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A conceptual paradigm for onset of a new disease is often considered to be the result of 
changes in entire biological networks whose states are affected by a complex interaction 
of genetic and environmental factors. However, when modeling a relevant phenotype as 
a function of high dimensional measurements, power to estimate interactions is low, the 
number of possible interactions could be enormous and their effects may be non-linear. 
A method called sail for detecting non-linear interactions with a key environmental 
or exposure variable in high-dimensional settings which respects the strong or weak 
heredity constraints is proposed. It is proven that asymptotically, sail possesses the 
oracle property, i.e., it performs as well as if the true model were known in advance. 
A computationally efficient fitting algorithm with automatic tuning parameter selection, 
which scales to high-dimensional datasets is proposed. Simulation results show that sail
outperforms existing penalized regression methods in terms of prediction accuracy and 
support recovery when there are non-linear interactions with an exposure variable. sail
is applied to detect non-linear interactions between genes and a prenatal psychosocial 
intervention program on cognitive performance in children at 4 years of age. Results 
show that individuals who are genetically predisposed to lower educational attainment are 
those who stand to benefit the most from the intervention. The proposed algorithms are 
implemented in an R package available on CRAN (https://cran .r-project .org /package =sail).
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1. Introduction

Computational approaches to variable selection have become increasingly important with the advent of high-throughput 
technologies in genomics and brain imaging studies, where the data has become massive, yet where it is believed that the 
number of truly important variables is small relative to the total number of variables. Although many approaches have been 
developed for main effects, there is an enduring interest in powerful methods for estimating interactions, since interactions 
may reflect important modulation of a genomic system by an external factor and vice versa (Bhatnagar et al., 2018).

Interactions may occur in numerous types and of varying complexities. In this paper, we consider one specific type of 
interaction model, where one exposure variable E is involved in possibly non-linear interactions with a high-dimensional set 
of measures X leading to effects on a response variable, Y . We propose a multivariable penalization procedure for detecting 
non-linear interactions between X and E . Our method is motivated by the Nurse Family Partnership (NFP); a program 
of prenatal and infancy home visiting by nurses for low-income mothers and their children (Olds et al., 1998). In this 
intervention, NFP nurses guided pregnant women and parents of young children to improve the outcomes of pregnancy, 
their children’s health and development, and their economic self-sufficiency, with the goal of reducing disparities over 
the life-course. Early intervention in young children has been shown to positively impact intellectual abilities (Campbell 
and Ramey, 1994), and more recent studies have shown that cognitive performance is also strongly influenced by genetic 
factors (Rietveld et al., 2013). Given the important role of both environment and genetics, we are interested in finding 
interactions between these two components on cognitive function in children.

1.1. A sparse additive interaction model

Let Y ∈ R be a continuous outcome variable, E ∈ R a binary or continuous environment/exposure vector of known 
importance, and X ∈ Rp a vector of additional predictors, possibly high-dimensional. Assume that we have n observations 
of each quantity denoted by Y = (Y1, . . . , Yn) ∈Rn , XE = (E1, . . . , En) ∈Rn , and X = (X⊤

1 , . . . , X⊤
p ) ∈Rn×p . Furthermore let 

f j :R →R be a smoothing method for variable X j by a projection on to a set of basis functions:

f j(X j) =
m j∑

ℓ=1

ψ jℓ(X j)β jℓ. (1)

Here, the 
{
ψ jℓ

}m j
1 are a family of basis functions in X j (Hastie et al., 2015). Let ! j be the n × m j matrix of evaluations of 

the ψ jℓ and θ j = (β j1, . . . ,β jm j ) ∈Rm j for j = 1, . . . , p (θ j is a m j -dimensional column vector of basis coefficients for the 
jth main effect). In this article we consider an additive interaction regression model of the form

Y = β0 · 1n +
p∑

j=1

! jθ j + βE XE +
p∑

j=1

(XE ◦ ! j)τ j + ε, (2)

where β0 ∈ R is the intercept, βE ∈ R is the coefficient for the environment variable, τ j = (τ j1, . . . , τ jm j ) ∈ Rm j are the 
basis coefficients for the jth interaction term, (XE ◦! j) is the n ×m j matrix formed by the component-wise multiplication of 
the column vector XE by each column of ! j , and ε ∈Rn is a vector of i.i.d. errors with mean zero and finite variance. Here 
we assume that p is large relative to n, and particularly that 

∑p
j=1 m j/n is large. Due to the large number of parameters 

to estimate with respect to the number of observations, one commonly-used approach in the penalization literature is to 
shrink the regression coefficients by placing a constraint on the values of (βE , θ j, τ j). Certain constraints have the added 
benefit of producing a sparse model in the sense that many of the coefficients will be set exactly to 0 (Bühlmann and Van 
De Geer, 2011). Such a reduced predictor set can lead to a more interpretable model with smaller prediction variance, albeit 
at the cost of having biased parameter estimates (Fan et al., 2014). In light of these goals, consider the following penalized 
objective function:

Q (") = − L(") + λ(1 − α)

⎛

⎝w E |βE | +
p∑

j=1

w j∥θ j∥2

⎞

⎠+ λα
p∑

j=1

w jE∥τ j∥2, (3)

where " = (β0, βE , θ1, . . . , θ p, τ 1, . . . , τ p), L(") is the log-likelihood function of the observations V i = (Yi, !i, XiE ) for 
i = 1, . . . , n, ∥θ j∥2 =

√∑m j
k=1 β2

jk , ∥τ j∥2 =
√∑m j

k=1 τ 2
jk , λ > 0 and α ∈ (0, 1) are adjustable tuning parameters, w E , w j, w jE

are non-negative penalty factors for j = 1, . . . , p which serve as a way of allowing parameters to be penalized differently 
(see Algorithm 2 for more details on how to estimate these weights). The first term in the penalty penalizes the main effects 
while the second term penalizes the interactions. The parameter α controls the relative weight on the two penalties. Note 
that we do not penalize the intercept.

An issue with (3) is that since no constraint is placed on the structure of the model, it is possible that an estimated 
interaction term is non-zero while the corresponding main effects are zero. While there may be certain situations where 
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this is plausible, statisticians have generally argued that interactions should only be included if the corresponding main 
effects are also in the model (McCullagh and Nelder, 1989). This is known as the strong heredity principle (Chipman, 1996). 
Indeed, large main effects are more likely to lead to detectable interactions (Cox, 1984).

The strong heredity principle states that an interaction term can only have a non-zero estimate if its corresponding main 
effects are estimated to be non-zero, whereas the weak heredity principle allows for a non-zero interaction estimate as 
long as one of the corresponding main effects is estimated to be non-zero (Chipman, 1996). In the context of penalized 
regression methods, these principles can be formulated as structured sparsity (Bach et al., 2012) problems. Several authors 
have proposed to modify the type of penalty in order to achieve the heredity principle (Radchenko and James, 2010; Bien et 
al., 2013; Lim and Hastie, 2015; Haris et al., 2016). We take an alternative approach. In Section 2 we discuss how a simple 
reparametrization of the model (3) can lead to this desirable property.

1.2. Related work

Methods for variable selection of interactions can be broken down into two categories: linear and non-linear interaction 
effects. Many of the linear effect methods consider all pairwise interactions in X (Zhao et al., 2009; Choi et al., 2010; Bien et 
al., 2013; She and Jiang, 2014) which can be computationally prohibitive when p is large. More recent proposals for selection 
of interactions allow the user to restrict the search space to interaction candidates (Lim and Hastie, 2015; Haris et al., 2016). 
This is useful when the researcher wants to impose prior information on the model. Two-stage procedures, where interaction 
candidates are considered from an original screen of main effects, have shown good performance when p is large (Hao et al., 
2018; Shah, 2016) in the linear setting. There are many fewer methods available for estimating non-linear interactions. For 
example, Radchenko and James (2010) proposed a model of the form Y = β0 + ∑p

j=1 f j(X j) +
∑

j>k f jk(X j, Xk) + ε, where 
f (·) are smooth component functions. This method is more computationally expensive than sail since it considers all 
pairwise interactions between the basis functions, and its effectiveness in simulations or real-data applications is unknown 
as there is no software implementation.

1.3. Our contributions

The main contributions of this paper are five-fold. First, we develop a model for non-linear interactions with a key 
exposure variable, following either the weak or strong heredity principle, that is computationally efficient and scales to 
the high-dimensional setting (n << p). Second, through simulation studies, we show improved performance in terms of 
prediction accuracy and support recovery over existing methods that only consider linear interactions or additive main 
effects. Third, we show that our method possesses the oracle property (Fan and Li, 2001), i.e., it performs as well as if 
the true model were known in advance. Fourth, we demonstrate the performance of our method in two applications: 1) 
gene-environment interactions in a prenatal psychosocial intervention program Olds et al. (1998) and 2) a study aimed 
at identifying which clinical variables influence mortality rates amongst seriously ill hospitalized patients (Connors et al., 
1995). Fifth, we implement our algorithms in the sail R package on CRAN (https://cran .r-project .org /package =sail), along 
with extensive documentation. In particular, our implementation also allows for linear interaction models, user-defined basis 
expansions, a cross-validation procedure for selecting the optimal tuning parameter, and differential shrinkage parameters 
to apply the adaptive lasso idea (Zou, 2006).

The rest of the paper is organized as follows. Section 2 describes our optimization procedure and some details about 
the algorithm used to fit the sail model for the least squares case. Theoretical results are given in Section 3. In Section 4, 
through simulation studies we compare the performance of our proposed approach and demonstrate the scenarios where it 
can be advantageous to use sail over existing methods. Section 5 contains two real data examples and Section 6 discusses 
some limitations and future directions.

2. Model and algorithm

2.1. Strong and weak heredity

Following Choi et al. 2010, we introduce a new set of parameters γ = (γ1E , . . . , γpE ) ∈ Rp and reparametrize the 
coefficients for the interaction terms τ j in (2) as a function of γ jE and the main effect parameters θ j and βE . This 
reparametrization for both strong and weak heredity is summarized in Table 1.

To perform variable selection in this new parametrization, we penalize γ =
(
γ1E , . . . ,γpE

)
instead of penalizing τ as 

in (3), leading to the following penalized objective function:

Q (") = − L(") + λ(1 − α)

⎛

⎝w E |βE | +
p∑

j=1

w j∥θ j∥2

⎞

⎠+ λα
p∑

j=1

w jE |γ jE |. (4)

An estimate of the regression parameters is given by "̂ = arg min" Q ("). This penalty allows for the possibility of excluding 
the interaction term from the model even if the corresponding main effects are non-zero. Furthermore, smaller values for 
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Table 1
Summary of reparametrization and penalty terms for strong and weak heredity sail model. Note that the 
penalty terms are identical for both model types, i.e., the reparametrization only affects the likelihood term 
of the objective function.

