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SUMMARY
The envelope model allows efficient estimation in multivariate linear regression. In this paper,

we propose the sparse envelope model, which is motivated by applications where some response
variables are invariant with respect to changes of the predictors and have zero regression coef-
ficients. The envelope estimator is consistent but not sparse, and in many situations it is impor-
tant to identify the response variables for which the regression coefficients are zero. The sparse
envelope model performs variable selection on the responses and preserves the efficiency gains
offered by the envelope model. Response variable selection arises naturally in many applications,
but has not been studied as thoroughly as predictor variable selection. In this paper, we discuss
response variable selection in both the standard multivariate linear regression and the envelope
contexts. In response variable selection, even if a response has zero coefficients, it should still be
retained to improve the estimation efficiency of the nonzero coefficients. This is different from
the practice in predictor variable selection. We establish consistency and the oracle property and
obtain the asymptotic distribution of the sparse envelope estimator.

Some key words: Canonical correlation; Dimension reduction; Envelope model; Grassmann manifold; Oracle property.

1. INTRODUCTION
1·1. Background

Throughout the paper, we consider multivariate linear regression

Y = α + β(X − µX ) + ε, (1)

where Y ∈Rr is a multivariate response vector and X ∈Rp denotes the vector of random predic-
tors with mean µX ∈Rp and covariance matrix $X ∈Rp×p. The error vector ε ∈Rr has mean
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zero and positive-definite covariance matrix $ ∈Rr×r , and is independent of the predictor vector
X . The intercept α ∈Rr and regression coefficients β ∈Rr×p are unknown parameters.

The standard approach estimates each row of β separately by regressing the corresponding
element of Y on X , and relationships among the elements of Y are not used. The envelope model
(Cook et al., 2010) makes use of the stochastic relationships among the elements of Y , and identi-
fies a part of the response that is immaterial to changes in X . Excluding this immaterial part in the
estimation of β leads to gains in efficiency. Building on the development in Cook et al. (2010),
several papers have applied the idea of enveloping to more general contexts, and have proposed
new models to achieve even greater gains in efficiency; see, e.g., Su & Cook (2011), Cook & Su
(2013), and Cook & Zhang (2015). Moreover, a connection between the envelope model and par-
tial least squares that has allowed for a new understanding of the working mechanism of partial
least squares was established by Cook et al. (2013).

Compared to predictor variable selection, the literature on response variable selection is lim-
ited. Response variable selection is motivated by applications in which some response variables
do not depend on any of the predictors and have zero regression coefficients. For example, the
expression levels for some genes of the fission yeast Schizosaccharomyces pombe show little
variation in a cell cycle, while the expression levels for other genes have large variation; see
§ 3·2. Finding inactive response variables can lead to more interpretable results and also improve
estimation efficiency; see § 2·5. The standard procedure for identifying inactive responses is
to evaluate, for i = 1, . . . , r , whether Yi depends on X via the F test, adjusting for multiple
testing (see, e.g., Benjamini & Yekutieli 2001). However, since the relationship between the
response variables is not used, this procedure is not efficient, as is demonstrated in the simulations
in § 3·1.

In this paper, we develop a sparse envelope model that performs response variable selection
efficiently under the envelope model. We also discuss issues in response variable selection, espe-
cially how to use the inactive responses to improve estimation efficiency for nonzero regression
coefficients. Our theoretical discussion addresses both large-sample and high-dimensional sce-
narios. Throughout the paper, we assume that the number of predictors p is fixed and smaller
than the sample size n. If p is large, we can apply a standard approach such as the lasso to reduce
p before applying our method.

We use PA to indicate the projection matrix onto A or span(A) if A is a subspace or a matrix,
and let Q A = I − PA. The symbol∼stands for equality in distribution. If V1 and V2 are random
variables, V1 ⊥⊥ V2 indicates that they are independent. The L2-norm of a vector v is denoted by
∥v∥2. For a matrix M , we use ∥M∥ for its spectral norm and ∥M∥F for its Frobenius norm. The
operator vec stacks a matrix into a vector columnwise. The Kronecker product for matrices A
and B is indicated by A ⊗ B. A notation table is provided in the Supplementary Material.

1·2. Envelopes

Let (%, %0) ∈Rr×r be an orthogonal matrix. Then Y can be decomposed into two parts,
P%Y and Q%Y . We assume that these satisfy the conditions (i) Q%Y | X∼Q%Y and
(ii) cov(P%Y, Q%Y | X) = 0. Condition (i) implies that the distribution of Q%Y does not depend
on X . So Q%Y does not carry any information about β. Condition (ii) implies that Q%Y does not
carry any information about β through its conditional correlation with P%Y . Together these con-
ditions imply that Q%Y does not carry any information about β directly or indirectly, and there-
fore Q%Y is immaterial to the regression. Thus we call P%Y and Q%Y the material part and imma-
terial part, respectively. Cook et al. (2010) showed that (i) and (ii) are equivalent to the following
conditions: (a) B⊆ span(%), where B = span(β), and (b) $ = $1 + $2 = P%$P% + Q%$Q% .
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Sparse envelope model 581

When (b) holds, span(%) is a reducing subspace of $ (Conway, 2013, § 2.3). The $-envelope of
B, denoted by E$(B), is defined as the smallest reducing subspace of $ that contains B (Cook
et al., 2010). Consequently, E$(B) decomposes $ into variation related to the material and imma-
terial parts of Y : $1 = var(P%Y | X) and $2 = var(Q%Y ). We call (1) an envelope model when
conditions (a) and (b) are imposed. Because β is related only to the material variation, the decom-
position of $ suggests that excluding the immaterial information makes estimation of β more
efficient. In particular, massive efficiency gains can be obtained when ∥$2∥≫ ∥$1∥. Based on
(a) and (b), the coordinate form of the envelope model is

Y = α + %η(X − µX ) + ε, $ = $1 + $2 = %'%T + %0'0%
T
0, (2)

where β = %η, % ∈Rr×u is an orthogonal basis for E$(B), %0 is a completion of %, and u is the
dimension of E$(B). The matrix η ∈Ru×p holds the coordinates of β relative to %, and ' ∈Ru×u

and '0 ∈R(r−u)×(r−u) are positive definite. If u = r , then E$(B) = Rr , which implies that there
is no immaterial information and the envelope model reduces to the standard model.

To estimate the envelope E$(B), Cook et al. (2010) solved the manifold optimization problem

Ê$(B) = arg min
span(%)∈G(r,u)

{log |%T$̂res%| + log |%T$̂−1
Y %|} (3)

where |·| denotes determinant, G(r, u) denotes an r × u Grassmann manifold, which is the set of
all u-dimensional subspaces in an r -dimensional space. The matrix $̂Y is the sample covariance
matrix of Y and $̂res denotes the sample covariance matrix of the residuals from the regression of
Y on X . As the search of E$(B) is on G(r, u), (3) is a Grassmann manifold optimization problem.
The objective function is nonconvex. Tools for solving nonconvex optimization problems on
manifolds, especially when r is large, are quite limited. Cook et al. (2016) addressed this by
converting (3) to a non-Grassmann manifold optimization, which is faster and more reliable in
such cases. Without loss of generality, we assume that %1, the submatrix that consists of the first
u rows of %, is nonsingular. Then

% =
(

%1
%2

)
=
(

Iu
A

)
%1≡G A%1,

where A = %2%
−1
1 . Notice that A depends on % only through span(%): for an orthogonal matrix

O ∈Ru×u , if %∗ = %O , then %∗1 = %1O , %∗2 = %2O , and A∗ = %2O O−1%−1
1 = A. Because A is

unconstrained, (3) can be converted to the non-Grassmann optimization

Â = arg min
A∈R(r−u)×u

{−2 log |GT
AG A| + log |G A$̂resG A| + log |G A$̂−1

Y G A|}. (4)

Cook et al. (2015) developed an effective algorithm and a good starting value for solving (4).
Once we have Â, Ê$(B) = span(Ĝ A), and the envelope estimator of β is β̂env = PÊ β̂ols, where

β̂ols is the ordinary least squares estimator of β and E$(B) is abbreviated as E if it appears in
subscripts. Cook et al. (2010) showed that β̂env is asymptotically at least as efficient as β̂ols.
A more detailed review of envelope models can be found in Cook & Su (2013, § 2).
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2. SPARSE ENVELOPE MODEL
2·1. Response variable selection

In some cases, certain response variables are immaterial to X , i.e., the corresponding rows of
% consist of zeros. We call such response variables inactive. We call a response variable active
if its corresponding row in % is nonzero. Since different orthogonal bases of a subspace have
the same row-wise sparsity pattern, the active and inactive responses are invariant under col-
umn transformation of %. Because β = %η, the regression coefficients of the inactive responses
are zero. However, an active response may also have zero regression coefficients. Proposition 1
characterizes the active responses, and shows their relationship to responses that have nonzero
regression coefficients.

In preparation, we use the covariance graph model (Cox & Wermuth, 1993) to represent the
structure of $. The covariance graph model was recently used in Chen et al. (2012) to construct
a graph-guided fused lasso penalty for predictor variable selection. Let G = (V, E) be an undi-
rected graph with vertices V = {1, . . . , r} and an edge set E consisting of all pairs (i, j) for which
the (i, j)th element in $ is nonzero. The response variables Yi and Y j are said to be connected
if there is a sequence of edges in the graph connecting vertices i and j .

PROPOSITION 1. If the regression coefficients of an active response are all zero, then the
response must be connected with a response that has nonzero regression coefficients.

Proposition 1 indicates that if an active response has zero regression coefficients, it still offers
information in estimating the nonzero regression coefficients. This is a new feature of response
variable selection. In predictor variable selection, if a predictor has zero regression coefficients,
it offers no information in estimating any nonzero regression coefficients. More discussion on
Proposition 1 is in the Supplementary Material.

In this paper, we are not trying to identify the responses that have zero regression coefficients
and those that have nonzero regression coefficients; rather we are interested in identifying the
active and inactive responses, i.e., whether or not a response contributes to the material part.

2·2. Formulation

We use YA and YI to denote the active and inactive responses. The subscripts A and I are
used if a quantity is associated with the active or inactive responses. Without loss of generality,
let Y = (Y T

A, Y T
I )T, and let q denote the dimension of YA (q ! r ). Thus YA ∈Rq and YI ∈Rr−q .

Then % and %0 should have the structure.

% =
(

%A
0

)
, %0 =

(
%A,0 0

0 Ir−q

)
R ≡ %̃0 R, (5)

where %A ∈Rq×u is a semi-orthogonal matrix, %A,0 ∈Rq×(q−u) is its completion, and R ∈
R(r−u)×(r−u) is an orthogonal matrix. Since %TY = %T

AYA, the inactive responses do not appear
in the material part. Because β = %η, we have β = (βT

A, 0)T, where βA = %Aη ∈Rq×p and the
zero matrix has dimension (r − q)× p. The completion of % has the general form %0 = %̃0 R,
where %̃0 ∈Rr×(r−u) is a completion with a block-diagonal structure, and R represents a rotation
of the orthogonal basis. Because %̃0 ∈Rr×(r−u) has a simple block-diagonal structure, it will be
convenient to use it in some of our later development. From the structure of %̃0, it is easy to
see that the immaterial part %̃T

0Y = ((%T
A,0YA)T, Y T

I )T has two parts, one from the immaterial
information of the active responses %T

A,0YA, and the other from the inactive responses YI .
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Sparse envelope model 583

We call (2) the sparse envelope model if % and %0 have the structures given by (5). We require
u ! q because the dimension of %T

AYA should be at most the dimension of YA. When u = q,
there is no immaterial information in the active responses, and %A = Iq . Therefore, up to an
orthogonal transformation, %TY = YA and %T

0Y = YI , and $ has a block-diagonal structure. If
q = r , there are no inactive responses and all rows in % are nonzero. The sparse envelope model
is then equivalent to the envelope model.

2·3. Response variable selection via penalized likelihood

Since % = G A%1, a row in % is zero if and only if the corresponding row in A is zero. To
induce row-wise sparsity in A, we add a group lasso penalty (Yuan & Lin, 2006) to (4), so that
the optimization problem becomes

Â = arg min
A∈R(r−u)×u

{
−2 log |GT

AG A| + log |GT
A$̂resG A| + log |GT

A$̂−1
Y G A| +

r−u∑

i=1

λi∥ai∥2

}
, (6)

where aT
i denotes the i th row of A and the λi are tuning parameters.

We choose this penalty function for the following reasons. First, it treats each row of % as a
group, so the sparsity is row-wise instead of element-wise. This fits the response variable selec-
tion context: ∥ai∥2 = 0 means the (i + u)th row of % is zero, so the (i + u)th response is inac-
tive. Second, it is invariant under a change of basis. Since A depends on % only through its span,∑r−u

i=1 λi∥ai∥2 is unchanged if a different orthogonal basis of E$(B) is used. Third, the estimator
(6) has the desirable features of

√
n-consistency, asymptotic normality and selection consistency,

and has an optimal estimation rate; see § 2·5. Finally, its numerical performance is substantially
better than the performance of some alternatives, in particular the method that involves applying
F tests to each row of β̂ols, or hard-thresholding the envelope estimator; see § 3·1.

When r tends to infinity with n, we denote r by rn . If rn > n, both $̂Y and $̂res are singular,
which is problematic because the objective function in (6) depends on $̂−1

Y and the optimization
algorithm used to solve (6) requires $̂−1

res ; see § 2·4. We can resolve these issues by obtaining
estimators for $−1

Y and $−1 directly using methods like sparse permutation invariant covariance
estimation (Rothman et al., 2008), lasso penalized D-trace estimation (Zhang & Zou, 2014), or
convex pseudolikelihood-based partial correlation graph estimation (Khare et al., 2015). Among
these methods, sparse permutation invariant covariance estimation is the only one that does not
require a sparsity structure for the target parameter in order to establish the consistency of its
estimator. Cook et al. (2012) used this method to estimate a target parameter which is not nec-
essarily sparse, and their numerical experiments showed that the estimator is very stable. In the
sparse envelope model, $−1

Y and $−1 may not contain zero elements. We then use sparse per-
mutation invariant covariance estimators of $−1

Y and $−1, and denote them by $̂−1
Y,sp and $̂−1

res,sp.

Then $̂Y,sp and $̂res,sp are obtained by taking the inverses of $̂−1
Y,sp and $̂−1

res,sp. Replacing $̂res

and $̂−1
Y by $̂res,sp and $̂−1

Y,sp in (6), the optimization problem is

Â = arg min
A∈R(rn−u)×u

{
−2 log |GT

AG A| + log |GT
A$̂res,spG A| + log |GT

A$̂−1
Y,spG A| +

rn−u∑

i=1

λi∥ai∥2

}
.

