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ARTICLE

A flexible machine learning Mendelian randomization
estimator applied to predict the safety
and efficacy of sclerostin inhibition
Marc-André Legault,1,2,3,4,* Jason Hartford,5 Benoît J. Arsenault,6,7 Archer Y. Yang,2,8
and Joelle Pineau1,2

Summary

Mendelian randomization (MR) enables the estimation of causal effects while controlling for unmeasured confounding factors. How-
ever, traditional MR’s reliance on strong parametric assumptions can introduce bias if these are violated. We describe a machine
learningMR estimator named quantile instrumental variable (Quantile IV) that achieves a low estimation error in a wide range of plau-
sible MR scenarios. Quantile IV is distinctive in its ability to estimate nonlinear and heterogeneous causal effects and offers a flexible
approach for subgroup analysis. Applying quantile IV, we investigate the impact of circulating sclerostin levels on heel bone mineral
density, osteoporosis, and cardiovascular outcomes. Employing various MR estimators and colocalization techniques, our analysis re-
veals that a genetically predicted reduction in sclerostin levels significantly increases heel bone mineral density and reduces the risk of
osteoporosis while showing no discernible effect on ischemic cardiovascular diseases. As a second application, we estimated the effect
of increases in low-density lipoprotein cholesterol and waist-to-hip ratio on ischemic cardiovascular diseases using this well-known
association as a positive control analysis. Quantile IV contributes to the advancement of MR methodology, and the selected applica-
tions demonstrate the applicability of our estimator in various MR contexts.

Introduction

Instrumental variable (IV) estimation is a technique used
to estimate the causal effect of an exposure on an outcome
of interest from observational data. While IV estimation
relies on the strong (and untestable) assumption of access
to a valid IV—some variable that is assumed to only affect
the outcome of interest via the exposure—it is a powerful
technique because, unlike most other causal inference
strategies, it allows estimation even in the presence of
unobserved confounders of the exposure-outcome rela-
tionship. Because IV estimation relies on different as-
sumptions than other study designs, it can be used
when other designs are not applicable or susceptible to
bias. Studies relying on IVs are increasingly being used
to provide robust evidence when combined with designs
that rely on different assumptions to triangulate a causal
effect from multiple sources.1

Genetic variants can be used as IVs to infer causal effects
in Mendelian randomization (MR) studies. MR leverages
the fact that genetic variants are fixed throughout life
and unaffected by environmental factors that may have
confounding effects. The use of genetic variants as IVs
has enabled the estimation of the causal effect of lipopro-
tein fractions2,3 to predict the safety and efficacy of modu-
lating drug targets4,5 or estimate the causal effect of circu-
lating proteins on diseases.6,7 Despite these successes, MR

studies may be biased either by failures of the untestable
“exclusion restriction” assumption due to horizontal plei-
otropy—when the genetic variant affects the outcome
both via the exposure and some other pathway—or due
to inappropriate assumptions on the functional form of
the exposure-outcome relationship. Most recent work on
MR has focused on the former, for example, by allowing
a fraction of the IVs to be invalid (e.g., Verbanck et al.,8

Mounier and Kutalik,9 Burgess et al.,10 and Bowden
et al.11). However, few studies addressed the validity of
the parametric assumptions made by MR estimators.
Most of the current MR estimators assume that both the

genetic effect on the exposure and the causal effect of the
exposure on the outcome are linear. Recent efforts have
substantially relaxed these linearity assumptions by
considering polynomial functional forms,12 locally linear
effects,13,14 or semi-parametric models.15 These innova-
tions are important because they allow non-constant
treatment effects to be estimated. They do not assume
that the effect of a unit increase in the exposure is
necessarily constant over the full range of the exposure,
allowing for more complex but plausible dynamics
such as threshold effects, diminishing returns, or expo-
nential effects. Despite the progress made in the field of
nonlinear MR, current models still rely on strong assump-
tions, including the assumption of a constant genetic
effect among levels of exposure and covariates.16–18
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Nonparametric IV estimators19,20 do not require restrict-
ing the functional form relating the exposure and the
outcome beyond an additive assumption on the con-
founding, and as a result, they allow for effect heterogene-
ity between the IV and exposure and between the expo-
sure and outcome. Modeling effect heterogeneity allows
for the estimation of causal effects for specified subgroups
of individuals from a single model fit by conditioning the
estimate on the levels of other covariates. Estimation of
conditional treatment effects is a powerful tool to antici-
pate effect heterogeneity, for example, by investigating
sex differences, age differences, or other clinically mean-
ingful subgroup effects.
The development of nonparametric IV estimators has

evolved independently of MR in the econometrics, statis-
tics, and machine learning literature, and there have been
limited efforts to bridge these worlds. Here, we harness
recent developments in machine learning and nonpara-
metric IV estimation to propose an estimator namedQuan-
tile IV that performswell in the context ofMR.19,21Quantile
IV, drawing fromHartford et al.’s DeepIVmodel,21 incorpo-
rates a crucial simplification for enhanced performance in
MR contexts without any added statistical assumption. Spe-
cifically, DeepIV is a two-stage procedure that first models
the conditional distribution of the exposure given the IVs
and covariates. This involves fitting a probabilistic model,
often parametrized by a neural network, and the random
sampling of values during training. In Quantile IV, we
replace this step with neural network quantile regression
anduse simple averagingof thepredicted conditionalquan-
tiles, avoiding the computational cost of sampling and the
challenging task of explicitlymodeling the probability den-
sity. In a realistic MR simulation setup, we show that our
method outperforms the DeepIV estimator and other in-
stantiations of this approach.15 Using simulated data, we
show that our estimator achieves low error in all of the
considered MR scenarios, and we quantify the coverage,
type1 error rate, and type2error rate of confidence intervals
(CIs) obtained by bootstrap aggregation (bagging). To eval-
uate ourMR estimator in a real-world scenario, we first eval-
uated the causal effect of a decrease in circulating sclerostin
on bone and cardiovascular diseases using a two-sample
approach within the UK Biobank. Sclerostin is the drug
target of romosozumab, ananti-sclerostinmonoclonal anti-
body used to prevent fractures in individuals with osteopo-
rosis.22,23 Our investigation of possible cardiovascular
adverse events aims to clarify safety concerns related to scle-
rostin inhibitionstemming fromtheobservationofahigher
number of adjudicated serious cardiovascular events in the
treatment arm of clinical trials of romosozumab.22–25 To
demonstrate the applicability of our method beyond the
drug target MR context, we also estimated the effect of
low-density lipoprotein cholesterol (LDL-c) and the waist-
to-hip ratio (WHR) on the considered cardiovascular out-
comes. Because the WHR and LDL-c are well-established
causal cardiovascular disease risk factors,26–28 this analysis
serves as a positive control, and Quantile IV was able to

detect the accrued risk caused by increases in the WHR
and LDL-c. To demonstrate the advantage of our method,
we investigated whether MR causal effects were predicted
to vary with respect to sex or statin use without pre-speci-
fying interactions. Our results suggest that, for the same
genetically predicted increase in LDL-c levels, the increase
in cardiovascular outcome risk is smaller in statin users vs.
non-users.We attribute this effect to statins partially offset-
ting the atherogenic effect of genetically increased LDL-c.

Methods

Study population
The UK Biobank is a densely phenotyped population cohort of
500,000 participants that have been genotyped and imputed.29 At
the recruitment visit, UK Biobank participants undergo a thorough
assessment with health questionnaires (touchscreen and verbal
interview), blood and urine biomarker panels, and physical mea-
surements, including ultrasound bone densitometry. Linkage to
national health system hospitalization and death records further
enables the algorithmic definition of many diseases, including
acute cardiovascular events (supplemental methods; Table S1). In
the current study, we used the linked medical records to define
myocardial infarction (MI), acute coronary artery disease (CAD),
ischemic stroke, andpercutaneouscoronary intervention/coronary
artery bypass graft (PCI/CABG), which are surgical revasculariza-
tion procedures. A subset of 46,673 randomly selected participants
enrolled in the UK Biobank Pharma Proteomics Project have high-
throughput proteomics data measuring around 3,000 circulating
proteins using the Olink platform. Inclusion criteria and quality
control are described in the supplemental methods. The UK Bio-
bank participants provided informed consent, and the data used
in this study were accessed under the UK Biobank application
#20168. Research tissue bank (RTB) approval for the UK Biobank
wasprovidedby theNorthWestMulti-centre ResearchEthicsCom-
mittee and the current study operates under this RTB approval.

Genetic association analyses
To identify genetic variants associated with circulating sclerostin
levels (protein quantitative trait loci [pQTLs]), we conducted a ge-
netic association analysis of 1,449 common (minor-allele fre-
quency [MAF] ≥ 1%) bi-allelic genetic variants in the SOST
(MIM: 605740) gene region in 42,830 UK Biobank participants
with available sclerostin measurements. The circulating sclero-
stin measurements are taken from high-throughput proteomics
measurements of circulating proteins (supplemental methods).6

We defined the SOST locus using the gene boundaries and
including 400 kb padding upstream and 200 kb padding down-
stream. The final coordinates of the locus on the GRCh37
reference build are chr17:41631099–42236156. We used Plink
v.2.00a2LM AVX2 Intel (October 25, 2019) using the generalized
linear model (–glm) option, implementing linear and logistic
regression, for association testing. The association statistics (i.e.,
estimated coefficients and standard errors) were subsequently
used for MR estimation using parametric models. We used the
same procedure to estimate the effect of genetic variants at the
SOST locus on the outcomes considered in the MR study. We
used linear regression for heel bone mineral density (BMD) and
logistic regression for osteoporosis, PCI/CABG, MI, acute CAD,
and ischemic stroke. All the genetic association models were
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adjusted for age at baseline, sex, and the first 5 principal compo-
nents to adjust for residual population structure.

Summary statistics for two-sample MR
Two-sample MR relies on estimates of the effect of the genetic IVs
on the exposure and the outcome from independent individuals,
allowing for the use of published summary statistics for MR. This
approach is often used to maximize statistical power and to miti-
gate the risk of false positives due to weak instrument bias.30 We
used data from the CARDIoGRAMplusC4D consortium when
considering MI or CAD as the outcome in our two-sample MR an-
alyses. We used summary statistics from a genome-wide associa-
tion study (GWAS) meta-analysis considering genetic variants
imputed using 1000 Genomes Project data and including
60,801 cases of CAD.31 We also used data from the updated
meta-analysis from CARDIoGRAMplusC4D that includes 10,801
additional CAD cases from the UK Biobank.32

Our sclerostin MR study uses circulating sclerostin levels
measured in the UK Biobank as the exposure. We investigated
whether the pQTLs were also SOST expression QTLs (eQTLs) in
aorta and tibial artery tissues in GTEx v.8 using colocalization.33

We selected these tissues because they are the ones with the most
SOST expression, and they are plausible candidates to explain the
cardiovascular impact of sclerostin. We note that bone tissue is
not included in GTEx, hampering our ability to identify bone
eQTLs of sclerostin.
For the MR study of the WHR, we used summary association

statistics from the Genetics Investigation of Anthropometric
Traits (GIANT) consortium.34 The summary statistics are based
on a GWASmeta-analysis of BMI-adjustedWHRs in 694,649 indi-
viduals of European ancestry, including 484,563 participants
from the UK Biobank. For the MR study of LDL-c, we used sum-
mary association statistics from the Global Lipids Genetics Con-
sortium (GLGC), including up to 842,660 individuals of Euro-
pean ancestry and were not participants in the UK Biobank.35

Fine-mapping and colocalization analyses
Fine-mapping is used to infer credible sets of genetic variants
that, under the model assumptions, will include the true causal
variant at a specified probability level. We used the “sum of
single effects” (SuSiE) statistical model, which considers the
sum of regression models with a single non-zero effect for
fine-mapping. This approach can accommodate multiple causal
variants within a region and allows the computation of variant
posterior inclusion probabilities (PIPs) for every variant.36

We used the implementation from the “susieR” R package
(v.0.12.35).
Colocalization analysis compares the estimated association be-

tween genetic variants and a pair of traits to infer the presence or
absence of shared causal variants. The “coloc” model estimates
the posterior probability (PP) of five mutually exclusive hypothe-
ses. H0 is the hypothesis that there are no causal variants, H1 that
there is only a causal variant for trait 1, H2 that there is only a
causal variant for trait 2, H3 that there are causal variants for
both traits and that they are distinct, and H4 that there is a shared
causal variant for both traits. The original publication only ac-
counted for a single causal genetic variant per association
signal,37 but this assumption was subsequently relaxed.38 To ac-
count for multiple causal variants, fine-mapping is first used to
derive credible sets, and pairwise colocalization between credible
sets for the two traits is tested. We use this approach in our study

in instances where we were able to infer credible sets with
coverage ≥85%. When unable to infer credible sets, we assumed
a maximum of a single causal variant per trait. We used the coloc
R package (v.5.2.2) to conduct all of the colocalization analyses
(“coloc.abf” and “coloc.susie” functions) with the default prior
values and linkage disequilibrium (LD) matrices computed in
the subset of UK Biobank participants that passed our genetic
quality control. We followed the recommendations from the au-
thors of the susieR package and verified that the λ statistic had low
values and that the kriging plot did not have outlier variants to
ensure adequate matching between the LD matrix and summary
statistics and to detect allele flips.