Model Reparametrization Penalty

Strong heredity τ j = γ jE βE θ j λ(1 − α)
(

w E |βE | + ∑p
j=1 w j∥θ j∥2

)
+ λα

∑p
j=1 w jE |γ jE |

Weak heredity τ j = γ jE (βE · 1m j + θ j) λ(1 − α)
(

w E |βE | + ∑p
j=1 w j∥θ j∥2

)
+ λα

∑p
j=1 w jE |γ jE |

α would lead to more interactions being included in the final model while values approaching 1 would favor main effects. 
Similar to the elastic net (Zou and Zhang, 2009), we fix α and obtain a solution path over a sequence of λ values.

2.2. Toy example

We present here a toy example to better illustrate the methods proposed in this paper. With a sample size of n = 100, 
we sample p = 20 covariates X1, . . . Xp independently from a N(0, 1) distribution truncated to the interval [0,1]. Data were 
generated from a model which follows the strong heredity principle, but where only one covariate, X2, is involved in an 
interaction with a binary exposure variable (E):

Y = f1(X1) + f2(X2) + 1.75E + 1.5E · f2(X2) + ε.

For illustration, function f1(·) is assumed to be linear, whereas function f2(·) is non-linear: f1(x) = − 3x, f2(x) = 2(2x − 1)3. 
The error term ε is generated from a normal distribution with variance chosen such that the signal-to-noise ratio (SNR) is 
2. We generated a single simulated dataset and used the strong heredity sail method (described below) with B-splines 
(df=5) to estimate the functional forms. 10-fold cross-validation (CV) was used to choose the optimal value of penalization. 
We used α = 0.5 and default values for all other arguments. We plot the solution path for both main effects and interactions 
in Fig. 1 (top panel), coloring lines to correspond to the selected model. We see that our method is able to correctly identify 
the true model. We can also visually see the effect of the penalty and strong heredity principle working in tandem, i.e., 
the interaction term E · f2(X2) (orange lines in the bottom panel) can only be non-zero if the main effects E and f2(X2)
(black and orange lines respectively in the top panel) are non-zero, while non-zero main effects do not imply a non-zero 
interaction.

In Fig. 1 (bottom panel), we plot the true and estimated component functions f̂1(X1) and E · f̂2(X2), and their estimates 
from this analysis with sail. We are able to capture the shape of the correct functional form. Lack-of-fit for f1(X1) can 
be partially explained by acknowledging that sail is trying to fit a spline to a linear function. Nevertheless, this example 
demonstrates that sail can still identify trends reasonably well.

2.3. Blockwise coordinate descent for least-squares loss

Here we describe a blockwise coordinate descent algorithm for fitting the least-squares version of the sail model in (4). 
We fix the value for α and minimize the objective function over a decreasing sequence of λ values (λmax > · · · > λmin). We 
use the subgradient equations to determine the maximal value λmax such that all estimates are zero (the derivation of λmax
is provided in Supplemental Section B.3). Due to the heredity principle, this reduces to finding the largest λ such that all 
main effects (βE , θ1, . . . , θ p) are zero. Following Friedman et al. 2010, we construct a λ-sequence of 100 values decreasing 
from λmax to 0.001λmax on the log scale, and use the warm start strategy where the solution for λℓ is used as a starting 
value for λℓ+1.

We assume that Y , ! j , XE and XE ◦ ! j have been centered by their sample means Y , ! j , X E , and XE ◦ ! j , respectively. 
Here, ! j ∈Rm j and XE ◦ ! j ∈Rm j represent the column means of ! j and XE ◦ ! j , respectively. Since the intercept (β0) is 
not penalized and all variables have been centered, we can omit it from the loss function and compute it once the algorithm 
has converged for all other parameters. The strong heredity sail model with least-squares loss has the form:

Ŷ =
p∑

j=1

! jθ j + βE XE +
p∑

j=1

γ jEβE(XE ◦ ! j)θ j , (5)

and the objective function is given by

Q (") = 1
2n

∥Y − Ŷ ∥2
2 + λ(1 − α)

⎛

⎝w E |βE | +
p∑

j=1

w j∥θ j∥2

⎞

⎠+ λα
p∑

j=1

w jE |γ jE |. (6)

Solving (6) in a blockwise manner allows us to leverage computationally fast algorithms for ℓ1 and ℓ2 norm penalized 
regression. Indeed, by careful construction of pseudo responses and pseudo design matrices, existing efficient algorithms 
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Fig. 1. Top: Toy example solution path for main effects (top) and interactions (bottom). {X11, X12, X13, X14, X15} and {X21, X22, X23, X24, X25} are the 
five basis coefficients for X1 and X2, respectively. λ1S E is the largest value of penalization for which the CV error is within one standard error of the 
minimizing value λmin . Bottom: Estimated smooth functions for X1 and the X2 · E interaction by the sail method based on λmin . (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

can be used to estimate the parameters. The objective function simplifies to a modified lasso problem when holding all 
θ j fixed, and a modified group lasso problem when holding βE and all γ jE fixed. The main computations are provided 
in Algorithm 1. A more detailed version of the derivations is given in Supplemental Section B.1. The sequence of tuning 
parameters (λmax > · · · > λmin) is automatically chosen by our software package based on the data inputs X, Y , and XE . The 
user may also choose to supply their own decreasing sequence. We recommend B-splines with 5 degrees of freedom for the 
basis function, and α = 0.5 to provide similar penalties to both main effects and interactions. Smaller values of α will favor 
the inclusion of more interaction terms. The weights for the environment variable (w E ), main effects (w j) and interactions 
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(w jE ) can be chosen via the adaptive sail (Algorithm 2), or be left to their default values of 1. Smaller weights will 
penalize the corresponding variables less. The default value for the convergence threshold (ϵ) is 1 × 10− 4.

Algorithm 1 Blockwise Coordinate Descent for Least-Squares sail with Strong Heredity.
1: function sail(X, Y , XE , basis, λ, α, w j, w E , w jE , ϵ) ◃ Algorithm for solving (6)
2: ! j ← basis(X j ), !̃ j ← XE ◦ ! j for j = 1, . . . , p
3: Center all variables by their sample means
4: Initialize: β(0)

E = θ (0)
j = γ (0)

j ← 0 for j = 1, . . . , p.
5: Set iteration counter k ← 0
6: R∗ ← Y − β

(k)
E XE − ∑

j(! j + γ (k)
j β

(k)
E !̃ j)θ

(k)
j

7: repeat
8: • To update γ = (γ1, . . . , γp)

9: X̃ j ← β
(k)
E !̃ jθ

(k)
j for j = 1, . . . , p

10: R ← R∗ + ∑p
j=1 γ (k)

j X̃ j

11:

γ (k)(new) ← arg min
γ

1
2n

∥R −
∑

j

γ j X̃ j∥2
2 + λα

∑

j

w jE |γ j |

12: + = ∑
j(γ

(k)
j − γ (k)(new)

j ) X̃ j

13: R∗ ← R∗ + +

14: • To update θ = (θ1, . . . , θ p)

15: X̃ j ← ! j + γ (k)
j β

(k)
E !̃ j for j = 1, . . . , p

16: for j = 1, . . . , p do
17: R ← R∗ + X̃ jθ

(k)
j

18:

θ (k)(new)
j ← arg min

θ j

1
2n

∥R − X̃ jθ j∥2
2 + λ(1 − α)w j∥θ j∥2

19: + = X̃ j(θ
(k)
j − θ (k)(new)

j )

20: R∗ ← R∗ + +

21: • To update βE

22: X̃E ← XE + ∑
j γ

(k)
j !̃ jθ

(k)
j

23: R ← R∗ + β
(k)
E X̃E

24:

β
(k)(new)
E ← 1

X̃⊤
E X̃E

S
(

1
n · w E

X̃⊤
E R,λ(1 − α)

)

◃ S(x, t) = sign(x)(|x| − t)+
25: + = (β

(k)
E − β

(k)(new)
E ) X̃E

26: R∗ ← R∗ + +

27: k ← k + 1
28:
29: until convergence criterion is satisfied: |Q ("(k− 1)) − Q ("(k))|/Q ("(k− 1)) < ϵ
30: Compute the intercept β0

31: β0 ← Y − ∑p
j=1 ! j θ̂ j − β̂E X E − ∑p

j=1 γ̂ j β̂E (XE ◦ ! j)θ̂ j

2.4. Details on update for θ

Here we discuss a computational speedup in the updates for the θ parameter. The partial residual (Rs) used for updating 
θ s (s ∈ 1, . . . , p) at the kth iteration is given by

Rs = Y − Ỹ (k)
(− s), (7)

where Ỹ (k)
(− s) is the fitted value at the kth iteration excluding the contribution from !s:

Ỹ (k)
(− s) = β

(k)
E XE +

∑

ℓ≠s

!ℓθ
(k)
ℓ +

∑

ℓ≠s

γ (k)
ℓ β

(k)
E !̃ℓθ

(k)
ℓ . (8)

6
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Using (8), (7) can be re-written as

Rs = Y − β
(k)
E XE −

p∑

j=1

(! j + γ (k)
j β

(k)
E !̃ j)θ

(k)
j + (!s + γ (k)

s β
(k)
E !̃s)θ

(k)
s

= R∗ + (!s + γ (k)
s β

(k)
E !̃s)θ

(k)
s , (9)

where

R∗ = Y − β
(k)
E XE −

p∑

j=1

(! j + γ (k)
j β

(k)
E !̃ j)θ

(k)
j . (10)

Denote θ (k)(new)
s the solution for predictor s at the kth iteration, given by:

θ (k)(new)
s = arg min

θ j

1
2n

∥Rs − (!s + γ (k)
s β

(k)
E !̃s)θ j∥2

2 + λ(1 − α)ws∥θ j∥2. (11)

Now we want to update the parameters for the next predictor θ s+1 (s +1 ∈ 1, . . . , p) at the kth iteration. The partial residual 
used to update θ s+1 is given by

Rs+1 = R∗ + (!s+1 + γ (k)
s+1β

(k)
E !̃s+1)θ

(k)
s+1 + (!s + γ (k)

s β
(k)
E !̃s)(θ

(k)
s − θ (k)(new)

s ), (12)

where R∗ is given by (10), θ (k)
s is the parameter value prior to the update, and θ (k)(new)

s is the updated value given by (11). 
Taking the difference between (9) and (12) gives

+ = Rt − Rs

= (!t + γ (k)
t β

(k)
E !̃t)θ

(k)
t + (!s + γ (k)

s β
(k)
E !̃s)(θ

(k)
s − θ (k)(new)

s ) − (!s + γ (k)
s β

(k)
E !̃s)θ

(k)
s

= (!t + γ (k)
t β

(k)
E !̃t)θ

(k)
t − (!s + γ (k)

s β
(k)
E !̃s)θ

(k)(new)
s . (13)

Therefore Rt = Rs + +, and the partial residual for updating the next predictor can be computed by updating the previous 
partial residual by +, given by (13). This formulation can lead to computational speedups especially when + = 0, meaning 
the partial residual does not need to be re-calculated.