(7)

Optimization of (6) and (7) is discussed in § 2·4. After we have Â, an orthogonal basis of
span(Ĝ A) is used to form %̂, and %̂0 is taken as a completion of %̂. The sparse envelope estimators
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of β and $ are
β̂ = P%̂β̂ols, $̂ = P%̂$̂res P%̂ + Q%̂$̂Y Q%̂.

The estimators for the constituent parameters are η̂ = %̂Tβ̂ols, '̂ = %̂T$̂res%̂ and '̂0 = %̂T
0$̂Y %̂0.

The sparse envelope estimators have the same form as the envelope estimators, except that %̂ and
%̂0 have the special structures specified in (5).

2·4. Algorithm

We first discuss the algorithm for solving (6). Since selection of r − u tuning parameters can
be computationally intensive, we use the idea of the adaptive lasso (Zou, 2006) and set λi = λωi ,
where the ωi are adaptive weights. Then the optimization becomes

Â = arg min
A∈R(r−u)×u

{
−2 log |GT

AG A| + log |GT
A$̂resG A| + log |GT

A$̂−1
Y G A| + λ

r−u∑

i=1

ωi∥ai∥2

}
.

(8)

The optimization problem in (8) is nonconvex and the objective function is nondifferentiable
due to the group lasso penalty. Blockwise coordinate descent algorithms have been very suc-
cessful in solving a wide class of group lasso penalized high-dimensional learning problems
(Friedman et al., 2008; Simon et al., 2013; Yang & Zou, 2015). Cook et al. (2015) used a
blockwise coordinate descent algorithm to optimize the envelope objective function (4), and the
method worked well. Here we develop a fast blockwise coordinate descent algorithm for effi-
ciently solving (8). Our algorithm cyclically updates each row of A, such that after each operation
the objective function (8) strictly decreases. Let A−i ∈R(r−u−1)×u be the submatrix of A with
row aT

i removed. Without loss of generality, we consider the case where aT
i is the last row of A.

Form the partitions

G A =
(

Iu
A

)
=
(

G
aT

i

)
, $̂res =

(
U11 U12
U21 U22

)
, $̂−1

Y =
(

V11 V12
V21 V22

)
.

Let L(A) =−2 log |GT
AG A| + log |GT

A$̂resG A| + log |GT
A$̂−1

Y G A|. We can write L(A) in terms
of ai up to a constant while holding all the other rows of A at their current value Ã−i : we have

L(ai | Ã−i ) =−2 log(1 + aT
i B1ai ) + log{1 + (ai + v2)

T B2(ai + v2)}
+ log{1 + (ai + v3)

T B3(ai + v3)} + const, (9)

where v2 = U−1
22 GTU12, v3 = V−1

22 GTV12, B1 = (Iu + AT
−i A−i )

−1, B2 = U22(GTU11G −
U−1

22 GTU12U21G)−1 and B3 = V22(GTV11G − V−1
22 GTV12V21G)−1. Within the blockwise

coordinate descent loops, we need to solve the optimization problem

âi = arg min
ai

L(ai | Ã−i ) + λωi∥ai∥2. (10)

Unfortunately, there is no closed-form solution to (10), so we apply the majorization-
minimization principle (Wu & Lange, 2010; Lange et al., 2000; Hunter & Lange, 2004; Zhou
& Lange, 2010) within the blockwise coordinate descent loop by iteratively minimizing a func-
tion that majorizes the objective function in (9). The majorization function Q(ai ) is equal to
L(ai | Ã−i ) at the current value ãi and lies strictly above L(ai | Ã−i ) when ai |= ãi . Specifically,
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Sparse envelope model 585

the majorization function Q(ai ) has the form

Q(ai ) = L(ãi | Ã−i ) + (ai − ãi )
T dL(ai | Ã−i )

dai

∣∣∣∣∣
ai =ãi

+ 0·5δi (ai − ãi )
T(ai − ãi ),

where

dL(ai | Ã−i )

dai

∣∣∣∣∣
ai =ãi

= −4B1ãi

1 + ãT
i B1ãi

+ 2B2(ãi + v2)

1 + (ãi + v2)T B2(ãi + v2)
+ 2B3(ãi + v3)

1 + (ãi + v3)T B3(ãi + v3)
,

δi = (1 + ε∗){4γmax(B1) + 2γmax(B2) + 2γmax(B3)}, and γmax(·) denotes the largest eigenvalue
of the corresponding matrix. We must have ε∗ > 0 such that Q(ai ) > L(ai | Ã−i ) holds for any
ai |= ãi . In this article we set ε∗ = 10−6. Then instead of minimizing (10) we solve

min
ai

{Q(ai ) + λωi∥ai∥2}. (11)

The solution to (11) has a simple closed-form expression. Algorithm 1 summarizes our blockwise
coordinate descent algorithm. It takes O(u3 + ru) flops to compute δi , and each update of ãi to
ãi,new takes O(u2) flops. The starting value can be taken as the envelope estimator of A, which
is the minimizer of (4).

Algorithm 1. The blockwise coordinate descent algorithm for solving (8).

Initialize Ã
Repeat until convergence of Ã

For i = 1 to i = r − u
δi← (1 + ε∗){4γmax(B1) + 2γmax(B2) + 2γmax(B3)}
Repeat until convergence of ãi

ãi,new←
1
δi

{
δi ãi −

dL(ai | Ã−i )

dai

∣∣∣
ai =ãi

}
⎧
⎪⎪⎨

⎪⎪⎩
1− λωi

∥∥δi ãi−
dL(ai | Ã−i )

dai

∣∣
ai =ãi

∥∥
2

⎫
⎪⎪⎬

⎪⎪⎭
+

ãi← ãi,new

Output Ã

Theorem 1 shows that Algorithm 1 has a descent property and the updates converge to a sta-
tionary point of the objective function in (8); see the Supplementary Material.

THEOREM 1. After updating ãi , if ãi,new |= ãi , the objective function in (10) strictly decreases
after updating the block:

L(ãi,new | Ã−i ) + λωi∥ãi,new∥2 < L(ãi ) + λωi∥ãi∥2.

If the solution stays unchanged after each blockwise coordinate update, i.e., ãi,new = ãi for
all i , then this solution satisfies the Karush–Kuhn–Tucker conditions, and this indicates that
the algorithm has converged to a stationary point.
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We solve the adaptive group lasso problem (8) by applying Algorithm 1 in a two-stage pro-
cedure. In the first stage, we set all ωi to 1 in Algorithm 1 and obtain the group lasso esti-
mator Âstage1. In the second stage, we set weights ωi = ∥âi,stage1∥ν2 and obtain the weighted
group lasso estimator Â. If ∥âi,stage1∥= 0, we exclude ai in the second stage and set âi = 0.
The parameter ν can be selected by crossvalidation. Based on the discussion in Zou (2006),
it is sufficient to choose ν from a small candidate set like {0·5, 1, 2, 4}. To choose the tuning
parameter λ, we use the Bayesian information criterion. For a fixed λ, the criterion is defined
as −2lλ + (qλ − u)u log n, where lλ is the loglikelihood given λ and qλ is the number of active
responses given λ. We choose the λ that minimizes the criterion. This criterion is used in Chen
et al. (2010) and its consistency is proved in Zou & Chen (2012). We use the warm-start trick
of Friedman et al. (2010) to compute the solution paths along a sequence of K values of λ, with
log λ equally spaced between log λmax and log λmin. The solution Â(λk) computed at λk is used as
the initial value for computing the solution for λk+1 in Algorithm 1. An expression for the small-
est λ that yields the null model is given in the Supplementary Material. Since the sparse envelope
estimator is asymptotically equivalent to the maximum likelihood estimator of the oracle enve-
lope model, see § 2·5, we can use likelihood-based procedures such as the Akaike information
criterion, the Bayesian information criterion or likelihood ratio testing to select u. We compare
the performance of these procedures in the Supplementary Material.

Solving (7) follows the same procedure as solving (6). For choosing λ and u we prefer cross-
validation over the Bayesian information criterion and other likelihood-based procedures because
these require the sample size to be at least moderately large in order to give good performance.

2·5. Theoretical properties of the sparse envelope estimator

Theorems 2–4 give results regarding consistency and oracle properties of the sparse envelope
estimator in the large-sample case, i.e., when r is fixed and n tends to infinity. Theorems 5 and 6
address selection consistency and the convergence rate when both rn and n tend to infinity.

If S is a subspace and Ŝ is an estimator of S, we say that Ŝ is a
√

n-consistent estimator
of S if PŜ is a

√
n-consistent estimator of PS . Let λmax,n = max(λ1, . . . , λq−u) and λmin,n =

min(λq−u+1, . . . , λr−u) at sample size n.

THEOREM 2. Assume that the sparse envelope model (2) and (5) holds, the errors ε are inde-
pendent and have finite fourth moment, and n1/2λmax,n→ 0 as n tends to infinity. Then there
exists a local minimizer Â of (6), such that P%̂ is a

√
n-consistent estimator of P% and β̂ is a√

n-consistent estimator of β.

Theorem 2 implies that although the objective function for the sparse envelope estimator is
based on a normal likelihood, normality is not required to establish

√
n-consistency of Ê$(B) and

β̂. Theorem 3 concerns selection consistency and states that the sparse envelope model identifies
the inactive responses with probability tending to 1.

THEOREM 3. Assume that the conditions in Theorem 2 hold, and that n1/2λmin,n→∞. Then
pr(âi = 0)→ 1 for i = q − u + 1, . . . , r − u.

An oracle estimator must consistently select the active responses and estimate them with an
optimal rate. While the oracle property is well studied in predictor variable selection (Fan & Li,
2001; Zou, 2006), it has not been studied in response variable selection. Therefore we first discuss
how to define the oracle model for response variable selection under the standard model (1) and
then define the oracle envelope model.
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Sparse envelope model 587

Because the definitions of active and inactive responses rely on the envelope construction, we
introduce some new definitions for the standard model. Under the standard model (1), we call a
response variable dynamic if its regression coefficients are not zero. We call a response variable
static if its regression coefficients are zero. Let d denote the number of dynamic responses, and
let YD ∈Rd and YS ∈Rr−d denote the dynamic and static responses. The subscript D or S is
attached to a quantity if it is associated with the dynamic or static responses. Without loss of
generality, let Y = (Y T

D, Y T
S )T. Then β ∈Rr×p has the structure β = (βT

D, 0)T, where βD ∈Rd×p

contains the regression coefficients for the dynamic responses. The oracle model is defined by
(

YD
YS

)
= α +

(
βD
0

)
(X − µX ) + ε, var(ε) = $ =

(
$D $DS
$T

DS $S

)
, (12)

where α ∈Rr , βD ∈Rd×p with d now known, and the partition of $ corresponds to the allocation
of YD and YS . The oracle model includes the static responses YS . This is in contrast to the oracle
model for predictor variable selection, where predictors which are inactive are not included in
the model. Since YS may be correlated with YD , including this information can improve the
efficiency in estimating βD . Excluding YS leads to the model

YD = αD + βD(X − µX ) + εD, (13)

where αD and εD are the first d elements of α and ε in (12). We call (13) the dynamic model
because it includes only the dynamic responses. It is tempting to view (13) rather than (12) as the
target model for oracle estimation, but we do not do so because (13) ignores information available
from YS which may be used to devise a more efficient estimator in the current context. To compare
models (13) and (12), we assume normality of the error distributions in Propositions 2 and 3 in
order to get an explicit form for the asymptotic variance. Let β̂D,ols and β̂S,ols be the ordinary
least squares estimators of the coefficients from the regression of YD on X and the regression of
YS on X respectively, and let RD and RS be the residuals from the regression of YD on X and the
regression of YS on X respectively. Define $D|S = $D −$DS$

−1
S $SD .

PROPOSITION 2. Assume that the oracle model (12) holds and that the errors are normally
distributed. The maximum likelihood estimator of βD under the oracle model is β̂D,1 = β̂D,ols −
β̂D|Sβ̂S,ols, where β̂D|S is the ordinary least squares estimator of the coefficients from the regres-
sion of RD on RS; and as n→∞,

√
n{vec(β̂D,1)− vec(βD)} is asymptotically normally dis-

tributed with mean zero and covariance matrix V1 = $−1
X ⊗$D|S.

PROPOSITION 3. Under the conditions in Proposition 2, the maximum likelihood estimator of
βD under the dynamic model (13) is β̂D,2 = β̂D,ols; and as n→∞,

√
n{vec(β̂D,2)− vec(βD)}

is asymptotically normally distributed with mean zero and covariance matrix V2 = $−1
X ⊗$D.

COROLLARY 1. Under the conditions in Proposition 2,

V2 − V1 = $−1
X ⊗$

1/2
D ρ$

1/2
D ,

where ρ = $
−1/2
D $DS$

−1
S $SD$

−1/2
D . The eigenvalues of ρ are the squared canonical correla-

tions between YD and YS.

Corollary 1 quantifies the efficiency gains obtained by including YS . The result states that
the stronger the correlation between YD and YS , the greater the variance reduction obtained by
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including YS . When YD and YS are uncorrelated, β̂D,1 and β̂D,2 have the same asymptotic vari-
ance. In that case, we can ignore YS , since it does not carry information on βD through YD .

Under the envelope model, the inactive response contains information on βA through its
covariance with the active response. We then define the oracle envelope model as

(
YA
YI

)
= α + %η(X − µX ) + ε, $ = %'%T + %0'0%

T
0, % =

(
%A
0

)
. (14)

The oracle envelope model (14) appears similar to the sparse envelope model (2) and (5), but
in (14) we know q and which rows in % consist of only zeros. We attach a subscript O if an
estimator is the oracle envelope estimator. Let $̂YA|X ∈Rq×q be the sample covariance matrix
of the residuals from the regression of YA on X , and let ($̂−1

Y )A ∈Rq×q be the q × q upper left
block of $̂−1

Y . Let '̃0 = %̃T
0$%̃0. Based on the structure of %̃0, we partition '̃0 into

'̃0 =
(

'̃0,A '̃0,AI

'̃T
0,AI '̃0,I

)
, '̃0,A ∈R(q−u)×(q−u), '̃0,I ∈R(r−q)×(r−q).

Let '̃0,A|I = '̃0,A − '̃0,AI'̃−1
0,I'̃0,IA. Proposition 4 gives the maximum likelihood estimator

β̂A,O and its asymptotic distribution.