Causal assumptions
IV estimation relies on three main assumptions (Figure S1).39 We
denote the exposure of interest as X, the outcome as Y, the
observed covariables asW, and the IVs as Z. The first assumption
(IV1), relevance, states that the IV is not independent of the expo-
sure (Z X|W). The second assumption (IV2) assumes the uncon-
foundedness of the IV, meaning that the IV is independent of un-
observable confounders of the exposure-outcome relationship
(Z⫫U |W). The third IV assumption is the exclusion restriction
(IV3), also commonly known as the “no horizontal pleiotropy”
assumption in the MR literature. This assumption requires that
the effect the IV exerts on the outcome is exclusively through
the modulation of the exposure (Z⫫Y|U;X;W). Common viola-
tions of this assumption include direct pleiotropic effects of the
IV on the outcome and, more perniciously, effects due to LD,
with a variant influencing the outcome independently of the
exposure. Many attempts to relax these assumptions rely on
the identification of a subset of IVs with homogeneous effects,
the inference of statistical structure in the causal effects, or the
estimation of the mode of the causal effect (e.g., Verbanck
et al.,8 Mounier and Kutalik,11 and Qi and Chatterjee40). When
appropriate, we used estimators that relax the IV3 assumption
in different ways (detailed in supplemental methods). However,
these approaches are not suitable for use in cis-MR because a sin-
gle set of correlated candidate IVs is used, hampering the estima-
tion of modes, the inference of latent statistical structure, or the
detection of outliers.
In ourMR study investigating the effect of circulating sclerostin

levels on bone and cardiovascular health, we were able to confirm
the relevance assumption by observing a strong association be-
tween our IVs, rs6416905 and rs66838809, and circulating sclero-
stin levels (p = 1.49 × 10− 18 and p = 1.82 × 10− 16, respectively).
The F statistic for these two IVs was 60. The most plausible viola-
tion of the unconfoundedness assumption is population struc-
ture, and we mitigated this risk by using a genetically homoge-
neous subset of participants within the UK Biobank and further
adjusting all the MR estimates for the first 5 genetic principal
components. Finally, since we only considered genetic variants
associated with circulating sclerostin levels at the SOST locus, it
is plausible that the observed effects are due to the modulation
of sclerostin levels and not via other pathways. The risk of viola-
tions of the exclusion restriction assumption mostly arises from
bias due to LD with other variants that may influence the consid-
ered outcomes. We use colocalization as an analytical approach
to confirm that the causal variants underpinning genetic associa-
tions with the exposure and outcome are shared. We also con-
ducted sensitivity analyses adjusting for genetic variants that
are likely to have direct effects on the outcome when there is ev-
idence for direct effects.
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MR analyses
cis-MR of sclerostin
MR studies of exposures corresponding to specific proteins or
genes are termed cis-MR.41 This approach is useful for drug
target validation or to investigate molecular traits instru-
mented by regulatory or functional variants. We used this
approach to estimate the causal effect of circulating sclerostin
levels on heel BMD, osteoporosis, MI, acute CAD, PCI/CABG,
and ischemic stroke using genetic variants near the gene en-
coding sclerostin (SOST). We used the inverse variance
weighted (IVW) and PC-GMM estimators for these cis-MR ana-
lyses. The IVW is a weighted average of the ratio estimates of
the IVs where the weights are proportional to the precision of
the ratio estimates.42 The PC-GMM estimator was designed
for the cis-MR setting and uses a principal-component analysis
of a weighted LD matrix accounting for instrument strength
and the precision of the effect estimates on the outcome.43

The principal components from this decomposition are then
used as IVs using a generalized method of moments for estima-
tion.44 We used the robust standard errors accounting for over-
dispersion in the current study.
We used a two-sample designwithin the UK Biobank (split sam-

ple). A subset of 42,830 participants with available proteomic
measurements was used to estimate genetic effects on sclerostin
levels, and the non-overlapping subset of 370,218 participants
was used to estimate the genetic effects on our outcomes of inter-
est. Descriptive statistics for both datasets are shown in Table S2.
MR of WHR and LDL-c
We first used a two-sampleMR approach to estimate the causal ef-
fect of the WHR and LDL-c on cardiovascular outcomes. We
selected variants associated with LDL-c levels at the genome-
wide significance threshold (p ≤ 5 × 10− 8) in the GLGC summary
statistics data. We clumped variants with an r2 ≥ 0.01 together
and only considered variants with a MAF above 5% in the 1000
Genomes European individuals reference panel. The variant se-
lection was done using grstools (v.0.4.0, https://github.com/
legaultmarc/grstools). The same strategy was used to select ge-
netic instruments for the WHR using summary statistics from
the GIANT consortium. This selection strategy identified 539
IVs for LDL-c levels and 547 IVs forWHR levels (Tables S3 and S4).
We considered MR estimators with different statistical proper-

ties and that make different assumptions on the validity of the
IVs. Namely, we used the IVW, weighted median, and MR-
Egger estimators (described in the supplemental methods).11,45

In addition, we used the contamination mixture method and
the MR LASSOmethod, which provide variant-level statistical ev-
idence of exclusion restriction violations.46,47

Quantile IV is not a robust method: it is biased if invalid IVs
are included. To account for this limitation, we used the subset
of variants predicted to be valid IVs by the contamination
mixture and MR LASSO methods (across all of the considered
outcomes). This IV selection procedure assumes that the largest
set of variants that estimate a homogeneous causal effect is the
set of valid IVs. These sets contained 311 variants for LDL-c and
298 variants for the WHR (Tables S3 and S4). Quantile IV re-
quires individual-level data, and we used a one-sample MR
approach in the UK Biobank (Table S5). In the one-sample MR
context, weak instrument bias may bias the estimate toward
the observational association.30 However, we expect this bias
to be small in our analyses because of the strength of our instru-
ments (F statistics of 13,310 for the LDL-c instrument and 3,509
for the WHR instrument). Furthermore, the variants were

selected based on external summary statistics, alleviating bias
that could be due to Winner’s curse. We used genetic scores
(i.e., polygenic risk scores) as IVs following findings from our
simulation study where we observed that Quantile IV does
not perform optimally when hundreds of IVs are used. The
externally estimated effects on LDL-c or the WHR served as
weights in the scores. As a second model allowing for nonlinear
MR estimates, we used the doubly ranked stratification method
(R package DRMR v.0.1.0, https://github.com/HDTian/DRMR).14

We used the implementation from the R “MendelianRandomiza-
tion” package (v.0.9.0) for parametric MR.

Nonparametric MR estimation
We first consider the model introduced by Hartford et al. when
describing the DeepIV estimator21:

Y = g(X;W) + U : (Equation 1)

In our context, Y represents the outcome, X denotes the expo-
sure, andW encompasses observed confounders. The latent vari-
ables U account for the unobservable factors that may affect Y, X,
and W. It enters the model additively. Here, g( ⋅) is some un-
known and potentially nonlinear function of both X and W.
We further introduce an IV (Z) that satisfies the IV assumptions
(IV1–3, Figure S1).
The goal is to estimate the conditional average treatment effect

(CATE) η(w;x0;x1), defined as

η(w; x0; x1) = 𝔼(Y|do(X = x1);W = w) − 𝔼(Y|do(X = x0);W = w):

Under the do operator and the assumption of model 1
(Equation 1), we have

𝔼(Y|do(X = x);W = w) = 𝔼(g(X;W)|do(X = x);W)

+𝔼(U|do(X = x);W)

= g(X;W) + 𝔼(U|W):

(Equation 2)

We can estimate the CATE by estimating the h( ⋅) function,
defined as

h(X;W) : = g(X;W) + 𝔼(U|W);

since the conditional expectation of the confounder given
the covariates will not influence the estimation of contrasts
such as the CATE: η(w; x0; x1) = g(x1; w) − g(x0; w) = h(x1;

w) − h(x0; w). Note that if we additionally assume that
𝔼(U|W) = 0, then h(X;W) directly characterizes the conditional
effect of an intervention ofX on Y. We emphasize that if the (con-
ditional) causal relationship between the exposure and outcome
is nonlinear, then the CATE will vary with respect to the choice of
x0 and x1. These reference points can be selected based on the
research question at hand, for example, with respect to the effect
of existing interventions influencing the exposure. Here, for the
MR of sclerostin levels, we standardized the exposure to have a
mean of 0 and a variance of 1 and reported effects for a 1 or
2 SD reduction about the mean, effectively setting x0 = 0 and
x1 = − 1 or − 2. We decided to use SDs because the Olink proteo-
mic measurements do not have interpretable units. For the LDL-c
and WHR MR, we set x0 to the mean value from our sample and
use x1 to represent fixed increases about the mean. For LDL-c, we
report effects for a 1 mmol/L increase and, for the WHR, a 0.1 in-
crease in the ratio. In graphical representations, we report ATEs
(average treatment effects) by varying x1 while fixing x0 to the
reference level.
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To estimate h( ⋅), DeepIV uses the following result:

𝔼(Y|W;Z) = 𝔼(g(X;W)+U |W;Z)

= 𝔼(g(X;W)|W;Z)+ 𝔼(U|W)

=

∫

(g(X;W)+𝔼(U|W)) dF(X|W;Z)

=

∫

h(X;W)dF(X|W;Z):

Based on this result, Hartford et al.21 suggest estimating h( ⋅) by
solving the following optimization problem:

arg min
ĥ∈H

1

n

∑n

i=1

(

yi −

∫

ĥ(x;wi)dF̂(x|wi; zi)

)2

; (Equation 3)

which is found using a two-stage procedure. The first stage uses a
treatment network to estimate the conditional cumulative distri-
bution function F̂(x|w; z) using any statistical or machine
learning model, such as the mixture density network, which
was initially suggested. The second stage then samples condi-
tional exposure values from the first-stage network and relates
these samples to the observed outcome to estimate h(x,w).

1

n

∑n

i=1

(

yi −

∫

ĥ(x;wi)dF̂(x|wi; zi)

)2

≈1

n

∑n

i=1

(

yi −
1

M

∑m

j=1

ĥ
(
xj;wi

)
)2

;

where xj is the samples from the estimated cumulative density
function xj ∼ F̂(x|wi; zi). This step is akin to any supervised
learning task and can be done using a feedforward neural
network. We note that this procedure is analogous to the two-
stage least squares (2SLS) procedure that is a conventional esti-
mator in IV analysis.
This procedure relaxes the parametric assumptions of conven-

tional MR methods and only assumes that the confounder enters
additively in the model. However, the sampling step needed to
train the second stage introduces additional stochasticity in the
training process and may limit performance in MR.15

Quantile IV algorithm
The current method, Quantile IV, proposes replacing the density
estimation in the first stage of the DeepIV procedure with a quan-
tile regression, which eliminates the need for sampling and sim-
plifies the optimization. Quantile IV is a specific instantiation of
DeepIV and an equally valid estimator while performing advanta-
geously in realistic settings.
We now describe the estimation strategy for Quantile IV. In the

first stage, we estimate K evenly spaced conditional quantiles of
the exposure given the instruments using a neural network
trained using the quantile loss. Specifically, we wish to estimate
a fixed number of evenly spaced conditional τ-th quantiles of X
givenW and Z with 0 < τ < 1.

qτ(W;Z) = inf
{

x : FX|W;Z(x) ≥ τ
}
;

where FX|W;Z(x) = P(X ≤ x|W;Z) is the conditional distribution
function of X. We know that the expectation of any function
f (X) of some random variable X can be related to the quantile us-

ing the following relation: 𝔼(f (X)) =
∫ 1

0
f (qτ)dτ, where qτ repre-

sents the τ-th quantile ofX. In our context, this provides amethod
to approximate the integral

∫
h(X;W)dF(X|W;Z) using K

conditional quantiles qτ1
(W; Z); …; qτK

(W; Z). We partitioned
(0,1) using K + 1 evenly spaced points 0 = a0 < a1 < ⋯ < aK = 1,
where ak = k=K, and chose quantiles τk =

ak − 1+ak

2
for k = 1;…;

K. We have

∫

h(X;W)dF(X|W;Z) =

∫ 1

0

h
(
qτ(W;Z)

)
dτ

≈
∑K

k=1

h
(

qτk
(W;Z)

)
(ak − ak − 1)

=
1

K

∑K

k=1

h
(

qτk
(W;Z)

)
:

To learn quantiles qτk
(w; z) for k = 1; …; K, we use a neural

network parametrized by a set of weights and biases denoted as
ϕ and with a K-dimensional output layer f(w; z ; ϕ) : W×

Z→XK . Let f = (f
(1)
;…; f

(K)
), where f

(k) is the kth element of f.
The quantile loss estimates conditional quantiles48 and can be ex-
pressed as

L(w; z; x; τ;ϕ) : =
∑K

k=1

∑n

i=1

ρτk

(
xi − f

(k)
(wi; zi ; ϕ)

)
; (Equation 4)

where ρτ(u) = (τ − 𝕀[u ≤ 0])u. Hence, K conditional quantiles
(qτ1
(w; z);…; qτK

(w; z)) can be simultaneously estimated by f(w;

z ; ϕ). In the first stage of Quantile IV, we train a neural
network to minimize this quantile loss by solving

