
Biostatistics, 2025, 26(1), kxaf032
https://doi.org/10.1093/biostatistics/kxaf032
Article C

A novel high-dimensional model for identifying
regional DNAmethylationQTLs

Kaiqiong Zhao 1,∗, Archer Y. Yang2,3, KarimOualkacha 4, Yixiao Zeng5,6,
Kathleen Klein5, Marie Hudson5,7, Inés Colmegna7,8, Sasha Bernatsky 7,8,

Celia M.T. Greenwood 5,6,9,10,11

1Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
2Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montréal, Québec,

H3A 2K6, Canada
3Mila-Québec AI Institute, 6666 Saint-Urbain Street, Montréal, QC, H2S 3H1, Canada

4Département de Mathématiques, Université du Québec à Montréal, 201 Avenue du Président-Kennedy,
Montréal, QC, H2X 3Y7, Canada

5Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la
Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada

6Quantitative Life Science, McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
7Department of Medicine, McGill University, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6,

Canada
8The Research Institute of the McGill University Health Centre, 2155 Guy Street, Montréal, QC, H3H 2R9,

Canada
9Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College,

Montréal, QC, H3A 1G1, Canada
10Department of Human Genetics, McGill University, 3666 McTavish Street, Montréal, QC, H3A 1Y2, Canada

11Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West,
Montréal, QC, H4A 3T2, Canada

∗Corresponding author: Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON,
M3J 1P3, Canada. Email: kaiqiong@yorku.ca

SU MMARY

Varying coefficient models offer the flexibility to learn the dynamic changes of regression coefficients.
Despite their good interpretability and diverse applications, in high-dimensional settings, existing estima-
tion methods for such models have important limitations. For example, we routinely encounter the need
for variable selection when faced with a large collection of covariates with nonlinear/varying effects on
outcomes, and no ideal solutions exist. One illustration of this situation could be identifying a subset of
genetic variants with local influence on methylation levels in a regulatory region. To address this problem,
we propose a composite sparse penalty that encourages both sparsity and smoothness for the varying
coefficients. We present an efficient proximal gradient descent algorithm that scales to high-dimensional
predictor spaces, providing sparse solutions for the varying coefficients. A comprehensive simulation study
has been conducted to evaluate the performance of our approach in terms of estimation, prediction and
selection accuracy. We show that the inclusion of smoothness control yields much better results over
sparsity-only approaches. An adaptive version of the penalty offers additional performance gains. We
further demonstrate the utility of our method in identifying regional mQTLs from asymptomatic samples
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in the CARTaGENE cohort. The methodology is implemented in the R package sparseSOMNiBUS,
available on GitHub.

KEYWORDS: methylation QTLs; varying coefficient model; variable selection; smoothness control;
proximal gradient descent.

1. INTRODUCTION
DNA methylation is a key epigenetic mechanism that regulates gene expression, drives tissue
differentiation, and contributes to disease susceptibility. It primarily occurs at cytosine-guanine
dinucleotides (CpG sites), and its variation is often influenced by genetic factors (Gaunt et al. 2016;
Hannon et al. 2018). Single-nucleotide polymorphisms (SNPs) that modulate methylation levels
are known as methylation quantitative trait loci (mQTLs). Mapping mQTLs is critical for under-
standing the genetic regulation of the epigenome and mitigating confounding in epigenome-wide
association studies (Hannon et al. 2016; Van Dongen et al. 2016; Taylor et al. 2019).

1.1. Motivation for regional mQTL mapping with smooth genetic effects
Traditional mQTL mapping typically tests one SNP–one CpG association at a time, treating
CpG sites independently (Zhou and Stephens 2014; Fan et al. 2019). However, these approaches
overlook the spatial correlation in DNA methylation observed across neighboring sites. Bisulfite
sequencing (BS), which offers base-pair resolution, enables detection of these local dependencies
and has shown promising results in mQTL studies (Schmitz et al. 2013; Cheung et al. 2017).

Our motivating dataset includes DNA methylation measurements from Targeted Custom Cap-
ture Bisulfite Sequencing, designed to capture methylation levels in biologically relevant regions. It
profiles approximately 5 million CpG sites in whole blood samples from 98 individuals. As shown
in Fig. 1A and Fig. S11A, methylation levels exhibit strong spatial correlation within regions, and
SNP effects tend to be regionally structured—affecting clusters of neighboring CpGs rather than
isolated sites. Although abrupt shifts can occur at individual CpG sites, the magnitude of genetic
effects more often varies smoothly across nearby positions, particularly within regulatory domains.
These empirical patterns motivate the use of smooth effect modeling for regional mQTL analysis.
Assuming smooth genetic effects allows for information sharing across CpGs, helping to address
missing values and low coverage—challenges frequently encountered in bisulfite sequencing data.
This assumption is supported by prior studies showing strong spatial correlation in methylation
levels among CpGs located within 1 kilobase pair (kbp) (Eckhardt et al. 2006), and consistent
co-methylation across species and tissues (Affinito et al. 2020).

Therefore, this article aims to identify regional mQTLs that drive coordinated, smoothly varying
methylation changes across subsets of adjacent CpGs.

To capture coordinated methylation changes across neighboring CpGs, we model the joint
effects of multiple candidate SNPs. A multivariable framework—assessing each SNP’s contribution
while adjusting for others—can reveal variants that may have weak marginal associations but exert
meaningful effects in combination, particularly when linked SNPs jointly influence methylation
patterns. To this end, we adopt a varying coefficient (VC) regression framework to simultaneously
estimate multiple SNP effects that vary smoothly along genomic positions.