PROPOSITION 4. Assume that the oracle envelope model (14) holds and the errors are nor-
mally distributed. Then the maximum likelihood estimator of βA under the oracle model is
β̂A,O = P%̂A,O

β̂A,ols, where

span(%̂A,O) = arg min
span(G)∈G(q,u)

log |GT$̂YA|X G| + log |GT($̂−1
Y )AG|.

Additionally, as n→∞,
√

n{vec(β̂A,O)− vec(βA)} is asymptotically normally distributed with
mean zero and covariance matrix VO = $−1

X ⊗ %A'%T
A + (ηT ⊗ %A,0)T−1(η ⊗ %T

A,0), where

T = η$XηT ⊗ '̃−1
0,A|I + '⊗ '̃−1

0,A|I + '−1 ⊗ '̃0,A − 2Iu ⊗ Iq−u.

From Proposition 4, we see that YI appears in the objective function for span(%̂A,O), and
therefore affects β̂A,O . We now define the active envelope model, which contains only the active
responses:

YA = αA + %Aη(X − µX ) + εA, $A = %A'%T
A + %A,0'̃0,A%T

A,0. (15)

PROPOSITION 5. Assume that the conditions in Proposition 4 hold. Then the maximum likeli-
hood estimator of βA under the active envelope model is β̂A,2 = P%̂A,2

β̂A,ols, where

span(%̂A,2) = arg min
span(G)∈G(q,u)

log |GT$̂YA|X G| + log |GT$̂−1
YA

G|.

Additionally, as n→∞,
√

n{vec(β̂A,2)− vec(βA)} is asymptotically normally distributed with
mean zero and covariance matrix V3 = $−1

X ⊗ %A'%T
A + (ηT ⊗ %A,0)T−1

2 (η ⊗ %T
A,0), where

T2 = η$XηT ⊗ '̃−1
0,A + '⊗ '̃−1

0,A + '−1 ⊗ '̃0,A − 2Iu ⊗ Iq−u.
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Sparse envelope model 589

Comparing VO and V3, we see that because '̃−1
0,A|I " '̃−1

0,A, T−1
2 " T−1, the oracle envelope

model (14) is more efficient than the active envelope model (15) in estimating βA. Therefore in
the envelope context, including YI also improves efficiency.

We now return to the discussion of the theoretical properties of the sparse envelope estimator.

THEOREM 4. Assume that the conditions in Theorem 3 hold. Then as n→∞,
√

n{vec(β̂A)−
vec(βA)} is asymptotically normally distributed with mean zero and asymptotic variance equal
to that of β̂A,O. If we further assume that the errors are normally distributed, then the asymptotic
variance V is given in closed form as V = $−1

X ⊗ %A'%T
A + (ηT ⊗ %A,0)T−1(η ⊗ %T

A,0), where

T = η$XηT ⊗ '̃−1
0,A|I + '⊗ '̃−1

0,A|I + '−1 ⊗ '̃0,A − 2Iu ⊗ Iq−u.

Theorem 4 indicates that the sparse envelope estimator is asymptotically normal, and has the
asymptotic distribution we would have if we knew in advance which responses are active and
which are inactive. The optimal estimation rate asserted in Theorem 4 combined with selection
consistency shows that the sparse envelope estimator has the oracle property: the sparse envelope
model selects the inactive responses with probability tending to unity and estimates the coeffi-
cients for the active responses as efficiently as does the oracle envelope model.

Now we discuss the convergence rate and selection consistency of the sparse envelope estima-
tor when rn tends to infinity with n. We first make a few assumptions about the true model.

Assumption 1. There exist positive constants k̄ and k such that γmax($) ! k̄ and γmin($) " k,
where γmax($) and γmin($) are the largest and smallest eigenvalues of $.

Assumption 2. The samples of ε are independent and identically sampled from a sub-
Gaussian distribution, i.e., E{exp(tT

1ε)} ! exp(c1tT
1$t1) for some constant c1 > 0 and every

t1 ∈Rrn . Samples of X are independent and identically distributed, and X − µX follows a sub-
Gaussian distribution, i.e., E[exp{tT

2 (X − µX )}] ! exp(c2tT
2$X t2) for some constant c2 > 0 and

every t2 ∈Rp.

Let s1 and s2 denote the number of nonzero elements in the lower triangular parts, not including
the diagonal elements, of $−1 and $−1

Y respectively, and let s = max{s1, s2}.

THEOREM 5. Assume that the sparse envelope model (2) and condition (5) hold. Under
Assumptions 1 and 2, if λmax,n = o[{(rn + s) log rn/n}1/2], then as n→∞, there exists a solu-
tion Â of the optimization problem (7) such that ∥ Â − A∥F = Op[{(rn + s) log rn/n}1/2], and
the sparse envelope estimator β̂ has the property that ∥β̂ − β∥F = Op[{(rn + s) log rn/n}1/2].

Inspection of the proof of Theorem 5 reveals that the convergence rate of the sparse envelope
estimator is limited by the convergence rate of $̂−1

Y,sp and $̂−1
res,sp. If we have a different inverse

covariance matrix estimator that converges at a faster rate, then the convergence rate of the sparse
envelope estimator can be improved. Assumptions 1 and 2 are required for the consistency of
$̂−1

Y,sp and $̂−1
res,sp. We relaxed the normality assumption in Rothman et al. (2008) to the sub-

Gaussian assumption based on the work in Ravikumar et al. (2011).

THEOREM 6. Suppose the assumptions in Theorem 5 hold, {(rn + s) log rn/n}1/2→ 0 as n
tends to infinity, and {(rn + s) log rn/n}1/2 = o(λmin,n). Then pr(âi |= 0)→ 1 for i = 1, . . . , q −
u, and pr(âi = 0)→ 1 for i = q − u + 1, . . . , rn − u.
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Fig. 1. Comparison of the standard deviations for the sparse envelope estimator (solid),
active envelope estimator (dash-dotted), oracle envelope estimator (dashed) and stan-
dard estimator (dotted). The horizontal lines mark the asymptotic standard deviation
of the corresponding estimators. The solid line with asterisks marks the bootstrap stan-

dard deviations.

Theorem 6 establishes selection consistency of the sparse envelope estimator. When rn tends
to infinity with n, the sparse envelope estimator still identifies active and inactive responses with
probability tending to unity.

3. SIMULATIONS AND DATA ANALYSIS

3·1. Simulations

We report the results of two simulation studies, one in the large-sample setting and one in
the high-dimensional setting. In the first, we fixed p = 2, r = 10, q = 4 and u = 2. The matrix
(%A, %A,0) was obtained by orthogonalizing a q × q matrix of independent uniform (0, 1) vari-
ates. Then we added 0 and 1 following the structure in (5) to get % and %0. We took ' = 9Iu ,
and the eigenvalues of '0 varied from 0·67 to 28·33. The canonical correlation between %T

0YA
and YI was 0·9. The elements in X and η were generated from independent N (0, 4) ran-
dom variables. We varied the sample size from 25 to 1000, and generated 200 replications
for each sample size. For each replication, we fit the standard model (1), the sparse envelope
models (2) and (5), the oracle envelope model (14) and the active envelope model (15), and
obtained their estimators of β. The estimation standard deviation for each element in β was
calculated from the 200 estimators. For each sample size, the bootstrap standard deviation was
obtained by computing the standard deviations from 200 bootstrap samples. The results for a
randomly chosen element in β are plotted in Fig. 1. For better visibility, only the asymptotic
standard deviation of the standard model is displayed. In all cases, the standard deviations are
multiplied by

√
n.

Figure 1 shows that the sparse envelope estimator is more efficient than the standard estima-
tor and the active envelope estimator for all sample sizes. The ratio of the asymptotic standard
deviation of the standard estimator to that of the sparse envelope estimator is 2·71, and for the
active envelope estimator versus the sparse envelope estimator comparison, the ratio is 1·73. The
difference between the sparse envelope estimator and the oracle envelope estimator becomes
quite small for sample sizes bigger than 100, which is consistent with the optimal estimation
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Table 1. Average true positive rate (%), true negative rate (%) and accuracy (%) of the sparse
envelope estimator, hard-thresholding estimator and F test

Sparse envelope Hard thresholding F test
n TPR TNR Accu. TPR TNR Accu. TPR TNR Accu.

25 92·6 81·0 33·5 75·4 97·9 30·5 51·7 99·8 0·0
50 97·0 90·5 69·0 85·0 99·0 52·5 61·6 99·5 2·0
75 98·6 95·9 85·5 90·5 99·8 70·0 70·6 99·5 13·5
100 99·8 98·3 94·5 96·9 99·9 89·0 77·8 99·4 23·5
150 100·0 99·3 96·0 99·2 100·0 97·0 84·6 99·6 39·0
200 100·0 100·0 100·0 100·0 100·0 100·0 91·6 99·7 64·5

TPR, true positive rate; TNR, true negative rate; Accu., accuracy.

Table 2. Average true positive rate (%), true negative rate (%) and accuracy (%) of the sparse
envelope estimator, hard-thresholding estimator and F test in the high-dimensional setting

Sparse envelope Hard thresholding F test
n TPR TNR Accu. TPR TNR Accu. TPR TNR Accu.

50 78·5 99·1 6·5 53·4 100·0 0·0 35·2 100·0 0·0
100 91·6 99·9 54·5 62·6 100·0 0·0 55·9 100·0 0·0
150 98·0 100·0 91·5 81·0 100·0 2·0 71·2 100·0 0·0
200 99·8 100·0 98·0 86·6 100·0 12·0 85·2 100·0 10·0
250 99·8 100·0 98·5 89·6 100·0 19·0 95·1 100·0 48·0
300 100·0 100·0 100·0 91·8 100·0 28·0 98·4 100·0 79·0

rate described in Theorem 4. The bootstrap standard deviation is a good estimator of the actual
standard deviation. In order to evaluate the variable selection performance of the sparse envelope
model, we considered the true positive rate c1/q, where c1 is the number of active responses
correctly chosen; the true negative rate c2/(r − q), where c2 is the number of inactive responses
correctly chosen; and the accuracy, which is an integer taking value 0 or 1, with 1 indicating
that both the active and inactive responses are correctly chosen and 0 otherwise. The average
of each quantity is given in Table 1. The accuracy tends to 1 as n increases, which confirms
the selection consistency stated in Theorem 3. For comparison, we applied a hard-thresholding
on the envelope estimator of % to select the active responses, with the threshold chosen by
crossvalidation. We also performed an F test on each row of β̂ols with adjustments for multi-
ple testing. The sparse envelope estimator dominates these two estimators for all sample sizes in
this case.

Now we consider the high-dimensional scenario. We set r = 1000, q = 10, p = 5, u = 2 and
varied n from 50 to 300. The first q/2 rows in %A were {(2/q)1/2, 0}T and the remaining q/2 rows
in %A were {0, (2/q)1/2}T. Then we used the structure in (5) to construct % and %0. The elements
in η were independent N (0, 9) random variables, ' =0·04Iu and '0 was a block-diagonal matrix
with the upper left block being 25Iq−u and the lower right block being 4Ir−q . The elements
in X were independent N (0, 1) random variables. For each sample size, 200 replications were
generated. Table 2 shows that performance of the sparse envelope estimator is better than that of
the hard-thresholding estimator and F test in this scenario as well. A figure that describes the
convergence of ∥β̂ − β∥F is in the Supplementary Material.

Remark 1. The sparse envelope model also achieves efficiency gains when r < p < n, or with
weak signals; see the Supplementary Material.
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3·2. Data analysis

We illustrate the sparse envelope model using microarray time-course data on cell-cycle con-
trol in the fission yeast Schizosaccharomyces pombe. This dataset is analysed in Gilks et al.
(2005) using multivariate linear regression to study how gene expression levels change in a cell
cycle. The response variables are expression levels of genes. Among the 407 genes measured, 11
have missing values. We only used the genes with complete data, and this gave 396 responses,
which we log-transformed to reduce skewness. The predictors are ten equally-spaced time-points
of the cell cycle and the sample size is 177. We fit the sparse envelope model to the data, with
u = 2 suggested by crossvalidation. The model identified 25 inactive responses. This indicates
that the expression level of most genes varies in a cell cycle, but there are a few genes whose
intensities do not change in a cell cycle. Among the 25 inactive responses, gene cdc20 was also
identified by Gilks et al. (2005) to have “very little cell-cycle activity”. We estimated ∥β̂ols − β∥F
and ∥β̂ − β∥F by the average of 200 bootstrap samples. The ratio of the estimated ∥β̂ols − β∥F
to ∥β̂ − β∥F is 1·52, which shows a clear efficiency gain due to the sparse envelope model.

4. DISCUSSION
In this paper, the sparse envelope model is developed by assuming row-wise sparsity in %

under the envelope model. In ultrahigh-dimensional problems where rn≫ n, we need to make
additional assumptions such as sparsity of $ or $−1 in order to establish the consistency of the
sparse envelope model. The convergence rate of the sparse envelope estimator β̂ can be improved
to ∥β̂ − β∥F = Op{(log rn/n)1/2} if we assume the number of nonzero off-diagonal elements in
$−1 is fixed as n tends to infinity. It may also be of interest to study prediction performance
rather than estimation of parameters in ultrahigh-dimensional problems.

When the envelope structure does not hold, some preliminary numerical results show that the
envelope estimator may still have a smaller mean squared error than the standard estimator, as a
result of the bias-variance trade-off. The properties of the envelope estimator under this situation
are open.
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A. PROOFS

Proof of Proposition 1. We will prove this proposition by contradiction. Without loss of generality, let
{Y1, . . . , Yu−1} be the collection of all active response variables that are connected with a response that 15

has non-zero regression coefficients, and let Yu be a response which has regression coefficient zero and is
not connected with any of the responses that have non-zero regression coefficients. We will show that Yu

is inactive.
Let eu ∈ Rr be a vector of zeros but having 1 at its uth element and let Γ∗ = QeuΓ. Since Yu has

regression coefficients zero, β = Qeuβ, giving B = QeuB. Therefore 20

B = QeuB ⊆ Qeuspan(Γ) = span(Γ∗).

