to EER

Range Average Range Average Range Average

π = 0.10 2 1.21–1.75 1.50 1.32–1.66 1.49 1.04–1.46 1.26

π = 0.25 1 1.20–2.72 1.91 1.01–1.88 1.45 1.13–2.00 1.55

π = 0.50 1 1.35–2.77 2.08 1.56–1.56 1.56 1.21–1.50 1.36

π = 0.75 2 1.05–1.58 1.32 1.22–1.22 1.22 1.10–1.23 1.17

π = 0.90 1 1.90–3.00 2.32 2.26–2.26 2.26 1.70–2.01 1.86

using the ER with π varied in different levels at 0.10, 0.25, 0.50, 0.75 and 0.90.
Because the four predictors are in quite different scales, they were scaled to
have unit standard deviation before the analysis. The analysis results of non-
scaled predictors are given in Section 5 of the supplementary materials. RCV
was used to select the dimensions of the envelope subspace for different expectile
levels. Then the ER estimator, the boosting estimator, the sparse ER estimator
and the EER estimator of βπ were computed. For each component in βπ, we
calculated the bootstrap standard deviations for the four estimators with 200
bootstrap repetitions. Since the boosting method and the sparse ER model are
variable selection methods, some of the four predictors were selected as active
and others were selected as inactive. The bootstrap standard deviation com-
parison of these methods with EER method is only performed on the selected
active variables. The dimension selection results for the EER model, the esti-
mated regression coefficients and the efficiency comparison are summarized in
Table 4 and Table 5.
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From Table 4 we can see the estimated regression coefficients given by the
EER model and the ER model differ from each other. Take the predictor income
(the per capita income) as an example, the ER model suggests that income has
a negative effect on murder rate at lower quantiles (π = 0.10 and π = 0.25) and
has a positive effect to murder rate at high quantile levels (π = 0.50, π = 0.75
and π = 0.90) while the EER models indicates that income has a negative effect
on murder rate for all quantile levels. The results from the EER model seems
to be more meaningful.

Table 5 shows the efficiency gains of the EER estimator over the other esti-
mators at all investigated expectile levels. Taking π = 0.90 for example, RCV
selected uπ = 1. The ratios of the bootstrap standard deviations of the ER
estimator versus the EER estimator range from 1.92 to 2.99 with an average of
2.31. To achieve the same efficiency gains under the ER, we need to increase
the sample size to 2.312 ≈5.3 times the original sample size. Similar efficiency
gains are also noticed when comparing with the sparse ER estimator and the
boosting estimator. The efficiency gains also lead to different interpretations
of the data. For instance, with π = 0.5, population and illiteracy rate are sig-
nificant predictors with positive coefficients under ER. Income and frost level
(number of days with minimum temperature below freezing) are not significant.
Sparse ER model selects illiteracy rate as the only active predictor with a pos-
itive coefficient. The boosting method selects population and illiteracy rate as
active predictors with positive coefficients, and income and frost level as inac-
tive predictors. However, under the EER model, all predictors are significant.
While population and illiteracy rate have positive coefficients, income and frost
level have negative association with murder rate. This indicates that the EER
estimator can detect weaker signal from the data from improved estimation effi-
ciency. The predictive performance of the EER estimator is slightly worse than
the ER estimator because the RCV tends to select a parsimonious model, which
may have a larger predicted expectile loss than the ER model. The details are
included in Section 6 of the supplementary materials.

6.2. S&P 500 index

Now we provide another example using the S&P 500 Index data to show that the
efficiency gains from the EER model can lead to a better prediction performance.
The data [26] contains 351 quarterly economic observations from January, 1927
to December, 2014. The response was the equity premium, which is the return
on the S&P 500 Index minus the return on treasury bill. We used 11 quarterly
predictors following [3, 49, 10, 30, 34, 26]. The predictors included dividend
yield (the difference between the log of dividends and the log of lagged prices),
earnings–price ratio (the difference between the log of earnings and the log
of prices), book-to-market ratio (the ratio of book value to market value for
the Dow Jones Industrial Average), net equity expansion (ratio of 12-month
moving sums of net issues by NYSE-listed stocks divided by the total market
capitalization of NYSE stocks), stock variance (the sum of squared daily returns
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Table 6
Mean and standard deviations of the predicted expectile losses under the ER and the EER

model with different expectile levels. The 2nd and 3rd columns give the mean of the predicted
expectile losses (in the unit of 10−3). The 5th and 6th columns give the standard deviations
of the predicted expectile losses (in the unit of 10−3). The 4th and 7th columns represent

percentage reduction of the EER model compared to the ER on the relative quantity.

Mean Standard Deviation

ER EER Reduction ER EER Reduction

π = 0.10 3.34 2.26 32.26% 7.56 4.98 34.05%

π = 0.25 4.67 2.98 36.19% 10.15 5.88 42.05%

π = 0.50 5.32 3.10 41.74% 13.82 5.61 59.39%

π = 0.75 4.59 2.70 41.16% 15.19 4.19 72.43%

π = 0.90 3.58 2.29 36.06% 17.44 11.70 32.90%

on the S&P 500), treasury bill rate (the 3-month rate), term spread (difference
between the long-term yield on government bonds and the treasury bill rate),
long-term rate of return for government bonds, default yield spread (difference
between BAA- and AAA-rated corporate bond yields), default return spread
(the difference between the return on long-term corporate bonds and the return
on long-term government bonds) and inflation. Some of the predictors were
stock characteristics and the others reflected operation conditions of the selected
companies. All of them had significant impacts on S&P 500 Index. Since an
investigation on the dataset showed strong evidence of heteroskedasticity, the
standard linear regression is not adequate to explore the relationship between
the response and the predictors. Moreover, there were two extreme values in the
response. Hence instead of a QR, we conducted an ER on the dataset which is
more sensitive to the extreme values and could make more efficient use of the
information in the dataset.

We fitted the data using the model:

fπ(Yt+1|Xt) = µπ + βT
πXt,

where Yt+1 was the equity premium at time t + 1 and Xt was the predictor
vector at time t. Both the ER and the EER model were applied to predict the
conditional expectile of the response fπ(Yt+1|Xt) in a moving window with a
size of 80 quarters, i.e., use observations {(Xt, Yt+1), t = t0 − 80, ..., t0 − 1} to
predict fπ(Yt0+1|Xt0), where t0 = 81, ..., 351. We used 80 as the size of the
moving window because [26] showed that a 20-years estimation window delivers
better results than alternative estimation windows. The predicted expectile loss
is an important measure of the prediction performance in ER. Once we have µ̂π

and β̂π, the predicted expectile loss is computed as φπ(Yt0+1 − µ̂π − β̂
T

πXt0).
We took expectile levels π = 0.10, 0.25, 0.50, 0.75 and 0.90 as examples.

The results of the predicted expectile losses are summarized in Table 6. Table 6
shows that the EER model has smaller mean predicted expectile loss compared
to the ER model with all the expectile levels. In addition, the EER model also
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Fig 7: Boxplots of the trimmed predicted expectile losses.

has smaller standard deviations of the predicted expectile losses, which indicates
that the EER model can give a more stable prediction. Figure 7 contains box-
plots to graphically display the location and spread of the predicted expectile
losses. Since there were some outliers, we trimmed the largest 5% of the pre-
dicted expectile losses under both the ER and the EER model for each expectile
level to improve visibility. Both Table 6 and Figure 7 demonstrate substantial
advantage of the EER model in prediction performance over the ER model.

We should note that the response in this example is actually weakly autocor-
related as revealed from its autocorrelation function (ACF) plot and the partial
autocorrelation function (PACF) plot. Therefore an EER model that accom-
modates time dependent data is more suitable for the analysis of this dataset.
[25] extended the asymptotic results of [32] to allow for stationary and weakly
dependent data in the ER model. In some applications, the time effects can also
be formulated by a mixed regression, and mixed expectile models are studied in
[47]. The development of an EER model for time dependent data or for mixed
expectile model is a potentially interesting future research direction and can
have applications in financial, medical or meteorological datasets.

7. Extension to semiparametric settings

As an anonymous reviewer pointed out that one advantage to expectiles is the
possibility to have very flexible semiparametric predictors. In this section, we
consider a semiparametric ER model where the response is related to a combi-
nation of linear predictors X ∈ Rp1 and nonlinear predictors Z ∈ Rp2

fπ(Y |X,Z) = µπ + βT
πX + g(Z), (7.1)

where g is a smooth function, µπ is the intercept and βπ contains coefficients
for the linear predictors. We assume that E(g(Z)) = 0 for identification.
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To impose the envelope structure on βπ, we use the technique in partial enve-
lope model [44] and consider the ΣX-envelope of βπ, denoted by EΣX(βπ). Let
uπ denote its dimension, and let Γπ ∈ Rp×uπ and Γ0π ∈ Rp×(p−uπ) be orthonor-
mal bases of EΣX(βπ) and EΣX(βπ)⊥ respectively. Then βπ can be written as
βπ = Γπηπ, where ηπ ∈ Ruπ contains the coordinates of βπ with respect to
Γπ. The covariance matrix ΣX can be written as ΣX = ΓπΩπΓ

T
π +Γ0πΩ0πΓ

T
0π,

where Ωπ contains the coordinates of ΣX with respect to Γπ and Ω0π con-
tains the coordinates of ΣX with respect to Γ0π. Then the semiparametric EER
model is formulated as

fπ(Y |X,Z) = µπ + ηT
πΓ

T
πX + g(Z), ΣX = ΓπΩπΓ

T
π + Γ0πΩ0πΓ

T
0π. (7.2)

Note that the envelope structure is only imposed on the linear predictor X,
not the entire predictor vector (XT ,ZT )T . This means that the conditional
expectile depends on X only through ΓT

πX, i.e. fπ(Y |X,Z) = fπ(Y |ΓT
πX,Z),

and the variation of X can be decomposed into the variation of the material
part and variation of the immaterial part, i.e., ΣX = var(PΓX) + var(QΓX).
By linking βπ to the material part, the semiparametric EER model (7.2) is
expected to improve the efficiency in the estimation of βπ. To impose envelope
structure on g(Z) involves completely different scopes and techniques, and we
leave it as an important future research direction. To estimate from model (7.2),
we use the following iterative algorithm. We denote the estimated linear part as
Ŷ1, and the estimated nonlinear part as Ŷ2.