ϕ̂ : = arg min
ϕ

L(w; z; x; τ;ϕ): (Equation 5)

The key insight of the method is that these K quantiles divide
the conditional distribution of the exposure into equally prob-
able regions and allow us to replace the sampling step in
DeepIV using a simple average over these conditional quantiles
as the input to the second-stage regression. Under this first-stage
model and using a second neural network h : X×W→Y to esti-
mate the IV regression function, Equation 3 becomes

ĥ(x;w ; θ) : = arg min
h(x;w ;θ)

∑n

i=1

(

yi −
1

K

∑K

k=1

h
(
f
(k)
(wi; zi ; ϕ̂);wi; θ

)
)2

:

(Equation 6)

The optimization of the weights and biases (denoted by θ) of
this neural network can be achieved using conventional
gradient-based optimizers (e.g., Adam49).
Neural network quantile regression
In our formulation of Quantile IV, we use a standard feedfor-
ward neural network trained with the quantile loss to estimate
the conditional quantiles of the exposure given the IVs. This
approach may pose a problem because it does not strictly
constrain the learned conditional quantiles to be monotoni-
cally increasing, even though the quantile loss encourages
the estimation of quantiles, satisfying this property. For
example, there is no constraint in the model, forcing the
90% quantile to be smaller than the 95% quantile, which is
required by the definition of quantiles. This problem is called
the “quantile crossing” problem, and Moon et al. have pro-
posed a neural network model and training procedure called
noncrossing multiple quantile regression with neural networks
(NMQN) to address it.50 We implemented NMQN and tested
the impact of its use on Quantile IV estimates. We observed
that the estimated conditional quantiles are slightly more
spread out when comparing NMQN to the naive implementa-
tion, but there was an increase in the average mean-squared er-
ror in the preliminary analysis of the simulation study,
prompting us to rely on the naive implementation. The option
to use NMQN remains available in the implementation.
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Quantile IV implementation and estimation
We implemented theQuantile IV estimator using the Python pro-
gramming language and the PyTorch framework (v.1.13.0,
https://pytorch.org/). Our implementation is publicly available
online as part of our ml-mr Python package (https://github.com/
legaultmarc/ml-mr). The Quantile IV estimator is effectively
composedof twoneuralnetworks, andour implementationallows
setting the corresponding hyperparameters, including the num-
ber of layers, number of hidden units, and learning rate. To avoid
overfitting, we use a sample splitting strategy, which randomly se-
lects 20%(bydefault) of the samples tobeusedas avalidationdata-
set. Training is based strictly on the training dataset, but the vali-
dation dataset is used to stop training when there are no further
improvements on the validation loss, a strategy known as early
stopping. Models can be trained using either the CPU or special-
ized hardware such as graphical processing units (GPUs). In prac-
tice, because the neural networks used inQuantile IV are relatively
small, we have not observed significant performance improve-
ments when training on GPUs. Reasonable default values
(Table S6) for all of the hyperparameters were selected based on
our experimentation on both real and simulated data during
model development. We used these default values from our soft-
ware implementation unless otherwise specified.
Quantile IV is a computationally intensive algorithm, as it re-

quires the training of two neural networks. It is, however, possible
to fit Quantile IV with over 300,000 individuals in under 1 h with
one CPU and under 1 GB of RAM. We show the distribution of
runtimes for a hyperparameter sweep and the relationship be-
tween the outcome learning rate and runtime in Figure S2. To
alleviate this computational complexity, other flexible regression
models (e.g., random forests) could be used to implement the
Quantile IV estimator. The impact of alternative formulations
on the computational burden and performance of the estimator
could be considered in future work.

MR simulation study
We conducted a simulation study to assess the performance of
nonparametric IV estimators in the context of MR. To achieve
this, we selected simulation parameters covering a range of plau-
sible MR settings. We vary the functional form of the causal effect
between the exposure and outcome using linear, J-shaped
(quadratic) and threshold relationships. These forms of nonline-
arity are the most relevant to medical applications and are
commonly studied in epidemiology. We use the specific parame-
trization from previous simulations of nonlinear MR as summa-
rized in Table 1.13 We vary the sample size between 10,000 and
100,000 individuals, corresponding to plausible modern sample

sizes for small and large genetic studies. We use the proportion
of the variance in the exposure explained by the IVs (h2

x) to vary
the strength of the genetic IVs. We simulate traits with
h2

x = 0:05 corresponding to traits with a small fraction of the vari-
ance explained by genetic factors, traits with moderate variance
explained (h2

x = 0:1), and traits with high variance explained
(h2

x = 0:5). For reference and context, using the phenome-wide
heritability browser based on the UK Biobank data (https://
nealelab.github.io/UKBB_ldsc/h2_browser.html), we observed
that the BMI had an estimated h2 = 0.25, systolic blood pressure
had h2 = 0.15, heel BMD (right) had h2 = 0.33, and forced expira-
tory volume in 1 s had h2= 0.43.We emphasize that in our study,
we only consider the fraction of the variance explained by the IV,
which is lower than the genome-wide SNP heritability.
To simulate genetic variants to be used as IVs, we follow the pro-

cedure described in Sulc et al.12 Briefly,we sample allele frequencies
pi ∼ beta(1;3) and draw the number of alternative alleles
following a binomial distribution with two draws. We then stan-
dardized the genotypes and assigned the effects using the baseline
LDAK heritability model as βi ∼ N(0; pi(1 − pi)

− 0:25
) and rescal-

ing to reach the desired heritability. The exposure and outcomes
are then simulated as

X =
∑k

i=1

βiGi + εx and (Equation 7)

Y = f (X) + εy; (Equation 8)

where Gi is the simulated standardized genotypes, f(X) is the
simulated structural relationship between the exposure and the
outcome, and with

[
εx

εy

]

∼N2

⎛

⎝

⎡

⎣
0

0

⎤

⎦;

⎡

⎣
1 ρ

ρ 1

⎤

⎦

⎞

⎠ : (Equation 9)

The formulation for the errors implicitlymodels the effect of un-
measured confounding and follows the simulationmodel fromHe
et al.15 The advantage of this formulation is that it provides a
convenient way of varying the strength of the latent confounding
variableusing a single simulationparameter (ρ).Whenvarying the
simulation parameters, we hold the others fixed at a reference
value indicated in Table 1 (values marked with a footnote).

Estimating treatment effects and their CIs
The Quantile IV algorithm estimates the IV regression function
ĥ(x; w; θ). From this fitted model, an estimator for the CATE is
given by

Table 1. Values taken by the different parameters in the simulation study

Simulation parameter Simulated values

Structural equation 0:4x, 0:2(x − 1)
2,a max(x − 2;0)

Sample size 10,000, 50,000,a 100,000

Proportion of the variance in the exposure explained by the IV 0.05, 0.1,a 0.5

Error correlation (confounding strength) − 0.6, 0.3,a 0.6

Number of independent instrumental variables 2, 10,a 100

We repeated every simulation 200 times.
aThe reference values for the parameters. The reference value represents the fixed value of a simulation parameter used when other simulation parameters are
varied.

6 The American Journal of Human Genetics 112, 1–19, June 5, 2025

Please cite this article in press as: Legault et al., A flexible machine learning Mendelian randomization estimator applied to predict the
safety and efficacy of sclerostin inhibition, The American Journal of Human Genetics (2025), https://doi.org/10.1016/j.ajhg.2025.04.010

https://pytorch.org/
https://github.com/legaultmarc/ml-mr
https://github.com/legaultmarc/ml-mr
https://nealelab.github.io/UKBB_ldsc/h2_browser.html
https://nealelab.github.io/UKBB_ldsc/h2_browser.html


CATE(x0; x1;w) = ĥ(x1;w) − ĥ(x0;w);

where we dropped parameters for notational convenience. Simi-
larly, an estimate of the ATE is obtained by averaging the CATE
over the empirical data distribution.

ATE(x0; x1)≈
1

n

∑n

i=1

(ĥ(x1;wi) − ĥ(x0;wi))

To obtain CIs, we rely on bootstrapping.51 We resample the da-
taset with replacement and refit Quantile IV for every one of the B
bootstrap resamples. This yields a bag of IV regression functions
{ĥ(x;w; θb)}

B
b=1. Bootstrapping in this way first allows us to

ensemble the predictions to obtain a bagging estimator for the
CATE (and consequentially the ATE):

CATEbs =
1

B

∑B

b=1

(ĥ(x1;w; θb) − ĥ(x0;w; θb)):

A CI at the 1 − α coverage level is obtained by selecting the α= 2

and 1 − α=2 quantiles of the bootstrap estimates of the CATE. To
test the hypothesis that the CATE is null, we derive p values from
these CIs by assuming asymptotic normality to avoid the high
computational cost of computing bootstrap p values. Interaction
p values are computed using one-way ANOVA of the bootstrap es-
timates of the CATEs at varying levels of the conditioning
variable.

Adjustment for selection bias
Non-random sampling of individuals can induce bias in MR
studies.52,53 For example, if the exposure or outcome considered
in the MR study influences the probability of being included in
the analysis, thenMR estimatesmay be biased. In some instances,
it is possible to account for the sampling mechanism by
comparing the observed distribution of variables in a sample to
an unselected population (i.e., census data). A machine learning
model trained to predict study inclusion in the UK Biobank
from variables found in both UK Biobank and census data has
been developed.54 This model relies on variables related to
health, lifestyle, education, and demographics to derive sampling
probabilities, which can be used within an inverse probability
weighting strategy. To account for sampling bias due to mecha-
nisms captured by these variables, we allow the bagging resam-
pling to be weighted according to these inverse probability
weights. We used the inverse probability of sampling weights to
correct Quantile IV estimates in our MR of the WHR and LDL-c
because genetic associations with LDL-c and anthropomorphic
traits were shown to be biased due to sampling in the UK
Biobank.54

Evaluation of the quantile IV estimator
In simulation scenarios, we had access to the true causal relation-
ship between the exposure and outcome g(X,W). In the simula-
tion, the conditional expectation of the confounder given the co-
variates is 0, meaning that the estimated IV function is an
estimate of the interventional effect under our model (i.e.,
𝔼(U|W) = 0 in Equation 2 and 𝔼(Y|do(X); W) = g(X; W) =

h(X; W)). Leveraging this relationship and following previous
work,21 we assessed model performance by directly comparing
the IV regression function (h) to the known interventional value
of the outcome (𝔼(Y|do(X))). Specifically, we report the root of
the mean-squared differences between these two functions over
a grid spanning the range of the exposure.

Results

Evaluation of nonparametric IV estimators in
realistic MR simulation scenarios
To evaluate the use of neural network-based nonpara-
metric IV estimators inMR, we evaluated the performance
of two recently proposed estimators (DeepIV21 and
DeLIVR15) and our proposed method (Quantile IV); we
also compared all three with the traditional linear 2SLS
estimator. There is no single parameter describing the
shape of the causal relationship between the exposure
and outcome in nonlinear settings. We use the square
root of the mean-squared error (RMSE) between the true
causal relationship and the IV regression function to eval-
uate the performance of the different estimators. The
RMSE is taken over evenly spaced points spanning the
range of the exposure. We computed this metric for 200
simulation replicates, and we consider scenarios varying
the causal relationship shape, the sample size, the vari-
ance explained in the exposure by the IVs, the strength
of confounding, and the number of IVs (Table 1). We
report the results over the range of the exposure encom-
passing 95% of the distribution (Figure 1) but observed
similar results over the full range (Figure S3). Quantile IV
was competitive and achieved low RMSEs across all of
the simulation scenarios. The linear estimate (2SLS) is pro-
vided as a baseline comparison that is not expected to
outperform the nonparametric estimators except in the
linear model. Furthermore, we observed that the DeepIV
estimator had high error and variability across the consid-
ered parameters, prompting us to focus on DeLIVR and
Quantile IV for quantitative comparisons. We used t tests
paired by simulation replicates to compare DeLIVR and
Quantile IV (Tables 2 and S7). In most of our simulation
scenarios, Quantile IV significantly outperformed
DeLIVR at the nominal p value threshold of 0.01 (12/15
scenarios when considering 95% of the exposure range
and 9/15 scenarios when considering the full range).
DeLIVR significantly outperformed Quantile IV when
the number of instruments was set to 100, the largest
number of IVs considered in our study. In all our simula-
tions, there was a linear and homogeneous effect of the
IVs on the exposure, which is an assumption made by
DeLIVR, favoring this model.
To model binary outcomes, we use a logistic model im-

plemented by treating the linear output of the Quantile IV
estimator as the log odds of the outcome. We investigated
the performance of Quantile IV with simulated binary
outcomes with 2,500 (prevalence 5%) and 15,000 (preva-
lence 30%) cases, and we compared the estimate to
DeLIVR and the two-stage control function estimator
(supplemental methods D.2).15,55 In the first scenario
with 2,500 cases, Quantile IV crudely estimated the causal
log odds and was outperformed by DeLIVR and a linear
estimator (Figures S4 and S5). In the second scenario
with a high number of cases, Quantile IV outperformed
both of the other models (Figures S4 and S5). We note
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that in the real data application considered in this paper,
the binary outcomes have between 8,535 cases (ischemic
stroke) and 33,516 cases (acute CAD; Table S2), and we
expect Quantile IV to performwell given the large number
of cases.
A drawback of many nonparametric IV methods is that

they do not easily allow for the computation of CIs or pro-
vide means to quantify uncertainty. We evaluated the use
of bagging to construct CIs focusing on the simulation
scenario that consisted of the baseline value for all of
the simulation parameters (Table 1). We observed that
coverage of the ATE for a unit increment in the exposure
was close to or upwards of the nominal value across
most of the exposure range (Figure S6).We recommend re-

porting effects within the central range of the exposure,
where coverage was more consistent (e.g., between the
2.5th and 97.5th percentiles of the empirical distribution
of the exposure). We also observed a surprising drop in
coverage below the nominal level for exposure values
near 0 despite a low absolute error in the estimation of
the ATE (Figure S6). We attribute this to overconfidence
of the bagging CI in this region, which could be due to fac-
tors related to the selection of the neural network param-
eter initialization or architecture. We used a similar strat-
egy to evaluate the false positive rate and observed that
our estimator did not exceed the nominal level in the
simulation scenario where all parameters are fixed at their
reference value (i.e., the values marked with a footnote in