2.5. Weak heredity

Our method can be easily adapted to enforce the weak heredity property. That is, an interaction term can only be present 
if at least one of its corresponding main effects is non-zero. To do so, we reparametrize the coefficients for the interaction 
terms in (2) as τ j = γ jE (βE · 1m j + θ j), where 1m j is a vector of ones with dimension m j (i.e. the length of θ j ). We defer 
the algorithm details for fitting the sail model with weak heredity in Supplemental Section B.4, as it is very similar to 
Algorithm 1 for the strong heredity sail model.

2.6. Adaptive sail

The weights for the environment variable, main effects and interactions are given by w E , w j and w jE respectively. These 
weights serve as a means of allowing a different penalty to be applied to each variable. In particular, any variable with a 
weight of zero is not penalized at all. This feature is usually selected for one of two reasons:

1. Prior knowledge about the importance of certain variables is known. Larger weights will penalize the variable more, 
while smaller weights will penalize the variable less

2. Allows users to apply the adaptive sail, similar to the adaptive lasso (Zou, 2006)

We describe the adaptive sail in Algorithm 2. This is a general procedure that can be applied to the weak and strong 
heredity settings. We provide this capability in the sail package using the penalty.factor argument.

2.7. Flexible design matrix

The definition of the basis expansion functions in (1) is very flexible, in the sense that our algorithms are independent of 
this choice. As a result, the user can apply any basis expansion they desire. In the extreme case, one could apply the identity 
map, i.e., f j(X j) = X j which leads to a linear interaction model (referred to as linear sail). When little information is 
known a priori about the relationship between the predictors and the response, by default, we choose to apply the same 
basis expansion to all columns of X . This is a reasonable approach when all the variables are continuous. However, there 
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Algorithm 2 Adaptive sail algorithm.
1. For a decreasing sequence λ = λmax, . . . , λmin and fixed α run the sail algorithm
2. Use cross-validation or a data splitting procedure to determine the optimal value for the tuning parameter: λ[opt] ∈ {λmax, . . . ,λmin}
3. Let β̂E

[opt]
, ̂θ [opt]

j and ̂τ [opt]
j for j = 1, . . . , p be the coefficient estimates corresponding to the model at λ[opt]

4. Set the weights to be

w E =
(
|β̂E

[opt]| + 1/n
)− 1

, w j =
(
∥̂θ [opt]

j ∥2 + 1/n
)− 1

, w jE =
(
∥τ̂ j

[opt]∥2 + 1/n
)− 1

for j = 1, . . . , p
5. Run the sail algorithm with the weights defined in step 4), and use cross-validation or a data splitting procedure to choose the optimal value of λ

are often situations when the data contains a combination of categorical and continuous variables. In these cases it may be 
sub-optimal to apply a basis expansion to the categorical variables. Owing to the flexible nature of our algorithm, we can 
handle this scenario in our implementation by allowing a user-defined design matrix. The only extra information needed 
is the group membership of each column in the design matrix. We illustrate such an example in a vignette of the sail R
package.

3. Theory

In this section we study the asymptotic behavior of the sail estimator "̂, defined as the minimizer of (4), as well as 
the model selection properties. We show that sail possesses the oracle property when the sample size approaches infinity 
and the number of predictors is fixed. That is, under certain regularity conditions, it performs as well as if the true model 
were known in advance and has the optimal estimation rate (Zou, 2006). The regularity conditions and proofs are given in 
Supplemental Section 1.

Let "∗ = (β∗
E , θ∗⊤

1 , . . . , θ∗⊤
p , γ ∗

1E , . . . , γ ∗
pE )⊤ denote the unknown vector of true coefficients in (4). To simplify the nota-

tion, we use the representation "∗ = (φ∗⊤
1 , φ∗⊤

2 , . . . , φ∗⊤
p+1, φ

∗⊤
p+2, . . . , φ

∗⊤
2p+1)

⊤ , where φ∗
1 = β∗

E , φ∗
2 = θ∗

1, . . . , φ∗
p+1 = θ∗

p , and 
φ∗

p+2 = γ ∗
1E , . . . , φ∗

2p+1 = γ ∗
pE . Denote by A =

{
m : φ∗

m ≠ 0
}

the unknown sparsity pattern of "∗ , and Â =
{
m : φ̂m ≠ 0

}
the 

estimated sail model selector. We can rewrite the penalty terms in (4), and consider the sail estimates "̂n given b

"̂n = arg min
"

Q n(") = − Ln(") + nλm

2p+1∑

m=1

∥∥φm

∥∥
2 , (14)

where λ1 = λ(1 − α)w E , λm = λ(1 − α)wm for m = 2, . . . , p + 1, and λm = λαwmE for m = p + 2, . . . , 2p + 1. Define

A1 = {m : φ∗
m ≠ 0 (1 ≤ m ≤ p + 1)}, A2 = {m : φ∗

m ≠ 0 (p + 2 ≤ m ≤ 2p + 1)}, A = A1 ∪ A2,

that is, A1 contains the indices for main effects whose true coefficients are non-zero, and A2 contains the indices for 
interaction terms whose true coefficients are non-zero. Let

an = max
{
λm,λm′ : m ∈ A1,m′ ∈ A2

}

and

bn = min
{
λm,λm′ : m ∈ Ac

1, m′ ∈ Ac
2 s.t. φ∗

m′ = γ ∗
jE = 0 but βE ≠ 0 and θ∗

j ≠ 0 (1 ≤ j ≤ p)
}

.

Note that our asymptotic results are stated for the main effects and interaction terms only, even though our formulation in-
cludes an unpenalized intercept. Consistency results immediately follow for β0 since we assume the data has been centered, 
leading to a closed form solution for the intercept in the least-squares setting.

Lemma 1. [Existence of a local minimizer] If an = o( 1√
n
) as n → ∞, i.e. 

√
nan → 0, then ∥"̂n − "∗∥2 = O p( 1√

n
).

Lemma 1 states that if the tuning parameters corresponding to the non-zero coefficients converge to 0 at a speed faster 
than 1√

n
, then there exists a local minimizer of Q n(") which is 

√
n-consistent (Wang et al., 2007; Choi et al., 2010).

Theorem 1 (Model selection consistency). If 
√

nan → 0 and 
√

nbn → ∞, then

P
(
"̂Ac

1
= 0

)
→ 1 and P

(
"̂Ac

2
= 0

)
→ 1. (15)

Theorem 1 shows that sail can consistently remove the main effects and interaction terms which are not associated 
with the response with high probability. Together with Lemma 1, we see that the asymptotic behavior of the penalty terms 
for the zero and non-zero predictors must be different to satisfy the model selection consistency property (15) (Nardi and 
Rinaldo, 2008). Specifically, when the tuning parameters for the non-zero coefficients converge to 0 faster than 1/

√
n (i.e. 

8
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√
nan → 0) and those for zero coefficients are large enough (i.e. 

√
nbn → ∞), the Lemma 1 and Theorem 1 imply that the √

n-consistent estimator "̂n satisfies P
(
"̂Ac

2
= 0

)
→ 1.

Next, we obtain the asymptotic distribution of the sail estimator.

Theorem 2 (Asymptotic normality). Denote A = A1 ∪ A2 . Assume that 
√

nan → 0 and 
√

nbn → ∞. Under the regularity conditions, 
the subvector ̂"A of the local minimizer ̂"n given in Lemma 1 satisfies

√
n

(
"̂A − "∗

A
) d→ N

(
0, I− 1 (

"∗
A

))
, (16)

where I 
(
"∗

A
)

is the Fisher information matrix for "A at "A = "∗
A , assuming Ac is known in advance.

Together, Theorems 1 and 2 establish that if the tuning parameters satisfy the conditions 
√

nan → 0 and 
√

nbn → ∞, 
then as the sample size grows large, sail has the oracle property (Fan and Li, 2001). In order for the conditions on the 
tuning parameters to be satisfied, we follow the strategies outlined for the adaptive Lasso (Zou, 2006), the adaptive group 
Lasso (Nardi and Rinaldo, 2008) and the adaptive elastic-net (Zou and Zhang, 2009). That is, we define the adaptive weights 
as wm = ∥φ̂init

m + 1/n∥− ξ
2 for m = 1, . . . , 2p + 1, where ξ is a positive constant and φ̂init

m is an initial 
√

n-consistent estimate 
of φ∗

m . Here, the 1/n is to avoid division by zero.

4. Simulation study

In this section, we use simulated data to understand the performance of sail in different scenarios.

4.1. Comparator methods

Since there are no other packages that directly address our chosen problem, we selected comparator methods based on 
the following criteria: 1) penalized regression methods that can handle high-dimensional data (n < p), 2) allowing at least 
one of linear effects, non-linear effects or interaction effects, and 3) having a software implementation in R. The selected 
methods can be grouped into three categories:

1. Linear main effects: lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006)
2. Linear interactions: lassoBT (Shah, 2016), GLinternet (Lim and Hastie, 2015)
3. Non-linear main effects: HierBasis (Haris et al., 2019), SPAM (Ravikumar et al., 2009), gamsel (Chouldechova and 

Hastie, 2015)

For GLinternet we specified the interactionCandidates argument so as to only consider interactions between 
the environment and all other X variables. For all other methods we supplied (X, XE ) as the data matrix, 100 for the 
number of tuning parameters to fit, and used the default values otherwise (R code for each method available at https://
github .com /sahirbhatnagar /sail /blob /master /my _sims /method _functions .R). lassoBT considers all pairwise interactions as 
there is no way for the user to restrict the search space. SPAM applies the same basis expansion to every column of the 
data matrix; we chose 5 basis spline functions. HierBasis and gamsel select whether a term in an additive model is 
non-zero, linear, or a non-linear spline up to a specified max degrees of freedom per variable.

We compare the above listed methods with our main proposal method sail, as well as with adaptive sail (Algo-
rithm 2) and sail weak which has the weak heredity property. For each function f j , we use a B-spline basis matrix with
degree=5 implemented in the bs function in R (R Core Team, 2017). We center the environment variable and the basis 
functions before running the sail method.

4.2. Simulation design

To make the comparisons with other methods as fair as possible, we followed a simulation framework that has been 
previously used for variable selection methods in additive models (Lin and Zhang, 2006; Huang et al., 2010). We extend 
this framework to include interaction effects as well. The covariates are simulated as follows. First, we generate x1, . . . , x1000
independently from a standard normal distribution truncated to the interval [0,1] for i = 1, . . . , n. The first four variables are 
non-zero (i.e. active in the response), while the rest of the variables are zero (i.e. are noise variables). The exposure variable 
(XE ) is generated from a standard normal distribution truncated to the interval [-1,1]. The outcome Y is then generated 
following one of the models and assumptions described below. We evaluate the performance of our method on three of its 
defining characteristics: 1) the strong heredity property, 2) non-linearity of predictor effects and 3) interactions. Simulation 
scenarios are designed specifically to test the performance of these characteristics.

1. Heredity simulation

9
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Scenario (a) Truth obeys strong heredity. In this situation, the true model for Y contains main effect terms for all 
covariates involved in interactions:

Y =
4∑

j=1

f j(X j) + βE · XE + XE · f3(X3) + XE · f4(X4) + ε.