Step 1: Initialize Ŷ2 = 0.
Step 2: Fit the EER model with Y −Ŷ2 as the response and X as the predictors.

Use the EER estimators to update Ŷ1.

Step 3: Fit the ER additive model [41] with Y being the response, Γ̂
T

πX being

the linear predictors and Z being the nonlinear predictors, where Γ̂π

was calculated from Step 2. Update Ŷ2.
Step 4: Repeat Step 2–Step 3 until the convergence of Ŷ1 + Ŷ2.

To illustrate the performance of semiparametric EER, we consider the fol-
lowing simulation settings:

Yi = 3 + αT
1 Xi + h(Zi) + (8 + αT

2 Xi)ϵi, for i = 1, . . . , n,

where X ∈ Rp1 contains the linear predictors and Z ∈ Rp2 contains the non-
linear predictors. We set p1 = 12 and p2 = 4. The nonlinear predictors Z =
(Z1, Z2, Z3 , Z4) followed the multivariate normal distribution N4(0, I4) and the
function h(Z) = exp(Z1) + sin(Z2) + cos(Z3 ) + Z3

4. The error ϵ was generated
from the standard normal distribution.

Based upon the settings, the πth conditional expectile of Y has the following
form

fπ(Y |X,Z) = 3 + αT
1 X + h(Z) + (8 + αT

2 X)fπ(ϵ)

= 3 + 8fπ(ϵ) + E(h(Z)) + (α1 + α2fπ(ϵ))T X + h(Z) − E(h(Z)),
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Fig 8: Sample standard deviations. Dashed lines mark the semiparametric ER
estimator. Solid lines mark the semiparametric EER estimator.

where fπ(ϵ) represents the πth expectile of the standard normal distribution.
For the linear part, the slope coefficients are contained in βπ = α1 + α2fπ(ϵ)
and the intercept is µπ = 3 + 8fπ(ϵ) + E(h(Z)). The parameters α1, α2 and
the predictor vector X were generated in the same way as in Section 5. So
the linear part follows an envelope structure. The nonlinear part was given by
g(Z) = h(Z) − E(h(Z)).

We varied the sample size n from 50 to 800. For each sample size, 100 repli-
cations were generated. For each replication, we computed the semiparametric
ER estimator of βπ by the ER additive model ([42]), and computed the semi-
parametric EER estimator of βπ using the preceding algorithm. Then for each
component of βπ, we computed the sample standard deviations for the semi-
parametric ER estimator and the semiparametric EER estimator based on the
results from the 100 replications. We took expectile levels π = 0.50 and π = 0.90
as examples. The results of a randomly chosen component in βπ are summa-
rized in Figure 8. The sample standard deviations of the semiparametric EER
estimators are much smaller than the sample standard deviations of the semi-
parametric ER estimators. For example, when n = 200, the standard deviation
of the semiparametric ER estimator is 0.61 while the standard deviation of the
semiparametric EER estimator is 0.23 for π = 0.5. For π = 0.9, the standard
deviations are 0.72 and 0.29 for the semiparametric ER estimator and the semi-
parametric EER estimator. This indicates that the envelope structure also yields
substantial efficiency gains in estimation of βπ under the semiparametric ER
context.

The baseball salary data was studied in [48] to determine whether the salary
of a baseball player is affected by his offensive performance. The data contains
the salary information from the 1992 season for 337 Major League Baseball
(MLB) non-pitchers who played at least one game during both the 1991 and
1992 seasons. It also provides 12 offensive statistics for each player from the 1991
season including batting average, on-base percentage, number of runs, hits, dou-
bles, triples, home runs, batted in, walks, strike-outs, stolen bases and errors.
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We took the salary as response and the 12 offensive statistics as predictors. By
exploring the scatter plots of the response versus each predictors, we identified
five predictors for which the association with the response is not sufficiently
explained by a linear relationship. The five predictors were batting average, on-
base percentage, number of triples, strike-outs and errors. Therefore, they were
used as nonlinear predictors and the remains were used as linear predictors.
Before the analysis, each predictor was scaled to have unit standard deviation.
We fitted the semiparametric ER model and the semiparametric EER model
with π = 0.5 and 0.9 to the data. RCV suggested uπ = 1 for π = 0.5. For each
element in βπ, we calculated the bootstrap standard deviations for both the
semiparametric ER estimator and the semiparametric EER estimator with 100
bootstrap samples. The ratios of bootstrap standard deviations of the semipara-
metric ER estimator versus the semiparametric EER estimator range from 3.99
to 13.65 with an average of 9.34. For π = 0.9, uπ = 2 was selected by RCV for
the EER model. The ratios of the bootstrap standard deviations range from 1.32
to 10.87 with an average of 5.44. The results indicate the semiparametric EER
model achieves substantial efficiency gains compared to the semiparametric ER
model. To get the same average estimation efficiency under the semiparametric
ER model, we need to increase the sample size to 9.342 ≈87 times the original
sample size with π = 0.5 and 5.442 ≈ 30 times the original sample size with
π = 0.9.

8. Discussion and future work

In this paper, we develop the EER model as an efficient estimation method for
the ER. We estimate the parameters using GMM and established the asymp-
totic distribution of the estimators. Efficiency gains are demonstrated both the-
oretically and numerically. A potentially interesting extension is to perform
variable selection to the predictors and develop a sparse EER model. In many
applications such as the S&P 500 Index data, some predictors do not affect
certain conditional expectile(s) of the response and have coefficients zero. It
is of practical interest to identify those predictors, especially in high dimen-
sional settings. Another direction is to derive the EER model with censored
response. Censored data are often encountered in medical studies and econo-
metrics when the variable of interest is only observed under certain conditions,
such as top coding in income surveys, e.g. “$500,000 and above” ([35]). An
EER model that can accommodate censored response will be applicable in such
settings.
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1. Technical Proof

1.1. Proof of Lemma 1

If �⇡ takes the form of (Iu⇡ ,A
T )T , then any basis matrix of E⌃X(�⇡) has its

first u⇡ rows being a non-singular matrix. We denote �⇤
⇡ as an orthonormal

basis matrix of E⌃X(�⇡) and �⇤
0⇡ as an orthonormal basis matrix of E⌃X(�⇡)

?.
Thus, (�⇤

⇡, �⇤
0⇡) is an orthogonal matrix and we rewrite it as a 2 by 2 block

matrix:
(�⇤

⇡,�
⇤
0⇡) =

✓
�
⇤
⇡1

�
⇤
⇡2

�
⇤
0⇡1

�
⇤
0⇡2

◆
,

where �⇤
⇡1 is the matrix containing the first u⇡ rows of �⇤

⇡. Since both (�⇤
⇡,

�
⇤
0⇡) and �⇤

⇡1 are non-singular, the schur complement of �⇤
⇡1, donated by Q, is

nonsingular. In this case, the inverse of (�⇤
⇡, �⇤

0⇡) is

(�⇤
⇡,�

⇤
0⇡)

�1 =

✓
�
⇤�1
⇡1 + �⇤�1

⇡1 �
⇤
0⇡1Q

�1
�
⇤
⇡2�

⇤�1
⇡1

�Q�1
�
⇤
⇡2�

⇤�1
⇡1

��
⇤�1
⇡1 �

⇤
0⇡1Q

�1

Q�1

◆

=

✓
�
⇤T
⇡1

�
⇤T
0⇡1

�
⇤T
⇡2

�
⇤T
0⇡2

◆
.

The second equality sign in the equation above comes from the fact that the
inverse of an orthogonal matrix is the transpose of the orthogonal matrix. It
turns out that �⇤T

0⇡2 = Q�1, which are nonsingular. Therefore, �0⇡2 is nonsin-
gular and invertible. It indicates that �⇤

0⇡ has its last (p � u⇡) rows being a
nonsingular matrix. Then, we can decompose �⇤

0⇡ as

�
⇤
0⇡ =

✓
�
⇤
0⇡1

�
⇤
0⇡2

◆
=

✓
�
⇤
0⇡1�

⇤�1
0⇡2

Ip�u⇡

◆
�
⇤
0⇡2 ⌘

✓
B

Ip�u⇡

◆
�
⇤
0⇡2 ⌘ �0⇡�

⇤
0⇡2. (1.1)

Apparently, �0⇡ is a basis matrix of E⌃X(�⇡)
? and we have �T

⇡�0⇡ = 0,
which means B + A

T = 0 and B = -AT . Therefore, �0⇡ takes the form of
(�A, Ip�u⇡ )

T .

1.2. Proof of Theorem 1

We apply Theorem 3.3 of [5] to derive the asymptotic distribution of ✓̃. There
are five conditions (i)–(v) in their Theorem and we need to check them. We
denote e(✓) = E✓0 [s(Z;✓)].

Based on the conditions (C1)–(C3) and Theorem 3 of [4], we have ✓̃1
p

�!