Figure 1. Root-mean-square error between the estimated IV regression and the true causal function over a grid spanning
95% of the empirical range of the exposure
The boxplot for every estimator represents variability over 200 simulation replicates. The simulation parameter values in bold corre-
spond to the reference values. 2SLS (two-stage least squares), DeLIVR,15 DeepIV,21 and Quantile IV (proposed method).
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Table 1; Figure S7). We also estimated the type 2 (false
negative) error rate for a unit increase from different refer-
ence exposure values (Figure S8). Because the simulated
relationship is nonlinear, the ATE for a unit increase in
the exposure can be taken at various reference points
with different expected causal effects. Our model had
the power to detect non-null ATEs in the regions where
the exposure had a larger effect on the outcome but not
when the ATE was closer to the null. Parametric models
will generally have greater statistical power than nonpara-
metric methods and will detect causal effects with high
sensitivity. However, the estimated effects could be biased
under violations of their modeling assumptions.
These MR simulations characterized the performance of

Quantile IV in realistic settings, but they do not demon-
strate the added benefits of fully nonparametric IV estima-
tion. We considered another simulation scenario with
complex confounding and causal effect heterogeneity to
demonstrate the advantages of our method more explic-
itly (supplemental methods). In this scenario, Quantile
IV estimates heterogeneous causal effects with low error,
whereas DeLIVR exhibits substantial bias, as exhibited
by marked deviations from the true CATE line in
Figure S9.

Genetic association and colocalization analysis of
circulating sclerostin and outcomes in the UK
Biobank
To identify cis-pQTLs associated with circulating sclero-
stin levels, we conducted a genetic association analysis
of 1,449 common variants at the SOST locus in the UK Bio-
bank (Figure S10). Our goal was to select strong genetic
predictors of sclerostin levels for subsequent MR analyses
by using fine-mapping to select IVs. A SuSiE analysis36 re-
vealed two 95% credible sets with log10 of the Bayes factor
of 10.3 and 5.0. The first set contained 17 variants, and the
variant with the largest PIP was rs6416905 (PIP = 0.078).
The second set contained 6 variants, and rs66838809
had the largest PIP (PIP = 0.48). Variants within the two
credible sets were in high LD, with a mean r2 = 1 for the
first set and a mean r2 = 0.89 for the second set. We
selected the two variants with the highest PIP for subse-
quent MR analyses, as they were the best representatives
of the two independent signals identified by SuSiE. As
a sensitivity analysis, we also used a forward stepwise
regression procedure and obtained concordant results
(supplemental note). The estimated effects of the two
selected IVs on circulating sclerostin levels are presented
in Table S8.

Table 2. Comparison between the mean square root of the mean-squared error between DeLIVR and quantile IV across the different
Mendelian randomization simulation scenarios and over the central 95% of the empirical exposure distribution
Sim. value DeLIVR mean RMSE (SD) Quantile IV mean RMSE (SD) p value

Sample size

10,000 0.21 (0.06) 0.22 (0.10) 0.094

50,000 0.17 (0.03) 0.13 (0.04)a 2.81 × 10− 22

100,000 0.18 (0.04) 0.11 (0.02)a 1.34 × 10− 57

Proportion of the variance in the exposure explained by the IV

0.05 0.18 (0.04) 0.15 (0.05)a 1.50 × 10− 10

0.1 0.17 (0.03) 0.13 (0.04)a 2.74 × 10− 24

0.5 0.21 (0.04) 0.12 (0.02)a 3.01 × 10− 71

Causal relationship shape

Linear 0.08 (0.04) 0.06 (0.03)a 1.79 × 10− 5

Quadratic 0.18 (0.04) 0.12 (0.03)a 7.89 × 10− 38

Threshold 0.06 (0.03) 0.06 (0.03) 0.061

Confounding

− 0.6 0.18 (0.03) 0.15 (0.05)a 8.53 × 10− 12

0.3 0.18 (0.09) 0.13 (0.04)a 4.07 × 10− 15

0.6 0.18 (0.03) 0.11 (0.03)a 9.62 × 10− 58

No. of instruments

2 0.23 (0.09) 0.17 (0.09)a 3.38 × 10− 20

10 0.17 (0.02) 0.12 (0.04)a 5.58 × 10− 40

100 0.16 (0.01)a 0.22 (0.04) 2.35 × 10− 41

The p value is from a paired t test by simulation replicate.
aThe smallest error when the difference is statistically significant.
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We used the same genetic association and fine-map-
ping procedure for the outcomes of interest, namely
heel BMD, osteoporosis, and cardiovascular outcomes
(PCI/CABG, MI, ischemic stroke, and acute CAD). The as-
sociation p values expressed with respect to the sclero-
stin-decreasing allele are shown in Figure 2, along with
the measured LD in the region. We identified significant
associations with heel BMD, and the top association was
with rs66838809 (chr17:41798621G/A), whose A allele
had β̂ = 0:072, 95% CI (0.061, 0.083), and p =
5.8 × 10− 38 (Table 3). This variant is also a lead variant
for one of the sclerostin pQTL credible sets (Table S8).
We identified an association between genetic variants
at the SOST locus and osteoporosis, and the lead variant
was again rs66838809 (chr17:41798621G/A) whose “A”
allele had an odds ratio (OR) = 0.83, 95% CI (0.80,
0.87), and p = 3.8 × 10− 17. To formally test whether
the observed associations were due to shared causal vari-
ants with the sclerostin levels, we conducted a colocaliza-
tion analysis.38

The colocalization algorithm estimates the PP of four
scenarios denoted by H1 to H4, including the existence
of shared causal variants underlying the association
signal in both of the considered traits (H4). It is possible
to test for these hypotheses assuming a single causal
variant or to use fine-mapping and test pairs of credible
sets to allow for multiple causal variants per region.38

Colocalization analysis revealed strong evidence of a
shared causal variant between heel BMD and circulating
sclerostin levels. The two sclerostin pQTL credible sets
colocalized with the heel BMD credible set with
PPH4 = 0.964 and 0.997. There was also strong evidence
for colocalization between osteoporosis and one of the
pQTL credible sets with PPs of a shared causal variant
of 0.996. The second sclerostin pQTL credible set (repre-
sented by rs6416905) had no evidence of colocalization

Figure 2. Association between com-
mon genetic variants at the SOST locus
(chr17:41631099–42236156) and the
exposure and outcomes considered in
our MR study in the UK Biobank
The variants are ordered with respect to
their genomic coordinate, and the leftmost
part of the plot shows the observed LD
between the variants. The color lines
represent association p values for every ge-
netic variant and phenotype colored with
respect to the sign of the regression coeffi-
cient (red for trait increasing and blue for
trait decreasing). The sclerostin-decreasing
allele is the coded allele throughout.

with osteoporosis (PPH4 = 0.013).
Overall, there was robust evidence
of colocalization between genetic
associations with circulating sclero-
stin levels, heel BMD, and osteopo-
rosis, recapitulating the known pro-

tective effect of pharmacological sclerostin inhibition in
osteoporosis.22,23

There was evidence of genetic associations at the SOST
locus with some of the considered cardiovascular out-
comes (Figure 2). The outcome with the most significant
genetic association was MI, and the T allele of the lead
variant, rs75086002 (chr17:42021918C/T), had an OR of
0.92 95% CI (0.89, 0.96) and p = 5.9 × 10− 6. This associa-
tion does not reach the genome-wide significance
threshold, but it did cross the conservative Bonferroni
threshold considering multiple testing of 1,449 variants
(3.5 × 10− 5 = 0.05/1,449). Using SuSiE, we inferred a
90% credible set for this association signal, but it did not
colocalize with the sclerostin pQTL credible sets (PPH4

with the rs6416905 credible set = 0.005 and PPH4 with
the rs66838809 credible set = 0.004). Visual inspection
of the association signals and inferred credible sets is
also consistent with the hypothesis of distinct association
signals for MI and sclerostin levels (Figure S11). The most
probable hypothesis, according to colocalization analysis,
is that the associations are due to distinct genetic variants
(PPH3= 0.78). Because the inference of credible sets can be
statistically challenging, we also tested colocalization
assuming the existence of a unique causal variant in the
region. The results were concordant with the absence of
colocalization between sclerostin pQTLs and cardiovascu-
lar diseases (largest PPH4 = 0.01 with ischemic stroke). We
retrieved the summary association statistics between our
two selected sclerostin pQTLs and the considered out-
comes in the UK Biobank and in data from the
CARDIoGRAMplusC4D consortium, which includes over
70,000 cases of CAD (Table 3). In our UK Biobank analysis,
there was a nominally significant association of
rs66838809 with acute CAD (p = 0.02) and PCI/CABG
(p = 0.003) but no evidence of association in data from
the CARDIoGRAMplusC4D consortium (p values for the
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largest CAD study were 0.48 for rs6416905 and 0.96 for
rs66838809).
Previous studies have considered eQTLs of sclerostin

levels as instruments in MR studies.24,56 We sought to
evaluate whether there was a shared genetic basis for
the regulation of sclerostin eQTLs and circulating sclero-
stin levels. The selected sclerostin pQTLs were robustly
associated with SOST expression in aorta and tibial ar-
teries (p ≤ 5 × 10− 8; Table 3). We observed that the eQTLs
and pQTLs were located near each other on the chromo-
some and were significantly associated with both sclero-
stin gene expression and circulating levels (Figures S12–
S14). Statistical colocalization analysis, however, suggests
that the underlying causal variants are different (max
PPH4 = 0.12 for aorta and 0.004 for tibial artery;
Figure S15). This finding could be due to the presence
of different genetic regulatory mechanisms behind scle-
rostin gene expression in comparison to circulating pro-
tein levels, but it could also be due to limited statistical
power in GTEx or a mismatch between the GTEx and
UK Biobank populations, hampering statistical fine-map-
ping analyses.
We conclude that association analysis identified strong

cis-pQTLs of circulating sclerostin levels that colocalize
with genetic associations with heel BMD and osteopo-
rosis. Despite some evidence of genetic associations with
cardiovascular outcomes at the SOST locus, evidence
from large consortia of CAD and colocalization analyses

suggest that they may be unrelated to genetic variants,
influencing the regulation of circulating sclerostin levels.