1.2. Statistical challenges: unified control of sparsity and smoothness
While traditional VC models, including our earlier work (Zhao et al. 2021, 2024) and that of Wood
(2011), offer flexible tools for modeling smooth covariate effects, they are not designed for high-
dimensional predictor spaces. In regional mQTL mapping, hundreds or thousands of candidate
SNPs often lie within or near a regulatory region, while sample sizes remain small due to sequencing
costs and sample availability (as seen in our motivating dataset; see Table 2 and Table S20). Low-
dimensional methods face significant challenges when estimating the varying coefficients in such
a high-dimensional setting (Fan et al. 2014; Chouldechova and Hastie 2015). Moreover, only a
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small subset of the candidate SNPs is expected to independently influence the methylation patterns.
Traditional VC models using quadratic smoothness penalties cannot provide sparse solutions for
the varying coefficients, and are thus unsuitable for regional mQTL mapping. These limitations
motivate the need to extending VC models to jointly address sparsity and smoothness, enabling
scalable estimation and interpretable results.

Sparsity control in VC models becomes more challenging when covariate effects vary with
respect to structured or multi-dimensional modifiers, motivating methods that jointly select both
main predictors and their modifiers. The pliable LASSO (Tibshirani and Friedman 2020) addresses
this by modeling varying coefficients as linear functions of modifiers for simultaneous selection of
both predictors and their interactions. Along these lines, the structural varying-coefficient regres-
sion (svReg) method (Kim et al. 2021) introduces hierarchical group penalties to accommodate
structured dependencies within both predictors and modifiers.

However, in the context of bisulfite sequencing data, the modifier of interest—genomic
position—is fixed and linearly ordered along the DNA sequence. Thus, genomic position naturally
serves as a one-dimensional modifier (Fig. 1). In our setting, high dimensionality arises from
the large number of main predictors (SNPs), each with potentially nonlinear effects along this
1D modifier. To enable variable selection in such VC models, many sparse penalized regression
methods have been developed, differing mainly in their choices of penalty functions. Major classes
include LASSO (Lin and Zhang 2006), group LASSO (Meier et al. 2009; Wang and Xia 2009;
Ravikumar et al. 2009; Huang et al. 2010; Wei et al. 2011; Gertheiss et al. 2013; Barber et al. 2017),
SCAD (Wang et al. 2007, 2008; Noh and Park 2010) and L0-penalization (Xue and Qu 2012).

Notably, beyond sparsity, VC models require smoothness regularization to control the com-
plexity of nonlinear coefficient functions—particularly in our setting, where SNP effects vary along
genomic position and are estimated using rich spline expansions. Classical approaches address
smoothness either by limiting the number of basis functions (Ravikumar et al. 2009; Huang et al.
2010; Xue and Qu 2012) or by imposing quadratic penalties, as in penalized or smoothing splines
(Wood 2011). The former relies on ad hoc truncation and offers limited flexibility, as the optimal
basis dimension is difficult to determine and often context-dependent. The latter starts with a
comparatively large number of basis expansion and then impose smoothness penalties, enabling
finer control without relying on rigid tuning of basis dimension. Recent work has also explored
adaptive smoothness strategies in nonparametric regression (Park et al. 2023; Wang et al. 2024),
but these methods typically address smoothness alone.

Despite efforts to combine sparsity and smoothness, existing methods often address them
separately. For example, Wang et al. (2008) model smooth coefficient functions using spline basis
expansions and apply a group SCAD penalty for sparsity, with smoothness controlled by selecting
the basis dimension from a small set of discrete values. Wang and Xia (2009) propose a two-step
procedure: they first select a smoothing bandwidth assuming no sparsity constraints, and then tune
the sparsity shrinkage parameter under the selected bandwidth. These approaches rely on separate
tuning steps or discrete modeling choices that are difficult to optimize and often sensitive to their
exact specification. Moreover, this limits flexibility in capturing heterogeneous signal patterns and
undermines stability in high-dimensional settings, where stepwise tuning often leads to inconsistent
selection. Therefore, we argue that a unified penalization strategy that jointly controls sparsity and
smoothness through continuous tuning is preferable.

1.3. Overview of the proposed method
To address these challenges, we propose a novel sparse high-dimensional varying coefficient model for
regional mQTL mapping. Our method integrates sparsity and smoothness within a unified frame-
work, enabling continuous, data-adaptive control over both. Leveraging spline-based estimation
with adaptive penalties, the model flexibly captures a range of effect shapes—including smooth
trends and moderate local deviations—without oversmoothing or imposing restrictive functional
forms. As shown in Fig. 1B and Fig. S11B, the method recovers smoothly varying SNP effects while

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/26/1/kxaf032/8301333 by guest on 01 N

ovem
ber 2025

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf032#supplementary-data


Biostatistics, 2025, 26(1), kxaf032 · 5

remaining sensitive to strong localized signal fluctuations. Simultaneously, it shrinks less important
effects to zero (Fig. 1C, Figs S11C, S12 to S14), enabling variable selection in high-dimensional
settings.

Specifically, we formulate the model using a binomial likelihood that accounts for read depth,
with SNP effects represented as smooth functional coefficients varying along genomic position. To
jointly enforce sparsity and smoothness, we introduce a composite penalty function inspired by the
sparsity-smoothness framework of Meier et al. (2009), with two tuning parameters that separately
control model complexity and functional smoothness.