Because this Yu is not connected with any of the responses that have non-zero regression coefficients,
cov{Yu, (Y1, . . . , Yu−1)T | X} = 0, so cov(Yu,Γ∗TY | X) = 0. Recall that cov(ΓT

0Y,Γ
TY | X) = 0, so

cov(ΓT
0Y,Γ

∗TY | X) = 0. Notice that

span(Γ∗)⊥ = span(Γ0) + span(PeuΓ) = span(Γ0) + span(eu),

where ⊥ denotes orthogonal complement of a subspace. If Γ̃ is an orthogonal basis of span(Γ∗)⊥, then
Γ̃ = PΓ0 Γ̃+ Peu Γ̃. So 25

cov(Γ̃TY,Γ∗TY | X) = cov(Γ̃TPΓ0Y + Γ̃TPeuY,Γ
∗TY | X) = 0.

Therefore span(Γ∗) is a reducing subspace of Σ that contains B. As Γ∗ = QeuΓ, its dimension is smaller
or equal to span(Γ). Since span(Γ) is the envelope subspace, span(Γ∗) = span(Γ). This is because if
not, span(Γ∗) ∩ span(Γ), which has a smaller dimension than span(Γ), is a reducing subspace of Σ that
contains B; and it contradicts the definition of the envelope subspace. Since span(Γ∗) = span(Γ), the ith
row of Γ must be zero, and Yu is an inactive response. ! 30

Now we discuss about the relationship between the two statements: (a) Yi and Yj are not connected and
(b) Yi and Yj are independent given the rest of the responses and X . If we assume normality, (a) implies
(b), but (b) does not imply (a). If normality is not assumed, they do not imply each other.
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First we show that (b) does not imply (a). Statement (b) is based on the structure of Σ−1: If Yi and Yj

are independent given the rest of the responses and X , then the (i, j)th element in Σ−1 is zero. On the35

other hand, if Yi and Yj are connected is based on the structure of Σ. A sparse Σ−1 does not necessarily
imply a sparse Σ. For example, suppose that Y2 and Y3 are independent given Y1 and X , and

Σ−1 =

⎛

⎝
1 1 1
1 2 0
1 0 3

⎞

⎠ .

Then

Σ =

⎛

⎝
6 −3 −2
−3 2 1
−2 1 1

⎞

⎠ ,

and Y2 and Y3 are connected.
Now suppose that Yi and Yj are not connected. Without loss of generality, we assume that Y1 and Yr are40

not connected. For positive integers k ≥ 2 and l ≥ 1, let Y2, . . . , Yk be the responses that connect with Y1,
Yk+1, . . . , Yk+l be the responses that neither connect with Y1 nor connect with Yr, and Yk+l+1, . . . , Yr−1

be the responses that connect with Yr. Then Σ has a block diagonal structure as follows:

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11 · · · σk,1 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

σk1 · · · σk,k 0 · · · 0 0 · · · 0
0 · · · 0 σk+1,k+1 · · · σk+1,k+l 0 · · · 0
...

...
...

...
...

...
...

...
...

0 · · · 0 σk+l,k+1 · · · σk+l,k+l 0 · · · 0
0 · · · 0 0 · · · 0 σk+l+1,k+l+1 · · · σk+l+1,r
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 σr,k+l+1 · · · σr,r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The inverse matrix Σ−1 will preserve the block diagonal structure of Σ, so the (1, r)th element in Σ−1 is
0. Under the normality assumption, this implies Y1 and Yr are independent given the rest of the responses45

and X . If normality is not assumed, this does not imply the conditional independent of Y1 and Yr.

Proof of Theorem 2. To prove Theorem 2, denote the objective function in (6) by fobj(A). It is suffi-
cient to show that for any small ϵ > 0, there exists a sufficiently large constant C, such that

lim
n

pr

{
inf

∆∈R(r−u)×u,∥∆∥F=C
fobj(A+ n−1/2∆) > fobj(A)

}
> 1− ϵ. (A1)

If (A1) is established, then there exists a local minimizer Â of fobj with arbitrarily large probability

such that ∥Â−A∥F = Op(n−1/2). Therefore Â is a
√
n-consistent estimator of A. As PΓ = GA(Iu +50

ATA)−1GT
A is a function of A only, PΓ̂ is a

√
n-consistent estimator of PΓ. As β̂ = PΓ̂β̂ols, and β̂ols is a

√
n-consistent estimator of β, then β̂ is a

√
n-consistent estimator of β.

Now we only need to show (A1). We write

fobj(A) = −2 log |GT
AGA|+ log |GT

AΣ̂resGA|+ log |GT
AΣ̂

−1
Y GA|+

r−u∑

i=1

λi∥ai∥2

≡ f1(A) + f2(A) + f3(A) + f4(A),
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say, and we first focus on f1(A) = −2 log |GT
AGA|. Expand f1(A+ n−1/2∆), we have

f1(A+ n−1/2∆) = f1(A) + n−1/2
→∆
df1 (A) +

1

2
n−1

→∆

df2
1 (A) + op(n

−1),

where
→∆
df1 (A) and

→∆

df2
1 (A) are directional derivatives (Dattorro, 2005, p.706). 55

The first directional derivative is

→∆
df1 (A) = tr

{
d

dA
f1(A)

T∆

}
= −4 tr{(Iu +ATA)−1AT∆}.

The second directional derivative is

→∆

df2
1 (A) = −4 tr

([
d

dA
tr{(Iu +ATA)−1AT∆}

]T

∆

)

= −4 tr
[{

−A(Iu +ATA)−1(AT∆+∆TA)(Iu +ATA)−1 +∆(Iu +ATA)−1
}T

∆
]

= 4 tr
{
(Iu +ATA)−1(AT∆+∆TA)(Iu +ATA)−1AT∆− (Iu +ATA)−1∆T∆

}
.

Let

∆∗ =

(
0
∆

)
;

then

→∆

df2
1 (A)

= 4 tr
[
(Iu +ATA)−1AT∆(Iu +ATA)−1AT∆

+(Iu +ATA)−1∆T
{
A(Iu +ATA)−1AT − Ir−u

}
∆
]

= 4 tr
[
(Iu +ATA)−1AT∆(Iu +ATA)−1AT∆+ (Iu +ATA)−1∆T

∗

{
GA(G

T
AGA)

−1GT
A − Ir

}
∆∗

]

= 4 tr
{
(Iu +ATA)−1AT∆(Iu +ATA)−1AT∆+ (Iu +ATA)−1∆T

∗ (ΓΓ
T − Ir)∆∗

}

= 4 tr
{
(Iu +ATA)−1AT∆(Iu +ATA)−1AT∆− (Iu +ATA)−1∆T

∗Γ0Γ
T
0∆∗

}
.

We substitute
→∆
df1 (A) and

→∆

df2
1 (A) into the expansion for f1(A+ n−1/2∆) and get 60

f1(A+ n−1/2∆)− f1(A) = −4n−1/2 tr{(Iu +ATA)−1AT∆}

+2n−1 tr
{
(Iu +ATA)−1AT∆(Iu +ATA)−1AT∆

−(Iu +ATA)−1∆T
∗Γ0Γ

T
0∆∗

}
.

With f2(A) = log |GT
AΣ̂resGA|, the first directional derivative is

→∆
df2 (A) = tr

{
d

dA
f2(A)

T∆

}
= 2 tr{(GT

AΣ̂resGA)
−1GT

AΣ̂res∆∗}.

Let ΣX , ΣY and ΣY X be the variance matrix of X , the variance matrix of Y and the covariance matrix of
Y and X in population, and let Σ̂X , Σ̂Y and Σ̂XY be the corresponding sample versions. Then by Cook
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& Setodji (2003),

n1/2(Σ̂YX − ΣYX) = n−1/2(YT
cX− nΣYX) +Op(n

−1/2),

n1/2(Σ̂X − ΣX) = n−1/2(XT
X− nΣX) +Op(n

−1/2),

n1/2(Σ̂Y − ΣY ) = n−1/2(YT
cYc − nΣY ) +Op(n

−1/2),

where Yc ∈ Rn×r is the centred data matrix of Y , whose ith row is (Yi − Ȳ )T. Since Σ̂res = Σ̂Y −65

Σ̂Y XΣ̂−1
X Σ̂XY and Σ̂−1

X − Σ−1
X = −Σ−1

X (Σ̂X − ΣX)Σ−1
X +Op(n−1),

Σ̂res = (Σ̂Y − ΣY + ΣY )− (Σ̂Y X − ΣYX + ΣYX)(Σ̂−1
X − Σ−1

X + Σ−1
X )(Σ̂XY − ΣXY + ΣXY )

= Σ+ n−1/2

{
− n−1/2(YT

cX− nΣYX)Σ−1
X ΣXY + n−1/2ΣYXΣ−1

X (XT
X− nΣX)Σ−1

X ΣXY

−n−1/2ΣY XΣ−1
X (XT

Yc − nΣXY ) + n−1/2(YT
cYc − nΣY )

}
+Op(n

−1)

≡ Σ+ n−1/2(T1n + T2n + T3n + T4n) +Op(n
−1),

where by the central limit theorem, each element in T1n, T2n, T3n and T4n converges in distribution to a
normal random variable which has mean 0. As

(GT
AΣ̂resGA)

−1 = (GT
AΣGA)

−1 − (GT
AΣGA)

−1(GT
AΣ̂resGA −GT

AΣGA)(G
T
AΣGA)

−1 +Op(n
−1)

= (GT
AΣGA)

−1 − n−1/2(GT
AΣGA)

−1GT
A(T1n + T2n + T3n + T4n)GA(G

T
AΣGA)

−1

+Op(n
−1),

→Z
∗

df2 (Γ) can be expanded as

2 tr{(GT
AΣ̂resGA)

−1GT
AΣ̂res∆∗}

= 2 tr{(GT
AΣGA)

−1GT
AΣ∆∗}+ 2n−1/2 tr

{
(GT

AΣGA)
−1GT

A(T1n + T2n + T3n + T4n)∆∗

−(GT
AΣGA)

−1GT
A(T1n + T2n + T3n + T4n)GA(G

T
AΣGA)

−1GT
AΣ∆∗

}
+Op(n

−1)

= 2 tr{(Iu +ATA)−1GT
A∆∗}+ 2n−1/2 tr

[
(GT

AΣGA)
−1GT

A(T1n + T2n + T3n + T4n)
{
Ir

−GA(Iu +ATA)−1GT
A}∆∗

]
+Op(n

−1)

= 2 tr{(Iu +ATA)−1AT∆}+ 2n−1/2 tr
{
(GT

AΣGA)
−1GT

A(T3n + T4n)Γ0Γ
T
0∆∗

}
+Op(n

−1)

= 2 tr{(Iu +ATA)−1AT∆}+ 2n−1/2 tr
{
Γ1Ω

−1ΓT(T3n + T4n)Γ0Γ
T
0∆∗

}
+Op(n

−1).

The second equality is because Γ = GAΓ1, so70

ΓT
1G

T
AGAΓ1 = I ⇒ ΓT

1 (Iu +ATA)Γ1 = I ⇒ Iu +ATA = (ΓT
1 )

−1(Γ1)
−1 ⇒ (Iu +ATA)−1 = Γ1Γ

T
1 ,

and

(GT
AΣGA)

−1GT
AΣ =

{
(ΓΓ−1

1 )TΣΓΓ−1
1

}−1
(ΓΓ−1

1 )TΣ = Γ1Ω
−1ΩΓT = Γ1Γ

T
1G

T
A = (Iu +ATA)−1GT

A.

Using the Cauchy–Schwarz inequality for matrix trace (Magnus & Neudecker, 2007, p.227),
∣∣∣ tr

{
Γ1Ω

−1ΓT(T3n + T4n)Γ0Γ
T
0∆∗

}∣∣∣ ≤ ∥∆∗∥F ∥Γ1Ω
−1ΓT(T3n + T4n)Γ0Γ

T
0∥F

= ∥∆∥F ∥Γ1Ω
−1ΓT(T3n + T4n)Γ0∥F .
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The second directional derivative of f2 is

→∆

df2
2 (A) = 2 tr

([
d

dA
tr{(GT

AΣ̂resGA)
−1GT

AΣ̂res∆∗}
]T

∆

)

= 2 tr
{
(GT

AΣ̂resGA)
−1∆T

∗ Σ̂res∆∗

−(GT
AΣ̂resGA)

−1(GT
AΣ̂res∆∗ +∆T

∗ Σ̂resGA)(G
T
AΣ̂resGA)

−1GT
AΣ̂res∆∗

}

= 2 tr
{
(GT

AΣGA)
−1∆T

∗Σ∆∗ − (GT
AΣGA)

−1(GT
AΣ∆∗ +∆T

∗ΣGA)(G
T
AΣGA)

−1GT
AΣ∆∗

}

+Op(n
−1/2)

= 2 tr
[
− (Iu +ATA)−1GT

A∆∗(Iu +ATA)−1GT
A∆∗

+(GT
AΣGA)

−1∆T
∗Σ

{
Ir −GA(G

T
AΣGA)

−1GT
AΣ

}
∆∗

]
+Op(n

−1/2)

= 2 tr
[
− (Iu +ATA)−1AT∆(Iu +ATA)−1AT∆

+{(Γ−1
1 )TΩΓ−1

1 }−1∆T
∗Σ

{
Ir −GA(Iu +ATA)−1GT

A

}
∆∗

]
+Op(n

−1/2)

= 2 tr
{
− (Iu +ATA)−1AT∆(Iu +ATA)−1AT∆+ Γ1Ω

−1ΓT
1∆

T
∗ΣΓ0Γ

T
0∆∗

}
+Op(n

−1/2)

= 2 tr
{
− (Iu +ATA)−1AT∆(Iu +ATA)−1AT∆+ Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1

}
+Op(n

−1/2).

Substitute
→∆
df2 (A) and

→∆

df2
2 (A) into the expansion for f2(A+ n−1/2∆), we get

f2(A+ n−1/2∆)− f2(A)

= 2n−1/2 tr{(Iu +ATA)−1AT∆}+ 2n−1 tr
{
Γ1Ω

−1ΓT(T3n + T4n)Γ0Γ
T
0∆∗

}

+n−1 tr
{
− (Iu +ATA)−1AT∆(Iu +ATA)−1AT∆+ Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1

}
+ op(n

−1)

≥ 2n−1/2 tr{(Iu +ATA)−1AT∆}− 2n−1∥∆∥F ∥Γ1Ω
−1ΓT(T3n + T4n)Γ0∥F

+n−1 tr
{
− (Iu +ATA)−1AT∆(Iu +ATA)−1AT∆+ Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1

}
+ op(n

−1).