✓10 and ✓10 is the unique point satisfying E✓0 [s1(Z;✓10)] = 0. Therefore, it is
obvious that ✓̃

p
�! ✓0 and ✓0 is the unique point in ⇥ satisfying e(✓) = 0.

Because ✓̃ is the minimizer of ||en(✓)||, the condition (i) holds. The conditions
(ii) and (v) automatically hold given (C4) and (C5). By Central Limit Theorem,
p
n(en(✓0)�E✓0 [s(Zi;✓0)])

d
�! N (0,G) , where E✓0 [s(Zi;✓0)] = e(✓0) = 0 and

G = E✓0 [s(Z;✓0)s(Z;✓0)T ]. The condition (iv) holds.
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To prove the condition (iii) holds, we need to prove the following Lemma as
first.

Lemma 1. sup✓:k✓�✓0k�n ken(✓)� e(✓)� en(✓0)k = op(n�1/2), where �n is

any sequence of positive numbers with limitation 0.

Proof. Let wj , µj , �j , s1,j , s2,j and s3,j represent the jth component of W, µX,
vech(⌃X), s1(Z;✓1), s2(Z;✓2) and s3(Z;✓2) respectively. For any ✓⇤

2 ⇥ and
j = 1, . . . , p + 1,

|s1,j(Z;✓1)� s1,j(Z;✓
⇤
1)|

2 = w
2
j

�
(Y �W

T✓1)
��I(Y < W

T✓1)� ⇡
��

�(Y �W
T✓⇤

1)
��I(Y < W

T✓⇤
1)� ⇡

�� �2.

If I(Y < W
T✓1) = I(Y < W

T✓⇤
1), then

�
(Y �W

T✓1)
��I(Y < W

T✓1)� ⇡
��� (Y �W

T✓⇤
1)

��I(Y < W
T✓⇤

1)� ⇡
�� �2

= (I(Y < W
T✓1)� ⇡)(Y �W

T✓1 � Y +W
T✓⇤

1))
2

= (I(Y < W
T✓1)� ⇡)

�
W

T (✓⇤
1 � ✓1)

�2


�
W

T (✓⇤
1 � ✓1)

�2
 kWk

2
k✓⇤

1 � ✓1k
2
.

If I(Y < W
T✓1) 6= I(Y < W

T✓⇤
1), then

�
(Y �W

T✓1)
��I(Y < W

T✓1)� ⇡
��� (Y �W

T✓⇤
1)

��I(Y < W
T✓⇤

1)� ⇡
�� �2

 (Y �W
T✓1 � Y +W

T✓⇤
1))

2

=
�
W

T (✓⇤
1 � ✓1)

�2
 kWk

2
k✓⇤

1 � ✓1k
2
.

Therefore, by condition (C2), there exists a positive constant c1 such that

E✓0

⇥
sup

✓⇤:k✓�✓⇤k�n

|s1,j(Z;✓1)� s1,j(Z;✓
⇤
1)|

2 ⇤

E✓0

⇥
w

2
j kWk

2
k✓⇤

1 � ✓1k
2 ⇤

 �
2
nE✓0

⇥
kWk

4 ⇤
 c1�

2
n.

(1.2)

Let µ⇤
j , �⇤

j and vech[·]j represent the jth component of µ⇤
X, vech(⌃⇤

X) and vech[·].
Then for j = 1, . . . , (p+ 1)p/2,
|s2,j(Z;✓2)� s2,j(Z;✓

⇤
2)|

2 =
�
�j �vech[(X�µX)(X�µX)T ]j ��⇤

j +vech[(X�

µ⇤
X)(X�µ⇤

X)T ]j
�2. By (C2), it is easy to verify there exists a positive constant

c2 such that

E✓0

⇥
sup

✓⇤:k✓�✓⇤k�n

|s2,j(Z;✓2)� s2,j(Z;✓
⇤
2)|

2 ⇤
 c2�

2
n. (1.3)

Similarly, for j = 1, . . . , p, there exists a positive constant c3 such that

E✓0

⇥
sup

✓⇤:k✓�✓⇤k�n

|s3,j(Z;✓2)� s3,j(Z;✓
⇤
2)|

2 ⇤ = E✓0

⇥
sup

✓⇤:k✓�✓⇤k�n

(µj�µ
⇤
j )

2
⇤
 c3�

2
n.

(1.4)
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Combining the results in (1.2), (1.3) and (1.4), we know s(Z;✓) is L
2(P ) con-

tinuous at ✓ for all ✓ 2 ⇥. By applying Lemma 2.17 in [5], we have

n
�1/2 sup

✓:k✓�✓0k�n

�����

nX

i=1

{s(Z;✓)� E✓0 [s(Z;✓)]� s(Z;✓0)}

�����

=n
�1/2 sup

✓:k✓�✓0k�n

knen(✓)� ne(✓)� nen(✓0)k = op(1).

Thus, sup✓:k✓�✓0k�n ken(✓)� e(✓)� en(✓0)k = op(n�1/2).

With the result of Lemma 2,

sup
✓:k✓�✓0k�n

ken(✓)� e(✓)� en(✓0)k

n�1/2 + ken(✓)k+ ke(✓)k
 op(1).

The condition (iii) holds. We have already verified all the conditions of Theorem
3.3 in [5]. With the result of Theorem 3.3, we have

p
n(✓̃ � ✓0)

d
�! N (0, (CT

C)�1
C

T
GC(CT

C)�1),

where C=@E✓0 [s(Z;✓)]

@✓T

����
✓=✓0

and G = E✓0 [s(Z;✓0)s(Z;✓0)T ].

According to [4], we know that

@E✓0 [s1(Z;✓1)]

@✓T
1

����
✓=✓0

= �E✓0


WW

T
��I(Y < W

T✓10)� ⇡
��
�
.

As a result, it is easy to give the expression of C as

C =

0

BB@
�E✓0


WW

T
��I(Y < W

T✓10)� ⇡
��
�

0 0

0 Ip(p+1)/2 0
0 0 Ip

1

CCA .

Next, we give the expression of G in the form of (Gij)i,j=1,2,3. It is easy to
check
G11 = E✓0 [s1(Z;✓10)s1(Z;✓10)T ] = E✓0


WW

T (Y�W
T✓10)2

��I(Y < W
T✓10)� ⇡

��2
�
;

G22 = E✓0 [s2(Z;✓20)s2(Z;✓20)T ] = Var✓0{vech[(X� µ0)(X� µ0)
T ]};

G33 = E✓0 [s3(Z;✓20)s3(Z;✓20)T ] = Var✓0 [X];
G23 = E✓0 [s2(Z;✓20)s3(Z;✓20)T ] = E✓0{vech[(X� µ0)(X� µ0)

T ](µ0 �X)T }
and
G12 = E✓0 [s1(Z;✓10)s2(Z;✓20)T ]

= E✓0

⇢
Ws2(Z;✓20)TE✓0


(Y �W

T✓10)
��I(Y < W

T✓10)� ⇡
��
���W

��
= 0.

Similarly, G13 = 0. Since C is full rank and symmetric, we have
p
n(✓̃ � ✓0)

d
�! N (0,C�1

G C
�1).

We complete the proof of Theorem 1.
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1.3. Proof of Theorem 2

For notation simplicity, let Qn(✓) = e
T
n (✓)�̂en(✓) and Q(✓) = e

T (✓)�e(✓),

where� = G
�1 = {E✓0 [s(Z;✓0)s(Z;✓0)T ]}�1 and �̂ =

h
1
n

Pn
i=1 s(Zi; (⇣̂

⇤
))s(Zi; (⇣̂

⇤
))T

i�1
.

Let ln(�) = en(�/
p
n+✓0) and l(�) = e(�/

p
n+✓0). Let Tn(�) = l

T
n (�)�̂ln(�)

and T (�) = l
T (�)�l(�). In addition, let ✏n(�) = [ln(�)� ln(0)� l(�)]/[1+k�k],

n(�) = ✏
T
n (�)�̂✏n(�)+2ln(0)T �̂✏n(�) and ⇢n(�) = n[Tn(�)�n(�)�Tn(0)�

D̂
T�/

p
n� T (�)], where D̂ = 2C�̂ln(0). We firstly prove three Lemmas.

Lemma 2. Under the same conditions in Theorem 2, ✓̂
p

�! ✓0.

Proof. Let F = {s(Z;✓),✓ 2 ⇥}. Based on the fact that s(Z;✓) is a contin-
uous function of ✓ and conditions (C2) and (C5), it is easy to verify F satis-
fies all the conditions of Uniform Law of Large Numbers. Therefore, we have
sup✓:✓2⇥ ken(✓)� e(✓)k

a.s.
�! 0. As a result, Qn(✓) uniformly converges to Q(✓)

in probability in the domain ⇥e = {✓ : ✓ 2 ⇥ and ✓ =  (⇣)}. Since ⇥e is
compact, Q(✓) is continuous and ✓0 is the unique minimizer of Q(✓), all the
conditions of Theorem 2.1 in [3] are satisfied. By the result of Theorem 2.1, we
have ✓̂

p
�! ✓0.

Lemma 3. Under the same conditions in Theorem 2, sup�:k�k/pn�n
|⇢n(�)|

k�k(1+k�k) =

op(1), where �n is any sequence of positive numbers with limitation 0.

Proof. From the definition of ✏n(�), we can decompose Tn(�) as

Tn(�) = (1 + k�k)2✏Tn (�)�̂✏n(�) + l
T
n (0)�̂ln(0) + l

T (�)�̂l(�)

+ 2(1 + k�k)✏Tn (�)�̂ln(0) + 2(1 + k�k)✏Tn (�)�̂l(�) + 2lTn (0)�̂l(�).