For estimation, we develop an efficient proximal gradient descent algorithm, noted for its
scalability with high-dimensional predictors and its capacity to accommodate non-differentiable
penalty functions. A backtracking line search is implemented to adaptively determine step sizes
and ensure stable convergence. Automatic selection of tuning parameters is integrated via cross-
validation. We further extend the method to allow covariate-specific adaptive penalization, allowing
different levels of regularization across SNPs. The full framework is implemented in the open-source
R package sparseSOMNiBUS, available on GitHub.

The remainder of the article is organized as follows. Section 2 introduces the proposed model and
penalized likelihood. Section 3 details the proximal gradient descent algorithm with backtracking
line search. Section 4 extends the method to allow adaptive penalization across covariates. Section
5 presents simulation studies. Section 6 demonstrates the utility of the method in a real-data
application involving regional mQTL mapping in the CARTaGENE cohort. We conclude with a
discussion in Section 7.

2. A HIGH-DIMENSIONAL VARYING COEFFICIENT MODEL FOR MQTL
MAPPING

We consider DNA methylation measures over a genomic region from N independent samples. Let
mi be the number of measured CpG sites for the i-th sample, i = 1, 2, . . . , N. Let tij be the genomic
position (in base pairs) for the i-th sample at the j-th CpG site, j = 1, 2, . . . , mi. Methylation levels
at a site are quantified by the number of methylated reads Yij and the total number of reads Xij. For
each sample, genotype information on P candidate SNPs is denoted by Zi = (Zi1, Zi2, . . . , ZiP) ∈
RP. We consider high-dimensional varying coefficient models with a binomial outcome Yij and P
covariates/SNPs (Zi1, Zi2, . . . , ZiP) ∈ RP connected through

log
πij

1− πij
= β0(tij)+

P∑
p=1

βp(tij)Zip, (2.1)

where πij = E(Yij)/Xij is the individual’s methylation proportion and
{
βp(tij)

}P
p= 0 : R→ R are

smooth univariate functions.

2.1. The sparsity-smoothness penalty
Given the vast array of candidate SNPs, only a subset is expected to influence regional methylation
patterns. This motivates the need for sparse functional estimators, where β̂p(t)= 0 for specific
indices p ∈ {1, . . . , P}. For nonzero coefficients, it is crucial to use a sufficient number of basis
functions to capture complex functional patterns, while allowing the level of smoothness—whether
reflecting broad trends or localized deviations—to adapt flexibly to the data. To achieve this, we
propose a composite penalty function. This approach is inspired by the sparsity-smoothness penalty
(SSP) framework proposed by Meier et al. (2009), which is designed for variable selection in
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high-dimensional additive models. Specifically, we define our penalty function as

LSSP(θ)= λ

P∑
p=1

√
(1− α)J1

(
βp(t)

)
+ αJ2

(
βp(t)

)
, (2.2)

where

J1(βp(t))= ∥βp(t)∥2
2 =

∫ (
βp(t)

)2 dt, J2(βp(t))=M2
∫ (

β ′′p (t)
)2

dt,

with M =
∑N

i= 1 mi. Here J1 quantifies the L2-norm of the functional coefficients βp(t), and J2
controls the smoothness of βp(t). The squared root over both J1 and J2 enables the sparsity of βp(t)
at the function level.

The amount of penalization in (2.2) is jointly controlled by two tuning parameters, λ≥ 0
and 0≤ α < 1. The parameter λ governs overall model complexity, while α adjusts the relative
emphasis on smoothness versus function magnitude. When α = 0, no smoothness constraint
would be imposed, and as α→ 1, smoother estimates would be favored. The scaling constant M2

ensures J1(βp(t)) and J2(βp(t)) are on comparable scales, thereby facilitating the specification of
candidate values for α during cross-validation.

Note that setting α = 1 yields a degenerate case: the penalty becomes purely J2 (smoothness
only), which does not penalize constant or linear components (since β ′′p (t)= 0 for such functions).
Consequently, α = 1 can lead to non-unique, unbounded solutions, and is therefore not permitted
in our framework. Also note that the penalty function in (2.2) does not apply to the intercept term.
Unlike the SNP effects, the intercept function β0(t) is left unpenalized and is estimated directly
from the data without regularization.

2.2. Basis representation
For each function coefficient βp(tij), we use natural cubic spline parameterization with a reasonably
large number of basis functions. Without loss of generality, we use the same expansion dimension
K for all the functional coefficients in (2.1), ie

βp(t)= θTp B(t)=
K∑

k=1

θp,kbk(t), forp= 0, . . . , P,

where B(t)= (b1(t), . . . , bK(t))T consists of K natural cubic basis functions bk(t) : R→ R and
θp = (θp,1, . . . , θp,K)T is a vector of coefficients with θp,k being the coefficient for the k-th basis of
the p-th covariate. Specific expressions for basis functions bk(t) used in our implementation can be
found in Equation (SA.5) in the Supplementary Material.