Since that f3 has similar structure as f2, the derivation above can be applied parallel to f2, just with Σ̂res 75

replaced Σ̂−1
Y . Let T5n = −n−1/2Σ−1

Y (YT
cYc − nΣY )Σ

−1
Y . By the central limit theorem, T5n converges

in distribution to a normal random variable with mean 0. After some straightforward algebra, we have

f3(A+ n−1/2∆)− f3(A)

= 2n−1/2 tr{(Iu +ATA)−1AT∆}+ 2n−1 tr{Γ1(Ω+ ηΣXηT)ΓTT5nΓ0Γ
T
0∆∗}

+n−1 tr
{
− (Iu +ATA)−1AT∆(Iu +ATA)−1AT∆+ (Ω+ ηΣXηT)ΓT

1∆
T
∗Γ0Ω

−1
0 ΓT

0∆∗Γ1

}

+op(n
−1)

≥ 2n−1/2 tr{(Iu +ATA)−1AT∆}− 2n−1∥∆∥F∥Γ1(Ω+ ηΣXηT)ΓTT5nΓ0∥F
+n−1 tr

{
− (Iu +ATA)−1AT∆(Iu +ATA)−1AT∆+ (Ω+ ηΣXηT)ΓT

1∆
T
∗Γ0Ω

−1
0 ΓT

0∆∗Γ1

}

+op(n
−1).

Now we expand f4(A) =
∑r−u

i=1 λi∥ai∥2. Let δT
i be the ith row of ∆, then

f4(A+ n−1/2∆)− f4(A) ≥
q−u∑

i=1

(
λi∥ai + n−1/2δi∥2 − λi∥ai∥2

)

≥ −
1

2
(q − u)n−1/2λmax,n max

i

(
∥ai∥−1

2 ∥δi∥2
)
{1 + op(1)}

= −
1

2
n−1(q − u)n1/2λmax,n max

i

(
∥ai∥−1

2 ∥δi∥2
)
{1 + op(1)}.
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The second inequality is based on Taylor expansion at ai. As n1/2λmax,n → 0 as n → ∞, n{f4(A+
n−1/2∆)− f4(A)} = op(1). Collecting all the results so far80

fobj(A+ n−1/2∆)− fobj(A)

≥ −2n−1∥∆∥F∥Γ1Ω
−1ΓT(T3n + T4n)Γ0∥F − 2n−1∥∆∥F ∥Γ1(Ω+ ηΣXηT)ΓTT5nΓ0∥F

+n−1 tr
{
Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1 + (Ω+ ηΣXηT)ΓT

1∆
T
∗Γ0Ω

−1
0 ΓT

0∆∗Γ1

−2(Iu +ATA)−1∆T
∗Γ0Γ

T
0∆∗

}
−

1

2
n−1(q − u)n1/2λmax,n max

i

(
∥ai∥−1

2 ∥δi∥2
)
+ op(n

−1).

Notice that

tr
{
Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1 + (Ω+ ηΣXηT)ΓT

1∆
T
∗Γ0Ω

−1
0 ΓT

0∆∗Γ1 − 2(Iu +ATA)−1∆T
∗Γ0Γ

T
0∆∗

}

= tr
{
Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1 + (Ω+ ηΣXηT)ΓT

1∆
T
∗Γ0Ω

−1
0 ΓT

0∆∗Γ1 − 2ΓT
1∆

T
∗Γ0Γ

T
0∆∗Γ1

}

= vec(ΓT
0∆∗Γ1)

T(Ω⊗ Ω−1
0 + Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u + ηΣXηT ⊗ Ω−1

0 ) vec(ΓT
0∆∗Γ1)

≡ vec(ΓT
0∆∗Γ1)

TK vec(ΓT
0∆∗Γ1)

≥ m∥ΓT
0∆∗Γ1∥2F ,

where m is the smallest eigenvalue of K . The matrix K appears in (5.7) in Cook et al. (2010), by Shapiro
(1986), K is a positive definite matrix and m > 0. Since

∥ΓT
0∆∗Γ1∥2F = tr(ΓT

0∆∗Γ1Γ
T
1∆

T
∗Γ0)

= tr{ΓT
0∆∗(Iu +ATA)−1∆T

∗Γ0}
= tr{∆∗(Iu +ATA)−1∆T

∗ (Ir − ΓΓT)}
= tr

[
(Iu +ATA)−1∆T

∗{Ir −GA(Iu +ATA)−1GT
A}∆∗

]

= tr
[
(Iu +ATA)−1∆T{Ir−u − A(Iu +ATA)−1AT}∆

]

= tr{(Iu +ATA)−1∆T(Iu +ATA)−1∆}
= vec(∆)T{(Iu +ATA)−1 ⊗ (Iu +ATA)−1} vec(∆)

≥ m2
0∥∆∥2F ,

where m0 is the smallest eigenvalue of (Iu +ATA)−1, we have

tr
{
Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1 + (Ω+ ηΣXηT)ΓT

1∆
T
∗Γ0Ω

−1
0 ΓT

0∆∗Γ1 − 2(Iu +ATA)−1∆T
∗Γ0Γ

T
0∆∗

}

≥ mm2
0∥∆∥2F .

Then the terms with order ∥∆∥2F dominate the terms with order ∥∆∥F . When ∥∆∥F = C for sufficiently85

large C, the conclusion (A1) follows. !

Proof of Theorem 3. We will prove this theorem by contradiction. Suppose that ∥âi∥2 > 0 for i = q +
1− u, . . . , r − u. The first derivative of fobj with respect to ai should be 0 evaluated at the local minimum
âi. The derivative of fobj with respect to aT

i (i = q + 1− u, . . . , r − u) is

∂fobj
∂aT

i

= −4eT
i GA(Iu +ATA)−1 + 2eT

i Σ̂resGA(G
T
AΣ̂resGA)

−1 + 2eT
i Σ̂

−1
Y GA(G

T
AΣ̂

−1
Y GA)

−1 +
λiaT

i

∥ai∥2
,

where ei be the ith column of Ir. Then90

−4eT
i ĜA(Iu + ÂTÂ)−1 + 2eT

i Σ̂resĜA(Ĝ
T
AΣ̂resĜA)

−1 + 2eT
i Σ̂

−1
Y ĜA(Ĝ

T
AΣ̂

−1
Y ĜA)

−1 + λi
âT
i

∥âi∥2
= 0.

(A2)
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Because Σ̂res, Σ̂Y and Â are
√
n-consistent estimators of Σ, ΣY and A, Σ = ΓΩΓT + Γ0Ω0ΓT

0 and ΣY =
Γ(Ω+ ηΣXηT)ΓT + Γ0Ω0ΓT

0 ,

−4eT
i ĜA(Iu + ÂTÂ)−1 + 2eT

i Σ̂resĜA(Ĝ
T
AΣ̂resĜA)

−1 + 2eT
i Σ̂

−1
Y ĜA(Ĝ

T
AΣ̂

−1
Y ĜA)

−1

= −4eT
i GA(Iu +ATA)−1 + 2eT

i ΣGA(G
T
AΣGA)

−1 + 2eT
i Σ

−1
Y GA(G

T
AΣ

−1
Y GA)

−1 +Op(n
−1/2)

= −4aT
i (Iu +ATA)−1 + 2eT

i GA(Iu +ATA)−1 + 2eT
i GA(Iu +ATA)−1 +Op(n

−1/2)

= −4aT
i (Iu +ATA)−1 + 2aT

i (Iu +ATA)−1 + 2aT
i (Iu +ATA)−1 +Op(n

−1/2)

= Op(n
−1/2).

Then n1/2
{
−4eT

i ĜA(Iu + ÂTÂ)−1 + 2eT
i Σ̂resĜA(ĜT

AΣ̂resĜA)−1 + 2eT
i Σ̂

−1
Y ĜA(ĜT

AΣ̂
−1
Y ĜA)−1

}
=

Op(1).
On the other hand, let m be the element in ai that has the largest absolute value, then |m|/∥ai∥2 >

√
u, 95

where | · | denotes absolute value. Because we have n1/2λmin,n → ∞, there is at least one element in
n1/2λiaT

i /∥ai∥2 that tends to infinity. With (A2), this is a contradiction of

n1/2
{
−4eT

i ĜA(Iu + ÂTÂ)−1 + 2eT
i Σ̂resĜA(Ĝ

T
AΣ̂resĜA)

−1 + 2eT
i Σ̂

−1
Y ĜA(Ĝ

T
AΣ̂

−1
Y ĜA)

−1
}
= Op(1).

Therefore for i = q + 1− u, . . . , r − u, ai = 0 with probability tending to 1. !

Proof of Proposition 2 and Proposition 3. For the proof of Proposition 3, the derivation of the max-
imum likelihood estimator of βD and its asymptotic variance under model (13) follows from standard 100

theory on regression. Now we start to proof Proposition 2. We need to justify the results for model (12).
First we derive the maximum likelihood estimator of βD. As Y = (Y T

D , Y T
S )T, we can partition the centred

matrix Yc accordingly into Yc = (Yc,D,Yc,S). We also partition the matrix Σ−1 into

Σ−1 =

(
M1 M2

MT
2 M3

)
.

The log likelihood function under model (12) is

l = −
n(r + p)

2
log(2π)−

n

2
log |ΣX |−

n

2
log |Σ|−

1

2
tr{(X− 1nµX)Σ−1

X (X− 1nµX)T}

−
1

2
tr{(Yc,D − 1nα

T − XβT
D,Yc,S)Σ

−1(Yc,D − 1nα− XβT
D,Yc,S)

T}.

It is easy to show that µX = X̄ , Σ̂X = (X− 1nµX)T(X− 1nµX)/n, and α̂ = Ȳ . Substituting these es- 105

timates in, the partially maximized log likelihood is

l = −
n(r + p)

2
log(2π)−

n

2
log |Σ̂X |−

np

2
−

n

2
log |Σ|

−
1

2
tr{(Yc,D − Xcβ

T
D,Yc,S)Σ

−1(Yc,D − Xcβ
T
D,Yc,S)

T}

= −
n(r + p)

2
log(2π)−

n

2
log |Σ̂X |−

np

2
−

n

2
log |Σ|

−
1

2
tr{(Yc,D − Xcβ

T
D)M1(Yc,D − Xcβ

T
D)T + 2(Yc,D − XβT

D)M2Y
T
c,S + Yc,SM3Y

T
c,S}.

Take the derivative of l with respect to βD and Σ, we get

∂l

∂βD
= −M1(βDX

T
c − Y

T
c,D)Xc −M2Y

T
c,SXc,

∂l

∂Σ
= −

n

2
Σ−1 +

1

2
Σ−1(Yc,D − Xcβ

T
D,Yc,S)

T(Yc,D − Xcβ
T
D,Yc,S)Σ

−1.
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Set the derivatives to 0 and we get β̂D = YT
c,DXc(XT

cXc)−1 −M−1
1 M2Y

T
c,SXc(XT

cXc)−1 = β̂D,ols −
Σ̂DSΣ̂

−1
S β̂S,ols and Σ̂ = 1

n (Yc,D − Xcβ̂T
D,Yc,S)T(Yc,D − Xcβ̂T

D,Yc,S). Since βS = 0, Σ̂S = S−1
S ,

where S−1
S is the sample covariance matrix of YS . We can build an equation with Σ̂DS . Notice that110

Σ̂DS =
1

n
(Yc,D − Xcβ

T
D)TYc,S

=
1

n
(Yc,D − Xcβ

T
D,ols + XcΣ̂DSΣ̂

−1
S β̂S,ols)

T
Yc,S

=
1

n
(QXc

Yc,D + PXYc,SS
−1
c Σ̂T

DS)
T
Yc,S .

Solve for Σ̂DS , we get

Σ̂DS = Y
T
c,DQXc

Yc,S(Y
T
c,SQXc

YS,c)
−1S−1

S .

Substitute it into β̂D, we get β̂D = β̂D,ols − β̂D|S β̂S,ols, where β̂D|S = YT
c,DQXc

Yc,S(YT
c,SQXc

Yc,S)−1

contains the coefficients from the regression of RD on RS .
To compute the asymptotic variance of the maximum likelihood estimators, we compute the Fisher

information matrix for { vec(βD)T, vech(Σ)T}, where vech is the operator that stacks the lower trian-115

gle of a symmetric matrix into a vector column-wise. For an a× a symmetric matrix M , let Ca and
Ea be the contraction matrix and expansion matrix that connect the vec operator and vech operator:
vech(M) = Ca vec(M) and vec(M) = Ea vech(M). After some straightforward algebra, the Fisher in-
formation matrix J is

(
ΣX ⊗ (ΣD − ΣDSΣ

−1
S ΣT

DS)
−1 0

0 1
2E

T
r (Σ

−1 ⊗ Σ−1)ET
r

)
.

The inverse of the upper left block of J relates to the asymptotic variance of vec(β̂D). Therefore120

n1/2{ vec(β̂D,1)− vec(βD)} → N(0,Σ−1
X ⊗ ΣD|S)

in distribution as n → ∞. !

Proof of Proposition 4 and Proposition 5. The proof of Proposition 5 follows from the standard theory
of the envelope model in Cook et al. (2010).

We now prove Proposition 4. The derivation of the maximum likelihood estimator of βA is similar to
the derivation of the maximum likelihood estimator of β under the envelope model in Cook et al. (2010).125

To derive the asymptotic variance, we apply Proposition 4·1 in Shapiro (1986), as there is overpa-
rameterization in the oracle envelope model. First we check the assumptions in Proposition 4·1. We

will match our notations with Shapiro’s. Shapiro’s x is our { vec(β̂A,1)T, vech(Σ̂1)T}T, where Σ̂1 is
the estimator under the oracle model (12). Using techniques similar to those in the proof of Theorem
2 in Su & Cook (2012), we can verify that when the errors have finite fourth moments, x is asymp-130

totically normally distributed. Shapiro’s ξ is our { vec(βA)T, vech(Σ)T}T. Let l be the log-likelihood
function in (A3) and let lmax be its maximum value. We define the minimum discrepancy function as
fMDF = lmax − l. Since fMDF is derived from the normal likelihood function, it satisfies the four condi-
tions in Section 3 of Shapiro (1986). Our { vec(η)T, vec(ΓA)T, vech(Ω)T, vech(Ω0)T}T is Shapiro’s θ.
Therefore the function g that connects ξ and θ: ξ = g(θ) is twice differentiable. All the assumptions in135

Proposition 4·1 are satisfied. Let Σ̂O be the estimator of Σ under the oracle envelope model (14), then

n1/2[{ vec(β̂A,O)T, vech(Σ̂O)T}T − { vec(βA)T, vech(Σ)T}T] is asymptotically normally distributed
with zero mean and some covariance matrix. So far in this proof, we did not use the normality of the
errors, but just require that the errors have finite fourth moments.