It can be shown that |⇢n(�)|/(k�k (1 + k�k)) 
Pn

i=1 Bj(�), where

B1(�) = n(2+k�k)✏Tn (�)�̂✏n(�)/(1+k�k), B2(�) = 2n|✏Tn (�)�̂ln(0)|/(1+
k�k),
B3(�) = 2n|✏Tn (�)�̂l(�)|/ k�k, B4(�) = n|2lTn (0)�̂l(�)�D̂

T�/
p
n|/(k�k (1+

k�k))
B5(�) = n|l

T (�)(�̂��)l(�)|/(k�k (1 + k�k)).

From Lemma 2, we know sup�:k�k/pn�n k✏n(�)k)2 = op(n�1/2). We define
⌫ = {� : k�k /

p
n  �n} and consider B1–B5 separately. We have

sup
⌫

B1(�) = n sup
⌫

2 + k�k

1 + k�k
✏
T
n (�)�̂✏n(�)  n

����̂
��� sup

⌫

2 + k�k

1 + k�k
(sup

⌫
k✏n(�)k)

2 = op(1) and,

sup
⌫

B2(�)  sup
⌫

2n|✏Tn (�)�̂ln(0)|  2n sup
⌫

k✏n(�)k
����̂

��� kln(0)k

= 2
����̂

���
��pnln(0)

��pn sup
⌫

k✏n(�)k = op(1).
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By Taylor expansion, l(�) = e(�/
p
n+ ✓0) = C�/

p
n+ o(�/

p
n). Thus,

sup
⌫

B3(�) = sup
⌫

2n|✏Tn (�)�̂(e(�/
p
n+ ✓0))|/ k�k

 sup
⌫

2n k✏n(�)k
����̂

��� (kCk k�k /
p
n+ o(k�k /

p
n))/ k�k

= 2
����̂

��� (kCk+ o(1))
p
n sup

⌫
k✏n(�)k

= op(1)

sup
⌫

B4(�) = sup
⌫

n|2lTn (0)�̂(l(�)� C�/
p
n)|/(k�k (1 + k�k))

 2n sup
⌫

kln(0)k
����̂

��� o(1/
p
n)

= 2o(1)
����̂

���
p
n kln(0)k

= op(1).

Finally,

sup
⌫

B5(�)  sup
⌫

n kl(�)k2
����̂��

��� /(k�k (1 + k�k))

 sup
⌫

k�k2 (kCk+ o(1))2
����̂��

��� / k�k2

=
����̂��

��� (kCk+ o(1))2 = op(1).

Therefore, sup⌫
|⇢n(�)|

k�k(1+k�k) = op(1).

Before stating the next Lemma, we define �̂ =
p
n(✓̂ � ✓0). Note that Tn(�)

is minimized at �̂.

Lemma 4. Under the same conditions in Theorem 2, k�̂k = Op(1).

Proof. Let ⌫ be the same defined in Lemma 4. Firstly,

sup
⌫

|n(�)| = sup
µ

|✏
T
n (�)�̂✏n(�) + 2ln(0)

T
�̂✏n(�)|



����̂
��� (sup

µ
k✏n(�)k)

2 +
����̂

��� sup
µ

kln(0)k k✏n(�)k

= op(n
�1).

Since Tn(�̂)  Tn(0) and �̂ 2 ⌫, Tn(�̂) � n(�̂) = Tn(�̂) + op(n�1)  Tn(0) +
op(n�1). We define

M = �n[Tn(�̂)�n(�̂)�Tn(0)�op(n
�1)] = �⇢n(�̂)�

p
nD̂

T �̂�nT (�̂)+op(1) � 0.

By Taylor expansion, we have T (�̂) = �̂T
H�̂/2n + o(k�̂k2 /n), where H =

n
@2T (�)
@��T

��� �=0 = @2Q(✓)
@✓✓T

��� ✓=✓0 = 2CG
�1

C. Because H is a positive definite
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matrix by (C4), there exists a positive constant c such that with probability one
T (�̂) � c k�k2 /n. Therefore, by applying Lemma 4, we have

M  k�̂k (1 + ˆk�k)op(1) +
p
n

���D̂
���
T
k�̂k � c k�̂k2 + op(1)

 k�̂k (1 + ˆk�k)op(1) + 2
p
n kCk

����̂
��� kln(0)k k�̂k � c k�̂k2 + op(1)

= k�̂k (1 + ˆk�k)op(1) +Op(1) k�̂k � c k�̂k2 + op(1)

= [�c+ op(1)] k�̂k
2 + k�̂kOp(1) + op(1).

Since M � 0 ,

(c� op(1)) k�̂k
2
�Op(1) k�̂k  op(1) =) k�̂k2 �Op(1) k�̂k  op(1) =) �̂ = Op(1).

To prove Theorem 2, we define Zn(�) = n[Tn(�)� Tn(0)]. Obviously, Zn(�)
is minimized at �̂. Based on Lemma 4, Lemma 5 and Taylor expansion, we have

Zn(�) =
p
nD̂

T� +
1

2
�T

H� + o(k�k2) + ⇢n(�) + nn(�)
d

�! N
T� +

1

2
�T

H�,

where N is a random vector distributed as N (0, 4CG
�1

C). We define Z(�) =

N
T� + 1

2�
T
H�. By Corollary 5.58 in [8], we have �̂

d
�! �̃, where

�̃ = argmin
�/

p
n+✓02⇥e

Z(�) = argmin
�/

p
n+✓02⇥e

1

2
(� +H

�1
N)TH(� +H

�1
N).

The parameter vector � is overparameterized. We apply Proposition 4.1 in [6]
to solve this problem. The discrepancy function can be formed as

F (x, ⇠) =
1

2
(
�
p
n
+

H
�1

N
p
n

)TH(
�
p
n
+

H
�1

N
p
n

).

It is easy to check this discrepancy function satisfies Shapiro’s assumptions and
@2F
@⇠⇠T = H. In addition, �H

�1
N

d
�! N (0,C�1

G C
�1). Therefore, by Propo-

sition 4.1 in [6], we have �̃
d

�! N (0,⇤g), where ⇤g =  ( T
CG

�1
C )† T.

Hence,
�̂ =

p
n(✓̂ � ✓0)

d
�! N (0, ( T

CG
�1

C )† T).

We complete the proof of Theorem 2.
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1.4. Corollary

Proof. Let⌥ = C
�1

GC
�1. According to the results in Theorem 1 and Theorem

2,

avar(
p
n✓̃)� avar(

p
n✓̂) = C

�1
G C

�1
� ( T

CG
�1

C )† T

= ⌥� ( T
⌥

�1
 )† T

= ⌥
1/2(I �P⌥�1/2 )⌥

1/2

= ⌥
1/2

Q⌥�1/2 ⌥
1/2

� 0.

2. Simulations Under Variable Selection Settings (Without

Envelope Structure)

In this section, we investigate the performance of the ER model, the EER model,
the boosting model and the sparse ER model under the settings in which sparsity
structure exists but no (nontrivial) envelope structure exists. In this case, u⇡ =
p, and the EER model degenerates to the ER model. We consider the following
settings:

Yi = 3 +↵T
1 Xi + (2 +↵T

2 Xi)✏i, for i = 1, . . . , n.

We set p = 6 and pA = 3, where pA denotes the number of active predictors.
Both ↵1 and ↵2 were p-dimensional vectors. The first pA elements in ↵1 were
4 and the rest p� pA elements were 0. The first pA elements in ↵2 were 0.1 and
the rest p� pA elements were 0. The error term ✏ was generated from standard
normal distribution ✏ ⇠ N (0, 1).

Based upon the settings, the ⇡th conditional expectile of Y had the following
form

f⇡(Y |X) = 3 +↵T
1 X+ (2 +↵T

2 X)f⇡(✏) = 3 + 2f⇡(✏) + (↵1 +↵2f⇡(✏))
T
X,

where f⇡(✏) represented the ⇡th expectile of the error distribution. Thus the
coefficients were contained in �⇡ = ↵1+↵2f⇡(✏) and the last p�pA elements of
�⇡ were 0. This means that the first pA predictors were active predictors, and
the rest were inactive. The predictor vector X followed a normal distribution
with mean 0 and covariance matrix ⌃X. The upper left pA ⇥ pA block of ⌃X

was a diagonal matrix with diagonal elements being 1, 2 and 4. The bottom
right block was a (p � pA) ⇥ (p � pA) diagonal matrix with diagonal elements
being 8, 16 and 32. The off-diagonal blocks of ⌃X were 3M and 3MT , where
M was a randomly generated pA⇥ (p� pA) orthogonal matrix (generated using
randortho function in R package pracma). In this case, the envelope subspace
E⌃X(�⇡) = Rp and the EER model reduces to the ER model since no immaterial
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Fig 1: Comparison of the sample standard deviations. Red lines mark the ER es-
timator. Blue lines mark the sparse ER estimator. Green lines mark the boosting
estimator. Black lines mark the EER estimator.

information is present. Therefore, for this scenario, the sparsity structure exists
but no (nontrivial) envelope structure exists.

We varied the sample size n from 50 to 800. For each sample size, 100 repli-
cations were generated. For each replication, we computed the EER estimator
(u⇡ chosen by RCV), the ER estimator, the boosting estimator as well as the
sparse ER estimator of �⇡. For each element in �⇡, we computed the sample
standard deviation from the 100 EER estimators, 100 ER estimators, 100 boost-
ing estimators and 100 sparse ER estimators. We took expectile levels 0.50 and
0.90 as examples. The results of a randomly chosen nonzero element in �⇡ with
⇡ = 0.50 and ⇡ = 0.90 are summarized in Figure 1.