MR of the effect of circulating sclerostin on bone
and cardiovascular diseases
To estimate the causal effect of a genetically predicted
reduction in circulating sclerostin levels on bone and
cardiovascular traits and outcomes, we considered three
complementary approaches suitable for the cis-MR
context.41 Using the fine-mapped sclerostin pQTLs as
IVs, we used the IVW estimator accounting for LD and
our Quantile IV nonparametric estimator. As a comple-
mentary approach, we used PC-GMM, an estimator that
can leverage all of the variants in the region.44 All of the
methods estimated that reducing circulating sclerostin
would result in a statistically significant increase in heel
BMD and a reduction in the risk of osteoporosis
(Table S9). However, the magnitude of the estimates was
different across estimators. We report the estimated effect
for both a 1 SD reduction in sclerostin levels about the
mean and a 2 SD reduction about the mean (Table S9).
These two contrasts correspond, assuming normality in
the distribution of circulating sclerostin levels, to a reduc-
tion from the mean to the level of the bottom 16% or the
bottom 2% of the distribution of the exposure. The IVW
estimator suggests that a 2 SD reduction in sclerostin
levels about the mean reduces the odds of osteoporosis
by a surprising 92% (OR = 0.085). For the same change

Table 3. Association statistics between the two lead variants for the sclerostin pQTL credible sets identified by SuSiE and quantitative
traits and diseases

Dataset

Coef./OR (95% CI)

p value

Coef./OR (95% CI)

p valuers6416905 rs66838809

UK Biobank quantitative traits

pQTL − 0.059 (− 0.072, − 0.046) 1:50× 10− 18 − 0.097 (− 0.120, − 0.074) 1:80× 10− 16

Heel bone mineral density 0.032 (0.026, 0.039) 3:30× 10− 25 0.072 (0.061, 0.083) 5:80× 10− 38

UK Biobank diseases (OR scale)

Osteoporosis 0.954 (0.934, 0.976) 3:10× 10− 5 0.834 (0.800, 0.870) 3:80× 10− 17

Myocardial infarction 0.988 (0.967, 1.010) 0.28 1.017 (0.979, 1.057) 0.39

Acute CAD 1.000 (0.981, 1.019) 0.99 1.042 (1.008, 1.078) 0.02

Ischemic stroke 0.986 (0.955, 1.018) 0.38 1.002 (0.946, 1.061) 0.95

PCI/CABG 1.007 (0.984, 1.030) 0.58 1.064 (1.022, 1.108) 0.003

Summary statistics (consortia) quantitative traits

GTEx v.8 eQTL (artery tibial) − 0.253 (− 0.300, − 0.206) 6:00× 10− 23 − 0.311 (− 0.410, − 0.211) 2:40× 10− 9

GTEx v.8 eQTL (artery aorta) − 0.247 (− 0.319, − 0.176) 7:00× 10− 11 − 0.401 (− 0.542, − 0.261) 5:00× 10− 8

Summary statistics (consortia) diseases (OR scale)

CARDIoGRAM MI 1.002 (0.981, 1.024) 0.83 1.043 (0.998, 1.091) 0.06

CARDIoGRAM CAD 0.991 (0.973, 1.010) 0.37 0.997 (0.958, 1.038) 0.90

CARDIoGRAM and UKB CAD 0.994 (0.978, 1.011) 0.48 0.999 (0.966, 1.033) 0.96

All of the effects are presented with respect to the sclerostin-reducing allele. The UK Biobank associations were estimated in the current study, and we present
associations published by the GTEx (sclerostin expression) and CARDIoGRAMplusC4D (cardiovascular diseases) consortia. Coef., coefficient; UKB, UK Biobank.
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in circulating sclerostin levels, Quantile IV estimates an
OR of 0.626. Upon visual inspection of the Quantile IV es-
timate, there was no evidence of pronounced nonlinearity
(Figure 3). When considering heel BMD and osteoporosis
as outcomes, Quantile IV estimated smaller, albeit signifi-
cant, causal effects than conventional linear methods.
Nonparametric IV estimation enables the estimation of

CATEs without explicitly specifying an interactionmodel.
Such effects represent the average effect of a treatment in a
specific subset of individuals and can be used to assess
treatment response heterogeneity. To evaluate if the
causal effect of varying circulating sclerostin levels differs
across levels of covariables, we estimated CATEs in males,
females, and individuals with different values of age at
baseline. Age did not modify the effect of sclerostin inhi-
bition on heel BMD or osteoporosis (p = 0.43 and p =
0.35, respectively). However, we observed that sex hetero-
geneity as the CATE for a 1 SD decrease in circulating
sclerostin levels was 0.15 for females vs. 0.09 for males
(interaction p = 2.3 × 10− 22; Table S10; Figure S16). We
observed directionally concordant sex differences on the
effect of sclerostin inhibition on osteoporosis with inter-
action p = 0.04, but the effect difference was small.
When estimating the causal effect of a reduction of scle-

rostin levels on cardiovascular outcomes, there was
disagreement between the results obtained by different es-
timators. The IVW and PC-GMM estimated a nominally
significant increase in the risk of PCI/CABG (pIVW =

0:026, pPC − GMM = 0:017; Figures S17 and S18), and PC-
GMM estimated a nominally significant increase in the
risk of acute CAD (p = 0.021; Figure S18). Quantile IV,
on the other hand, estimated a nominally significant pro-
tective effect on PCI/CABG (OR = 0.74, 95% CI (0.52,
0.97); Figures S19 and S20). However, we interpret these
results with care, as estimates from the three estimators
were heterogeneous, and there was no supporting colocal-
ization evidence for shared causal variants between sclero-
stin pQTLs and cardiovascular diseases in our previous
analysis. We attribute these results to bias due to LD

with other genetic variants that have effects on the
outcome independently of sclerostin levels and investi-
gate this in the next section.

MR analyses of sclerostin accounting for pleiotropic
effects
In the MR analyses adjusted for age, sex, and ancestry
principal components, we observed conflicting effects
for PCI/CABG despite limited evidence of genetic associ-
ations between SOST variants and this outcome. The
top association was with rs370088062, chr17:41657403
C to CT insertion (dbSNP rs36035748, GenBank:
NC_000017.10, g.41657419dup), with p = 2.9 × 10− 4.
This variant showed no association with circulating levels
of sclerostin (p= 0.40), indicating that the observed effects
in MRmight be biased due to LD. More precisely, if the IVs
are inLDwithothergeneticvariants thathaveeffectson the
outcome independently of sclerostin levels, the exclusion
restriction assumptionwill be violated, biasing theMR esti-
mates. This problem is particularly challenging in the cis-
MRcontext because of LDand the limitednumber of candi-
date IVs.To identify thevariantsmost at riskofviolating the
MR assumptions, we repeated the association analysis with
PCI/CABG, adjusting for all of the pQTLs identified in the
stepwise conditional analysis (supplemental note). We
then compared the association p values before and after
adjustment for the pQTL associations under the premise
that variants whose association is unattenuated may
influence PCI/CABG risk through pathways unrelated to
sclerostin (Figure S21). This analysis revealed a group of
correlated variants, including rs113533733, that had low-
association p values with PCI/CABG after adjusting for the
sclerostin pQTL variants.
We sought to confirm that rs113533733 may have

effects on other genes by consulting the Open Targets Ge-
netics platform.57 This online resource includes a variant-
to-gene prioritization module based, in part, on the dis-
tance to transcription start sites and pQTL, splice QTL
(sQTL), and eQTL data. On this platform, the most likely

Figure 3. Quantile IV estimate of the average effect varying the levels of circulating sclerostin about the mean on heel bone
mineral density and osteoporosis in the UK Biobank
The shaded region corresponds to 90% bootstrap confidence intervals. The plots cover the central 99% of the exposure range.

12 The American Journal of Human Genetics 112, 1–19, June 5, 2025

Please cite this article in press as: Legault et al., A flexible machine learning Mendelian randomization estimator applied to predict the
safety and efficacy of sclerostin inhibition, The American Journal of Human Genetics (2025), https://doi.org/10.1016/j.ajhg.2025.04.010



gene assigned to rs113533733 is MPP3 (MIM: 601114)
(score = 0.31), with support from sQTL and eQTL data.
The other prioritized genes are DUSP3 (MIM: 600183)
(score = 0.18), CFAP97D1 (MIM: 619866) (nearest gene,
score = 0.15), and MPP2 (MIM: 600723) (score = 0.13).
There is no evidence linking SOST to rs113533733 except
for its distance to the transcription start site of 41 kb, and
the assigned score is 0.06. In GTEx v.8, the strongest eQTL
for this variant was with MPP3 in tissue from the left
ventricle of the heart (p = 2.1 × 10− 5). Considering this
external evidence and our association analysis conditional
on sclerostin pQTLs, we concluded that rs113533733 may
induce bias in the MR analysis and repeated our MR esti-
mation, adjusting for this variant.
In theMRanalysis adjusted for rs113533733, the effect of

a 1 SD reduction in circulating sclerostin levels on heel
BMDandosteoporosis remained significant,withnoatten-
uation in the p value for all methods (Figure 4; Table S11).
After adjustment for rs113533733, the estimated causal
effects of sclerostin levels on the considered cardiovascular
diseases were null for PC-GMM and Quantile IV (Figures 4
and S22). The IVWhad an inconsistent estimate for the ef-
fect of sclerostin reduction on PCI/CABG (OR= 1.41, 95%
CI (1.02, 1.96), p= 0.04), but the largeCI, discordancewith
the other estimators, absence of effect with related traits,
and lack of support from colocalization analyses suggest
the true effect is likely null.

Post hoc analysis of linear effect underestimation by
Quantile IV
In MR analyses of the effect of circulating sclerostin on
heel BMD and osteoporosis, the effect estimated by Quan-

tile IV is substantially smaller than the effect estimated by
linear models. For example, the estimated effects for a
1 SD reduction in circulating sclerostin on heel BMD are
0.122 for Quantile IV vs. 0.526 for PC-GMM. The contrast
between the estimates is surprising, and our simulation
study did not include a comparable case with two IVs
with modest effect sizes. To address this, we conducted a
post hoc semi-synthetic simulation study aimed at repro-
ducing the results from the real data application in terms
of sample and effect sizes (supplemental methods). When
we simulated a linear causal effect of − 0.526 (equivalent
to the PC-GMM estimate in our study), the mean linear-
ized Quantile IV underestimated the effect by 22%
(Figure S23). This difference remains far from the effect
observed in the MR of sclerostin on heel BMD, where
the effect was 77% smaller than the PC-GMM estimate.
This result suggests that the underestimation of the causal
effect by Quantile IV alone is unlikely to explain
the discrepancy between Quantile IV and the linear
estimators.

MR estimation of the effect of LDL-c and WHR on
ischemic cardiovascular diseases
To estimate the causal effect of an increase in LDL-c
and the WHR on cardiovascular outcomes, we first used
a two-sample MR. All of the estimators found that
increasing LDL-c increased the risk of MI and CAD
(Table S12). The estimated ORs per 1 mmol/L increase in
LDL-c across estimators and outcomes ranged from 1.65
to 2.10 (assuming an SD of 0.87 mmol/L; Table S5), which
is concordant with prior studies.58 A genetically predicted
1 SD increase in the WHR was consistently predicted to

Figure 4. Mendelian randomization estimates of a 1 SD decrease in circulating sclerostin levels on osteoporosis and cardio-
vascular diseases accounting for direct effects by rs113533733 in the UK Biobank
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increase the odds of cardiovascular outcomes with ORs
ranging from 1.29 to 1.83 (Table S13). Overall, these ana-
lyses represent positive controls recapitulating the well-es-
tablished effects of the WHR and LDL-c as causal risk fac-
tors for ischemic cardiovascular diseases.
We repeated the parametric MR analyses using individ-

ual-level data from the UK Biobank and reported the MR
effects per 1 mmol/L increase in LDL-c or per 0.1 increase
in the WHR (Tables S14 and S15). Using MI as a point of
comparison between the summary statistics and one-sam-
ple analyses of the causal effect of a 1 mmol/L increase in
LDL-c, the IVW MR ORs were 1.88 for the one-sample
analysis vs. 1.39 for the summary statistics analysis. This
difference could be attributed to differences in the
handling of the LDL-c measurements, as the GLGC re-
scaled observed LDL-c measurements by a factor of 0.7×
in individuals who were users of an LDL-c-lowering
drug.35 Then, to evaluate the possibility of nonlinear or
heterogeneous causal effects, we used Quantile IV. There
was some qualitative evidence of nonlinearity of the effect
of LDL-c on cardiovascular outcomes on the OR scale
(Figure S24). Increasing LDL-c was predicted to increase
the odds for all of the considered cardiovascular out-
comes, albeit marginally for ischemic stroke, for which
the analysis was likely underpowered due to the lower
number of cases in the UK Biobank. Using MI as a point
of comparison across MR estimates, Quantile IV estimated
an OR of 1.65 (1.36, 1.93), which is consistent with the
parametric estimates. The Quantile IV estimates for the ef-
fect of the WHR showed a significant increase in cardio-
vascular risk, albeit with a smaller effect magnitude
when compared to the parametric estimates (Figure S25).
To highlight the advantage of Quantile IV over alterna-

tive methods, we estimated conditional treatment effects.
We used the fitted Quantile IV model to estimate the
CATEs for males, females, statin users, and statin non-

users and used one-way ANOVA to test for differences in
the conditional estimates between groups (Table 4). We
found evidence of effect heterogeneity in the MR
effect of increasing LDL-c on MI, PCI/CABG, and acute
CAD, where the increase in cardiovascular risk was atten-
uated in statin users compared to statin non-users. This
observed gene-by-environment interaction suggests that
the increased cardiovascular disease risk associated with
LDL-c can be partially offset by the use of statins, which
pharmacologically lower LDL-c. This result must be inter-
preted with care, as adjustment for statin use could induce
bias in certain scenarios (supplemental note). Addition-
ally, there was some evidence for sex differences in the ef-
fect of LDL-c and the WHR on ischemic stroke. For the
same increase in LDL-c or the WHR, males are predicted
to have a larger increase in the odds of stroke (Table 4).
We repeated the analysis with the doubly ranked

nonlinear MR (DRMR) estimator as a secondary nonlinear
MR method (Figures S26 and S27). For the effect of LDL-c
on MI, PCI/CABG, and acute CAD, the DRMR estimate
suggested a nonlinear relationship, with larger MR effects
at lower values of the LDL-c distribution. However, the
DRMR estimates had wide CIs, suggesting a high degree
of uncertainty. The nonlinear relationship estimated by
DRMR was not corroborated by Quantile IV, which sug-
gested a linear effect close to the IVW estimate.

Discussion

This study introduces Quantile IV, a nonparametric MR
estimator that offers computational stability while intro-
ducing few statistical assumptions. This innovation is
important given the limited exploration of nonparametric
IV estimators in MR contexts. We evaluated Quantile IV
across many realistic MR scenarios and applied it to study

Table 4. MR estimate of the effect of a 1 mmol/L increase in LDL-c or a 0.10 unit increase in WHR on cardiovascular outcomes in the UK
Biobank using quantile IV

CATE, OR scale (95% CI)

p value (itx.)