Using the normality of the errors gives us closed-form expressions for the asymptotic variance of140

vec(β̂A,O). Proposition 4·1 indicates that the asymptotic variance has the form H(HTJH)†HT, where †
denotes Moore–Penrose inverse, J is the Fisher information displayed at the end of the proof for Proposi-
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tion 2, and H is the Jacobian matrix ∂ξ/∂Tθ

H =

(
Ip ⊗ ΓA ηT ⊗ Iq 0 0

0 2Cr(Ir ⊗ ΓΩ− Γ0Ω0ΓT
0 ⊗ Γ)L Cr(Γ⊗ Γ)Eu Cr(Γ0 ⊗ Γ0)Er−u

)
,

where L = (KT
qu, 0)

T ∈ Rru×qu, and Kqu ∈ Rqu×qu is a commutation matrix (Magnus & Neudecker,
1979). After some algebra similar to that in S4 in the supplementary materials of Cook et al. (2010), we 145

can get the closed-form for the asymptotic variance of vec(β̂A,O):

n1/2{ vec(β̂A,O)− vec(βA)} → N(0, VO)

in distribution, where VO = Σ−1
X ⊗ ΓAΩΓT

A + (ηT ⊗ ΓA,0)T (η ⊗ ΓT
A,0), and T = ηΣXηT ⊗ Ω̃−1

0,A|I +

Ω⊗ Ω̃−1
0,A|I + Ω−1 ⊗ Ω̃0,A − 2Iu ⊗ Iq−u.

Note: We ignored µX , α and ΣX in J and H matrices. This does not affect the results because they are
not involved in the parameterization of β and Σ, and their maximum likelihood estimates are asymptoti- 150

cally independent of the estimates of β and Σ. !

Proof of Theorem 4. Let ÂA denote the nonzero rows in the sparse envelope estimator Â, and ÂO de-
note the nonzero rows in the oracle envelope estimator. As PΓ = GA(GT

AGA)−1GT
A, for a sequence an =

o(n−1/2), if ÂA = ÂO +Op(an), then PΓ̂ = PΓ̂O
+Op(an). Therefore β̂ − β̂O = (PΓ̂ − PΓ̂O

)β̂ols =

(PΓ̂ − PΓ̂O
)(β̂ols − β) + (PΓ̂ − PΓ̂O

)β = Op(an)op(1) +Op(an) = Op(an). So n1/2(β̂ − β) → 0 in 155

probability. By Slutsky’s theorem n1/2(β̂ − β) has the same asymptotic distribution as n1/2(β̂O − β).

From the proof of Proposition 4, we know that n1/2(β̂O − β) is asymptotically normally distributed with
zero mean if the errors have finite fourth moment, and we can obtain the closed-form of the asymp-
totic variance if normality is assumed. Therefore the conclusion of Theorem 4 follows if we can prove
ÂA = ÂO +Op(an) for an = o(n−1/2). Since n1/2λmax,n → 0, λmax,n = o(n−1/2). For simplicity, we 160

just take an = (n−1/2λmax,n)1/2.
Let B be a (q − u)× u matrix, and

GB =

(
Iu
B

)
∈ R

q×u.

Define

fobj,A(B) = −2 log |GT
BGB |+ log |GT

BΣ̂YA|XGB|+ log |GT
B(Σ̂

−1
Y )AGB|+

q−u∑

i=1

λi∥bi∥2,

where bi is the ith row of B. Because of the selection consistency of the sparse envelope model, ÂA =
argminB∈R(q−u)×u fobj,A(B). Then it is enough to show that for arbitrarily small ε > 0, there exists a 165

sufficiently large constant C, such that

lim
n

pr

{
inf

∆∈R(q−u)×u,∥∆∥F=C
fobj,A(ÂO + an∆) > fobj,A(ÂO)

}
> 1− ϵ. (A3)

If (A3) holds, ÂA = ÂO +Op(an) for an = o(n−1/2). Now we show (A3). Similar to the proof of

Theorem 2, we expand fobj,A(ÂO + an∆) and compute fobj,A(ÂO + an∆)− fobj,A(ÂO). We di-
vide fobj,A(B) into four parts according to the three additions: fobj,A(B) ≡ f1,A(B) + f2,A(B) +

f3,A(B) + f4,A(B). The first directional derivatives of f1,A(B), f2,A(B) and f3,A(B) at ÂO are 170

→∆
df1,A(ÂO) = tr

{ d

dB
f1,A(B)T

∣∣∣
B=ÂO

∆
}
,

→∆
df2,A(ÂO) = tr

{ d

dB
f2,A(B)T

∣∣∣
B=ÂO

∆
}
,

→∆
df3,A(ÂO) = tr

{ d

dB
f3,A(B)T

∣∣∣
B=ÂO

∆
}
.
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Since ÂO is a minimizer of f1,A(B) + f2,A(B) + f3,A(B),

d

dB
f1,A(B)

∣∣∣
B=ÂO

+
d

dB
f3,A(B)

∣∣∣
B=ÂO

+
d

dB
f3,A(B)

∣∣∣
B=ÂO

= 0.

Then
→∆
df1,A(ÂO) +

→∆
df2,A(ÂO) +

→∆
df3,A(ÂO) = 0.

The calculations on the second directional derivatives of f1,A(B), f2,A(B) and f3,A(B) at ÂO and the
expansion of f4,A(B) are parallel to those in Theorem 2. Assembling all those terms together, we have

fobj,A(ÂO + an∆)− fobj,A(ÂO)

≥ a2n tr
{
Ω−1ΓT

1∆
T
∗AΓA,0Ω̃0,AΓ

T
A,0∆∗AΓ1 + (Ω+ ηΣXηT)ΓT

1∆
T
∗AΓA,0Ω̃

−1
0,A|IΓ

T
A,0∆∗AΓ1

−2(Iu +AT
AAA)

−1∆T
∗AΓA,0Γ

T
A,0∆∗A

}
−

1

2
an(q − u)λmax,n max

i

(
∥ai∥−1

2 ∥δi∥2
)
+ op(a

2
n),

where AA ∈ R(q−u)×u contains the nonzero rows in A and ∆∗A = (0u×u,∆T)T ∈ Rq×u. Based on the175

definition of an, we have λmax,n = op(an). So the second term is dominated by the first term. Then (A3)
is established if we can show that the trace in the first term is positive. We have

tr
{
Ω−1ΓT

1∆
T
∗AΓA,0Ω̃0,AΓ

T
A,0∆∗AΓ1 + (Ω+ ηΣXηT)ΓT

1∆
T
∗AΓA,0Ω̃

−1
0,A|IΓ

T
A,0∆∗AΓ1

−2(Iu +AT
AAA)

−1∆T
∗AΓA,0Γ

T
A,0∆∗A

}

= vec(ΓT
A,0∆∗AΓ1)

T
{
Ω−1 ⊗ Ω̃0,A + (Ω+ ηΣXηT)⊗ Ω̃−1

0,A|I − 2Iu ⊗ Iq−u

}
vec(ΓT

A,0∆∗AΓ1)

≥ vec(ΓT
A,0∆∗AΓ1)

T
{
Ω−1 ⊗ Ω̃0,A + (Ω+ ηΣXηT)⊗ Ω̃−1

0,A − 2Iu ⊗ Iq−u

}
vec(ΓT

A,0∆∗AΓ1)

≥ m∥ΓT
A,0∆∗AΓ

T
1∥F

≥ mm2
0∥∆∥2F ,

where m0 is the smallest eigenvalue of (Iu +AT
AAA)−1, and m is the smallest eigenvalue of Ω−1 ⊗

Ω̃0,A + (Ω+ ηΣXηT)⊗ Ω̃−1
0,A − 2Iu ⊗ Iq−u, which is a positive definite matrix by Shapiro (1986). The

derivation of the last inequality is the same as the derivation of a similar inequality at the end of the proof180

of Theorem 2. !

Proof of Theorem 5. First, we show that

∥Σ̂−1
res,sp − Σ−1∥F = Op[{(rn + s1) log rn/n}1/2], (A4)

∥Σ̂−1
Y,sp − Σ−1

Y ∥F = Op[{(rn + s2) log rn/n}1/2]. (A5)

Because that Y is sub-gaussian plus a constant and the residuals are not independent, Y and the residuals
do not satisfy the assumptions required for establishing the consistency of the sparse permutation invariant
covariance estimator. However the sparse permutation invariant covariance estimator depends on the data185

only through a bound of the sample covariance matrix. Therefore as long as we can show that

max
i,j

|Σ̂Y,ij − ΣY,ij | ≤ CY {log(rn)/n}1/2, max
i,j

|Σ̂res,ij − Σij | ≤ Cres{log(rn)/n}1/2 (A6)

for some CY > 0, Cres > 0, (A4) and (A5) hold.
We begin by showing (A6). Let W be an m-dimensional random vector with mean µW and covariance

matrix ΣW , and W − µW follow a sub-gaussian distribution. Suppose W1, . . . ,Wn are n independent
and identically distributed samples of W , then W̄ =

∑n
i=1 Wi and190

Σ̂W =
1

n

n∑

k=1

(Wk − W̄ )(Wk − W̄ )T =
1

n

n∑

k=1

(Wk − µW )(Wk − µW )T − (W̄ − µW )(W̄ − µW )T.
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From Ravikumar et al. (2011), there exists positive constants Ci, such that for δ ∈ (0, b1),

pr(|Σ̂W,ij − ΣW,ij | > δ) ≤ pr

[∣∣∣
{ 1

n

n∑

k=1

(Wk − µW )(Wk − µW )T
}

ij
− ΣW,ij

∣∣∣ >
δ

2

]

+pr

[∣∣∣
{
(W̄ − µW )(W̄ − µW )T

}

ij

∣∣∣ >
δ

2

]

≤ C1 exp(−C2nδ
2) + C3 exp(−C4nδ

2)

where | · | denotes absolute value. Let δ = C5{log(m)/n}1/2 for some C5 > 0. Using the union sum
inequality, as n → ∞, we have with probability tending to 1,

max
i,j

|Σ̂W,ij − ΣW,ij | ≤ C6{log(m)/n}1/2,

where C6 is a positive number.
Now we take W = (XT, εT)T, then W is a p+ rn dimensional random vector with mean (µT

X , 0T)T, 195

where the 0 is an rn dimensional vector. It has a block diagonal covariance matrix with diagonal blocks
being ΣX and Σ. Then by the preceding conclusion, we can find constant C0 such that maxi,j |Σ̂W,ij −
ΣW,ij | ≤ C0{log(rn + p)/n}1/2. Since p is fixed, we can find C∗

0 such that maxi,j |Σ̂W,ij − ΣW,ij | ≤
C∗

0{log(rn)/n}1/2. Then

max
i,j

|Σ̂X,ij − ΣX,ij | ≤ C∗
0{log(rn)/n}1/2,

max
i,j

|Σ̂ε,ij − Σij | ≤ C∗
0{log(rn)/n}1/2,

max
i,j

|Σ̂εX,ij | ≤ C∗
0{log(rn)/n}1/2.

Since Σ̂Y = βΣ̂XβT + Σ̂ε + βΣ̂Xε + Σ̂εXβT, we have 200

max
i,j

|Σ̂Y,ij − ΣY,ij | ≤ CY {log(rn)/n}1/2,

for some CY > 0.
As Σ̂res = Σ̂ε − Σ̂εX Σ̂−1

X Σ̂Xε,

Σ̂res − Σ = (Σ̂εX − ΣεX)Σ−1
X ΣXε + ΣεX(Σ̂−1

X − Σ−1
X )ΣXε + ΣεXΣ−1

X (Σ̂Xε − ΣXε)

+(Σ̂εX − ΣεX)(Σ̂−1
X − Σ−1

X )ΣXε + ΣεX(Σ̂−1
X − Σ−1

X )(Σ̂Xε − ΣXε)

+(Σ̂εX − ΣεX)Σ−1
X (Σ̂Xε − ΣXε) + (Σ̂εX − ΣεX)(Σ̂−1

X − Σ−1
X )(Σ̂Xε − ΣXε)

+Σ̂ε − Σ.

Using the fact that for A ∈ Rd1×d2 , B ∈ Rd2×d3 , ∥AB∥max ≤ d2∥A∥max∥B∥max, where ∥ · ∥max is the
matrix max norm, we have

max
i,j

|Σ̂res,ij − Σij | ≤ Cres{log(rn)/n}1/2,

for some Cres > 0. Therefore (A4) and (A5) hold. 205

We denote the objective function in (7) as fobj,2. Let an = {(rn + s) log rn/n}1/2. Theorem 5 holds
if for arbitrarily small ε > 0, there exists a sufficiently large constant C, such that

lim
n

pr

{
inf

∆∈R(q−u)×u,∥∆∥F=C
fobj,2(A+ an∆) > fobj,2(A)

}
> 1− ϵ. (A7)
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Following the techniques and notations in the proof of Theorem 2, we expand fobj,2(A+ an∆)−
fobj,2(A) and get

fobj,2(A+ an∆)− fobj,2(A)

≥ 2an tr
[
(GT

AΣGA)
−1GT

A(Σ̂res,sp − Σ)∆∗ + {(GT
AΣ̂res,spGA)

−1 − (GT
AΣGA)

−1}GT
AΣ∆∗

+{(GT
AΣ̂res,spGA)

−1 − (GT
AΣGA)

−1}GT
A(Σ̂res,sp − Σ)∆∗ + (GT

AΣ
−1
Y,spGA)

−1GT
A(Σ̂

−1
Y,sp − Σ−1

Y )∆∗

+{(GT
AΣ̂

−1
Y,spGA)

−1 − (GT
AΣ

−1
Y GA)

−1}GT
AΣ

−1
Y ∆∗

+{(GT
AΣ̂

−1
Y,spGA)

−1 − (GT
AΣ

−1
Y GA)

−1}GT
A(Σ̂

−1
Y,sp − Σ−1

Y )∆∗

]

+a2n tr
{
Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1 + (Ω+ ηΣXηT)ΓT

1∆
T
∗Γ0Ω

−1
0 ΓT

0∆∗Γ1

−2(Iu +ATA)−1∆T
∗Γ0Γ

T
0∆∗

}
−

1

2
an(q − u)λmax,n max

i

(
∥ai∥−1

2 ∥δi∥2
)
+ op(a

2
n).

Notice that210

Σ̂res,sp − Σ = Σ(Σ̂−1
res,sp − Σ−1)Σ+ op(Σ̂

−1
res,sp − Σ−1).