In each panel of Figure 1, the line for the EER estimator almost overlaps with
the line for the ER estimator when sample size exceeds 100. This is expected
as when RCV selected u⇡ = p and the EER estimator degenerates to the ER
estimator. With small sample size, there was a little variation in the model
selection for the EER model, so the EER estimator was more variable than the
ER estimator. The efficiency gains from the sparse ER model and the boosting
model is obvious under this setting. Take n = 200 as an example, the standard
deviation is 0.23 for the ER or EER estimator, 0.18 for the boosting estimator
and 0.15 for the sparse ER estimator for ⇡ = 0.5. The efficient gains is because
that the boosting estimator and the sparse ER estimator correctly identified
the underlying sparsity structure. Therefore, in the case where there is sparsity
structure but no (nontrivial) envelope structure, the boosting estimator and
the sparse ER estimator achieves more efficiency gains than the EER estimator.
However, if the sparsity structure and the envelope structure both exist, the EER
estimator may be more efficient than the boosting and sparse ER estimator as
shown in Section 3.
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3. Simulations Under Variable Selection Settings (With Envelope

Structure)

In this section, we investigate the performance of the EER model when the
underlying model has both the sparsity structure and the envelope structure.
We consider the following simulation settings:

Yi = 3 +↵T
1 Xi + (8 +↵T

2 Xi)✏i, for i = 1, . . . , n.

We set p = 12, u⇡ = 2 and pA = 6, where pA denotes the number of active
predictors. Both ↵1 and ↵2 were p-dimensional vectors. The first pA elements
in ↵1 were 4 and the rest p� pA elements were 0. The first pA elements in ↵2

were 0.1 and the rest p � pA elements were 0. Four types of error distribution
were used to generate ✏: standard normal distribution ✏ ⇠ N (0, 1), student’s
t–distribution with 4 degrees of freedom ✏ ⇠ t4, mixed normal distribution
✏ ⇠ 0.9N (0, 1) + 0.1N (1, 5), and exponential distribution ✏ ⇠ Exp(1).

Based upon the settings, the ⇡th conditional expectile of Y had the following
form

f⇡(Y |X) = 3 +↵T
1 X+ (8 +↵T

2 X)f⇡(✏) = 3 + 8f⇡(✏) + (↵1 +↵2f⇡(✏))
T
X,

where f⇡(✏) represented the ⇡th expectile of the error distribution. Thus �⇡ =
↵1 +↵2f⇡(✏) and the last p� pA elements of �⇡ were 0, which means only the
first pA components in X were active predictors. The predictor vector X followed
a normal distribution with mean 0 and covariance matrix ⌃X = �⇤�

T +
�0⇤0�

T
0 , where ⇤ was a u⇡ ⇥ u⇡ diagonal matrix with diagonal elements

100 and 9, and ⇤0 was a 2 ⇥ 2 block matrix. The upper left block of ⇤0 was
a (pA � u⇡) ⇥ (pA � u⇡) identity matrix and the bottom right block was a
(p� pA)⇥ (p� pA) identity matrix. The off-diagonal blocks of ⇤0 were 0.8⇤0⇤
and 0.8⇤T

0⇤ where ⇤0⇤ was a randomly generated (p � pA) ⇥ (pA � u⇡) semi-
orthogonal matrix. The matrix � 2 Rp⇥u⇡ was a semi-orthogonal matrix with
the first pA/2 rows being (

p
3/3, 0), the following pA/2 rows being (0,

p
3/3)

and the remaining p� pA rows being (0, 0). The matrix �0 2 Rp⇥(p�u⇡) was a
semi-orthogonal matrix that satisfied �T

�0 = 0. Since ↵1 = � · (4
p
3, 4

p
3)T

and ↵2 = � · (
p
3/10,

p
3/10)T , f⇡(Y |X) and X satisfied the EER model with

E⌃X(�⇡) = span(�).
Under this setting, we repeated the sample standard deviations comparison,

the prediction performance comparison and the RCV performance examination
as described in Section 5 of the paper. To be noted, here for the sample stan-
dard deviations comparison, we randomly choose an active component of �⇡ to
display the outcomes. All results are given in Figures 2 – 7 and Tables 1 – 2.

Figure 2 shows substantial efficiency gains from the EER model in the estima-
tion of �⇡. In all the plots with different error distributions and expectile levels
⇡, the sample standard deviations of the EER estimators are much smaller than
the sample standard deviations of the ER estimators, the boosting estimators
and the sparse ER estimators under all sample sizes. As variable selection meth-
ods, the boosting model and the sparse ER model are more efficient than the
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ER model since they correctly identify the underlying sparse structure. However,
they do not account for the immaterial information in X in the estimation. The
EER model can still be more efficient than the boosting model and the sparse
ER model if the variation of the immaterial part has a large effect on estimation,
such as in this example.

Figure 3 indicates that the bootstrap standard deviation is a good approx-
imation to the actual sample standard deviation. Table 1 and Figures 4 – 7
summarize the RMSEs under the EER model, the ER model, the boosting
model and the sparse ER model with different error distributions. We can see
a notable improvement of the prediction performance for the EER model. Take
Table 1 (a) as an example, the EER model reduces the average RMSE by about
40% comparing with the ER model, by about 30% comparing with the boosting
model and by about 60% comparing with the sparse ER model. Both the sparse
ER model and the boosting model identifies the active predictors. But the sparse
ER model tends to put more shrinkage on the nonzero coefficients, while the
boosting estimator does not over shrink the nonzero coefficients. Therefore, we
notice that the boosting estimator has a better prediction performance than the
ER estimator, but the sparse ER estimator has the largest prediction error.

Table 2 summaries the fraction that RCV selects the true dimension u⇡ = 2.
RCV selects the true dimension more than 90% of the time when sample size
reaches 100. And it still gives an accuracy over 75% with a small sample size
25.
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Fig 4: Boxplots of RMSEs under the four models with ✏ ⇠ N (0, 1).
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(a) Standard normal with ⇡ = 0.5
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(b) Standard normal with ⇡ = 0.9
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(c) t4 with ⇡ = 0.5
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(d) t4 with ⇡ = 0.9
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(e) Mixed normal with ⇡ = 0.5
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(f) Mixed normal with ⇡ = 0.9
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(g) Exp(1) with ⇡ = 0.5
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(h) Exp(1) with ⇡ = 0.9

Fig 2: Sample standard deviations. Red lines mark the ER estimator. Blue
lines mark the sparse ER estimator. Green lines mark the boosting estimator.
Black lines mark the EER estimator. The horizontal lines mark the asymptotic
standard deviations of the ER estimator (the upper line in each panel) and the
EER estimator (the lower line in each panel).
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Table 1
The average RMSEs of the 300 replications under the four models with different error

distributions.
(a) ✏ ⇠ N (0, 1)

EER ER Boosting Sparse ER
⇡ = 0.10 1.05 1.82 1.54 2.65
⇡ = 0.25 0.88 1.57 1.32 2.51
⇡ = 0.50 0.87 1.49 1.26 2.50
⇡ = 0.75 0.94 1.58 1.38 2.62
⇡ = 0.90 1.09 1.83 1.67 2.89

(b) ✏ ⇠ t4

EER ER Boosting Sparse ER
⇡ = 0.10 1.77 3.42 2.89 6.00
⇡ = 0.25 1.20 2.40 2.02 4.84
⇡ = 0.50 1.08 2.09 1.77 4.52
⇡ = 0.75 1.24 2.39 2.06 5.04
⇡ = 0.90 1.79 3.41 3.06 6.54

(c) ✏ ⇠ 0.9N (0, 1) + 0.1N (1, 5)

EER ER Boosting Sparse ER
⇡ = 0.10 1.15 2.16 1.86 3.53
⇡ = 0.25 1.01 1.83 1.55 3.35
⇡ = 0.50 1.01 1.81 1.54 3.55
⇡ = 0.75 1.20 2.15 1.85 4.24
⇡ = 0.90 1.72 3.06 2.72 5.59

(d) ✏ ⇠ Exp(1)

EER ER Boosting Sparse ER
⇡ = 0.10 0.64 0.74 0.67 1.85
⇡ = 0.25 0.73 1.04 0.90 2.42
⇡ = 0.50 0.93 1.51 1.29 3.17
⇡ = 0.75 1.33 2.22 1.95 4.19
⇡ = 0.90 1.96 3.31 2.99 5.53
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(a) Standard normal with ⇡ = 0.5
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(b) Standard normal with ⇡ = 0.9

Fig 3: Sample standard deviations and bootstrap standard deviations. Red lines
mark the ER estimator. Blue lines mark the sparse ER estimator. Green lines
mark the boosting estimator. Black lines mark the EER estimator. Lines with
“+” mark the bootstrap standard deviations for the corresponding estimators.
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Fig 5: Boxplots of RMSEs under the four models with ✏ ⇠ t4.

imsart-ejs ver. 2014/10/16 file: output.tex date: December 21, 2019



Chen et al./Efficient Estimation in Expectile Regression Using Envelope Models 15

● ●

●
●
●

●
●●

●●●● ●●●●

●●●●
●

●

●
●
●●
●●

●

●

●
●
●●

●

●

●

●

●

●

●●●●

●

●

●
●●

●

●
●●
●●

●
●

●●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

3

6

9

0.10 0.25 0.50 0.75 0.90
Expectile level

R
M

SE

Boosting EER ER Sparse ER

Fig 6: Boxplots of RMSEs under the four models with ✏ ⇠ 0.9N (0, 1) +
0.1N (1, 5).
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Fig 7: Boxplots of RMSEs under the four models with ✏ ⇠ Exp(1).
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Table 2
The fraction that RCV selects the true u⇡ with different error distributions.