CATE, OR scale (95% CI)

p value (itx.)Female Male Statin non-user Statin user

Exposure: 1 mmol/L increase in LDL-c

MI 1.63 (1.26, 1.97) 1.63 (1.26, 1.98) 0.743 1.38 (1.25, 1.57) 1.33 (1.18, 1.54) 1:78× 10− 18

PCI/CABG 2.02 (1.53, 2.44) 2.02 (1.54, 2.43) 0.955 1.76 (1.55, 2.04) 1.65 (1.40, 2.01) 9:24× 10− 27

Acute CAD 1.63 (1.35, 2.00) 1.65 (1.34, 2.00) 0.127 1.40 (1.28, 1.54) 1.36 (1.20, 1.51) 3:99× 10− 15

Ischemic stroke 1.19 (1.00, 1.35) 1.21 (1.00, 1.37) 0.033 1.07 (0.94, 1.24) 1.07 (0.92, 1.23) 0:415

Exposure: 0.10 unit increase in the WHR

MI 1.45 (1.29, 1.62) 1.44 (1.26, 1.69) 0.813 1.46 (1.31, 1.66) 1.45 (1.29, 1.74) 0:432

PCI/CABG 1.59 (1.42, 1.90) 1.58 (1.36, 1.93) 0.172 1.56 (1.41, 1.86) 1.54 (1.36, 1.88) 0:252

Acute CAD 1.42 (1.29, 1.60) 1.41 (1.26, 1.61) 0.054 1.40 (1.31, 1.57) 1.38 (1.26, 1.57) 0:015

Ischemic stroke 1.41 (1.25, 1.69) 1.43 (1.25, 1.71) 0.033 1.45 (1.27, 1.76) 1.42 (1.22, 1.78) 0:070

The estimates are adjusted for age, sex, the first 5 ancestry principal components (PCs), and statin use. Selection weights are used in the resampling procedure to
lessen the possible impact of selection bias. The reported p values represent interaction (itx.). p values computed using one-way ANOVA of the CATE estimates
from the compared groups across bootstrap replicates.
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the causal effect of circulating sclerostin inhibition on
heel BMD, osteoporosis, and cardiovascular diseases. As
a second application, we estimated the causal effect of
LDL-c and the WHR on cardiovascular outcomes.
Compared to DeepIV, another nonparametric IV esti-
mator, Quantile IV, consistently showed lower error and
greater stability in all simulations. These scenarios probed
various elements, such as the impact of differing sample
sizes, the strength of the IVs, the shape of the causal effect,
the degree of confounding influences, and the total num-
ber of IVs employed. Quantile IV’s performance varied
more in simulations with the smallest sample size (n =
10,000). The only scenario where DeLIVR, a semi-para-
metric relaxation of the DeepIV estimator, significantly
outperformed Quantile IV is when the number of IVs
was set to the largest number (100 independent IVs), but
we reiterate that the simulations favored DeLIVR as the
linearity and constant variance assumptions held. A limi-
tation of Quantile IV is its lack of direct methods for un-
certainty quantification. We used bagging to construct
CIs and compute p values for the hypothesis that the
ATE (or CATE) is null. The bagging CIs had good coverage
of the true value on average, but we did notice some local-
ized miscoverage despite low estimation error. We attri-
bute this finding to the neural network regularization
and weight initialization, whichmay favor null effects, re-
sulting in conservative estimates when the ATE is close to
zero. The false positive rate was well controlled in our sim-
ulations, never exceeding the nominal level.
The causal effect of inhibiting sclerostin on bone and

cardiovascular health has been predicted using MR in
the past.24,56,59 However, the results from previous MR
studies are conflicting, and we opted to revisit the ques-
tion using updated MR estimators, support from fine-
mapping and colocalization analyses, and circulating
sclerostin measurements from the UK Biobank Pharma
Proteomics Project. To briefly summarize previous work,
Bovijn et al. used IVs at the SOST locus that were ascer-
tained based on their effect on BMD.24 Using MR, they
recapitulated the protective effect of sclerostin inhibition
on osteoporosis and fracture risk and estimated an in-
crease of 18% in the odds of MI per 0.09 g/cm2 of BMD
(p = 0.003).24 The second MR study by Holdsworth et al.
selected genetic variants at the SOST locus that were eQTLs
of SOST in arterial or heart tissue and associated with
BMD.56 These variants were reported to not be associated
with cardiovascular outcomes, including MI and CAD, in
CARDIoGRAMplusC4D. Another study by Zheng et al.
conducted a GWASmeta-analysis of circulating sclerostin,
including 33,961 individuals from 9 cohorts.59 A total of
18 conditionally independent variants were associated
with circulating sclerostin, and the authors have conduct-
ed MR based on all of the variants (including trans effects)
and a subset of cis-acting variants. The cis-MR analysis
from Zheng et al. suggests an increased risk of MI with
an OR of 1.35 (p = 0.04) per 1 SD lowering of sclerostin
levels.59 Faced with these contradictory results, we first

investigated the possibility of bias due to LD with variants
that could influence cardiovascular disease risk indepen-
dently of sclerostin. Using fine-mapping, we were able to
infer two credible sets explaining the cis-regulatory signal
of circulating sclerostin levels. The variants in the circu-
lating sclerostin credible sets colocalized with the osteo-
porosis and heel BMD credible sets but not with MI or
other cardiovascular diseases. This result suggests that pre-
vious MR estimates may have been biased due to the pres-
ence of LD with cardiovascular risk variants that act inde-
pendently of the modulation of circulating sclerostin
levels.
We then conducted cis-MR analyses to estimate the ef-

fect of a reduction in circulating sclerostin on heel BMD,
osteoporosis, and cardiovascular outcomes. In accor-
dance with the well-known clinical effect of pharmaco-
logical sclerostin inhibition,22,23 our MR estimates
showed that a genetically predicted reduction in circu-
lating sclerostin levels leads to an increase in heel BMD
and a decrease in the risk of osteoporosis. There was evi-
dence of sex differences with a larger increase in BMD
for the same reduction in sclerostin levels in females
compared to males (0.15 vs. 0.09). This is concordant
with the difference observed comparing the ARCH trial
of postmenopausal women to the BRIDGE trial of men,
where monthly romosozumab injections increased lum-
bar spine BMD by 13.7% vs. 12.1% and total hip BMD
by 6.2% vs. 2.5%.22,23 These results illustrate how condi-
tional MR effect estimation may detect effect heterogene-
ity. In our study, the magnitude of the Quantile IV esti-
mate for the effect of sclerostin inhibition on heel BMD
and osteoporosis was 4–5 times smaller than the para-
metric estimates from IVW and PC-GMM. We validated
that this underestimation was unlikely to be attributable
to a downward bias of the Quantile IV estimator using a
realistic post hoc simulation model based on the
observed values of the instrument’s strength and causal
effects. The larger estimates from parametric models
could be due to the linear extrapolation of small genetic
effects (e.g., allelic effects of <0.1 SD) to predict the effect
of a comparatively larger 1 SD decrease in circulating scle-
rostin. MR estimates are often larger than effects esti-
mated in randomized controlled trials, and the difference
is typically attributed to the comparison of lifelong vs.
short-term effects.60 Whether violations of parametric as-
sumptions contribute to the inflation of effect estimates
in real-world settings is unclear. Finally, our MR estimates
accounting for possible bias due to LD were concordant
with colocalization analyses and results from large CAD
genetics consortia and found a null relationship between
genetically predicted circulating sclerostin levels and
ischemic cardiovascular diseases. Because of the limited
number of observed cardiovascular outcomes in our
study, it is possible that a small causal effect would
remain undetected due to low statistical power. However,
a false negative finding is unlikely because the lead sclero-
stin pQTLs were not significantly associated with MI or
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CAD in the largest available dataset of GWAS summary
statistics from the CARDIoGRAMplusC4D consortium.
The increase in cardiovascular events observed in individ-
uals treated with romosozumab in clinical trials could be
explained by off-target effects or effects that are tissue
specific and not captured by our genetic model of sclero-
stin inhibition. Furthermore, violations of the MR as-
sumptions remain possible, as the genetic instruments
used in our study could have pleiotropic effects (directly
or through variants in LD).
As a second application of our MR estimator, we consid-

ered the effect of varying the levels of LDL-c and the WHR
on atherosclerotic cardiovascular outcomes. Overall,
the Quantile IV estimates were concordant with other
methods, replicating the positive causal effect of the
WHR and LDL-c on ischemic cardiovascular outcomes. A
significant advantage of Quantile IV over alternative ap-
proaches is its ability to estimate causal effects corre-
sponding to different levels of covariates included in the
model. In the current study, a constant, genetically pre-
dicted increase in LDL-c was associated with a smaller in-
crease in atherosclerotic cardiovascular disease risk in
statin users compared to non-users. This observation is
likely due to statins partially offsetting the increased car-
diovascular risk of LDL-c-increasing genetic variants.
Quantile IV, in contrast with the DRMR method, did not
predict the nonlinear effects of LDL-c on coronary out-
comes. Nonlinear causal inference of the effect of LDL-c
on coronary outcomes remains a challenging problem.
DRMR is less biased than other localized average causal ef-
fect estimators,14 but there have been documented in-
stances of false positive nonlinear relationships inferred
by DRMR using negative control outcomes.61 Whether
these false positives are due to biases inherent to the esti-
mation procedure or data-related factors, such as selection
bias, remains uncertain.
In this study, we proposed an MR estimator, Quantile

IV, and demonstrated its performance in real data and
simulationmodels. Our estimator makes fewmodeling as-
sumptions when compared to traditional methods, and it
allows for nonlinearity and effect heterogeneity. Unlike
other MR estimators, Quantile IV allows the estimation
of CATE without specifying an interaction model, which
is an important tool for assessing treatment response het-
erogeneity. However, this increased model flexibility is
reliant on the use of individual-level data. Despite good
overall performance, Quantile IV is a computationally
intensive method, especially if CIs need to be estimated
via bootstrapping. This could be alleviated by using
more computationally efficient model formulations or
by developing semi-parametric inference for deep IV
models, which will be considered in future work.

Data and code availability

The Quantile IV algorithm is implemented in ml-mr: https://
github.com/pgx-ml-lab/ml-mr.
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Figure S1: Graph illustrating the instrumental variable assumptions. Dashed
lines represent e!ects that are assumed absent. Solid lines denote e!ects that are assumed
present. Squares denote observed variables and circles denote unobserved variables.
When there are no arrow heads, the relationship is assumed to be bi-directional.

Figure S2: Runtime of Quantile IV in a real data application in the UK
Biobank. The runtimes are for a 100 fit hyperparameter sweep for the e!ect of LDL-
c on MI. The histogram of runtimes in minutes is presented (A.) and the relationship
between the selected outcome neural network learning rate and runtime is shown in (B.).
Smaller learning rates lead to considerable longer fitting times. The CPUs used to fit
the model were AMD Rome 7532 or AMD Rome 7502.
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Figure S3: Root mean squared error between the estimated IV regression and
the true causal function over a grid spanning the full range of the exposure.
The boxplot for every estimator represents variability over 200 simulation replicates. The
simulation parameter values in bold correspond to the reference values. 2SLS: Two-stage
least squares, DeLIVR [14], DeepIV [20], Quantile IV: proposed method.



Figure S4: Root mean squared error between the estimated IV regression
and the true causal log odds over a grid spanning 95% of the range of the
exposure. The boxplot for every estimator represents variability over 200 simulation
replicates. 2 stage logistic: Two-stage residual inclusion (control function) estimator
[55], DeLIVR [14], Quantile IV: proposed method.
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Figure S5: Mean estimated IV regression function targeting the causal log
odds for simulated binary outcomes. The mean estimate over 200 simulation repli-
cates is shown along with the theoretical function according to the simulation model.
The shaded area represents the 5th and 95th percentiles of the estimated regression func-
tion over simulation replicates.



Figure S6: Coverage and mean absolute estimation error of the ATE for a
unit increment in the exposure. The coverage is estimated using 200 simulation
replicates and 50 bootstrap iterations are used to derive the confidence intervals. The
simulation scenario used for this analysis uses the baseline parameter values for every
simulation parameter.



Figure S7: Type 1 error rate when estimating the ATE for a unit increment
in the exposure across di!erent values of the exposure. The type 1 error rate is
estimated using 200 simulation replicates and 50 bootstrap iterations are used to derive
the confidence intervals. The simulation scenario used for this analysis uses the baseline
parameter values for every simulation parameter except for the structural relationship
where f(X) = 0.



Figure S8: Type 2 error rate and estimated ATEs for a unit increment in
the exposure across di!erent values of the exposure. The type 2 error rate is
estimated using 200 simulation replicates and 50 bootstrap iterations are used to derive
the confidence intervals. The simulation scenario used for this analysis uses the baseline
parameter values for every simulation parameter. The plot on the left shows the type
2 error rate, and the plot on the right shows the true and estimated ATEs across the
simulation replicates. Note that for some included values of the exposure, the true ATE
is null (near 0).