Let ∥ · ∥ be the spectral norm of a matrix. For two matrices A ∈ Rd1×d2 and B ∈ Rd2×d3 , ∥AB∥F ≤
∥A∥∥B∥F . So

∥Σ(Σ̂−1
res,sp − Σ−1)Σ∥F ≤ ∥Σ∥2∥Σ̂−1

res,sp − Σ−1∥F ≤ k̄2∥Σ̂−1
res,sp − Σ−1∥F ,

and ∥Σ̂res,sp − Σ∥F = Op[{(rn + s) log rn/n}1/2]. Then

tr
[
(GT

AΣGA)
−1GT

A(Σ̂res,sp − Σ)∆∗

]
≥ −k̄2∥∆∥F ∥Σ̂−1

res,sp − Σ−1∥F ∥(GT
AΣGA)

−1∥∥GA∥F .

Now

(GT
AΣ̂res,spGA)

−1 − (GT
AΣGA)

−1

= −(GT
AΣGA)

−1(GT
AΣ̂res,spGA −GT

AΣGA)(G
T
AΣGA)

−1 + op(G
T
AΣ̂res,spGA −GT

AΣGA)

= −(GT
AΣGA)

−1GT
A(Σ̂res,sp − Σ)GA(G

T
AΣGA)

−1 + op[{(rn + s1) log rn/n}1/2]
= −(GT

AΣGA)
−1GT

AΣ(Σ̂
−1
res,sp − Σ−1)ΣGA(G

T
AΣGA)

−1 + op[{(rn + s1) log rn/n}1/2]

so215

tr
[
{(GT

AΣ̂res,spGA)
−1 − (GT

AΣGA)
−1}GT

AΣ∆∗

]

≥ −u1/2k̄2∥∆∥F ∥Σ̂−1
res,sp − Σ−1∥F ∥(GT

AΣGA)
−1∥∥GA∥F .

Apply these inequalities to the terms in the first four lines in fobj,2(A+ an∆)− fobj,2(A), then

fobj,2(A+ an∆)− fobj,2(A)

≥ 2M1an∥∆∥F∥Σ̂−1
res,sp − Σ−1∥F + 2M2an∥∆∥F ∥Σ̂−1

Y,sp − Σ−1
Y ∥F

+a2n tr
{
Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1 + (Ω+ ηΣXηT)ΓT

1∆
T
∗Γ0Ω

−1
0 ΓT

0∆∗Γ1

−2(Iu +ATA)−1∆T
∗Γ0Γ

T
0∆∗

}
−

1

2
an(q − u)λmax,n max

i=1,...,q−u

(
∥ai∥−1

2 ∥δi∥2
)
+ op(a

2
n),

where M1 = −2u1/2k̄2∥(GT
AΣGA)−1∥∥GA∥F and M2 = −2∥(GT

AΣ
−1
Y GA)−1∥∥GA∥F . Because

λmax,n = o[{(rn + s) log rn/n}1/2] = op(an) and

tr
{
Ω−1ΓT

1∆
T
∗Γ0Ω0Γ

T
0∆∗Γ1 + (Ω+ ηΣXηT)ΓT

1∆
T
∗Γ0Ω

−1
0 ΓT

0∆∗Γ1 − 2(Iu +ATA)−1∆T
∗Γ0Γ

T
0∆∗

}

≥ m∥∆∥2F ,
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for some m > 0 by Theorem 2, the second order term of ∥∆∥F dominates the first order term of ∥∆∥F in

fobj,2(A+ an∆)− fobj,2(A). Therefore (A7) holds, and ∥Â−A∥F = Op[{(rn + s) log rn/n}1/2]. As 220

PΓ = GA(Iu +ATA)−1GT
A is a simple and continuous function of A, then ∥PΓ̂ − PΓ∥F = Op[{(rn +

s) log rn/n}1/2].
Since

β̂ols − β = Σ̂εXΣ̂−1
X − ΣεXΣ−1

X = (Σ̂εX − ΣεX)Σ−1
X + ΣεX(Σ̂−1

X − Σ−1
X ),

there exists a constant Cols such that

max
i,j

|β̂ols,ij − βij | ≤ Cols{log(rn)/n}1/2.

Because ∥β̂ols − β∥F ≤ (prn)1/2∥β̂ols − β∥max, then 225

∥β̂ − β∥F ≤ ∥(PΓ̂ − PΓ)β̂ols∥F + ∥PΓ(β̂ols − β)∥F ≤ ∥(PΓ̂ − PΓ)β̂ols∥F + ∥β̂ols − β∥F .

Therefore the sparse envelope estimator β̂ converges to β with rate {(rn + s) log rn/n}1/2. !

Proof of Theorem 6. Let

δ = min
i=1,...,q−u

∥ai∥2 > 0,

then δ is the smallest norm of the non-sparse rows in A. Since ∥β̂ − β∥F = Op[{(rn + s) log rn/n}1/2],
and {(rn + s) log rn/n}1/2 → 0, then ∥β̂ − β∥F < δ/2 with probability tending to 1. This implies ∥âi −
ai∥2 < δ/2 for i = 1, . . . , rn. For i = 1, . . . , q, ∥âi∥2 > ∥ai∥2 − δ/2 > 0. Therefore the sparse envelope 230

estimator identifies the nonzero rows with probability tending to 1.
For ai, i = q − u+ 1, . . . , rn − u, suppose âi ≠ 0, taking the derivative of fobj,2 with respect to ai

and evaluate at âi, we have

−4eT
i ĜA(Iu + ÂTÂ)−1 + 2eT

i Σ̂res,spĜA(Ĝ
T
AΣ̂res,spĜA)

−1 + 2eT
i Σ̂

−1
Y,spĜA(Ĝ

T
AΣ̂

−1
Y,spĜA)

−1

+λi
âT
i

∥âi∥2
= 0.

Because −4eT
i GA(Iu +ATA)−1 + 2eT

i ΣGA(GT
AΣGA)−1 + 2eT

i Σ
−1
Y GA(GT

AΣ
−1
Y GA)−1 = 0, we have

∥ − 4eT
i ĜA(Iu + ÂTÂ)−1 + 2eT

i Σ̂res,spĜA(Ĝ
T
AΣ̂res,spĜA)

−1 + 2eT
i Σ̂

−1
Y,spĜA(Ĝ

T
AΣ̂

−1
Y,spĜA)

−1∥F
= Op[{(rn + s) log rn/n}1/2].

But 235

∥∥∥λi
âT
i

∥âi∥2

∥∥∥
F
= λi ≥ λmin,n.

Since {(rn + s) log rn/n}1/2 = o(λmin,n), this is a contradiction. Therefore we have pr(âi = 0) → 1 for
i = q − u+ 1, . . . , rn − u. !

B. CONVERGENCE ANALYSIS OF ALGORITHM 1

In this section, we prove the strict descent property of our blockwise coordinate descent algorithm. The
proof relies on the following two lemmas. 240

LEMMA B1. The loss function L(ai | Ã−i) as defined in (9) has a bounded second derivative

d2

da2i
L(ai|Ã−i)

∣∣∣
ai=ãi

≼ {4γmax(B1) + 2γmax(B2) + 2γmax(B3)} I,

where I ∈ Ru×u and M1 ≼ M2 means that M2 −M1 is a semi-positive definite matrix.
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LEMMA B2. One can find a quadratic majorization function Q for the loss function L(ai | Ã−i) in
(9), i.e.,

Q(ai) = L(ãi | Ã−i) + (ai − ãi)
T d

dai
L(ai|Ã−i)

∣∣∣
ai=ãi

+ 1/2δi(ai − ãi)
T(ai − ãi), (A1)

such that Q(ai) = L(ãi | Ã−i) when ai = ãi and Q(ai) > L(ãi | Ã−i) when ai ≠ ãi.245

Proof of Lemma B1. The second derivative of L(ai | Ã−i) is

d2

da2i
L(ai|Ã−i) = −4T1 + 2T2 + 2T3,

where

T1 =
(1 + aT

i B1ai)B1 − 2B1aiaT
i B1

(1 + aT
i B1ai)

2 , (A2)

T2 =
{1 + (ai + v2)TB2(ai + v2)}B2 − 2B2(ai + v2)(ai + v2)TB2

{1 + (ai + v2)TB2(ai + v2)}2
,

T3 =
{1 + (ai + v3)TB3(ai + v3)}B3 − 2B3(ai + v3)(ai + v3)TB3

{1 + (ai + v3)TB3(ai + v3)}2
.

We only prove that T1 defined in (A2) can be bounded as−γmax(B1)I ≼ T1 ≼ γmax(B1)I , since the
proofs for bounding T2 and T3 are very similar. We write T1 as

T1 =
(1 + aT

i B1ai)B1 − 2B1aiaT
i B1

(1 + aT
i B1ai)

2 =
B1/2

1

{(
1 + aT

i B
1/2
1 B1/2

1 ai
)
I − 2B1/2

1 aiaT
i B

1/2
1

}
B1/2

1

(1 + aT
i B1ai)

2 .

(A3)

Replace x = B1/2
1 ai in (A3), we get250

T1 =
B1/2

1 {(1 + xTx)I − 2xxT}B1/2
1

(1 + xTx)2
.

We now prove that

−I ≼
(1 + xTx)I − 2xxT

(1 + xTx)2
≼ I.

Denote z = x/∥x∥ and denote M = (zTz)I − zzT. It is easy to see that 0 ≼ M ≼ I . As

(xTx)I − xxT = ∥x∥2
(

xT

∥x∥
x

∥x∥
I −

x

∥x∥
xT

∥x∥

)
= ∥x∥2M,

we have (xTx)I − xxT ≽ 0. Then

(1 + xTx)I − 2xxT ≽ (1 + xTx)I − 2(xTx)I = (1− xTx)I ≽ −(1 + xTx)I. (A4)

We also have

(1 + xTx)I − 2xxT ≼ (1 + xTx)I. (A5)

Therefore combining (A4), (A5) and 1 + xTx ≥ 1, we have255

−I ≼
(1 + xTx)I − 2xxT

(1 + xTx)2
≼ I.

Therefore

−γmax(B1)I ≼ −B1 ≼ T1 ≼ B1 ≼ γmax(B1)I.
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Similarly we can prove that −γmax(B2)I ≼ T2 ≼ γmax(B2)I , and −γmax(B3)I ≼ T3 ≼ γmax(B3)I .
Hence the lemma is proved. !

Proof of Lemma B2. For any ai and a∗i , let di = ai − a∗i and define g(t) = L(a∗i + tdi | Ã−i) such
that 260

g(0) = L(a∗i | Ã−i), g(1) = L(ai | Ã−i).

By Taylor expansion, there exists a b ∈ (0, 1) such that

g(1) = g(0) + g′(0) + 1/2g′′(b). (A6)

By Lemma B1,

g′′(b) = dT
i
d2

da2i
L(ai | Ã−i)

∣∣∣
ai=a∗

i+bdi

di

≤ {4γmax(B1) + 2γmax(B2) + 2γmax(B3)} dT
i di

≤ δid
T
i di, (A7)

where δi = (1 + ε∗){4γmax(B1) + 2γmax(B2) + 2γmax(B3)} and ε∗ > 0. When di ≠ 0 the inequality
in (A7) strictly holds. Plugging (A7) into (A6) gives (A1). !

Proof of Theorem 1. By Lemma C2, after updating ãi using 265

ãi,new =
1

δi

{
δiãi −

d

dai
L(ai|Ã−i)

∣∣∣
ai=ãi

}{

1−
λωi∥∥δiãi − d

dai
L(ai|Ã−i)

∣∣
ai=ãi

∥∥
2

}

+

, (A8)

we have

L(ãi,new | Ã−i) + λωi∥ãi,new∥2 ≤ Q(ãi,new) + λωi∥ãi,new∥2
≤ Q(ãi) + λωi∥ãi∥2
= L(ãi) + λωi∥ãi∥2.

Moreover, if ãi(new) ≠ ãi, then the first inequality becomes

L(ãi,new | Ã−i) + λωi∥ãi,new∥2 < Q(ãi,new) + λωi∥ãi,new∥2.

Therefore, the objective function strictly decreases after updating all blocks in a cycle, unless the solution
stays unchanged after each blockwise coordinate update. If this is the case, we can show that the solution
must satisfy the Karush–Kuhn–Tucker conditions, which indicates that the algorithm has converged to the 270

stationary point. To see this, if ãi,new = ãi for all i, then by (A8) we have

ãi =
1

δi

{
δiãi −

d

dai
L(ai|Ã−i)

∣∣∣
ai=ãi

}{

1−
λωi∥∥δiãi − d

dai
L(ai|Ã−i)

∣∣
ai=ãi

∥∥
2

}

if
∥∥∥δiãi −

d

dai
L(ai|Ã−i)

∣∣∣
ai=ãi

∥∥∥
2
> λωi,

and ãi = 0 otherwise. By straightforward algebra we obtain the Karush–Kuhn–Tucker conditions:

d

dai
L(ai|Ã−i)

∣∣∣
ai=ãi

+ λωi ·
ãi

∥ãi∥2
= 0, ãi ≠ 0,

∥∥∥∥
d

dai
L(ai|Ã−i)

∣∣∣
ai=ãi

∥∥∥∥
2

≤ λωi, ãi = 0, 275
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where i = 1, . . . , r − u. Therefore, if the objective function stays unchanged after a cycle, the solution
satisfies the Karush–Kuhn–Tucker conditions and necessarily converges to the stationary point of the
problem. !

Now we show a figure that empirically confirms the convergence of Algorithm 1. We used the following
settings to generate the figure. We set p = 5, u = 2, n = 50 and r = 200. The first q/2 rows in ΓA were280

{(2/q)1/2, 0}T and the remaining q/2 rows were {0, (2/q)1/2}T. Then we used the structure in (5) to
construct Γ and Γ0. The errors were generated from the multivariate normal distribution with mean 0 and
covariance matrix Σ = ΓΩΓT + Γ0Ω0ΓT

0 , where Ω = Iu and Ω0 was a block diagonal matrix with the
upper left block being 25Iq−u and lower right block being 4Ir−q. The elements in η were independent
N(0, 42) variates. The predictors X were normally distributed with mean 0 and covariance matrix ΣX =285

4Ip. Figure 1 plotted the log of the objective value in (7) minus the optimal point versus the number of
iterations. We added 10−3 to avoid taking logarithm of zero at the optimal point. For comparison, we
used a subgradient method rather than the majorization-minimization method to get the solution of (9).
We included a line for the subgradient method in the figure. The same convergence criterion and starting
value were used for Algorithm 1 and the subgradient method. Figure 1 shows that Algorithm 1 takes290

less iterations to converge. The subgradient method is not a descent method, as the objective value is not
monotonically decreasing. On the other hand, the objective value strictly decreases with Algorithm 1,
which confirms Theorem 1.
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Fig. 1. Comparison of convergence for Algorithm 1 (solid) and the subgradient
method (dashed).