Under this basis parametrization, the J1 and J2 in (2.2) can be expressed as

J1
(
βp(t)

)
= θTp �(1)θp, J2

(
βp(t)

)
= θTp �(2)θp,

where �(1) and �(2) are two K × K matrices with the (k, k′)-th element [�(1)
]k,k′ =∫

bk(t)bk′(t)dt, and [�(2)
]k,k′ =M2 ∫

b′′k(t)b′′k′(t)dt, respectively, for k, k′ ∈ {1, . . . , K}. Notably,
the sparsity-penalty matrix �(1) and the (unscaled) smoothness-penalty matrix �(2)/M2 are
constants that depend solely on the specified set of basis functions and do not vary with covariates
Zi or outcomes

{
Yij, Xij

}
. We have derived a closed-form expression for �(1) when using natural

cubic spline basis functions with K knots placed at t1, t2, . . . , tK . For detailed mathematical formu-
lations and proofs, please see Theorem S1 in Appendix SA of the Supplementary Material. The
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smoothness-penalty matrix �(2)/M2 is commonly used in regularization for traditional smoothing
spline methods (Wahba 1980; Parker and Rice 1985; Wahba et al. 1995; Wood 2011).

Consequently, we can compactly write the sparsity-smoothness penalty (2.2) as:

LSSP(θ)= λ

P∑
p=1

√
θTpHαθp (2.3)

where Hα = (1− α)�(1)
+ α�(2). This formulation introduces a generalized group lasso penalty

for any given α, aligning with the model proposed by Yuan and Lin (2006).
Relations with other regularization methods. The composite sparsity-smoothness penalty function

in (2.3) represents a broad class of regularization methods applicable to high-dimensional gener-
alized additive models. Specifically, setting α = 0 aligns the SSP penalty closely with the Sparse
Additive Models (SpAM) introduced by Ravikumar et al. (2009) and the method by Wei et al.
(2011). This formulation decouples the choice of smoother complexity from the sparsity constraint,
which, while flexible, means the estimation accuracy could be highly sensitive to the choice of basis
dimensions (also verified in Fig. 3A). Furthermore, when Hα equals an identity matrix, the SSP
penalty simplifies to an ordinary group Lasso problem, mirroring the variable selection method
described by Huang et al. (2010). In this case, the sparsity penalty is imposed directly on the basis
coefficients θp other than the entire functional component βp(t).

2.3. Penalized maximum likelihood
Let θ be the parameter vector to be estimated. It is the vectorization of (P + 1)× K-dimensional
coefficient matrix 2= (θ0, θ1, . . . , θP)T by row, ie θ = vech(2). Our estimator for the sparse
high-dimensional model defined in (2.1) and (2.3) is given by the following penalized maximum
likelihood problem:

θ̂ = arg min
θ

ℓ(θ)+ λ

P∑
p=1

√
θTpHαθp

 , (2.4)

where ℓ(θ) is the twice negative log likelihood for model (2.1), expressed as

ℓ(θ)=−2
N∑
i=1

mi∑
j=1

{
Yij log(πij)+ (Xij − Yij) log(1− πij)

}
. (2.5)

We refer to the estimate derived from (2.4) as the SSP estimator.

3. COMPUTATIONAL ALGORITHM
To solve the optimization problem in (2.4), we develop a proximal gradient descent algorithm. This
algorithm addresses the non-differentiability of the penalty function and is noted for its scalability
with high-dimensional predictors. In addition, we ensure convergence by carefully determining
the step size via a backtracking line search strategy, which systematically fine-tunes the step size
to maximize the reduction of the objective function in each iteration, thereby facilitating efficient
and reliable convergence.

3.1. Proximal gradient descent algorithm
We start by decomposing the matrix Hα as Hα = LTαLα , where Lα is an upper triangular matrix
with positive diagonal entries. Let ηp = Lαθp and define X̃p = XpL−1

α , where Xp is the M × K
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design matrix for the p-th covariate, whose k-th column is stacked with elements bk(tij)× Zpi where
Z0i ≡ 1. Using these new notations, the optimization problem (2.4) reduces to:

η̂ = arg min
η

ℓ(η)+ λ

P∑
p=1

√
ηTp ηp

 .

ℓ(η) is defined in (2.5), with π = [1+ exp(X̃η)]−1 and X̃=
[
X̃0 | X̃1 | . . . |X̃P

]
∈ RM×(P+ 1)K .

The algorithm involves determining η̂p for given λ and α, and then calculating θ̂p = L−1
α η̂p, for

each p = 0, 1, . . . , P.
Iterative update for η. Given η(0), we iteratively update η(s) using a proximal operator

η(s)
←− proxts

[
η(s−1)

− ts∇ℓ(η(s−1))
]

, (3.6)

continuing until η converges. The proximal operator proxf : RPK
→ RPK is defined as

proxt(u)= arg min
η

 1
2t
∥u− η∥2

2 + λ

P∑
p=1

√
ηTp ηp

 .

Notably, the analytical solution to the proximal operator used in our model can be efficiently
computed for each component of the vector u:

[proxt(u)]p =

1−
tλ√
uT
p up


+

up, forp= 1, . . . , P.

The final proximal operator output proxt(u) is thus proxt(u)=

([proxt(u)]T1 , . . . , [proxt(u)]Tp )T .
Backtracking line search for the step size. To guarantee convergence, the step size ts for each

iteration s is determined using a backtracking line search. We define the generalized gradient
Gt(η) as Gt(η)= 1

t
[
η − proxt(η − t∇ℓ(η))

]
. The update formula in (3.6) can then be written

as η(s)
= η(s−1)

− tsGts(η
(s−1)). We initialize t = tinit > 0 and adjust t by multiplying by a factor

δ (0 < δ < 1), ie t← δt, until

ℓ
(
η(s−1)

− tGt(η
(s−1))

)
≤ ℓ(η(s−1))− t∇ℓ(η(s−1))TGt(η

(s−1))+
t
2
∥Gt(η

(s−1))∥2
2.