Figure S9: Estimated CATE by Quantile IV (top) and DeLIVR (bottom) at
di!erent values of the e!ect modifier variable (M) and for varying interven-
tions about the mean of the exposure. Fits for 25 bootstrap iterations are shown
for both estimators, and the colored line represents the mean value (bagging estimate).
The true CATE is shown in the dashed black line.
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Figure S10: Genetic association between variants at the SOST locus and
circulating sclerostin protein levels as measured using the Olink platform in
the UK Biobank. Genes in the region are shown below the locus plot and the SOST
gene is highlighted in red.

Figure S11: Genetic associations at the SOST locus with circulating sclerostin
levels (left) and myocardial infarction (right) and variant posterior inclusion
probabilities in finemapping credible sets as inferred by SuSiE. The boundaries
of the SOST gene are denoted by dashed lines.



Figure S12: Association p values (log scale) between genetic variants at the
SOST locus and SOST expression in the aorta in GTEx V8 and circulating
sclerostin levels in the UK Biobank.



Figure S13: Association p values (log scale) between genetic variants at the
SOST locus and SOST expression in the tibial artery in GTEx V8 and cir-
culating sclerostin levels in the UK Biobank.
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Figure S14: Comparison of sclerostin tibial artery eQTL and pQTL p values
(log scale).



Figure S15: Posterior inclusions probabilities of variants at the SOST locus
in finemapping credible sets inferred by SuSiE for association with circulat-
ing protein levels (UK Biobank) and sclerostin expression (aorta and tibial
artery, GTEx).
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Figure S16: Conditional average treatment e!ect of circulating sclerostin
levels on heel bone mineral density and osteoporosis in males and females
estimated using Quantile IV in the UK Biobank. The shaded region corresponds
to 90% bootstrap confidence intervals. The plots cover the central 99% of the exposure
range.
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Figure S17: Mendelian randomization of the e!ect of a 1 s.d. reduction in
circulating sclerostin using the Inverse Variance Weighted estimator based
on the finemapped sclerostin pQTLs in the UK Biobank
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Figure S18: Mendelian randomization of the e!ect of a 1 s.d. reduction
in circulating sclerostin using the PC-GMM estimator based on LD pruned
variants at the SOST locus.
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Figure S19: Quantile IV estimate of the average e!ect of varying the levels
of circulating sclerostin about the mean on cardiovascular outcomes in the
UK Biobank. The shaded region corresponds to 90% bootstrap confidence intervals.
The plots cover the central 99% of the exposure range.
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Figure S20: Mendelian randomization of the e!ect of a 1 s.d. reduction in
circulating sclerostin using the Quantile IV estimator in the UK Biobank.



Figure S21: Comparison of the genetic association p values before and after
further adjustment for the sclerostin pQTLs. The square on the scatter plot
denotes the variant rs113533733 which we identified as having possible direct e!ects do
to its high association p value despite robust adjustment for variants associated with
circulating sclerostin levels. The color represents LD (r2) with this variant.



2 1 0 1 2
Circulating sclerostin (s.d.)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ad
ju

st
ed

 A
TE

 o
n 

ac
ut

e 
C

A
D

 (
O

R
 s

ca
le

)

2 1 0 1 2
Circulating sclerostin (s.d.)

0.6

0.8

1.0

1.2

1.4

1.6

Ad
ju

st
ed

 A
TE

 o
n 

is
ch

em
ic

 s
tr

ok
e 

(O
R

 s
ca

le
)

2 1 0 1 2
Circulating sclerostin (s.d.)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ad
ju

st
ed

 A
TE

 o
n 

m
yo

ca
rd

ia
l 

in
fa

rc
tio

n 
(O

R
 s

ca
le

)

2 1 0 1 2
Circulating sclerostin (s.d.)

0.5

1.0

1.5

2.0

Ad
ju

st
ed

 A
TE

 o
n 

P
C

I/C
A

B
G

 (
O

R
 s

ca
le

)

Figure S22: Adjusted Quantile IV estimate of the average e!ect of varying
the levels of circulating sclerostin about the mean on cardiovascular outcomes
accounting for direct e!ects by rs113533733 in the UK Biobank. The shaded
region corresponds to 90% bootstrap confidence intervals. The plots cover the central
99% of the exposure range.



Figure S23: Estimated causal relationship by Quantile IV for a post hoc

simulation analysis replicating the real data analysis of the e!ect of sclerostin
on heel bone mineral density. The simulated relationship (in red) is linear with a
slope of -0.526 as was estimated by PC-GMM in the real data analysis. The pale black
lines represent the Quantile IV fits for 200 simulation replicates. The blue line is a mean
linearized estimate of the slope taken over the simulation replicates.
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Figure S24: Quantile IV estimates of the e!ect of varying LDL-c levels
about the mean on the odds of ischemic cardiovascular outcomes in the UK
Biobank. The plot covers the central 95% of the exposure range.
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Figure S25: Quantile IV estimates of the e!ect of varying waist-to-hip ratio
levels about the mean on the odds of ischemic cardiovascular outcomes in
the UK Biobank. The plot covers the central 95% of the exposure range.
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Figure S26: Predicted e!ect of a 1 mmol/l increase in LDL-c on cardiovas-
cular outcomes at di!erent values of LDL-c corresponding to the localized
average causal e!ects estimated by the doubly-ranked and Quantile IV MR
methods. The IVW estimate is provided to facilitate comparisons.
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Figure S27: Predicted e!ect of a 0.1 unit increase in the waist-to-hip ratio
on cardiovascular outcomes at di!erent values of the waist-to-hip ratio cor-
responding to the localized average causal e!ects estimated by the doubly-
ranked and Quantile IV MR methods. The IVW estimate is provided to facilitate
comparisons.



B Supplemental Tables

Outcome Code voc. Code Label

Myocardial infarction
(MI) ICD9 410 Acute myocardial infarction

412 Old myocardial infarction
411.0 Postmyocardial infarction syndrome

429.7 Certain sequelae of myocardial infarction, not elsewhere
classified

ICD10 I21 Acute myocardial infarction
I22 Subsequent myocardial infarction

I23 Certain current complications following acute myocardial
infarction

I25.2 Old myocardial infarction

Percutaneous
Coronary Intervention
and Coronary Artery
Bypass Graft
(PCI/CABG)

OPCS K40 Saphenous vein graft replacement of coronary artery
K41 Other autograft replacement of coronary artery
K42 Allograft replacement of coronary artery
K43 Prosthetic replacement of coronary artery
K44 Other replacement of coronary artery
K45 Connection of thoracic artery to coronary artery
K46 Other bypass of coronary artery
K49 Transluminal balloon angioplasty of coronary artery

K50 Other therapeutic transluminal operations on coronary
artery

K75 Percutaneous transluminal balloon angioplasty and
insertion of stent into coronary artery

Acute Coronary
Artery Disease
(Acute CAD)

Prev. defined
outcome MI

PCI/CABG

ICD10 I20.0 Unstable angina (for this particular instance, we only
consider primary cause for hospitalization or death)

Ischemic stroke ICD9 434 Occlusion of cerebral arteries
434.0 Cerebral thrombosis
434.1 Cerebral embolism
434.9 Cerebral artery occlusion, unspecified
436 Acute, but ill-defined, cerebrovascular disease

ICD10 I63 Cerebral infarction
I64 Stroke, not specified as haemorrhage or infarction

Table S1: Algorithmic definition of the cardiovascular outcomes considered
for the Mendelian randomization study. Unless otherwise specified, codes are
considered present if they are found as the primary cause of death or as the primary or
secondary cause of hospitalization in the electronic records.



Exposure dataset (circulating sclerostin)

n 42,830
Genetic Female - n (%) 22,981 (53.7%)
Age - Mean (s.d.) 57.2 (8.1)

Outcome dataset

n 370,218
Genetic Female - n (%) 199,656 (53.9%)
Age at baseline - Mean (s.d.) 56.8 (8.0)
Heel bone mineral density - n 211,692

Mean in g/cm2 (s.d.) 0.54 (0.14)
Osteoporosis - n cases / n controls (%) 18,937 / 351,281 (5.4%)
Myocardial infarction - n cases / n controls (%) 19,925 / 348,722 (5.7%)
PCI/CABG - n cases / n controls (%) 17,261 / 352,957 (4.9%)
Ischemic stroke - n cases / n controls (%) 8 535 / 361,651 (2.4%)
Acute CAD - n cases / n controls (%) 33,516 / 335,167 (10.0%)

Table S2: Descriptive statistics of the datasets used for the Mendelian ran-
domization study evaluating the e!ect of a reduction in circulating sclerost-
ing levels on outcomes related to bone and cardiovascular health in the UK
Biobank.

Table S3: Genetic variants used as instrumental variables in the MR study of
the e!ect of LDL-c on cardiovascular outcomes. The subset of variants predicted
to be valid by MR-LASSO and the contamination mixture method and used for one-
sample analyses within the UK Biobank are labeled. The reported e!ect estimates are
from the Global Lipid Genetics Consortium. Position are on the GRCh37 build.

See Excel file ldl_variants_table.xlsx

Table S4: Genetic variants used as instrumental variables in the MR study
of the e!ect of the wais-to-hip ratio on cardiovascular outcomes. The subset
of variants predicted to be valid by MR-LASSO and the contamination mixture method
and used for one-sample analyses within the UK Biobank are labeled. The reported
e!ect estimates are from the GIANT consortium. Position are on the GRCh37 build.

See Excel file whr_variants_table.xlsx



Exposures

LDL-c - n 392,333
Mean in mmol/l (s.d.) 3.57 (0.87)

Waist-to-hip ratio - n 412,222
Mean (s.d.) 0.87 (0.09)

Covariates

Age - Mean (s.d.) 56.8 (7.96)
Genetic Female - n (%) 222,187 (53.9%)

Outcomes

Myocardial infarction - n cases / n controls (%) 22,437 / 389,785 (5.4%)
PCI/CABG - n cases / n controls (%) 19,337 / 392,885 (4.7%)
Ischemic stroke - n cases / n controls (%) 9,625 / 402,597 (2.3%)
Acute CAD - n cases / n controls (%) 30,056 / 382,166 (7.3%)

Table S5: Descriptive statistics of the datasets used for the Mendelian ran-
domization study evaluating the e!ect of LDL-c and waist-to-hip ratio on
outcomes related to cardiovascular health in the UK Biobank.

Parameter Default value

n quantiles 5
Exposure network units per layer 128, 64
Outcome network units per layer 64, 32
Activation function Gaussian Error Linear Units (GELU)
Learning rate 5→ 10→4

Minibatch size 10,000
Maximum number of epochs 1000
Weight decay (l2 penalty) 10→4

Table S6: Default values for tunable hyperparameters of the Quantile IV
estimator. When the neural network is not specified, the default value applies for both
the exposure and the outcome neural network.



Simulation parameter Sim. value DeLIVR Mean
RMSE (s.d.)

Quantile IV Mean
RMSE (s.d.) p value

Sample size
10,000 1.44 (0.30) 1.39 (0.33) 0.196
50,000 0.98 (0.18) 0.94 (0.23) 0.037
100,000 1.01 (0.23) 0.86 (0.20) 1.1→ 10→11

Instrument strength
0.05 0.88 (0.20) 0.87 (0.22) 0.67
0.1 1.23 (0.21) 1.13 (0.26) 1.7→ 10→5

0.5 0.86 (0.28) 0.80 (0.15) 8.1→ 10→4

Causal relationship shape
Linear 0.25 (0.13) 0.20 (0.11) 4.4→ 10→5

Quadratic 0.87 (0.17) 0.80 (0.20) 2.9→ 10→4

Threshold 0.50 (0.07) 0.52 (0.10) 0.076

Confounding
-0.6 1.15 (0.22) 1.19 (0.24) 0.127
0.3 1.06 (0.23) 0.98 (0.23) 2.1→ 10→4

0.6 0.91 (0.21) 0.75 (0.19) 1.3→ 10→15

Number of instruments
2 1.03 (0.36) 0.96 (0.35) 3.0→ 10→3

10 1.04 (0.18) 0.96 (0.23) 5.1→ 10→5

100 1.01 (0.16) 1.30 (0.21) 2.8→ 10→35

Table S7: Comparison between the mean root mean squared error between
DeLIVR and Quantile IV across the di!erent Mendelian randomization sim-
ulation scenarios and over the full range of the exposure distribution. The p
value is from a paired t-test by simulation replicate. The italicized values highlight the
smallest error when the di!erence is statistically significant.

ID Pos. (Chr. 17) Alleles (ref./coded) E!ect on sclerostin levels (95% CI) p value

rs6416905 41,804,464 A/G -0.059 (-0.046, -0.072) 1.49→ 10→18

rs66838809 41,798,621 G/A -0.097 (-0.074, -0.120) 1.82→ 10→16

Table S8: Estimated genetic associations with circulating sclerostin levels
for the top variants assigned to the two credible sets identified in the SuSiE
finemapping analysis.



Phenotype Estimator ATE 1 s.d. reduction (95% CI) ATE 2 s.d. reduction (95% CI)

Heel BMD IVW 0.639 (0.554, 0.723) 1.277 (1.108, 1.446)
PC-GMM 0.526 (0.162, 0.889) 1.051 (0.324, 1.778)
Quantile IV 0.122 (0.117, 0.125) 0.236 (0.230, 0.243)

Osteoporosis (OR scale) IVW 0.291 (0.213, 0.398) 0.085 (0.045, 0.158)
PC-GMM 0.349 (0.182, 0.670) 0.122 (0.033, 0.449)
Quantile IV 0.794 (0.612, 0.949) 0.626 (0.373, 0.857)

Table S9: Mendelian randomization estimate of a 1 s.d. or 2 s.d. reduction
in sclerostin levels about the mean on heel bone mineral density and osteo-
porosis. Three di!erent MR estimators are considered, and the estimates are from a
two-sample MR within the UK Biobank.