Scenario (b) Truth obeys weak heredity. Here, in addition to the interaction, the E variable has its own main effect 
but the covariates X3 and X4 do not:

Y = f1(X1) + f2(X2) + βE · XE + XE · f3(X3) + XE · f4(X4) + ε.

Scenario (c) Truth only has interactions. In this simulation, the covariates involved in interactions do not have main 
effects as well:

Y = XE · f3(X3) + XE · f4(X4) + ε.

2. Non-linearity simulation scenario
Truth is linear. sail is designed to model non-linearity; here we assess its performance if the true model is com-
pletely linear:

Y = 5X1 + 3(X2 + 1) + 4X3 + 6(X4 − 2) + βE · XE + XE · 4X3 + XE · 6(X4 − 2) + ε.

3. Interactions simulation scenario
Truth only has main effects. sail is designed to capture interactions; here we assess its performance when there 
are none in the true model:

Y =
4∑

j=1

f j(X j) + βE · XE + ε.

The true component functions are the same as in (Lin and Zhang, 2006; Huang et al., 2010) and are given by f1(t) = 5t , 
f2(t) = 3(2t − 1)2, f3(t) = 4 sin(2πt)/(2 − sin(2πt)), f4(t) = 6(0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin(2πt)2 + 0.4 cos(2πt)3 +
0.5 sin(2πt)3). We set βE = 2 and draw ε from a normal distribution with variance chosen such that the signal-to-noise 
ratio is 2. Using this setup, we generated 200 replications consisting of a training set of n = 200, a validation set of n = 200
and a test set of n = 800. The training set was used to fit the model and the validation set was used to select the optimal 
tuning parameter corresponding to the minimum prediction mean squared error (MSE). Variable selection results including 
true positive rate, false positive rate and number of active variables (the number of variables with a non-zero coefficient 
estimate) were assessed on the training set, and MSE was assessed on the test set.

4.3. Results

The prediction accuracy and variable selection results for each of the five simulation scenarios are shown in Fig. 2
and Table 2, respectively. We see that sail, adaptive sail and sail weak have the best performance in terms of 
both MSE and yielding correct sparse models when the truth follows a strong heredity (scenario 1a), as we would expect, 
since this is exactly the scenario that our method is trying to target. Our method is also competitive when only main 
effects are present (scenario 3) and performs just as well as methods that only consider linear and non-linear main effects 
(HierBasis, SPAM), owing to the penalization applied to the interaction parameter. Due to the heredity property being 
violated in scenario 1c), no method can identify the correct model with the exception of GLinternet. When only linear 
effects and interactions are present (scenario 2), we see that adaptive sail has similar MSE compared to the other 
linear interaction methods (lassoBT and GLinternet) with a better TPR and FPR. It is important to note that the 
variable selection performance of sail is highly dependent on being able to correctly select the exposure variable (XE ). In 
Supplemental Section C, we show the selection rates of XE . We see that sail is able to consistently identify the exposure 
variable across all simulation scenarios and replications. Overall, our simulation study results suggest that sail outperforms 
existing methods when the true model contains non-linear interactions, and is competitive even when the truth only has 
either linear or additive main effects.

We also plotted the true and predicted curves for scenario 1a) in Supplemental Section C, to visually inspect whether 
our method could correctly capture the shape of the association between the predictors and the response for both main 
and interaction effects. In general, we see the non-linear effects are clearly being captured by sail.

10
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Table 2
Mean (standard deviation) of the number of selected variables (|Ĵ |), true positive rate (TPR) and false positive rate (FPR) as a percentage from 200 replications for each of the five scenarios. |J | is the number of 
truly associated variables.

Linear 
Main Effects

Linear 
Interactions

Non-linear 
Main Effects

Non-linear 
Interactions

lasso adaptive 
lasso

lassoBT GLinternet HierBasis SPAM gamsel sail adaptive 
sail

sail 
weak

1a) Strong heredity (|J | = 7)
|Ĵ | 28 (15) 8 (4) 35 (18) 40 (20) 133 (48) 42 (19) 46 (21) 37 (15) 8 (3) 21 (3)
TPR 53.9 (8.4) 49.3 (10.1) 61.7 (11.5) 66.4 (14.0) 65.2 (8.1) 60.9 (8.5) 56.9 (7.7) 89.5 (8.2) 81.4 (13.0) 82.1 (10.9)
FPR 1.2 (0.7) 0.2 (0.2) 1.5 (0.9) 1.8 (1.0)

1b) Weak heredity (|J | = 5)
|Ĵ | 19 (12) 4 (2) 20 (13) 38 (23) 24 (23) 28 (16) 21 (15) 24 (19) 5 (3) 14 (10)
TPR 40.7 (3.6) 40.1 (1.4) 40.8 (3.8) 64.1 (14.9) 42.2 (6.3) 53.9 (9.4) 42.7 (6.8) 52.4 (11.4) 46.4 (10.1) 55.0 (13.7)
FPR 0.9 (0.6) 0.1 (0.1) 0.9 (0.7) 1.7 (1.1) 1.1 (1.1) 1.2 (0.8) 1.0 (0.7) 1.0 (0.9) 0.2 (0.1) 0.6 (0.5)

1c) Interactions Only (|J | = 2)
|Ĵ | 12 (12) 3 (2) 14 (13) 38 (21) 12 (13) 13 (12) 12 (12) 10 (18) 2 (2) 26 (30)
TPR 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 81.4 (27.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 1.0 (6.9) 0.0 (0.0) 22.9 (36.9)
FPR 0.6 (0.6) 0.6 (6.9) 0.7 (0.7) 1.8 (1.0) 0.6 (0.7) 0.7 (0.6) 0.6 (0.6) 0.5 (0.9) 0.1 (0.1) 1.3 (1.5)

2) Linear Effects (|J | = 7)
|Ĵ | 37 (17) 8 (3) 48 (19) 51 (23) 37 (19) 42 (19) 37 (16) 34 (18) 11 (4) 20 (4)
TPR 70.4 (3.7) 67.2 (6.7) 72.3 (6.3) 93.4 (8.5) 70.3 (3.8) 65.0 (8.1) 70.4 (3.7) 93.9 (9.9) 86.0 (18.5) 68.1 (14.9)
FPR 1.6 (0.8) 0.2 (0.2) 2.2 (1.0) 2.2 (1.2) 1.6 (0.9) 1.9 (0.9) 1.6 (0.8) 1.4 (0.9) 0.2 (0.2) 0.7 (0.2)

3) Main Effects Only (|J | = 5)
|Ĵ | 29 (14) 7 (4) 31 (15) 34 (18) 154 (17) 46 (21) 56 (20) 44 (19) 9 (2) 22 (2)
TPR 75.9 (10.9) 66.5 (15.3) 76.0 (10.9) 77.0 (9.5) 97.5 (6.6) 93.1 (10.7) 81.3 (9.5) 91.5 (10.3) 84.1 (9.2) 85.2 (12.1)
FPR 1.3 (0.7) 0.2 (0.2) 1.3 (0.8) 1.5 (0.9) 7.5 (0.9) 2.1 (1.0) 2.6 (1.0) 2.0 (0.9) 0.2 (0.1) 0.9 (0.1)
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Fig. 2. Boxplots of the test set mean squared error from 200 replications for each of the five simulation scenarios.

5. Real data applications

5.1. Gene-environment interactions in the nurse family partnership program

It is well known that environmental exposures can have an important impact on academic achievement. Indeed, early 
intervention in young children has been shown to positively impact intellectual abilities (Campbell and Ramey, 1994). More 
recent studies have shown that cognitive performance, a trait that measures the ability to learn, reason and solve problems, 
is also strongly influenced by genetic factors. Genome-wide association studies (GWAS) suggest that 20% of the variance 
in educational attainment (years of education) may be accounted for by common genetic variation (Rietveld et al., 2013; 
Okbay et al., 2016). Unsurprisingly, there is significant overlap in the SNPs that predict educational attainment and measures 
of cognitive function. An interesting query that arises is how the environment interacts with these genetics variants to 
predict measures of cognitive function. To address this question, we analyzed data from the Nurse Family Partnership (NFP), 
a psychosocial intervention program that begins in pregnancy and targets maternal health, parenting and mother-infant 
interactions (Olds et al., 1998). The Stanford Binet IQ scores at 4 years of age were collected for 189 subjects (including 
19 imputed using mice (Buuren and Groothuis-Oudshoorn, 2010)) born to women randomly assigned to control (n = 100) 
or nurse-visited intervention groups (n = 89). For each subject, we calculated a polygenic risk score (PRS) for educational 
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Fig. 3. Estimated interaction effect identified by the weak heredity sail using cubic B-splines and α = 0.1 for the Nurse Family Partnership data. The 
selected model, chosen via 10-fold cross-validation, contained three variables: the main effects for the intervention and the PRS for educational attainment 
using genetic variants significant at the 0.0001 level, as well as their interaction.

attainment at nine different p-value thresholds using weights from the GWAS conducted in Okbay et al. 2016. We applied 
the weak heredity sail with cubic B-splines and α = 0.1 to encourage interactions, and selected the optimal tuning 
parameter using 10-fold cross-validation. This resulted in a total of 55 parameters to estimate. In this context, individuals 
with a higher PRS have a propensity for higher educational attainment. The goal of this analysis was to determine if there 
was an interaction between genetic predisposition to educational attainment (X) and maternal participation in the NFP 
program (E) on child IQ at 4 years of age (Y ). Our method identified an interaction between the intervention and PRS which 
included genetic variants at the 0.0001 level of significance. This interaction is shown in Fig. 3. We see that the intervention 
has a much larger effect on IQ for lower PRS compared to a higher PRS. In other words, perinatal home visitation by nurses 
can impact IQ scores in children who are genetically predisposed to lower educational attainment. Similar results were 
obtained for the other imputed datasets (Supplemental Section D). We also compared sail with two other interaction 
selection methods, lassoBT and GLinternet with default settings, on 200 bootstrap samples of the data. The average 
and standard deviation of the MSE and size of the active set (|Ĵ |) across the 200 bootstrap samples are given in Table 3. 
We see that sail tends to select sparser models while maintaining similar prediction performance compared to lassoBT. 
The GLinternet statistics are omitted here since the algorithm did not converge for many of the 200 simulations.

5.2. Study to understand prognoses preferences outcomes and risks of treatment

The Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT) aimed at identifying which 
clinical variables influence medium-term (half-year) mortality rate amongst seriously ill hospitalized patients and improving 
clinical decision making (Connors et al., 1995). With a relatively large sample size of 9,105 and detailed documentation 
of clinical variables, the SUPPORT dataset allows detection of potential interactions using the strategy implemented in
sail. We applied sail to test for non-linear interactions between acute renal failure or multiple organ system failure 
(ARF/MOSF), an important predictor for survival rate, and 13 other variables that were deemed clinically relevant. These 
variables included the number of comorbidities (excluding ARF/MOSF), age, sex, as well as multiple physiological and blood 
biochemical indices. The response was whether a patient survived after six months since hospitalization.