Once this condition is satisfied, we set ts← t and proceed to update η(s) using the selected
step size. The proposed overall estimating algorithm is summarized in Algorithm S1 in the
Supplementary Material.

3.2. Choosing the tuning parameters
The algorithm in the previous section computes the estimates for θ for given values of tuning
parameters λ and α. We use cross-validation (CV) to select the values of λ and α by minimizing
the averaged prediction errors in the validation sets, called mean CV errors. In our case, the
prediction error in the validation set for the o-th CV fold, Vo, is quantified by the mean deviance

1
Mo

∑
i,j∈Vo

{
−2

[
Yij log(π̂ij)+ (Xij − Yij) log(1− π̂ij)

]}
, where Mo is the total number of obser-

vations in Vo. In our R package sparseSOMNiBUS, we also allow users to select the value of
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λ based on the “one-standard-error” rule (1-SE-rule) (Friedman et al. 2010). Under the option
of 1-SE-rule, we select the largest value of λ such that the mean CV error is within 1 SE of the
minimum. This strategy generally favors parsimonious models. Figure S1 shows a simple example
of the procedure for selecting the tuning parameter λ based on these criteria.

3.2.1. Derive λmax

For a given value of α, we can derive the smallest λ that gives the entire effect vector θ̂1 = . . .=

θ̂P = 0 in our optimization problem (2.4). This value is referred to as λmax in the regularization
path for λ. The derivation of λmax involves calculating the optimality conditions for the nonlin-
ear programming problem in (2.4), specifically the Karush-Kuhn-Tucker (KKT) conditions. As
explained in Appendix SB of the Supplementary Material, we determine that the smallest λ giving
θ1 = θ2 = . . .= θp = 0 is

λmax = max
p∈{1,2,...,P}

{√
bTpH−1

α bp
}

. (3.7)

In (3.7), bp = 2
[
XT
p (Y −3Xπ0)

]
is the sub-vector of −∇ℓ(θ) corresponding to θp evaluating

from an intercept-only model. Here,Y ∈ RM is the vector concatenating Yij, 3X ∈ RM×M is the di-
agonal matrix with read-depth values Xij, and π0 ∈ RM consists of elements [1+ exp(−β0(tij))]−1.

3.2.2. The warm start strategy
For a given α, we construct a sequence of L values for λ decreasing from λmax to τλmax on the
log scale, where τ is a small constant. The defaults in our package are set to L = 100, τ = 0.01 if
M < (P + 1)K, and τ = 0.001 if M ≥ (P + 1)K, following Friedman et al. (2010). We then fit a
sequence of models from λmax to τλmax using the warm start strategy (Friedman et al. 2007). That
is, the solution for the l-th λ is used as the initial value for the (l + 1)-th λ. This strategy provides a
good initialization for the optimization problem at a new λ and leads to considerable computational
speedups.

4. THE ADAPTIVE SPARSITY-SMOOTHNESS PENALTY
Similar to the adaptive LASSO (Zou 2006), we can introduce weights to allow for different amounts
of penalties for individual functional components in the model. Specifically, we define the adaptive
sparsity-smoothness penalty function as

LSSP,adp(θ)= λ

P∑
p=1

√
w1,p(1− α)J1

(
βp(t)

)
+ w2,pαJ2

(
βp(t)

)
, (4.8)

where w1,p and w2,p are data-adaptive weights. A typical choice for the weights would be set

w1,p =
1√

J1
(
β̂p,int(t)

)andw2,p =
1√

J2
(
β̂p,int(t)

) ,

where β̂p,int(t) is the ordinary SSP estimator. We then compute the estimator for θ similarly as
described in Section 3. We refer to the estimator obtained from this adaptive approach as SSP
estimator.
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5. SIMULATION STUDY
We assessed our proposed estimator through simulations, comparing our general SSP estimator
with its two variants: SSP0, which excludes smoothness penalty (ie α = 0), and the group LASSO
(gLASSO) estimator, obtained by fixing Hα = I. We also compared these methods to the method
implemented in mgcv (Wood 2017), which fits generalized additive models (GAM) without
sparsity constraints. In some scenarios, we further evaluated the adaptive SSP variant and SSP
with the 1-SE rule. For all sparsity-based approaches (SSP, SSP0 and gLASSO), tuning parameters
were selected via 5-fold cross-validation. We used a grid of 100 values for λ (constructed as
described in Section 3.2) and a grid of 12 values for α: [0, .1, . . . , .9, .95, .99]. Unless otherwise
specified, functional parameters were expanded using natural cubic splines of rank K = 10 across
all methods.

5.1. Simulation design
Each simulation used a methylation region of 123 CpG sites, with locations matching those
in the BANK1 gene from Zhao et al. (2021). We varied the number of candidate SNPs (P =
50, 100, 150, 200, 1000), the number of true mQTLs (Ptrue = 5 or 10), and the shape and magni-
tude of the effect curves βp(t). Two settings for βp(t), p = 1, . . . Ptrue were considered: Example 1:
Smooth effects with varied shapes—constant, linear, quadratic-like, or bimodal for different SNPs
(Fig. 2A), with nonzero effects spanning the full region. Example 2: Nonsmooth effects with sharp
transitions (Fig. 2B), used to test robustness when smoothness assumption is violated.