(a) ✏ ⇠ N (0, 1)

⇡ = 0.10 ⇡ = 0.25 ⇡ = 0.50 ⇡ = 0.75 ⇡ = 0.90

n = 25 79% 83% 80% 79% 82%
n = 50 95% 94% 94% 92% 88%
n = 100 97% 97% 99% 98% 96%
n = 200 99% 100% 99% 100% 99%
n = 400 99% 100% 100% 100% 100%
n = 800 100% 100% 100% 100% 100%

(b) ✏ ⇠ t4

⇡ = 0.10 ⇡ = 0.25 ⇡ = 0.50 ⇡ = 0.75 ⇡ = 0.90

n = 25 84% 88% 89% 88% 80%
n = 50 90% 94% 95% 91% 93%
n = 100 98% 98% 99% 99% 96%
n = 200 100% 100% 100% 100% 100%
n = 400 100% 100% 100% 100% 100%
n = 800 100% 100% 100% 100% 100%

(c) ✏ ⇠ 0.9N (0, 1) + 0.1N (1, 5)

⇡ = 0.10 ⇡ = 0.25 ⇡ = 0.50 ⇡ = 0.75 ⇡ = 0.90

n = 25 80% 85% 88% 84% 84%
n = 50 90% 96% 96% 91% 91%
n = 100 93% 99% 99% 98% 98%
n = 200 98% 100% 100% 100% 100%
n = 400 100% 100% 100% 100% 100%
n = 800 100% 100% 100% 100% 100%

(d) ✏ ⇠ Exp(1)

⇡ = 0.10 ⇡ = 0.25 ⇡ = 0.50 ⇡ = 0.75 ⇡ = 0.90

n = 25 78% 78% 76% 79% 78%
n = 50 95% 95% 98% 94% 84%
n = 100 99% 99% 100% 99% 96%
n = 200 100% 100% 100% 99% 99%
n = 400 100% 100% 100% 100% 100%
n = 800 100% 100% 100% 100% 100%
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4. Simulations Under No Immaterial Part Settings

In this section, we conduct a simulation study to investigate the performance of
the EER model if no immaterial part exists. The data was generated from the
following model

Yi = 3 +↵T
1 Xi + (8 +↵T

2 Xi)✏i, for i = 1, . . . , 800.

We set p = 6 and each element in ↵1 was drawn from independent stan-
dard normal distribution. Each elements in ↵2 was 0.1. The predictor vector
X followed a normal distribution with mean 0 and covariance matrix ⌃X =
P

T
DP, where P was a randomly generated orthogonal matrix (generated using

randortho function in R package pracma), and D was a diagonal matrix with
diagonal elements being 1, 2, 4, 8, 16 and 32. The error ✏ was generated from
the normal distribution ✏ ⇠ N (0, 5).

Based upon the settings, the ⇡th conditional expectile of Y has the following
form

f⇡(Y |X) = 3 +↵T
1 X+ (8 +↵T

2 X)f⇡(✏) = 3 + 8f⇡(✏) + (↵1 +↵2f⇡(✏))
T
X,

where f⇡(✏) represents the ⇡th expectile of the error distribution, the intercept is
3+8f⇡(✏) and the coefficients are �⇡ = ↵1+↵2f⇡(✏). In this case, ⌃X does not
have the decomposition as a sum of the variation of the material part (related
to �⇡) and the variation of the immaterial part. So the envelope subspace is the
full space Rp, and there is no immaterial part.

Although no envelope structure is present, we will compute an approximate
“EER” estimator and compare it with the ER estimator. We know that under
an EER model, the envelope subspace E⌃X(�⇡) = span(�⇡) is spanned by the
eigenvectors of ⌃X. Therefore, for each 1  u⇡  p, we approximate �⇡ by
�̂⇡, which is a p ⇥ u⇡ matrix whose columns were the u⇡ eigenvectors of b⌃X

corresponding to the u⇡ largest eigenvalues. We note that under the exact EER
model, �⇡ is chosen to be the eigenvectors of ⌃X that contains �⇡. They may
not necessarily be the eigenvectors corresponding to the largest eigenvalues.
Since the exact (nontrivial) EER model does not exist here, we are proposing
a way to approximate the �⇡ such that its estimator is least variable. Then we
defined the “EER” estimator as �̂⇡=�̂⇡⌘̂⇡, where ⌘̂⇡ was the ER estimator with
Y being the response and �̂

T

⇡X being the predictors.
We generated 100 replications and computed the mean squared error (MSE)

k�̂⇡ ��⇡k
2 at expectile levels ⇡ = 0.5 and 0.9 for each replication. The average

MSE are summarized in Figure 8. Because the true u⇡ equals p, a smaller u⇡

leads to larger bias, but its estimator is less variable. As u⇡ increases, the bias
of �̂⇡ becomes smaller but its variance becomes larger. When ⇡ = 0.5, the bias-
variance tradeoff makes the average MSE reach its minimum 1.03 at u⇡ = 3.
When ⇡ = 0.9, the average MSE reaches its minimum 0.94 at u⇡ = 2. Note that
when u⇡ = p, the EER estimator �̂⇡ reduces to the ER estimator. The MSE of
the ER estimator is 3.91 for ⇡ = 0.5 and 5.92 for ⇡ = 0.9. The results shows that
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when there is no immaterial part, we can still expect to have a smaller MSE from
an approximate EER estimator in some cases due to the bias-variance tradeoff.
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Fig 8: Average MSE with respect to u⇡. Note that the MSE corresponding to
u⇡ = p = 6 is the MSE of the ER estimator.

5. Analysis of “state.x77” with Predictors in Original Scale

We perform the same data analysis on the “state.x77” data again, but with the
predictors in the original scale instead of the standardized predictors. We first
select the dimension of the envelope subspace with RCV. For all quantile levels,
RCV selects u⇡ = 4(= p). This indicated that there is no immaterial part in the
data and the EER estimator reduces to the ER estimator. In this case, the EER
estimator and the ER estimator have the same efficiency. Detailed information
about the estimated regression coefficients are provided in the following Table 3.
Because u⇡ = p, the estimated regression coefficients given by the EER model
and the ER model are exactly the same.

Table 3
The estimated regression coefficients for the predictors in the original scale given by the

EER model, the ER model, the boosting model and the sparse ER model.

EER ER
Population Income Illiteracy Frost Population Income Illiteracy Frost

⇡ = 0.10 0.29⇥10�3 -1.14⇥10�3 3.30 -9.24⇥10�3 0.29⇥10�3 -1.14⇥10�3 3.30 -9.24⇥10�3

⇡ = 0.25 0.26⇥10�3 -0.66⇥10�3 3.65 -5.39⇥10�3 0.26⇥10�3 -0.66⇥10�3 3.65 -5.39⇥10�3

⇡ = 0.50 0.22⇥10�3 0.06⇥10�3 4.14 0.58⇥10�3 0.22⇥10�3 0.06⇥10�3 4.14 0.58⇥10�3

⇡ = 0.75 0.21⇥10�3 0.55⇥10�3 4.48 5.22⇥10�3 0.21⇥10�3 0.55⇥10�3 4.48 5.22⇥10�3

⇡ = 0.90 0.18⇥10�3 0.72⇥10�3 4.58 7.89⇥10�3 0.18⇥10�3 0.72⇥10�3 4.58 7.89⇥10�3

Boosting Sparse ER
Population Income Illiteracy Frost Population Income Illiteracy Frost

⇡ = 0.10 0.29⇥10�3 -1.12⇥10�3 3.22 -10.00⇥10�3 0.10⇥10�3 0.00⇥10�3 2.28 -9.34⇥10�3

⇡ = 0.25 0.23⇥10�3 -0.41⇥10�3 3.59 -5.05⇥10�3 0.08⇥10�3 0.00⇥10�3 2.89 -2.95⇥10�3

⇡ = 0.50 0.19⇥10�3 0.00⇥10�3 3.79 0.00⇥10�3 0.04⇥10�3 0.00⇥10�3 2.70 0.00⇥10�3

⇡ = 0.75 0.12⇥10�3 0.00⇥10�3 3.36 0.00⇥10�3 0.00⇥10�3 0.00⇥10�3 2.12 0.00⇥10�3

⇡ = 0.90 0.06⇥10�3 0.00⇥10�3 2.92 0.00⇥10�3 0.00⇥10�3 0.00⇥10�3 0.73 0.00⇥10�3
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We took a close look at the data and found that the scales of the four pre-
dictors are quite different. For example, population varies from 365 to 21198
(thousand) while illiteracy level varies from 0.5 to 2.8 (percent). This makes
the eigenvalues of ⌃X range from 0.17 to 1.99 ⇥ 107 and the eigenvectors are
very close to the standard basis vectors, i.e, (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T
and (0, 0, 0, 1)T . In this case, if �⇡ belongs to an envelope subspace that is a
proper subset of Rp, then we are essentially performing variable selection. For
example, if the dimension of envelope subspace is u = 3, then the envelope
subspace is spanned by 3 out of the 4 eigenvectors of ⌃X. Since �⇡ lies in the
envelope subspace, one component of �⇡ has to be 0, which means the corre-
sponding predictor is immaterial to the conditional expectile of the response.
The dimension selection results from RCV indicates the EER model finds that
all four predictors are material to the conditional expectile of the response at
all investigated expectile levels.

This situation is also shared by other dimension reduction based methods
such as principal component analysis (PCA). If one component is selected, which
corresponds to direction (0, 1, 0, 0)T , then only one variable (income) is included
in subsequent analysis. Thus when variables have drastically different scales,
PCA normally standardize the variables. We followed this practice and presented
the results with standardized predictor variables in Section 6 of the paper.