A total of 8,873 samples had complete data on all variables of interest. We randomly divided these samples into equal 
sized training/validation/test splits and ran lassoBT, GLinternet, and the weak heredity sail with cubic B-splines and 
α = 0.1 (as was done in the Nurse Family Partnership program case study). A binomial distribution family was specified for
GLinternet, whereas lassoBT had the same default settings as the simulation study since it did not support a special-
ized implementation for binary outcomes. We again ran each method on the training data, determined the optimal tuning 
parameter on the validation data based on the area under the receiver operating characteristic curve (AUC), and assessed 
AUC on the test data. We repeated this process 200 times and report the results in Table 3. We found that sail achieved 
similar prediction accuracy to lassoBT and GLinternet. However, the predictive performance of lassoBT and GLin-
ternet relied on models which included many more variables. In Fig. 4, we visualize the two strongest interaction effects 
associated with the number of comorbidities and age, respectively. For those having undergone ARF/MOSF, an increased 
number of comorbidities decreases their chance of survival, while there seems to be no such relationship for non-ARF/MOSF 
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Table 3
Comparison of analytic methods for selecting interactions using the Nurse Family Partnership pro-
gram and the SUPPORT datasets. Averages (standard deviations in parentheses) are based on 200 
bootstrap samples. |Ĵ | is the number of variables selected by the method. GLinternet results 
not reported for NFP data since the algorithm did not converge in many of the bootstrap samples.

Method Nurse Family Partnership SUPPORT

Mean Squared Error |Ĵ | AUC |Ĥ|
sail 3.5 (0.6) 4 (3) 0.66 (0.01) 25 (3)
lassoBT 3.53 (0.477) 11 (6) 0.65 (0.009) 49 (14)
GLinternet – – 0.65 (0.009) 58 (7)

Fig. 4. Illustration of estimated interaction effects identified by sail for the SUPPORT data. Median prediction curves in dark colors based on 200 train/vali-
date/test splits represent the estimated marginal interaction effects. Coefficients estimated in each of the 200 train/validate/test splits were used to generate 
prediction curves representing a 90% confidence interval colored in corresponding light colors.

patients. The interaction between ARF/MOSF and age shows the risk incurred by ARF/MOSF is most distinguishing among 
patients between the ages of 70 and 80.

6. Discussion

In this article we have introduced the sparse additive interaction learning model sail for detecting non-linear inter-
actions with a key environmental or exposure variable in high-dimensional settings. Using a simple reparametrization, we 
are able to achieve either the weak or strong heredity property without using a complex penalty function. We developed a 
blockwise coordinate descent algorithm to solve the sail objective function for the least-squares loss. We further studied 
the asymptotic properties of our method and showed that under certain conditions, it possesses the oracle property. All our 
algorithms have been implemented in a computationally efficient, well-documented and freely available R package on CRAN. 
Furthermore, our method is flexible enough to handle any type of basis expansion including the identity map, which allows 
for linear interactions. Our implementation allows the user to selectively apply the basis expansions to the predictors, allow-
ing for example, a combination of continuous and categorical predictors. An extensive simulation study shows that sail,
adaptive sail and sail weak outperform existing penalized regression methods in terms of prediction accuracy, sen-
sitivity and specificity when there are non-linear main effects only, as well as interactions with an exposure variable. We 
then demonstrated the utility of our method to identify non-linear interactions in both biological and epidemiological data. 
In the NFP program, we showed that individuals who are genetically predisposed to lower educational attainment are those 
who stand to benefit the most from the intervention. Analysis of the SUPPORT data revealed that those having undergone 
ARF/MOSF, an increased number of comorbidities decreased their chances of survival, while there seemed to be no such 
relationship for non-ARF/MOSF patients. In a bootstrap analysis of both datasets, we observed that sailtended to select 
sparser models while maintaining similar prediction performance compared to other interaction selection methods.

Our method however does have its limitations. sail can currently only handle XE · f (X) or f (XE ) · X and does not 
allow for f (X, XE), i.e., only one of the variables in the interaction can have a non-linear effect and we do not consider the 
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tensor product. The reparametrization leads to a non-convex optimization problem which makes convergence rates difficult 
to assess, though we did not experience any major convergence issues in our simulations and real data analysis. The memory 
footprint can also be an issue depending on the degree of the basis expansion and the number of variables. Furthermore, the 
functional form of the covariate effects is treated as known in our method. Being able to automatically select for example, 
linear vs. nonlinear components, is currently an active area of research in main effects models (Haris et al., 2019). To our 
knowledge, our proposal is the first to allow for non-linear interactions with a key exposure variable following the weak or 
strong heredity property in high-dimensional settings. We also provide a first software implementation for these models.
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Table 4
Correspondence between parameters used to simplify the notation in the proofs. The first row shows the actual parameters
used in the loss function. The second row shows the corresponding parameters in the simplified notation. The third row
shows the actual tuning parameters used in the penalty function. The fourth row shows the corresponding tuning parameters
in the simplified notation. This correspondence greatly simplifies the notation used in the proofs.

A. Proofs
As shown in the main text, we simplified the notation to make the proofs easier to follow. We summarize the

original notation and the corresponding simplified notation in Table 4. This notation then allows us to write down the
sail estimates as

ö�n = argmin
�

Qn(�) = *Ln(�) + n�m

2p+1
…

m=1

Ù

Ù

�m
Ù

Ù2 . (17)

A.1. Regularity Conditions
(C1) The observation {Vi : i = 1,… , n} are independent and identically distributed with a probability density

f (V,�), which has a common support. We assume the density f satisfies the following equations:

E�
⌧

(�j
log f (V ,�)

�

= 0 for j = 1,… , 2p + 1,

and

Ij1k1j2k2 (�) = E�
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)�j2k2

log f (V ,�)
M

= E�
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* )
2

)�j1k1
�j2k2

log f (V ,�)
M

,

for any j1, j2 = 1,… , 2p + 1, and k1 = 1,… , pj1, k2 = 1,… , pj2, where j1, j2 are the index of group, k1, k2 be
the index of elements within the corresponding group, pj1 , pj2 are the group size of j1, j2 respectively.

(C2) The Fisher information matrix

I (�) = E

4

⇠

)

)� log f (V ,�)
⇡⇠

)

)� log f (V ,�)
⇡Ò

5

,

is finite and positive definite at� = �<.

(C3) There exists an open set ! of ⌦ that contains the true parameter point �< such that for almost all V the density
f (V,�) admits all third derivatives )

3
f (V,�)

)�j1k1)�j2k2)�j3k3
for all � in ! and any j1, j2, j3 = 1,… , 2p + 1, and

k1 = 1,… , pj1, k2 = 1,… , pj2 and k3 = 1,… , pj3. Furthermore, there exist functions Mj1k1j2k2j3k3
such that
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log f (V,�)
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(V) for all� À !,

and mj1k1j2k2j3k3
= E�< [Mj1k1j2k2j3k3

(V)] <ÿ.
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A.2. Lemma 1 proof
Let ⌘n =

1̆
n
+ an and {�< + ⌘n� : Ò�Ò2 f C} be the ball around�< for � À Rd , where d is the dimension of the

design matrix and C is some constant. Under the regularity assumptions, we show that there exists a local minimizer
ö�n of Qn(�) such that Òö�n * �<Ò2 = Op(

1̆
n
). For this proof, we adopt the approaches outlined in (Fan and Li,

2001; Choi et al., 2010; Nardi et al., 2008; Wang et al., 2007) and extend it to our situation. Let ⌘n = 1̆
n
+ an and

{�< + ⌘n� : Ò�Ò2 f C} be the ball around �< for � = (uÒ1 ,u
Ò

2 , ,… ,uÒ
p+1,u

Ò

p+2,… ,uÒ2p+1)
Ò À Rd , where d is the

dimension of the design matrix and C is some constant. The objective function is given by

Qn(�) = *Ln(�) + n�m

2p+1
…

m=1

Ù

Ù

�m
Ù

Ù2 .

Define

Dn(�) í Qn(�< + ⌘n�) *Qn(�<).

Then for � that satisfies Ò�Ò2 = C , we have

Dn(�) = *Ln(�< + ⌘n�) + Ln(�<) + n
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m
Ò2)
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2
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2
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2
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Inequality (a) is by the fact that
≥

mÃA1
Ò�<

m
Ò2 = 0 and

≥

mÃA2
Ò�<

m
Ò2 = 0. Inequality (b) is due to the reverse triangle

inequality ÒaÒ2 * ÒbÒ2 g *Òa * bÒ2. Inequality (c) is by �m f an f ⌘n for m À A1 and m À A2 . Equality (d) is by
the standard argument on the Taylor expansion of the loss function:

Ln(�< + ⌘n�) = Ln(�< + ⌘n � 0) + ⌘n(Ln(�< + ⌘n � 0)Ò(� * 0)

+ 1
2(� * 0)

Ò(2
Ln(�< + ⌘n � 0)(� * 0){1 + o(1)}

= Ln(�<) + ⌘n(Ln(�<)Ò� + 1
2�

Ò(2
Ln(�<)�⌘2n{1 + o(1)}.

We split (18) into three parts:
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D3 = *n⌘2n(A1 + A2)C .
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Then
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The last equation is by an = o( 1̆
n
) and

OP (n⌘2n) = OP (n(n*1_2 + an)2) = OP (1 + 2n1_2an + na
2
n
))

= OP (1 + n
1_2

an + (n1_2an)2) = OP (1 + n
1_2
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= Op(n1_2(n*1_2 + an)) = Op(n1_2⌘n),

and

D2 =
1
2n⌘

2
n

$

�Ò
⌧

*1
n
(2

Ln

�

�<
�

�

�
%

�

1 + op(1)
�

= 1
2n⌘

2
n

�

�Ò
⌅

I
�

�<
�⇧

�
� �

1 + op(1)
�
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Combining (19) and (20) with (18) gives:

Dn(�) g D1 +D2 +D3

= *OP

�

n⌘
2
n

�

� + Op(n⌘2nÒ�Ò
2
2) * n⌘

2
n
(A1 + A2)C .

We can see that the first term D1 is linear in � and the second term D2 is quadratic in �. We can conclude that for a
large enough constant C = Ò�Ò2, D2 dominates D1 and D3. Note that this is a positive term since I(�) is positive
definite at� = �< by regularity condition (C2). Therefore, for each " > 0, there exists a large enough constant C such
that, for large enough n

P

<

inf
Ò�Ò2=C

Dn (�) > 0
=

g 1 * ".