To model linkage disequilibrium (LD), SNPs were simulated under a block-diagonal correlation
structure with within-block correlation ρ = 0, 0.3, or 0.7, representing no, moderate, and strong
dependence. Each block contained 20 SNPs; for example, P = 50 yields two blocks of 20 SNPs
and one block of 10 SNPs. In the ρ > 0 settings, the Ptrue true mQTLs were placed within a single
block with pairwise correlation ρ.

Complete simulation details are provided in Appendix SC, with parameter settings summarized
in Table S3. Simulations were generated under the assumed model in (2.1). While these scenarios
simplify real-world methylation (see Section 6) and LD structures, they provide a controlled
framework for rigorous, interpretable evaluation of the proposed estimators.

5.2. Performance measures
We compared the performance of SSP, SSP0, group LASSO and GAM in terms of estimation
accuracy, prediction error and variable selection accuracy. Note that GAM, implemented via
the mgcv package, uses quadratic smoothness penalties and does not produce sparse solutions.
Therefore, variable selection performance was accessed only for the sparsity-based approaches.

Estimation. To evaluate estimation accuracy, we computed Monte Carlo estimates of the in-
tegrated mean squared error (IMSE), integrated squared bias (IBIAS2), and integrated variance
(IVAR) for each functional coefficient βp(t). Let

{
β̂(r)(t), r = 1, . . . , R

}
denote estimates of β(t)

from R simulation runs, omitting the subscript p for clarity. The simulation-based mean estimate is

defined as Ê(t)=
1
R

∑R
r= 1 β̂(r)(t). The three performance measures are then given by:

IBIAS2
=

∑
t

{[̂
E(t)− β(t)

]2
}

, IVAR=
∑
t

{
1
R

R∑
r=1

[
β̂(r)(t)− Ê(t)

]2
}

,

and IMSE=
∑
t

{
1
R

R∑
r=1

[
β̂(r)(t)− β(t)

]2
}

.

These quantities are computed separately for each βp(t) in the model.
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Fig. 2. Estimates of the first 6 varying coefficients of one simulation run of A) Example 1
(P = 100, ρ = 0) and B) Example 2 (P = 100, ρ = 0), using the SSP, SSP0, group LASSO and GAM
approaches. The red curves are the true βp(t) used to generate the data. The results over 100 simulation
runs are shown in Figs S1 to S4 for Example 1 and Figs S5 to S8 for Example 2.
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Prediction. We used the hold-out test sets to calculate four prediction measures—deviance
errors, root mean square error (RMSE), and correlation between the predicted and observed
proportions in the raw and transformed scales (shortly denoted as CorRaw and CorTrans, re-

spectively). The deviance error is defined as
1
M

∑
i,j∈test

[
ℓ(π̂ij; Yij, Xij)− ℓ(πij; Yij, Xij)

]
, where

ℓ(π ; Yij, Xij)=−2
[
Yij log(π)+ (Xij − Yij) log(1− π)

]
, π̂ij and πij are the predicted and true

mean for the j-th CpGs from the i-th sample in the test set, respectively. We define the RMSE

as
{

1
M

∑
i,j∈test

[
h(π̂ij)− h(Yij/Xij)

]2
}0.5

, where h(π)= arcsin(2π − 1) is a variance stabilizing

transformation of binomial variables (Korthauer et al. 2019). Similarly, CorRaw is calculated as
the sample correlation between π̂ij and Yij/Xij, and CorTran is the correlation between h(π̂ij) and
h(Yij/Xij). We reported the mean and standard deviation (SD) of these four measures over all
simulation runs to compare different methods.

Selection. We used the number of true positives (TP) and false positives (FP) at each simulation
run for evaluating the variable selection performances.

5.3. Simulation results
An index of figures and tables by simulation setting and evaluation criterion is provided in Table S4.

5.3.1. The role of the smoothness control in SSP
Figure 2A displays the estimated functions from one simulation run of Example 1 (P = 100, ρ =
0). It clearly shows that when the true underlying function is smooth, estimates from SSP0 and
gLASSO are too wiggly compared to the truth. Results across 100 simulation runs are shown in Figs
S2 to S4, with corresponding BIAS2, IVAR and IMSE values reported in Table 1A. These results
confirm that adding smoothness control reduces both estimation bias and variance compared to
sparsity-only methods (SSP0 and gLASSO). This improvement is consistent under stronger SNP
correlations (ρ > 0, Tables S5 and S6) and higher dimensionality (P = 1000, Table S15). SSP also
achieves smaller prediction error (top 2 panels of Table 1B and Table S9) and slightly better variable
selection performance, with more TPs and fewer FPs (top 2 panels in Table 1C). This superiority
remains in Examples 3 and 4 (smaller sample sizes and effect sizes than Example 1) under various
combinations of P and Ptrue (see Tables S17 to S19 for estimation; Table 1B for prediction and
Table 1C for selection).

Figure 3A further illustrates the role of smoothness control when the underlying functions are
smooth. We compare the performance of SSP, SSP0, and gLASSO using a relatively large number
of basis functions (K = 30) to expand the βp(t)s. For reference, results based on K = 10 are
also shown. The performance of SSP0 and gLASSO deteriorates with K = 30, showing increased
estimation error, deviance, and false positives compared to their results at K = 10.

In contrast, SSP—with its smoothness penalty—is less sensitive to the basis dimension and
yields nearly identical results for K = 10 and K = 30. In practice, a large number of basis functions
may be required to capture complex functional relationships, such as genetic effects across extended
methylation regions. SSP remains robust in such cases, producing stable, smooth estimates through
its refined smoothness control.