6. Prediction Performance Comparison on “state.x77”

We compared the prediction performance between the ER model and the EER
model on “state.x77” using five fold cross-validation repeated with 50 random
splits to compute the mean predicted expectile losses. The results are summa-
rized in the following table. The predicted expectile losses from the EER model

Table 4
Mean of the predicted expectile losses under the ER and the EER model with different

expectile levels.

⇡ = 0.10 ⇡ = 0.25 ⇡ = 0.50 ⇡ = 0.75 ⇡ = 0.90

ER 1.48 2.79 3.75 3.29 2.45
EER 1.58 2.82 3.86 3.85 2.72

are slightly larger than those from the ER model. This may due to the criterion
we use to select the dimension of the envelope subspace u⇡. We selected u⇡ by
RCV with one standard deviation rule. In other words, instead of choosing the
dimension that has the minimum RCV, we choose the smallest dimension hav-
ing RCV less than one standard deviation above the minimum value of RCV.
Therefore this criterion tends to select a more parsimonious model by sacrific-
ing some predictive accuracy comparing to the best model. In this case, it is
possible that the full model, i.e., the ER model, has an RCV that is closer to
the minimum value of RCV compared to the selected model.
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7. Simulation Results at More Expectile Levels

In Section 5 of the paper, we give the results at expectile levels 0.50 and 0.90 in
Figure 1. Here we provide the results at expectile levels 0.10, 0.25 and 0.75 in
Figure 9.

Figure 9 shows a similar pattern as Figure 1 of the paper. For every error
distribution and expectile level, the sample standard deviations of the EER
estimators are much smaller than the sample standard deviations of the ER
estimators, the boosting estimators and the sparse ER estimators under all
sample sizes.

8. Analysis of Computational Complexity of the GMM Algorithm

We give an analysis about the computational burden on the parameter estima-
tion approach – generalized method of moments (GMM). There are three steps
in GMM and we will count the number of flops for each step.

Step 1 : Get the intermediate estimator ⇣̂
⇤

by minimizing e
⇤
n(⇣)

T
e
⇤
n(⇣), where

e
⇤
n(⇣) =

0

@
1
n

Pn
i=1 Wi(Yi � µ⇡ �X

T
i �⇡⌘⇡)

��I(Yi < µ⇡ +X
T
i �⇡⌘⇡)� ⇡

��
vech(�⇡⌦⇡�⇡

T + �0⇡⌦0⇡�0⇡
T )� vech(SX)

µX � X̄

1

A .

In this step, we apply Nelder-Mead method to find the minimum of the
objective function. It is an iterative method and the number of flops in each
iteration is O(Tf ), where Tf represents the number of flops to compute
the value of the objective function e

⇤
n(⇣)

T
e
⇤
n(⇣) for a given ⇣ ([7]).

– Because Xi is a p-dimensional vector, �⇡ is a p by u⇡ matrix and ⌘⇡ is
a u⇡-dimensional vector, it takes O(pu⇡) flops to compute X

T
i �⇡⌘⇡.

Afterwards, because Yi, µ⇡ and X
T
i �⇡⌘⇡ are scalars, it takes O(1)

flops to compute (Yi�µ⇡�X
T
i �⇡⌘⇡) and

��I(Yi < µ⇡ +X
T
i �⇡⌘⇡)� ⇡

��.
Next, because Wi is a (p+1)-dimensional vector, it takes O(p) flops to
compute the product Wi(Yi�µ⇡�X

T
i �⇡⌘⇡)

��I(Yi < µ⇡ +X
T
i �⇡⌘⇡)� ⇡

��.
Finally, we need to perform the above multiplication for each sam-
ple and then take the average. Hence, the total number of flops to
compute the first line in e

⇤
n(⇣) is O(npu⇡).

– Because �⇡ is a p by u⇡ matrix and ⌦⇡ is a u⇡ by u⇡ matrix, it takes
O(p2u⇡) flops to compute �⇡⌦⇡�⇡

T . In addition, because �0⇡ is a p

by (p�u⇡) matrix and ⌦0⇡ is a (p�u⇡) by (p�u⇡) matrix, it takes
O(p(p�u⇡)2) = O(p3) flops to compute �0⇡⌦0⇡�0⇡

T . Afterwards, it
takes O(np2) flops to compute SX =

Pn
i=1(Xi �µX)(Xi �µX)T /n.

Finally, because vech(�⇡⌦⇡�⇡
T + �0⇡⌦0⇡�0⇡

T ) and vech(SX) are
O(p2)-dimensional vectors, it takes O(p2) flops to compute the dif-
ference between them. Hence, the total number of flops to compute
the second line in e

⇤
n(⇣) is O(np2 + p

3).
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(a) Standard normal with
⇡ = 0.1
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(b) Standard normal with
⇡ = 0.25
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(c) Standard normal with
⇡ = 0.75
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(d) t4 with ⇡ = 0.1
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(e) t4 with ⇡ = 0.25
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(f) t4 with ⇡ = 0.75
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(g) Mixed normal with ⇡ =
0.1
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(h) Mixed normal with ⇡ =
0.25
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(i) Mixed normal with ⇡ =
0.75
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(j) Exp(1) with ⇡ = 0.1
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(k) Exp(1) with ⇡ = 0.25
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(l) Exp(1) with ⇡ = 0.75

Fig 9: Comparison of the sample standard deviations. Red lines mark the ER
estimator. Blue lines mark the sparse ER estimator. Green lines mark the boost-
ing estimator. Black lines mark the EER estimator. The horizontal lines mark
the asymptotic standard deviations of the ER estimator (the upper line in each
panel) and the EER estimator (the lower line in each panel).

imsart-ejs ver. 2014/10/16 file: output.tex date: December 21, 2019



Chen et al./Efficient Estimation in Expectile Regression Using Envelope Models 22

– Because µX is a p-dimensional vector and X̄ is also a p-dimensional
vector, it takes O(p) flops to compute the difference between them.
Hence, the total number of flops to compute the third line in e

⇤
n(⇣)

is O(p).
To sum up, it takes O(np2 + p

3) flops to compute e
⇤
n(⇣). Once we have

e
⇤
n(⇣), it takes another O(p2) flops to compute the objective function
e
⇤
n(⇣)

T
e
⇤
n(⇣). So the total number of flops to compute the value of the

objective function is Tf=O(np2 + p
3). Therefore, the number of flops in

each iteration of the Nelder-Mead algorithm is O(np2 + p
3).

Step 2 : Compute the scale matrix

�̂ =

"
1

n

nX

i=1

s(Zi; (⇣̂
⇤
))s(Zi; (⇣̂

⇤
))T

#�1

,

where

s(Z; (⇣)) =

0

@
W(Y � µ⌧ �X

T
�⌧⌘⌧ )

��I(Y < µ⌧ +X
T
�⌧⌘⌧ )� ⌧

��
vech(�⌧⌦⌧�⌧

T + �0⌧⌦0⌧�0⌧
T )� vech{(X� µX)(X� µX)T }

µX �X.

1

A

In this step, we firstly compute the matrix 1
n

Pn
i=1 s(Zi; (⇣̂

⇤
))s(Zi; (⇣̂

⇤
))T .

Following similar calculations in Step 1, it takes O(p3) flops to compute
s(Zi; (⇣̂

⇤
)). Upon we get s(Zi; (⇣̂

⇤
)), it takes another O(p4) flops to

compute the multiplication s(Zi; (⇣̂
⇤
))s(Zi; (⇣̂

⇤
))T . We need to do this

multiplication for each sample and then take the average, then the number
of flops to get the matrix 1

n

Pn
i=1 s(Zi; (⇣̂

⇤
))s(Zi; (⇣̂

⇤
))T is O(np4). Af-

terwards, we need to solve for the inversion of the matrix. Matrix inversion
takes O(m3) flops for an m by m matrix. In our case, it takes O(p6) flops
for the matrix inversion. So the number of flops in this step is O(np4+p

6).
Step 3 : Obtain the GMM estimator ⇣̂ by minimizing e

⇤
n(⇣)

T
�̂e

⇤
n(⇣).

Similar as Step 1, we apply Nelder-Mead method to find the minimum
of the objective function e

⇤
n(⇣)

T
�̂e

⇤
n(⇣). It takes O(np2 + p

3) to compute
e
⇤
n(⇣). Once we get e

⇤
n(⇣), it takes another O(p4) flops to compute the

objective function e
⇤
n(⇣)

T
�̂e

⇤
n(⇣). So the total number of flops to compute

the value of the objective function is Tf = O(np2 + p
4). Therefore, the

number of flops in each iteration of the Nelder-Mead algorithm is O(np2+
p
4).

9. Comparison Between EQR and EER

In this section, we compare the performance between the envelope quantile
regression (EQR; [1]) model and the EER model with simulated data and S&P
500 data.

For the simulated data, we use same settings in Section 5 of the paper. Since
the true underlying distributions are known, we are able to map expectiles to
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quantiles under each distribution. For example, 0.19 quantile is identical to 0.10
expectile under the standard normal distribution ✏ ⇠ N (0, 1). The mappings
for the four error distributions considered in the simulation are shown in the
following Table 5.

Table 5
The mappings between expectiles and quantiles under the four types of distributions.