This implies with probability at least 1 * " that the empirical likelihood Qn has a local minimizer in the ball
{�< + ⌘n� : Ò�Ò2 f C} (since Qn is bounded and {�< + ↵n� : Ò�Ò2 f C} is closed). In other words, there
exists a local solution ö�n such that Òö�n * �<Ò f ⌘nÒ�Ò2 f ⌘nC = OP (⌘n) = OP (

1̆
n
+ an) = Op(

1̆
n
), since

an = o( 1̆
n
). Hence, ÙÙ

Ù

ö�n *�<
Ù

Ù

Ù2
= OP

0

1̆
n

1

.∏
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A.3. Theorem 1 proof
We first consider consistency for the main e�ects P

⇠

ö�
A

c

1
= 0

⇡

ô 1. Following (Fan and Li, 2001; Choi et al.,

2010), it is su�cient to show that for all m À A
c

1, P
⇠

ö�m = 0
⇡

ô 1, which implies that P
⇠

ö�
A

c

1
= 0

⇡

ô 1, i.e., the
˘

n-consistent estimate ö� has oracle property ö�m = 0 if �<
m
= 0. Denote

ö�m = ( Ç�m1,… , Ç�mpm
),

where pm is the group size of ö�m. Let Ç�mk be the k-th entry of ö�m. Note that if ö�m ë 0, then Ç�mk ë 0 for k = 1,… , pm,
then penalty function Òö�mÒ2 becomes di�erentiable. Therefore�mk for k = 1,… , pm must satisfy the following normal
equation

)Qn

⇠

ö�n

⇡

)�mk

= *
)Ln

⇠

ö�n

⇡

)�mk

+ n�m

Ç�mk

Ò

ö�mÒ2

= *
)Ln

�

�<
�

)�mk

*
2p+1
…

j1=1

pj1
…

k1=1

)
2
Ln

�

�<
�

)�mk)�j1k1

⇠

Ç�j1k1
* �

<
j1k1

⇡

* 1
2

2p+1
…

j1=1

pj1
…

k1=1

2p+1
…

j2=1

pj2
…

k2=1

)
3
Ln(õ�)

)�mk)�j1k1
)�j2k2

⇠

Ç�j1k1
* �

<
j1k1

⇡⇠

Ç�j2k2
* �

<
j2k2

⇡

+ n�m

Ç�mk

Ò

ö�mÒ2
ç I1 + I2 + I3 + I4 = 0,

where õ� lies between ö�n and �<. By the regularity conditions and Lemma (1) that ÙÙ
Ù

ö�n *�<
Ù

Ù

Ù2
= OP

0

1̆
n

1

, the

first term is of the order Op(
˘

n)

I1 = *
)Ln

⇠

ö�n

⇡

)�mk

= *
˘

n

˘

n
1
n

)Ln

⇠

ö�n

⇡

)�mk

=
˘

nOp(1) = Op(
˘

n).

Then the second is of the order OP

0

1̆
n

1

and the third term is of the order OP

⇠

1
n

⇡

. Hence

)Qn

⇠

ö�n

⇡

)�m

=
˘

n

T

Op(1) +
˘

n�m

Ç�mk

Ò

ö�mÒ2

U

. (21)

As
˘

n�m g

˘

nbn ô ÿ for m À A
c

1 from the assumption, therefore we know that I4 dominates I1, I2 and I3 in (21)
with probability tending to one. This means that (21) cannot be true as long as the sample size is su�ciently large. As
a result, we can conclude that with probability tending to one, the estimate ö�m = ( Ç�m1,… , Ç�mpm

) must be in a position

where ö�m is not di�erentiable. Hence ö�m = 0 for all m À A
c

1. Hence P

⇠

ö�
A

c

1
= 0

⇡

ô 1. This completes the proof.

Next, we prove that for the interactions P
⇠

ö�
A

c

2
= 0

⇡

ô 1. For m À A
c

2 s.t. �<
m
= �

<
jE

= 0 but �E ë 0 and ✓<
j
ë

0 (1 f j f p), we can prove P

⇠

ö�
A

c

2
= 0

⇡

ô 1 by a similar reasoning, which further implies that P (Ç�jE = 0) ô 0.
For m À A

c

2 such that �<
m
= �

<
jE

= 0 and either �E = 0 or ✓<
j
= 0 (1 f j f p): without loss of generality, assume

that ✓<
j
= 0. Notice that Ç✓j = 0 implies Ç�jE = 0, since if Ç�jE ë 0, the value of the loss function does not change

but the value of the penalty function will increase. Because we already prove P

⇠

ö�
A

c

1
= 0

⇡

ô 1, therefore we get

P

⇠

ö�
A

c

2
= 0

⇡

ô 1 as well for this case. ∏
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A.4. Theorem 2 proof
By Lemma 1 and Theorem 1, there exists a ö�

A
that is a

˘

n-consistent local minimizer of Q(�
A
), therefore

Ù

Ù

Ù

ö�
A
*�<

A

Ù

Ù

Ù2
= OP

0

1̆
n

1

and P

⇠

ö�
Ac = 0

⇡

ô 1. Thus satisfies (with probability tending to 1):

)Qn

�

�
A

�

)�m

Û

Û

Û

Û

Û�=
`

r

r

p

ö�
A

0
a

s

s

q

= 0, ≈m À A, (22)

that is

)Qn

�

�
A

�

)�m

Û

Û

Û

Û

Û�A=ö�A

= 0, ≈m À A, (23)

where

Qn(�A
) = *Ln(�A

) + n

…

mÀA1

�m
Ù

Ù

�m
Ù

Ù2 + n

…

mÀA2

�m
Ù

Ù

�m
Ù

Ù2

≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

çnP (�A)

= *Ln(�A
) + nP (�

A
). (24)

From (23) and (24) we have

(
A
Qn

⇠

ö�
A

⇡

= *(
A
Ln

⇠

ö�
A

⇡

+ n(
A
P

⇠

ö�
A

⇡

= 0, (25)

with probability tending to 1.
Denote ⌃ = diag{op(1),… , op(1)}. We then expand *(

A
Ln

�

�
A

�

at�
A
= �<

A
in (25):

*(
A
Ln

⇠

ö�
A

⇡

= *(
A
Ln

�

�<
A

�

*
⌅

(2
A
Ln

�

�<
A

�

+ ⌃
⇧

⇠

ö�
A
*�<

A

⇡

=
˘

n

L

* 1̆
n

(
A
Ln

�

�<
A

�

+
⇠

*1
n
(2
A
Ln

�

�<
A

�

* ⌃
⇡

˘

n

⇠

ö�
A
*�<

A

⇡

M

=
˘

n

L

* 1̆
n

(
A
Ln

�

�<
A

�

+
�

I
�

�<
A

�

* ⌃
�

˘

n

⇠

ö�
A
*�<

A

⇡

M

.

The third line follows by

1
n
(2
A
Ln

�

�<
A

�

= E
�

(2
A
L
�

�<
A

��

+ ⌃ = *I
�

�<
A

�

+ ⌃.

Denote

b = (�msgn
�

�
<
m

�

, �m

✓<
m

Ò✓<
m
Ò2

Ò

, �m sgn(�<
mE

))Ò, m À A.

We also expand n(
A
P
�

�
A

�

at�
A
= �<

A
in (25):

n(
A
P

⇠

ö�
A

⇡

= n

⌧

b + ⌃
⇠

ö�
A
*�<

A

⇡�

.

Due to the fact that
˘

n�m f

˘

nan ô 0 for m À A and
✓
<
mk

Ò✓<
m
Ò2

f 1 for any 1 f k f pm, we know that
˘

nb = (op(1),… , op(1))Ò. Thus,

(
A
Qn

⇠

ö�
A

⇡

=
˘

n

L

* 1̆
n

(
A
Ln

�

�<
A

�

+
�

I
�

�<
A

�

+ ⌃
�

˘

n

⇠

ö�
A
*�<

A

⇡

M
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+
˘

n

⌧

˘

nb + ⌃
˘

n

⇠

ö�
A
*�<

A

⇡�

=
˘

n

L

* 1̆
n

(
A
Ln

�

�<
A

�

+
˘

nb +
�

I
�

�<
A

�

+ ⌃
�

˘

n

⇠

ö�
A
*�<

A

⇡

M

= 0,

and

�

I
�

�<
A

�

+ ⌃
�

˘

n(ö�
A
*�<

A
) =

˘

n
1
n

n
…

i=1
(
A
log f

�

V i,�<A
�

+ op(1).

Therefore, by the central limit theorem, we know that

˘

n

L

1
n

n
…

i=1
(
A
log f (Vi,�<A)

M

ô N(0, I(�<
A
)).

Hence,
˘

n

⇠

ö�
A
*�<

A

⇡

d

ô N
�

0, I*1
�

�<
A

��

.

∏

B. Algorithm Details
In this section we provide more specific details about the algorithms used to solve the sail objective function. We

assume that Y ,  j , XE and XE˝ j have been centered by their sample means Y ,  j , XE , and XE˝ j , respectively.
Here,  j À Rmj and XE˝ j À Rmj represent the column means of  j and XE˝ j , respectively. Since the intercept
(�0) is not penalized and all variables have been centered, we can omit it from the loss function and compute it once
the algorithm has converged for all other parameters. The strong heredity sail model with least-squares loss has the
form

ÇY =
p
…

j=1
 j✓j + �EXE +

p
…

j=1
�j�E(XE˝ j)✓j , (26)

and the objective function is given by

Q(�) = 1
2n

Ù

Ù

Ù

Y * ÇY
Ù

Ù

Ù

2

2
+ �(1 * ↵)

H

wE
Û

Û

�E
Û

Û

+
p
…

j=1
wj

Ù

Ù

Ù

✓j
Ù

Ù

Ù2

I

+ �↵

p
…

j=1
wjE

Û

Û

Û

�j
Û

Û

Û

. (27)

Solving (27) in a blockwise manner allows us to leverage computationally fast algorithms for l1 and l2 norm
penalized regression. Denote the n-dimensional residual column vector R = Y * ÇY . The subgradient equations are
given by

)Q

)�E

= *1
n

H

XE +
p
…

j=1
�j(XE˝ j)✓j

IÒ

R + �(1 * ↵)wEs1 = 0 (28)

)Q

)✓j
= *1

n

�

 j + �j�E(XE˝ j)
�Ò

R + �(1 * ↵)wjs2 = 0 (29)

and

)Q

)�j

= *1
n

�

�E(XE˝ j)✓j
�Ò

R + �↵wjEs3 = 0, (30)
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where s1 is in the subgradient of the l1 norm:

s1 À
T

sign
�

�E

�

if �E ë 0
[*1, 1] if �E = 0,

s2 is in the subgradient of the l2 norm:

s2 À
h

n

l

n

j

✓j
Ù

Ù

Ù

✓j
Ù

Ù

Ù2

if ✓j ë 0

u À Rmj : ÒuÒ2 f 1 if ✓j = 0,

and s3 is in the subgradient of the l1 norm:

s3 À
T

sign
�

�j

�

if �j ë 0
[*1, 1] if �j = 0.

Define the partial residuals, without the jth predictor for j = 1,… , p, as

R(*j) = Y *
…

lëj

 l✓l * �EXE *
…

lëj

�l�E(XE˝ l)✓l ,

the partial residual without XE as

R(*E) = Y *
p
…

j=1
 j✓j ,

and the partial residual without the jth interaction for j = 1,… , p, as

R(*jE) = Y *
p
…

j=1
 j✓j * �EXE *

…

lëj

�l�E(XE˝ l)✓l .