C. SIMULATIONS

In this section, we investigate the performance of the sparse envelope estimator under three cases: the295

first has u < r < p < n, the second varies the signal level σX , and the third has different values of u, i.e.,
the dimension of the envelope subspace.

In the first case with u < r < p < n, we set n = 250, r = 100, u = 2 and q = 5. The matrix
(ΓA,ΓA,0) was obtained by orthogonalizing a q by q matrix of independent uniform (0, 1) variates.
Then we used the structure in (5) to construct Γ and Γ0. The elements in η were taken to be indepen-300

dent normal variates with mean 0 and variance 0·16. The error covariance matrix Σ followed the structure
Σ = ΓΩΓT + Γ0Ω0ΓT

0 , where Ω = Iu and Ω0 was a block diagonal matrix with the upper left block be-
ing 9Iq−u and lower right block being 4Ir−q. The predictors X were normally distributed with mean 0
and covariance matrix ΣX = σ2

XIp, where σ2
X =0·4. We varied p from 100 to 180. For each value of
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p, 200 replications were generated. The selection performance is summarized in Table 1. The standard 305

deviation of a randomly chosen element in β is displayed in Fig. 2. When r < p < n, the sparse envelope
model still gives substantial efficient gains compared to the standard model.

Table 1. Average true positive rate (%), true negative rate (%) and accuracy (%) of sparse
envelope estimator, hard thresholding estimator and F test

sparse envelope hard thresholding F test
p T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu.

100 98·8 99·7 85·0 90·4 99·8 66·0 59·8 99·9 0·0
120 98·6 99·6 81·0 90·4 99·7 64·0 60·6 99·9 1·0
140 98·0 99·3 78·0 86·4 99·0 36·0 58·6 100·0 0·0
160 92·8 98·6 67·0 79·2 98·5 23·0 55·2 100·0 1·0
180 82·2 98·1 49·0 40·4 99·3 2·0 49·2 100·0 0·0
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Fig. 2. Comparison of the standard deviations for sparse envelope estimator
(solid) and standard estimator (dashed).

In the second simulation, we varied the signal level σX and investigated the selection performance
and efficiency gains of the sparse envelope estimator. In the simulation that generated Table 1, we fixed
p = 160 and varied σX from 0·05 to 0·6. The selection performance is summarized in Table 2, and the 310

standard deviation of a randomly chosen element in β is displayed in Fig. 3. We notice that the sparse
envelope model is more advantageous when the signal is weak. When the signal is stronger, both the
sparse envelope estimator and the standard estimator improve. But for all signal levels, the sparse envelope
estimator is more efficient than the standard estimator.

In the third case, we set r = 100, q = 24, p = 50, n = 200 and varied u from 2 to 20. The matrix 315

(ΓA,ΓA,0) was obtained by orthogonalizing a q × q matrix of independent standard normal variates. Then
we used the structure in (5) to construct Γ and Γ0. The elements in η were independent normal variates
with mean 0 and variance 0·25, and the error covariance matrix had the structure Σ = ΓΩΓT + Γ0Ω0ΓT

0

with Ω = Iu and Ω0 = 25Ir−u. The predictors X were generated from a multivariate normal distribution
with mean 0 and covariance matrix Ip. The selection performance under different u is summarized in 320

Table 3, and the standard deviation of a randomly chosen element in β is displayed in Fig. 4. We notice
that when u is small, there is a bigger immaterial part and therefore we expect a more substantial efficiency
gain by using the sparse envelope estimator.
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Table 2. Average true positive rate (%), true negative rate (%) and accuracy (%) of sparse
envelope estimator, hard thresholding estimator and F test

sparse envelope hard thresholding F test
σ2
X T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu.

0·05 54·6 96·1 0·0 25·8 98·7 0·0 2·2 100·0 0·0
0·1 70·6 96·2 10·0 46·4 98·1 5·0 17·6 100·0 0·0
0·2 85·2 97·7 39·0 65·6 98·1 14·0 30·2 100·0 0·0
0·3 87·8 97·9 48·0 72·6 98·1 20·0 44·8 100·0 0·0
0·4 92·8 98·6 67·0 79·4 98·5 23·0 55·2 100·0 1·0
0·5 98·2 99·8 93·0 89·8 99·5 54·0 61·8 100·0 1·0
0·6 100·0 100·0 100·0 98·0 99·9 88·0 65·0 100·0 3·0
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Fig. 3. Comparison of the standard deviations for sparse envelope estimator
(solid) and standard estimator (dashed).

Table 3. Average true positive rate (%), true negative rate (%) and accuracy (%) of sparse
envelope estimator, hard thresholding estimator and F test

sparse envelope hard thresholding F test
u T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu.
2 35·8 99·9 0·0 20·8 100·0 0·0 4·1 100·0 0·0
5 72·6 99·9 0·0 54·7 100·0 0·0 20·5 99·9 0·0

10 95·9 100·0 27·5 88·2 100·0 0·0 65·1 99·7 0·0
15 99·9 100·0 98·8 98·3 100·0 58·8 94·8 99·7 21·2
20 100·0 100·0 100·0 100·0 100·0 100·0 99·9 99·7 77·5

D. THE SMALLEST LAMBDA THAT YIELDS THE NULL MODEL

We define λ∗ as the smallest λ value such that all the elements in A are zero. By the Karush–Kuhn–325

Tucker conditions of the optimization problem (8),

d

dai
L(ai|Ã−i)

∣∣∣
ai=ãi

+ λwi ·
ãi

∥ãi∥2
= 0, ãi ≠ 0,

∥∥∥∥
d

dai
L(ai|Ã−i)

∣∣∣
ai=ãi

∥∥∥∥
2

≤ λwi, ãi = 0,
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Fig. 4. Comparison of the standard deviations for sparse envelope estimator
(solid) and standard estimator (dashed).

for i = 1, . . . , r − u. Then we can find that

λ∗ = max
i=1,...,r−u

∥∥∥∥
d

dai
L(ai|A−i = 0)

∣∣∣
ai=0

∥∥∥∥
2

/wi, wi ≠ 0.

If M is an r × r symmetric matrix and U is a set such that U = {1, . . . , u}, let MU,U denote the up-
per left block of M that has dimension u× u, MU,u+i denote the u× 1 vector that includes the first u
elements of the (u+ i)th column, and Mu+i|U = Mu+i,u+i −MT

U,u+iM
−1
U,UMU,u+i. Then after some 330

straightforward calculations,

d

dai
L(ai|A−i = 0)

∣∣∣
ai=0

= 2(Σ̂res)u+i,u+i/(Σ̂res)u+i|U + 2(Σ̂−1
Y )u+i,u+i/(Σ̂

−1
Y )u+i|U − 4.

Therefore we have

λ∗ = max
i=1,...,r−u

∥∥∥2(Σ̂res)u+i,u+i/(Σ̂res)u+i|U + 2(Σ̂−1
Y )u+i,u+i/(Σ̂

−1
Y )u+i|U − 4

∥∥∥
2
/wi, wi ≠ 0.

E. COMPARISON OF AKAIKE INFORMATION CRITERION, BAYESIAN INFORMATION CRITERION

AND LIKELIHOOD RATIO TESTING ON SELECTION OF u

The simulation settings are the same as those used in Fig. 1. We used the Akaike information criterion, 335

Bayesian information criterion and likelihood ratio testing with significance level α = 0.01 to select u.
For each sample size, 500 replications were generated. Results are summarised in Fig. 5. The selection
performances for all three criteria are quite close, with Bayesian information criterion slightly better for
larger sample sizes. This is because as n tends to infinity, Bayesian information criterion selects the true
dimension with probability approaching 1 while likelihood ratio testing selects the true dimension at the 340

nominal level 1− α. Akaike information criterion tends to select a larger dimension, because asymptot-
ically Akaike information criterion has positive probability in selecting a model that contains the true
model. A similar pattern is also observed in Su & Cook (2013) when comparing these three criteria. Since
Bayesian information criterion is quite stable with all sample sizes, we use it to select u for the data
analysis in Section 3·2. 345
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Fig. 5. Comparison of Akaike information criterion (dashed), Bayesian information
criterion (solid) and likelihood ratio testing (dotted) on selection of u. The horizontal
axis displays the sample size, and the vertical displays the fraction of the times that the

estimated u is equal to 2.

F. CONVERGENCE OF THE SPARSE ENVELOPE ESTIMATOR β̂ IN HIGH DIMENSIONAL SCENARIO

The simulation settings used in Figure 6 are the same as those used in Table 2 of the paper. Because

Theorem 5 indicates ∥β̂ − β∥F = Op[{(rn + s) log rn/n}1/2], we plotted the average of [n/{(rn +

s) log rn}]1/2∥β̂ − β∥F over 200 replications versus n. The bootstrap estimator of ∥β̂ − β∥F is com-
puted based on the average of 200 bootstrap samples. With each bootstrap sample, we obtained the sparse350

envelope estimator β̂boot and computed ∥β̂boot − β̂∥F . Figure 6 indicates that ∥β̂boot − β̂∥F is a good

approximation to ∥β̂ − β∥F . Figure 6 also shows that ∥β̂ − β∥F is much smaller than ∥β̂ols − β∥F . This
is a result of the efficiency gains from the envelope construction.

G. NOTATION TABLE

The notations in this table includes all the notation in the main text as well as those in the Supplementary355

material.
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Fig. 6. Comparison of sparse envelope estimator (solid), bootstrap estimator (solid with
asterisks) and standard estimator (dashed).
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A A = Γ2Γ
−1
1

A−i the submatrix of A with row aT

i removed
G the sub matrix of GA with row aT

i removed
GA GA = (Iu, AT)T ∈ Rr×u

L(A) loss function in the optimization of A

L(A) = −2 log |GT

AGA|+ log |GT

AΣ̂resGA|+ log |GT

AΣ̂
−1
Y GA|

Q(ai) majorization function in the optimization of ai
X predictors
Y responses
YA active response, i.e., the responses having non-zero rows in Γ
YI inactive response, i.e., the responses having zero rows in Γ
YD dynamic response, i.e., the responses having non-zero rows in β
YS static response, i.e., the responses having zero rows in β
ai the transpose of the ith row in A
d number of dynamic responses
n sample size
p number of predictors
q number of active responses

r, rn number of responses, when r increases with n, r is written as rn
rA number of active responses
rI number of inactive responses
rD number of dynamic responses
rS number of static responses
s1 nonzero elements in the lower triangle (not including the diagonal elements) of Σ−1

res

s2 nonzero elements in the lower triangle (not including the diagonal elements) of Σ−1
Y

s max{s1, s2}
u dimension of the envelope EΣ(B)
α intercept
β regression coefficients
βA βA = ΓAη
βD the nonzero coefficients in β

β̂ sparse envelope estimator of β

β̂A sparse envelope estimator of βA
β̂A,2 active envelope estimator of βA
β̂A,O oracle envelope estimator of βA
β̂ols ordinary least squares estimator of β
B span of β

EΣ(B) the envelope subspace
η coordinates of β with respect to Γ

G(r, u) r × u Grassmann manifold, i.e., the set of all u-dimensional subspaces in an r-dimensional space
γmax(·) largest eigenvalue of a matrix
γmin(·) smallest eigenvalue of a matrix

Γ orthogonal basis of the envelope EΣ(B)
ΓA the non-zero rows in Γ
ΓA,0 completion of ΓA

Γ0 orthogonal basis of the orthogonal complement of EΣ(B)
Γ̃0 orthogonal basis of the orthogonal complement of EΣ(B) with a block diagonal structure
Γ1 the first u rows in Γ
Γ2 the last r − u rows in Γ
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Γ̂ sparse envelope estimator of Γ

Γ̂A sparse envelope estimator of ΓA

Γ̂A,2 active envelope estimator of ΓA

Γ̂A,O oracle envelope estimator of ΓA

λi tuning parameter in the optimization of ai, λi can be written as λi = λωi, where λ is the
common tuning parameter and ωi’s are the weights. In this paper, ωi = 1/∥ai∥ν2 .

λmax,n max(λ1, . . . ,λq−u) at sample size n
λmin,n min(λq−u+1, . . . ,λr−u) at sample size n
Ω coordinates of Σ with respect to Γ
Ω0 coordinates of Σ with respect to Γ0

Ω̃0 coordinates of Σ with respect to Γ̃0

Ω̃0,A upper left block of Ω̃0, which has dimension (q − u)× (q − u)

Ω̃0,AI upper right block of Ω̃0, which has dimension (q − u)× (r − q)

Ω̃0,I lower right block of Ω̃0, which has dimension (r − q)× (r − q)

Ω̃0,IA lower left block of Ω̃0, which has dimension (r − q)× (q − u)

Ω̃0,A|I Ω̃0,A − Ω̃0,AIΩ̃
−1
0,IΩ̃0,IA

µX mean of the predictors X
Σ variance of the error vector ε
ΣX variance of the predictors X
ΣY variance of the responses Y

Σ̂X sample covariance matrix of X

Σ̂Y sample covariance matrix of Y

Σ̂−1
Y,sp sparse permutation invariant covariance estimator of Σ−1

Y

Σ̂YA|X sample covariance matrix of the residuals from the regression of YA on X

(Σ̂−1
Y )A the rows and columns in Σ̂−1

Y that have the same indices as YA in Y

Σ̂res sample covariance matrix of the residuals from the regression of Y on X

Σ̂−1
res,sp sparse permutation invariant covariance estimator of Σ−1

res

ε error vector
⊗ Kronecker product

V1 V2 means V1 and V2 are independent
∼ equality in distribution
⊥ orthogonal complement
† Moore–Penrose generalized inverse

∥ · ∥ spectral norm of a matrix
∥ · ∥2 L2 norm of a vector
∥ · ∥F Frobenius norm of a matrix
P projection matrix
Q I − P

vec(·) stack a matrix into a vector columnwise
vech(·) stack the lower left triangle of a symmetric matrix into a vector
Ca, Ea contraction matrix and expansion matrix: if M is an a× a symmetric matrix,

vech(M) = Ca vec(M), vec(M) = Ea vech(M)
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