(a) ✏ ⇠ N (0, 1)

Expectile levels ⇡ 0.10 0.25 0.50 0.75 0.90
Quantile levels ↵ 0.19 0.33 0.50 0.67 0.81

(b) ✏ ⇠ Exp(1)

Expectile levels ⇡ 0.10 0.25 0.50 0.75 0.90
Quantile levels ↵ 0.34 0.48 0.63 0.77 0.87

(c) ✏ ⇠ 0.9N (0, 1) + 0.1N (1, 5)

Expectile levels ⇡ 0.10 0.25 0.50 0.75 0.90
Quantile levels ↵ 0.19 0.34 0.52 0.70 0.84

(d) ✏ ⇠ t4

Expectile levels ⇡ 0.10 0.25 0.50 0.75 0.90
Quantile levels ↵ 0.16 0.30 0.50 0.70 0.84

We repeated the simulation in Section 5 of the manuscript for the EQR model.
Then we compared the sample standard deviations of the EER estimator and the
EQR estimator, as well as the prediction performance. Note that the expectile
levels investigated for the EER model were still 0.10, 0.25, 0.50, 0.75 and 0.90,
while their corresponding quantile level mappings given in Table 5 were used
for the EQR model. The results are summarized in Figure 10 and Tables 6.
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(a) Standard normal with ⇡ = 0.5
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(b) Standard normal with ⇡ = 0.9
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(c) Exp(1) with ⇡ = 0.5
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(d) Exp(1) with ⇡ = 0.9
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(e) Mixed normal with ⇡ = 0.5
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(f) Mixed normal with ⇡ = 0.9
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(g) t4 with ⇡ = 0.5
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(h) t4 with ⇡ = 0.9

Fig 10: Sample standard deviations. Solid lines mark the EER estimator. Dashed
lines mark the EQR estimator.
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Table 6
The average RMSEs of the 300 replications under the EER model and EQR model with

different error distributions.

(a) ✏ ⇠ N (0, 1)

⇡(↵) 0.10 (0.19) 0.25 (0.33) 0.50 (0.50) 0.75 (0.67) 0.90 (0.81)

EER 1.05 0.94 0.93 0.98 1.12
EQR 1.06 1.00 0.98 1.01 1.09

(b) ✏ ⇠ Exp(1)

⇡(↵) 0.10 (0.34) 0.25 (0.48) 0.50 (0.63) 0.75 (0.77) 0.90 (0.87)

EER 0.70 0.77 0.95 1.32 2.01
EQR 0.76 0.86 1.06 1.29 1.70

(c) ✏ ⇠ 0.9N (0, 1) + 0.1N (1, 5)

⇡(↵) 0.10 (0.19) 0.25 (0.34) 0.50 (0.52) 0.75 (0.70) 0.90 (0.84)

EER 1.19 1.02 1.02 1.21 1.71
EQR 1.11 0.99 0.99 1.07 1.29

(d) ✏ ⇠ t4

⇡(↵) 0.10 (0.16) 0.25 (0.30) 0.50 (0.50) 0.75 (0.70) 0.90 (0.84)

EER 1.71 1.22 1.11 1.27 1.82
EQR 1.40 1.09 1.01 1.09 1.36

The estimation efficiency is similar for the EER estimator and the EQR es-
timator. The sample standard deviations of the EER estimators are very close
to those of the EQR estimators, as indicated in Figure 10. Additionally, we ob-
served that under the distributions with relatively smaller variance (standard
normal and Exp(1)), the sample standard deviations of the EER estimators are
slightly smaller than those of the EQR estimators. While under the distribu-
tions with relatively larger variance (mixed normal and t4), the sample standard
deviations of the EER estimators become slightly larger than those of the EQR
estimators. The observation is consistent with the property that expectiles are
more sensitive to extreme values. Under distributions with relatively larger vari-
ance, it is more likely to have extreme values in the data, which results in more
variant EER estimators than the EQR estimators. Similar observation is shown
in Table 6 as well. Under standard normal and Exp(1), the average RMSEs from
the EER model are slightly smaller than those from the EQR model for most
expectile levels. While under mixed normal and t4, the average RMSEs from
the EER model become larger than those from the EQR model.

For S&P 500 data, since we do not have direct knowledge on the underlying
distribution, a grid of 23 levels (0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,
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0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.98
and 0.99) were investigated as quantiles under the EQR model and expectiles
under the EER model. To compare prediction performance, we notice that the
measure of prediction performance are different for the EQR model and the EER
model: EQR model uses the quantile loss and EER model uses the expectile loss.
Therefore we firstly computed the mean of the predicted quantile loss for each
level under both the EQR model and the EER model. Among the 23 levels, the
mean of predicted quantile loss under the EQR model ranges from 3.0⇥10�3

to 3.1⇥10�2 with an average of 2.0⇥10�2. The mean of predicted quantile loss
under the EER model ranges from 3.0⇥10�3 to 3.1⇥10�2 with an average of
2.1⇥10�2. Boxplots of the predicted quantile loss under the two models are
included in the left panel of Figure 11. Secondly we computed the mean of the
predicted expectile loss under both models for each level, and the results are
included in the boxplots in the right panel of Figure 11. Among the 23 levels,
the mean of the predicted expectile loss under the EQR model ranges from
8.8⇥10�4 to 3.3⇥10�3 with an average of 2.5⇥10�3. The mean of predicted
expectile loss under the EER model ranges from 4.7⇥10�4 to 3.6⇥10�3 with
an average of 2.3⇥10�3. Based on the ranges and averages, we can not identify
a statistically significant difference of the prediction performance between the
EQR model and the EER model in this case.
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Fig 11: Boxplots of predicted quantile loss and expectile loss for the two models.

Similar to the relationship between the QR and the ER, the EQR model
and the EER model have their unique advantages over each other, and neither
approach is uniformly superior. We need to choose the appropriate model based
on the goal and context of the problems. For example, if we want to evaluate
the potential loss from a portfolio and we are strongly risk averse, then we may
use the EER model because it is more sensitive to the extreme losses. If we hope
to have a model that is easier to interpret, then we may want to use the EQR
model.
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10. Simulation Results for Sparse Expectile Regression Estimator

with an Alternative Tuning Parameter

In the same setting as in Section 5 of the manuscript, we update the results of
the sparse ER estimator with a different tuning parameter. The sparse ER esti-
mator was computed by R package SALES [2]. It gives two choices of the tuning
parameter �: �min, which is the value of � that minimizes the cross validation
error, and �1se, which is the largest value of � having its cross validation error
within one standard error of the minimum cross validation error. The package
takes �1se as the default value for the subsequent variable selection and param-
eter estimation, and the corresponding results are included in the manuscript.
In this section, we update the results using �min as the tuning parameter. We
included the ER estimator, EER estimator and the boosting estimator in all
figures and tables for completeness. Note that the results for these estimators
are unchanged.

The sample standard deviations are included in Figure 12. We do not observe
a big difference in sample standard deviation between the sparse ER estimators
using �1se (page 14 of the manuscript) and using �min. But it seems that the
sparse ER estimator has a slightly smaller sample standard deviation with �min.

We also calculated the root mean squares errors (RMSE) of the sparse ER
estimator using �min as the tuning parameter. The results are in Table 7. Com-
pared to Table 1 of the manuscript (page 16), we notice that the performance
of the sparse ER estimator gets better, and its RMSE is very close to the ER
estimator and the boosting estimator. It seems that the default value �1se gives
a model that is too parsimonious for this settings.
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(a) Standard normal with ⇡ = 0.5
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(b) Standard normal with ⇡ = 0.9
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(c) t4 with ⇡ = 0.5
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(d) t4 with ⇡ = 0.9
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(e) Mixed normal with ⇡ = 0.5
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(f) Mixed normal with ⇡ = 0.9
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(g) Exp(1) with ⇡ = 0.5
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(h) Exp(1) with ⇡ = 0.9

Fig 12: Comparison of the sample standard deviations. Red lines mark the ER
estimator. Blue lines mark the sparse ER (with �min as the tuning parameter)
estimator. Green lines mark the boosting estimator. Black lines mark the EER
estimator. imsart-ejs ver. 2014/10/16 file: output.tex date: December 21, 2019
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Table 7
Comparison of the RMSEs, averaged over 300 replications. Using �min as the selected value

of � for the sparse ER estimator.

(a) ✏ ⇠ N (0, 1)

EER ER Boosting Sparse ER
⇡ = 0.10 1.04 1.85 1.86 1.86
⇡ = 0.25 0.93 1.60 1.60 1.60
⇡ = 0.50 0.90 1.52 1.52 1.52
⇡ = 0.75 0.95 1.61 1.62 1.61
⇡ = 0.90 1.10 1.87 1.91 1.88

(b) ✏ ⇠ t4

EER ER Boosting Sparse ER
⇡ = 0.10 1.84 3.49 3.50 3.54
⇡ = 0.25 1.28 2.46 2.47 2.47
⇡ = 0.50 1.15 2.14 2.15 2.14
⇡ = 0.75 1.31 2.44 2.45 2.44
⇡ = 0.90 1.85 3.46 3.51 3.47

(c) ✏ ⇠ 0.9N (0, 1) + 0.1N (1, 5)

EER ER Boosting Sparse ER
⇡ = 0.10 1.20 2.21 2.22 2.23
⇡ = 0.25 1.05 1.87 1.87 1.88
⇡ = 0.50 1.05 1.86 1.87 1.86
⇡ = 0.75 1.24 2.21 2.22 2.22
⇡ = 0.90 1.75 3.14 3.18 3.16

(d) ✏ ⇠ Exp(1)

EER ER Boosting Sparse ER
⇡ = 0.10 0.70 0.76 0.79 0.75
⇡ = 0.25 0.77 1.07 1.07 1.06
⇡ = 0.50 0.96 1.54 1.54 1.54
⇡ = 0.75 1.34 2.27 2.28 2.27
⇡ = 0.90 1.99 3.37 3.40 3.39
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