From the subgradient equations (28)–(30) we see that

Ç�E =
S

0

1
n�wE

⇠

XE +≥p

j=1 Ç�j(XE˝ j) Ç✓j
⇡Ò

R(*E), �(1 * ↵)
1

⇠

XE +≥p

j=1 Ç�j(XE˝ j) Ç✓j
⇡Ò ⇠

XE +≥p

j=1 Ç�j(XE˝ j) Ç✓j
⇡

(31)

�(1 * ↵)wj

✓j
Ù

Ù

Ù

✓j
Ù

Ù

Ù2

= 1
n

�

 j + �j�E(XE˝ j)
�Ò

R(*j) (32)

Ç�j =
S

0

1
n�wjE

�

�E(XE˝ j)✓j
�Ò

R(*jE), �↵

1

�

�E(XE˝ j)✓j
�Ò �

�E(XE˝ j)✓j
�

, (33)

where S(x, t) = sign(x)(x* t) is the soft-thresholding operator. Given these estimates, the intercept can be computed
using the following equation:

Ç�0 = Y *
p
…

j=1
 j

Ç✓j * Ç�EXE *
p
…

j=1
Ç�j
Ç�E(XE˝ j) Ç✓j . (34)

We see from (31) that there is a closed form solution for �E . From (33), each �j also has a closed form solution and
can be solved e�ciently for j = 1,… , p using a coordinate descent procedure (Friedman et al., 2010). Since there
is no closed form solution for �j , we use a quadratic majorization technique (Yang and Zou, 2015) to solve (32).
Furthermore, we update each ✓j in a coordinate wise fashion and leverage this to implement further computational
speedups which are detailed in Supplemental Section B.2. From these estimates, we compute the interaction e�ects
using the reparametrizations presented in Table 1, e.g., Ç⌧j = Ç�j

Ç�E
Ç✓j , j = 1,… , p for the strong heredity sail model.
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B.1. Least-Squares sail with Strong Heredity
A more detailed algorithm for fitting the least-squares sail model with strong heredity is given in Algorithm 3.

Algorithm 3 Blockwise Coordinate Descent for Least-Squares sail with Strong Heredity
1: function sail(X, Y ,X

E
, basis, �, ↵,w

j
,w

E
,w

jE
, ✏) . Algorithm for solving (27)

2:  
j
} basis(X

j
), õ 

j
} X

E
˝ 

j
for j = 1,… , p

3: Center all variables by their sample means
4: Initialize: �(0)

E
= ✓(0)

j
= �

(0)
j

} 0 for j = 1,… , p.
5: Set iteration counter k } 0
6: R

< } Y * �
(k)
E
X

E
*≥

j
( 

j
+ �

(k)
j
�
(k)
E

õ 
j
)✓(k)

j

7: repeat
8: ÷ To update � = (�1,… , �

p
)

9: õX
j
} �

(k)
E

õ 
j
✓(k)
j

for j = 1,… , p

10: R } R
< +≥p

j=1 �
(k)
j

õX
j

11:

�(k)(new) } argmin
�

1
2n

Ù

Ù

Ù

Ù

Ù

Ù

R *
…

j

�
j
õX
j

Ù

Ù

Ù

Ù

Ù

Ù

2

2

+ �↵

…

j

w
jE

Û

Û

Û

�
j

Û

Û

Û

12: � = ≥

j
(� (k)

j
* �

(k)(new)
j

) õX
j

13: R
< } R

< + �
14: ÷ To update ✓ = (✓1,… ,✓

p
)

15: õX
j
}  

j
+ �

(k)
j
�
(k)
E

õ 
j

for j = 1,… , p

16: for j = 1,… , p do
17: R } R

< + õX
j
✓(k)
j

18:

✓(k)(new)
j

} argmin
✓j

1
2n

Ù

Ù

Ù

R * õX
j
✓
j

Ù

Ù

Ù

2

2
+ �(1 * ↵)w

j

Ù

Ù

Ù

✓
j

Ù

Ù

Ù2

19: � = õX
j
(✓(k)

j
* ✓(k)(new)

j
)

20: R
< } R

< + �
21: ÷ To update �

E

22: õX
E
} X

E
+≥

j
�
(k)
j

õ 
j
✓(k)
j

23: R } R
< + �

(k)
E

õX
E

24:

�
(k)(new)
E

}
1

õX
Ò

E

õX
E

S

0

1
n �w

E

õX
Ò

E
R, �(1 * ↵)

1

. S(x, t) = sign(x)(x * t)+
25: � = (�(k)

E
* �

(k)(new)
E

) õX
E

26: R
< } R

< + �
27: k } k + 1
28:
29: until convergence criterion is satisfied: ÛÛ

Û

Q(�(k*1)) *Q(�(k))ÛÛ
Û

_Q(�(k*1)) < ✏

30: Compute the intercept �0
31: �0 } Y *≥p

j=1 j
Ç✓
j
* Ç�

E
X

E
*≥p

j=1 Ç�j
Ç�
E
(X

E
˝ 

j
) Ç✓

j
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B.2. Details on Update for ✓
Here we discuss a computational speedup in the updates for the ✓ parameter. The partial residual (Rs) used for

updating ✓s (s À 1,… , p) at the kth iteration is given by

Rs = Y * õY
(k)
(*s), (35)

where õY
(k)
(*s) is the fitted value at the kth iteration excluding the contribution from  s:

õY
(k)
(*s) = �

(k)
E

XE +
…

lës

 l✓
(k)
l +

…

lës

�
(k)
l �

(k)
E

õ l✓
(k)
l . (36)

Using (36), (35) can be re-written as

Rs = Y * �
(k)
E

XE *
p
…

j=1
( j + �

(k)
j

�
(k)
E

õ j)✓
(k)
j

+ ( s + �
(k)
s

�
(k)
E

õ s)✓(k)s

= R
< + ( s + �

(k)
s

�
(k)
E

õ s)✓(k)s
, (37)

where

R
< = Y * �

(k)
E

XE *
p
…

j=1
( j + �

(k)
j

�
(k)
E

õ j)✓
(k)
j
. (38)

Denote ✓(k)(new)
s

the solution for predictor s at the kth iteration, given by:

✓(k)(new)
s

= argmin
✓j

1
2n

Ù

Ù

Ù

Rs * ( s + �
(k)
s

�
(k)
E

õ s)✓j
Ù

Ù

Ù

2

2
+ �(1 * ↵)ws

Ù

Ù

Ù

✓j
Ù

Ù

Ù2
. (39)

Now we want to update the parameters for the next predictor ✓s+1 (s + 1 À 1,… , p) at the kth iteration. The partial
residual used to update ✓s+1 is given by

Rs+1 = R
< + ( s+1 + �

(k)
s+1�

(k)
E

õ s+1)✓
(k)
s+1 + ( s + �

(k)
s

�
(k)
E

õ s)(✓(k)s
* ✓(k)(new)

s
), (40)

where R
< is given by (38), ✓(k)

s
is the parameter value prior to the update, and ✓(k)(new)

s
is the updated value given

by (39). Taking the di�erence between (37) and (40) gives

� = Rt * Rs

= ( t + �
(k)
t

�
(k)
E

õ t)✓
(k)
t

+ ( s + �
(k)
s

�
(k)
E

õ s)(✓(k)s
* ✓(k)(new)

s
) * ( s + �

(k)
s

�
(k)
E

õ s)✓(k)s

= ( t + �
(k)
t

�
(k)
E

õ t)✓
(k)
t
* ( s + �

(k)
s

�
(k)
E

õ s)✓(k)(new)
s

. (41)

Therefore Rt = Rs + �, and the partial residual for updating the next predictor can be computed by updating the
previous partial residual by �, given by (41). This formulation can lead to computational speedups especially when
� = 0, meaning the partial residual does not need to be re-calculated.

B.3. Maximum penalty parameter (�
max

) for strong heredity
The subgradient equations (28)–(30) can be used to determine the largest value of � such that all coe�cients are

0. From the subgradient Equation (28), we see that �E = 0 is a solution if

1
wE

Û

Û

Û

Û

Û

Û

1
n

H

XE +
p
…

j=1
�j(XE˝ j)✓j

IÒ

R(*E)

Û

Û

Û

Û

Û

Û

f �(1 * ↵). (42)

From the subgradient Equation (29), we see that ✓j = 0 is a solution if

1
wj

Ù

Ù

Ù

Ù

1
n

�

 j + �j�E(XE˝ j)
�Ò

R(*j)
Ù

Ù

Ù

Ù2
f �(1 * ↵). (43)

Sahir R Bhatnagar et al.: Preprint submitted to Elsevier Page 28 of 38



A Sparse Additive Model for High-Dimensional Interactions with an Exposure Variable

From the subgradient Equation (30), we see that �j = 0 is a solution if

1
wjE

Û

Û

Û

Û

1
n

�

�E(XE˝ j)✓j
�Ò

R(*jE)
Û

Û

Û

Û

f �↵. (44)

Due to the strong heredity property, the parameter vector (�E ,✓1,… ,✓p, �1,… , �p) will be entirely equal to 0 if
(�E ,✓1,… ,✓p) = 0. Therefore, the smallest value of � for which the entire parameter vector (excluding the intercept)
is 0 is:

�max = 1
n(1 * ↵) max

h

n

l

n

j

1
wE

H

XE +
p
…

j=1
�j(XE˝ j)✓j

IÒ

R(*E),

max
j

1
wj

Ù

Ù

Ù

�

 j + �j�E(XE˝ j)
�Ò

R(*j)
Ù

Ù

Ù2

=

, (45)

which reduces to

�max = 1
n(1 * ↵) max

<

1
wE

�

XE

�Ò
R(*E),max

j

1
wj

Ù

Ù

Ù

�

 j

�Ò
R(*j)

Ù

Ù

Ù2

=

.

B.4. Least-Squares sail with Weak Heredity
We assume the same centering constraints as in Section B.1. The least-squares sail model with weak heredity has

the form

ÇY =
p
…

j=1
 j✓j + �EXE +

p
…

j=1
�j(XE˝ j)(�E � 1mj

+ ✓j). (46)

The objective function is given by

Q(�) = 1
2n

Ù

Ù

Ù

Y * ÇY
Ù

Ù

Ù

2

2
+ �(1 * ↵)

H

wE
Û

Û

�E
Û

Û

+
p
…

j=1
wj

Ù

Ù

Ù

✓j
Ù

Ù

Ù2

I

+ �↵

p
…

j=1
wjE

Û

Û

Û

�j
Û

Û

Û

. (47)

Denote the n-dimensional residual column vector R = Y * ÇY . The subgradient equations are given by

)Q

)�E

= *1
n

H

XE +
p
…

j=1
�j(XE˝ j)1mj

IÒ

R + �(1 * ↵)wEs1 = 0 (48)

)Q

)✓j
= *1

n

�

 j + �j(XE˝ j)
�Ò

R + �(1 * ↵)wjs2 = 0 (49)

)Q

)�j

= *1
n

⇠

(XE˝ j)(�E � 1mj
+ ✓j)

⇡Ò

R + �↵wjEs3 = 0, (50)

where s1 is in the subgradient of the l1 norm:

s1 À
T

sign
�

�E

�

if �E ë 0
[*1, 1] if �E = 0,

s2 is in the subgradient of the l2 norm:

s2 À
h

n

l

n

j

✓j
Ù

Ù

Ù

✓j
Ù

Ù

Ù2

if ✓j ë 0

u À Rmj : ÒuÒ2 f 1 if ✓j = 0,
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and s3 is in the subgradient of the l1 norm:

s3 À
T

sign
�

�j

�

if �j ë 0
[*1, 1] if �j = 0.