When the true underlying functions are nonsmooth (Example 2), the estimation results are
similar across the three methods—SSP, SSP0 and gLASSO—as shown in Fig. 2B and Table
S14. In this case, the benefit of adding the smooth control is minimal. All three methods exhibit
considerable bias in estimating the nonsmooth βp(t) functions and show greater prediction errors
compared to their performances in Examples 1 (see Table 1B). This is expected, as splines are
better suited for modeling smooth functions and less effective for irregular signals with spikes or
abrupt changes. Nevertheless, variable selection performances are less affected. For instance, when
Ptrue = 5 and P = 1000, gLASSO identifies on average 4.98 TPs and 88.05 FPs—comparable to
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Fig. 3. Performance measures A) of SSP, SSP0 and gLASSO when using 10 or 30 basis functions to
expand βp(t), labeled as “df= 10” and “df= 30,” and B) using the ordinary, 1SE rule and adaptive version
of SSP, SSP0 and gLASSO. Data were generated from Example 1 (Ptrue = 5, P = 100, ρ = 0). The top
three panels show the values of IBIAS2, IVAR and IMSE aggregated from all the 100 varying coefficients
in the model. The bottom left panel displays the distribution of deviance errors. The “TP” and “FP”
panels display the mean values of TP and FP numbers, as well as their SD (indicated by the error bar),
over 100 simulation runs.
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results from the smooth example (Table 1C). We also observe that gLASSO yields slightly lower
prediction errors and fewer FPs than SSP and SSP0 in this nonsmooth setting.

5.3.2. Sparsity-based methods outperform GAM
We compare the sparsity-based methods—SSP, SSP0, and gLASSO—with GAM to assess the
role of sparsity regularization in high-dimensional varying coefficient models. Table 1A shows
that, without sparsity constraints, GAM exhibits substantially higher estimation variance, a pattern
consistent in the nonsmooth Example 2 (Table S14) and in Examples 3 and 4 with n = 20 (Table
S19). GAM also shows greater estimation bias than SSP overall, although the difference is less
pronounced when the true functions are nonsmooth (Table S14) or when P is small (Table S19). In
terms of prediction, GAM underperforms compared to sparsity-based methods (Table 1B; Tables
S9 and S16). Moreover, GAM fails to fit models when P≫ N and cannot handle the case P =
1000, while the sparsity-based approaches maintain reasonable prediction accuracy as P increases,
as indicated by deviance errors (Table 1B). Finally, GAM with quadratic smoothness penalties does
not shrink coefficients to zero and thus cannot perform variable selection. In contrast, Our approach
maintains reasonable prediction and accuracies as P increases.

5.3.3. Two extensions of SSP substantially improve variable selection accuracy
Figure 3B presents results from two types of extensions of SSP: the adaptive SSP (Section 4) and
the use of the 1-SE rule for selecting λ based on cross-validation (Section 3.2). These extensions
were also applied to the two special cases of SSP—SSP0 and gLASSO. Exact performance measures
are reported in Tables S7, S8 and S10 to S13.

Overall, the adaptive versions outperform their ordinary counterparts, showing reduced es-
timation bias, prediction error, and the number of FPs, while maintaining similar estimation
variance and numbers of TPs. As expected, applying the 1-SE-rule—compared to selecting the
λ that minimizes the CV error—substantially reduces FPs, though it results in slightly increased
estimation and prediction errors and a modest reduction in true positive counts.

Summary and recommendation. In settings where variable selection accuracy and model parsi-
mony are prioritized, such as in our data application (Section 6), we recommend using adaptive SSP
with tuning parameters selected via cross-validation under the 1-SE rule. This combination con-
sistently reduces false positives while maintaining strong estimation and prediction performance,
making it especially suitable for high-dimensional regional mQTL mapping.

6. DATA APPLICATION
The dataset includes 98 asymptomatic participants from the CARTaGENE cohort and focuses
on associations between DNA methylation and anti-citrullinated protein antibody (ACPA) levels,
a marker of rheumatoid arthritis risk. Our previous analysis (Zhao et al. 2024) did not account
for genetic influences on methylation. We now implement a two-stage analysis: Stage I, using
sparseSOMNiBUS, identifies regional mQTLs; Stage II tests ACPA-methylation associations while
adjusting for the identified mQTLs. Full details on the Stage II model and results are provided in
Appendix SD, along with information on the methylation platform and data processing.

6.1. Methodology for regional mQTL mapping
To capture biologically meaningful methylation patterns, we defined regions as the first exon plus
2,000bp upstream of each protein-coding gene. After filtering to retain regions with at least 20
CpGs, the analysis included 12,283 regions (∼ 1.4 million CpGs).

For each region, SNPs within a± 2.5 Mb window were selected and pruned using the snpgdsLD-
pruning function from the SNPRelate R package with an LD threshold of r2 < 0.2. Figure S10 shows
the distribution of the number of CpG sites (mean: 90.0; median: 74; IQR: 49 to 112) and pruned
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SNPs (mean: 64.3; median: 65; IQR: 56 to 73) per region. For a subset of genes, more relaxed
thresholds (0.5, 0.8, and 0.9) were also evaluated (see Table S20 to S21; Figs S12 to S15).

We applied the adaptive SSP method to each region using a grid of 100 candidate λ values
and smoothness parameters α ∈ {0, 0.2, 0.5, 0.8, 0.999}. Smooth terms were modeled using natural
cubic splines. The spline basis dimension was fixed at 10 for the intercept function β0(t) and set
to the minimum of 10 and the number of CpGs divided by 10 for each genetic effect function. No
penalty was applied to β0(t). Tuning parameters were selected via 5-fold cross-validation using the
1-SE rule, with adaptive weights computed based on the initial ordinary SSP fit.