Define the partial residuals, without the jth predictor for j = 1,… , p, as

R(*j) = Y *
…

lëj

 l✓l * �EXE *
…

lëj

�l(XE˝ l)(�E � 1ml
+ ✓l),

the partial residual without XE as

R(*E) = Y *
p
…

j=1
 j✓j *

p
…

j=1
�j(XE˝ j)✓j ,

and the partial residual without the jth interaction for j = 1,… , p

R(*jE) = Y *
p
…

j=1
 j✓j * �EXE *

…

lëj

�l(XE˝ l)(�E � 1ml
+ ✓l).

From the subgradient Equation (48), we see that �E = 0 is a solution if

1
wE

Û

Û
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1
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XE +
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…

j=1
�j(XE˝ j)1mj
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Û

Û

f �(1 * ↵) (51)

From the subgradient Equation (49), we see that ✓j = 0 is a solution if

1
wj

Ù
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Ù

Ù

1
n

�

 j + �j(XE˝ j)
�Ò

R(*j)
Ù

Ù

Ù

Ù2
f �(1 * ↵). (52)

From the subgradient Equation (50), we see that �j = 0 is a solution if

1
wjE

Û

Û

Û

Û

1
n

⇠

(XE˝ j)(�E � 1mj
+ ✓j)
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R(*jE)
Û

Û

Û

Û

f �↵. (53)

From the subgradient equations we see that

Ç�E =
S

0

1
n�wE

⇠

XE +≥p

j=1 Ç�j(XE˝ j)1mj

⇡Ò

R(*E), �(1 * ↵)
1

⇠

XE +≥p

j=1 Ç�j(XE˝ j)1mj

⇡Ò ⇠

XE +≥p

j=1 Ç�j(XE˝ j)1mj

⇡

(54)

�(1 * ↵)wj

✓j
Ù

Ù

Ù

✓j
Ù

Ù

Ù2

= 1
n

�

 j + �j(XE˝ j)
�Ò

R(*j) (55)

Ç�j =
S

0

1
n�wjE

⇠

(XE˝ j)(�E � 1mj
+ ✓j)

⇡Ò

R(*jE), �↵

1

⇠

(XE˝ j)(�E � 1mj
+ ✓j)

⇡Ò ⇠

(XE˝ j)(�E � 1mj
+ ✓j)

⇡

, (56)

where S(x, t) = sign(x)(x * t) is the soft-thresholding operator. As was the case in the strong heredity sail model,
there is a closed form solution for �E , each �j also has a closed form solution and can be solved e�ciently for
j = 1,… , p using the coordinate descent procedure implemented in the glmnet package (Friedman et al., 2010),
while we use the quadratic majorization technique implemented in the gglasso package (Yang and Zou, 2015) to
solve (55). Algorithm 4 details the procedure used to fit the least-squares weak heredity sail model.
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Algorithm 4 Coordinate descent for least-squares sail with weak heredity
1: function sail(X, Y ,X

E
, basis, �, ↵,w

j
,w

E
,w

jE
, ✏) . Algorithm for solving (47)

2:  
j
} basis(X

j
), õ 

j
} X

E
˝ 

j
for j = 1,… , p

3: Center all variables by their sample means
4: Initialize: �(0)

E
= ✓(0)

j
= �

(0)
j

} 0 for j = 1,… , p.
5: Set iteration counter k } 0
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j
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B.4.1. Maximum penalty parameter (�
max

) for weak heredity
The smallest value of � for which the entire parameter vector (�E ,✓1,… ,✓p, �1,… , �p) is 0 is:

�max = 1
n
max

h

n

l

n

j

1
(1 * ↵)wE

H

XE +
p
…

j=1
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IÒ

R(*E),
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max
j

1
(1 * ↵)wj
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 j + �j(XE˝ j)
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R(*j)
Ù

Ù

Ù2
,
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j

1
↵wjE

⇠
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⇡Ò
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, (57)

which reduces to

�max = 1
n(1 * ↵) max

<

1
wE
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XE
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R(*E),max

j

1
wj

Ù

Ù

Ù

�

 j

�Ò
R(*j)

Ù

Ù

Ù2

=

.

This is the same �max as the least-squares strong heredity sail model.

C. Additional Simulation Results
We visually inspected whether our method could correctly capture the shape of the association between the

predictors and the response for both main and interaction e�ects. To do so, we plotted the true and predicted curves
for scenario 1a) only. Figure 5 shows each of the four main e�ects with the estimated curves from each of the 200
simulations along with the true curve. We can see the e�ect of the penalty on the parameters, i.e., decreasing prediction
variance at the cost of increased bias. This is particularly well illustrated in the bottom right panel where sail smooths
out the very wiggly component function f4(x). Nevertheless, the primary shapes are clearly being captured.

To visualize the estimated interaction e�ects, we ordered the 200 simulation runs by the Euclidean distance between
the estimated and true regression functions. Following Radchenko and James 2010, we then identified the 25th, 50th,
and 75th best simulations and plotted, in Figures 6 and 7, the interaction e�ects of XE with f3(X3) and f4(X4),
respectively. We see that sail does a good job at capturing the true interaction surface for XE � f3(X3). Again, the
smoothing and shrinkage e�ect is apparent when looking at the interaction surfaces for XE � f4(X4).

In Figure 8 we visualize the variable selection results from 210 replications of the simulation study for strong
hierarchy sail using UpSet plots (Conway et al., 2017). Shown are the selected models and their frequencies. We can
see that the environment variable is always selected across all simulation scenarios and replications.
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Figure 5: True and estimated main effect component functions for scenario 1a). The estimated curves represent the results
from each one of the 200 replications conducted.
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Figure 6: True and estimated interaction effects for X
E
� f3(X3) in simulation scenario 1a).
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Figure 7: True and estimated interaction effects for X
E
� f4(X4) in simulation scenario 1a).
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Figure 8: Variable selection results from 210 replications of the simulation study for strong hierarchy sail visualized using
UpSet plots (Conway et al., 2017). Shown are the selected models and their frequencies. We can see that the environment
variable is always selected across all simulation scenarios and replications.
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D. Additional Results on PRS for Educational Attainment
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Figure 9: Estimated interaction effect identified by the weak heredity sail using cubic B-splines and ↵ = 0.1 for the Nurse
Family Partnership data for the 5 imputed datasets. Of the 189 subjects, 19 IQ scores were imputed using mice (Buuren
and Groothuis-Oudshoorn, 2010). The selected model, chosen via 10-fold cross-validation, contained three variables: the
main effects for the intervention and the PRS for educational attainment using genetic variants significant at the 0.0001
level, as well as their interaction.
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Figure 10: Coefficient estimates obtained by the weak heredity sail using cubic B-splines and ↵ = 0.1 for the Nurse Family
Partnership data for the 5 imputed datasets. Of the 189 subjects, 19 IQ scores were imputed using mice (Buuren and
Groothuis-Oudshoorn, 2010). The selected model, chosen via 10-fold cross-validation, contained three variables: the main
effects for the intervention and the PRS for educational attainment using genetic variants significant at the 0.0001 level,
as well as their interaction. This results was consistent across all 5 imputed datasets. The white boxes indicate a coefficient
estimate of 0.

E. Data Availability and Code to Reproduce Results
The R scripts used to simulate the data for the simulation studies in Section 4 are provided along with the code for

each of the methods being compared. The data used for the two real data analyses in Section 5 are publicly available. The
first dataset from the Nurse Family Partnership program is provided by one of the authors of the manuscript (David
Olds). The second dataset from the Study to Understand Prognoses Preferences Outcomes and Risks of Treatment
(SUPPORT) is publicly available from the Vanderbilt University Department of Biostatistics website.

E.1. Datasets
The datasets are available at https://github.com/sahirbhatnagar/sail/tree/master/manuscript/

raw_data

1. Nurse Family Partnership program data consists of three files. They are merged together using the script
https://github.com/sahirbhatnagar/sail/blob/master/manuscript/bin/PRS_bootstrap.R

• Gen_3PC_scores.txt
• IQ_and_mental_development_variables_for_Sahir_with_study_ID.txt
• NFP_170614_INFO08_nodup_hard09_noambi_GWAS_EduYears_Pooled_beta_withaf_5000pruned_noambi_16Jan2018.score

2. The SUPPORT data consists of a single file:
• https://github.com/sahirbhatnagar/sail/blob/master/manuscript/raw_data/support2.

csv
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All datasets are in .txt format. Code used to read in the datasets are provided in the section below. All output
from this project published online is available according to the conditions of the Creative Commons License (https:
//creativecommons.org/licenses/by-nc-sa/2.0/)

E.2. Code
The software which implements our algorithm is available in an R package published on CRAN (https://cran.

r-project.org/package=sail) version 0.1.0 with MIT license. The paper itself is written in knitr format, and
therefore includes both the code and text in the same .Rnw file.

The scripts and data used to produce the results in the manuscript are available at https://github.com/
sahirbhatnagar/sail/tree/master/manuscript.

The knitr file which contains both the main text and code is available at: https://github.com/sahirbhatnagar/
sail/blob/master/manuscript/source/sail_manuscript_v2.Rnw

The manuscript was compiled using R version 3.6.1 with knitr version 1.25.
The bootstrap analysis was run in parallel on a compute cluster with 40 cores. Though this is not necessary to

reproduce the results, it definitely speeds up the computation time.

E.2.1. Instructions for Use
All tables and figures from the paper can be reproduced by compiling the knitr file. The easiest way to reproduce

the results is to download the GitHub repository and compile the knitr file from within an R session as follows:

1. Download the GitHub repository https://github.com/sahirbhatnagar/sail/archive/master.zip

2. From within an R session, run the command: knitr::knit2pdf(’sail_manuscript_v2.Rnw’)

Note that to speed up compilation time, we have saved the simulation and bootstrap results in .RData files available
at https://github.com/sahirbhatnagar/sail/tree/master/manuscript/results. These .RData files are
called directly by the knitr file.

Note also that the R scripts used to generate the results are called from the knitr file using the ‘code externalization’
functionality of knitr (https://yihui.org/knitr/demo/externalization/). That is, the actual R code is stored
in R scripts and not within the knitr file. These R scripts are available at https://github.com/sahirbhatnagar/
sail/tree/master/manuscript/bin.

The expected run time to compile the manuscript is about 5 minutes on a standard desktop machine, assuming that
you are using the pre-run simulation and bootstrap results.

E.2.2. R Package Vignette
A website with two vignettes has been created for our sail package available at https://sahirbhatnagar.com/

sail/

The 2 vignettes are:

1. https://sahirbhatnagar.com/sail/articles/introduction-to-sail.html

2. https://sahirbhatnagar.com/sail/articles/user-defined-design.html
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