6.2. Results from regional mQTL mapping
We identified 1,014 regions with at least one mQTL. Table 2 lists the top 20 regions, ranked by
the peak effect size of the top SNP. Distances between identified mQTLs and peak CpGs ranged
from 63 bp to 2.5 Mb, with the distribution peaking below 50 kb and extending with a long, flat
tail (Fig. S25), indicating enrichment of proximal associations alongside appreciable distal effects.
Figure 1 and Fig. S11 illustrate representative regional patterns, where SNPs exhibited broad effects
on methylation. Figure S19 shows the estimated functional coefficients for the intercept and top
three SNPs, demonstrating the model’s ability to capture localized, position-specific genetic effects
in a joint multivariable framework with adaptive SNP-specific penalties.

A key feature of sparseSOMNiBUS is its data-driven selection of the smoothness parameter α,
enabling adaptive control over the complexity of fitted functional coefficients. With a sufficiently
rich spline basis (K), the method captures both smooth, localized peaks and broader regional effects
when signals are strong and coordinated, though it may miss weak, isolated signals. Figures S17
to S18 show how varying α influences effect estimation, demonstrating the method’s adaptability
across signal types. Figure S20 shows that regions with more CpGs tended to select lower α values,
favoring flexible fits, while regions with detected mQTLs more often selected higher α, reflect-
ing broader, structured methylation shifts. These patterns highlight the importance of adaptive
smoothness control in capturing both localized and broad methylation effects.

To manage computational burden, we applied a stringent LD pruning threshold (r2 < 0.2) for
the genome-wide scan and evaluated more relaxed thresholds (0.5, 0.8, and 0.9) for top regions.
Higher thresholds increased model dimensionality (Table S20) and computation time (Table S21),
but lead to fewer detected mQTLs per region (Table S20; Figs S12 to 14). This reduction is likely
due to two factors: (i) increased SNP collinearity introduces redundancy, destabilizing selection
and causing previously identified representative SNPs to drop out under penalization; and (ii)
more conservative selection with a larger candidate SNP set, consistent with simulation results
(Table 1C). Notably, top-ranked regions and lead SNPs remained largely stable across thresholds
(Table S20; Figs S12 to S14), supporting the robustness of our findings to LD pruning choice.

Computational scalability. sparseSOMNiBUS exhibited favorable computational scaling: runtime
increased approximately linearly with the number of SNPs, CpGs, and sample size, as shown
by runtime measurements across real genomic regions (Fig. S15) and simulated data (Fig. S16),
These results demonstrate its practical utility for methylation analysis across targeted regions or
moderate-scale genome-wide scans.

7. DISCUSSION
We proposed a sparse high-dimensional generalized varying coefficient model for identifying
genetic variants associated with regional DNA methylation levels. By applying separate penalties
for sparsity and smoothness, our method simultaneously selects important mQTLs and estimates
their effects across a methylation region, with estimation performed via a computationally effi-
cient proximal gradient descent algorithm. Comprehensive simulations showed that incorporating
smoothness control substantially improves results when the underlying effects are smooth. For
irregular or spiky effect patterns, alternative basis functions such as Fourier or wavelets may yield
better performance—a direction we leave for future work. Finally, we showed that combining
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sparsity and smoothness regularization yields estimates that are less sensitive to the choice of basis
dimension.

Applied to the CARTaGENE data, sparseSOMNiBUS identified over 1,000 regions with at least
one mQTL, recovering distinct patterns of SNP influence across methylation region. The analy-
sis demonstrated the method’s ability to capture interpretable, region-specific genetic influences
and highlighted the value of adaptive smoothness in modeling diverse signal patterns across real
genomic regions.

The method is implemented in the R package sparseSOMNiBUS (https://github.com/
kaiqiong/sparseSOMNiBUS), which fills a gap in existing software for fitting penalized regression
models to non-binary binomial outcomes. The package also supports a flexible class of penalty
functions, including the general sparsity-smoothness penalty (SSP), sparsity-only penalty (SSP0),
and group LASSO, providing users with customizable modeling options.

Our method relies on the assumption that observed methylated read counts accurately represent
the underlying methylation status. In practice, errors from incomplete bisulfite conversion or other
sequencing artifacts may contaminate the data. Such measurement error is unlikely to impact
variable selection—since covariates with zero effect on the true outcomes are not predictive of the
mismeasured outcomes either—but it can bias the estimation of nonzero varying effects. A promis-
ing future direction is to extend our high-dimensional model to account for mismeasured outcomes.
Building on the error models proposed in Zhao et al. (2021, 2024), this would involve incorporating
sparsity penalties into hierarchical binomial regression frameworks with latent outcome structures.

Another potential restriction of our method lies in its distributional assumptions for the out-
come. In practice, methylation data may exhibit relative to the binomial model, for example, when
counts follow a beta-binomial distribution. It would be valuable to evaluate the robustness of
our approach under such conditions through additional simulationoverdispersions. Extending our
framework to allow quasi-likelihood-based variable selection represents another promising direc-
tion, as it would relax distributional assumptions while retaining penalized regression structure.
Moreover, given the well-known equivalence between smoothness penalties and Gaussian random
effects (Wahba 1983; Silverman 1985), the square-root penalty formulation could also be adapted
for random effect selection in mixed effect models.
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