Outcome Conditioning CATE* (95% CI) Interaction p value

Osteoporosis Female 0.79 (0.60, 0.95) 0.04
Male 0.80 (0.62, 0.96)

Age = 48.8 (mean ↑ 1 s.d.) 0.79 (0.61, 0.94) 0.35
Age = 56.8 (mean) 0.79 (0.61, 0.95)
Age = 64.8 (mean + 1 s.d.) 0.81 (0.61, 0.98)

Heel bone mineral density Female 0.15 (0.02, 0.26) 2.3→ 10→22

Male 0.09 (-0.01, 0.18)

Age = 48.8 (mean ↑ 1 s.d.) 0.12 (0.03, 0.20) 0.43
Age = 56.8 (mean) 0.13 (0.02, 0.23)
Age = 64.8 (mean + 1 s.d.) 0.12 (-0.02, 0.24)

* The CATE is reported on the odds ratio scale for osteoporosis and in standardized units (i.e. z-scores)
for heel bone mineral density.

Table S10: Conditional average treatment e!ects estimated using Quantile
IV for a 1 s.d. reduction in circulating sclerostin levels on osteoporosis and
heel bone mineral density. The estimates are conditioned on di!erent values of the
covariates, specifically by conditioning on the genetic male vs female variable or varying
the age at the mean (56.8 years), 1 s.d. below the mean (48.8 years) and 1 s.d. above
the mean (64.8 years).

Estimator ATE on heel BMD (95% CI) p value

IVW 0.66 (0.57, 0.75) 1.7→ 10→49

PC-GMM 0.52 (0.18, 0.86) 2.7→ 10→3

Quantile IV 0.11 (0.03, 0.21) 6.1→ 10→3

Table S11: Mendelian randomization estimates of the e!ect of a 1 s.d. re-
duction in circulating sclerostin levels on heel bone mineral density adjusting
for possible direct e!ects by rs113533733. The average treatment e!ect on heel
bone mineral density for a 1 s.d. reduction in circulating sclerostin is presented.



All IVs (n = 519) Restricted subset
MR OR (95% CI) p value MR OR (95% CI) p value

Myocardial infarction (nv = 383)

IVW 1.60 (1.49, 1.73) 6.04→ 10→36 1.66 (1.58, 1.75) 4.98→ 10→80

Weighted median 1.63 (1.48, 1.79) 7.93→ 10→23 1.63 (1.48, 1.80) 1.61→ 10→22

MR-Egger 1.66 (1.47, 1.87) ↓ 10→8 1.56 (1.44, 1.70) ↓ 10→8

MR-Egger intercept 0.48 0.07
Contamination mixture (385 valids) 1.66 (1.57, 1.78) 1.67→ 10→30

MR LASSO (422 valids) 1.62 (1.54, 1.71) 7.77→ 10→75

Coronary artery disease (nv = 393)

IVW 1.66 (1.55, 1.78) 2.23→ 10→46 1.81 (1.72, 1.90) 2.42E-131
Weighted median 1.59 (1.46, 1.74) 1.26→ 10→25 1.68 (1.55, 1.83) 1.30→ 10→35

MR-Egger 1.75 (1.57, 1.96) ↓ 10→8 1.68 (1.56, 1.82) ↓ 10→8

MR-Egger intercept 0.24 0.02
Contamination mixture (395 valids) 1.82 (1.71, 1.97) 3.69→ 10→41

MR LASSO (443 valids) 1.73 (1.65, 1.81) 3.34→ 10→119

Coronary artery disease (incl. UKB, nv = 363)

IVW 1.64 (1.54, 1.75) 3.02→ 10→50 1.81 (1.73, 1.91) 5.58→ 10→127

Weighted median 1.54 (1.43, 1.66) 2.21→ 10→29 1.83 (1.68, 1.98) 1.85→ 10→46

MR-Egger 1.71 (1.54, 1.90) ↓ 10→8 1.61 (1.48, 1.76) ↓ 10→8

MR-Egger intercept 0.28 1.83→ 10→3

Contamination mixture (377 valids) 1.91 (1.78, 2.03) 6.15→ 10→50

MR LASSO (401 valids) 1.68 (1.61, 1.75) 1.40→ 10→121

Table S12: Two-sample MR estimates of the e!ect of a 1 s.d. increase in
LDL-c levels on the odds of cardiovascular outcomes. The estimates are based
on summary statistics from the GLGC and CARDIoGRAMplusC4D consortia. The
estimates are provided for the full set of IVs and for a restricted subset containing the
variants with no evidence of direct e!ects according to the contamination mixture and
MR LASSO estimators. The number of variants used for the restricted subset for every
outcome is identified as nv.



All IVs (n=545) Restricted subset
MR OR (95% CI) p value MR OR (95% CI) p value

Myocardial infarction (nv = 389)

IVW 1.33 (1.23, 1.43) 6.82→ 10→13 1.70 (1.58, 1.83) 2.13→ 10→44

Weighted median 1.35 (1.22, 1.51) 1.54→ 10→8 1.63 (1.46, 1.82) 1.11→ 10→17

MR-Egger 1.45 (1.17, 1.79) 6.62→ 10→4 1.53 (1.23, 1.91) 1.58→ 10→4

MR-Egger intercept 0.39 0.32
Contamination mixture (394 valids) 1.75 (1.46, 1.93) 8.47→ 10→11

MR LASSO (484 valids) 1.34 (1.26, 1.43) 2.62→ 10→18

Coronary artery disease (nv = 352)

IVW 1.31 (1.22, 1.42) 1.80→ 10→12 1.70 (1.58, 1.83) 3.48→ 10→48

Weighted median 1.36 (1.24, 1.50) 3.87→ 10→10 1.68 (1.51, 1.87) 3.24→ 10→22

MR-Egger 1.53 (1.24, 1.88) 7.92→ 10→5 1.69 (1.37, 2.08) 1.07→ 10→6

MR-Egger intercept 0.13 0.94
Contamination mixture (370 valids) 1.83 (1.66, 2.02) 2.11→ 10→12

MR LASSO (458 valids) 1.29 (1.22, 1.38) 1.61→ 10→16

Coronary artery disease (incl. UKB, nv = 376)

IVW 1.31 (1.22, 1.40) 1.20→ 10→14 1.57 (1.48, 1.66) 3.08→ 10→48

Weighted median 1.33 (1.22, 1.44) 7.75→ 10→11 1.52 (1.38, 1.66) 2.05→ 10→18

MR-Egger 1.47 (1.22, 1.77) 6.00→ 10→5 1.50 (1.25, 1.80) 8.82→ 10→6

MR-Egger intercept 0.20 0.61
Contamination mixture (381 valids) 1.60 (1.48, 1.79) 3.68→ 10→12

MR LASSO (458 valids) 1.30 (1.23, 1.37) 1.39→ 10→21

Table S13: Two-sample MR estimates of the e!ect of BMI adjusted WHR
on the odds of cardiovascular outcomes. The estimates are based on summary
statistics from the GIANT and CARDIoGRAMplusC4D consortia. The estimates are
provided for the full set of IVs and for a restricted subset containing the variants with
no evidence of direct e!ects according to the contamination mixture and MR LASSO
estimators. The number of variants used for the restricted subset for every outcome is
identified as nv.



MR OR per mmol/l (95% CI) p value

Myocardial infarction

IVW 1.88 (1.70, 2.08) 8.85→ 10→35

Weighted median 1.83 (1.58, 2.12) 5.98→ 10→16

MR-Egger 1.63 (1.39, 1.91) 1.86→ 10→9

MR-Egger intercept 0.022
Contamination mixture (299 valids) 1.99 (1.84, 2.18) 6.54→ 10→56

MR LASSO (273 valids) 1.87 (1.71, 2.04) 3.32→ 10→44

PCI/CABG

IVW 2.33 (2.07, 2.61) 1.12→ 10→46

Weighted median 2.19 (1.87, 2.57) 5.49→ 10→22

MR-Egger 1.91 (1.59, 2.29) 3.03→ 10→12

MR-Egger intercept (283 valids) 6.15→ 10→3

Contamination mixture (269 valids) 2.25 (2.00, 2.51) 7.36→ 10→53

MR LASSO 2.41 (2.19, 2.65) 8.67→ 10→72

Acute CAD

IVW 1.99 (1.81, 2.19) 2.40→ 10→46

Weighted median 1.95 (1.71, 2.22) 1.22→ 10→23

MR-Egger 1.64 (1.41, 1.90) 6.73→ 10→11

MR-Egger intercept 7.92→ 10→4

Contamination mixture (292 valids) 2.10 (1.90, 2.28) 6.11→ 10→66

MR LASSO (273 valids) 1.94 (1.79, 2.10) 3.71→ 10→62

Ischemic stroke

IVW 1.11 (0.97, 1.27) 0.147
Weighted median 1.16 (0.94, 1.44) 0.166
MR-Egger 1.09 (0.88, 1.35) 0.446
MR-Egger intercept 0.850
Contamination mixture (290 valids) 1.12 (1.00, 1.27) 0.072
MR LASSO (289 valids) 1.15 (1.02, 1.30) 0.024

Table S14: One-sample parametric MR estimates of the e!ect of a 1 mmol/l
increase in LDL-c levels on the odds of cardiovascular outcomes in the UK
Biobank. The MR estimates used the restricted subset of instrumental variables con-
taining the variants with no evidence of direct e!ects according to the contamination
mixture and MR LASSO models in the summary statistics based analyses.



MR OR per 0.1 unit increase in WHR (95% CI) p value

Myocardial infarction

IVW 2.08 (1.76, 2.45) 6.84→ 10→18

Weighted median 2.12 (1.68, 2.68) 2.45→ 10→10

MR-Egger 2.57 (1.68, 3.92) 1.32→ 10→5

MR-Egger intercept 0.288
Contamination mixture (243 valids) 2.76 (2.01, 3.45) 1.43→ 10→13

MR LASSO (286 valids) 2.16 (1.85, 2.51) 6.87→ 10→23

PCI/CABG

IVW 2.69 (2.23, 3.24) 2.59→ 10→25

Weighted median 2.87 (2.22, 3.71) 8.62→ 10→16

MR-Egger 2.34 (1.46, 3.78) 4.59→ 10→4

MR-Egger intercept 0.537
Contamination mixture (227 valids) 4.35 (3.18, 5.39) 6.27→ 10→21

MR LASSO (280 valids) 2.95 (2.50, 3.49) 6.86→ 10→37

Acute CAD

IVW 2.31 (2.00, 2.68) 4.72→ 10→29

Weighted median 2.40 (1.95, 2.95) 1.48→ 10→16

MR-Egger 2.91 (2.00, 4.23) 2.33→ 10→8

MR-Egger intercept 0.194
Contamination mixture (238 valids) 3.25 (2.67, 3.88) 2.96→ 10→25

MR LASSO (285 valids) 2.43 (2.13, 2.79) 1.01→ 10→37

Ischemic stroke

IVW 1.52 (1.20, 1.93) 5.35→ 10→4

Weighted median 1.58 (1.10, 2.25) 0.012
MR-Egger 1.62 (0.88, 2.96) 0.119
MR-Egger intercept 0.824
Contamination mixture (243 valids) 1.65 (1.18, 2.84) 5.43→ 10→3

MR LASSO (286 valids) 1.55 (1.23, 1.95) 1.91→ 10→4

Table S15: One-sample parametric MR estimates of the e!ect of a 0.10 unit
increase in WHR on the odds of cardiovascular outcomes in the UK Biobank.
The MR estimates used the restricted subset of instrumental variables containing the
variants with no evidence of direct e!ects according to the contamination mixture and
MR LASSO models in the summary statistics based analyses.



C Supplemental Note

C.1 Forward stepwise regression analysis of sclerostin pQTLs

In addition to the finemapping analysis, we also conducted a forward stepwise regression analysis

where we iteratively condition on the top variant and repeat the association study. The initial

association scan had identified rs9303537 as the lead variant (“T” allele ω̂ = 0.059 95% CI (0.045,

0.071), p = 1.5→ 10→18). This variant is almost perfectly correlated with the lead variant from the

first credible set (r2 = 0.99 in 1,000 genomes European sample). Conditioning on this top variant in

the forward stepwise analysis, the variant rs66838809 was identified as the second stage top variant.

The conditional association coe"cient for the rs66838809 “A” allele is ω̂ = ↑0.078, 95% CI (-0.091,

-0.064) p = 1.2 → 10→10. After conditioning on these two variants, no residual signal crossed the

genome-wide significance threshold. The top variant (rs75508812) had a conditional association

p = 3.3 → 10→5. This variant passes the conservative Bonferroni correction at ε = 5% considering

the 1,449 variants we included and can be considered significant.

C.2 Adjustment for statin use in MR of the e!ect of LDL-c on cardio-

vascular outcomes

In the MR study of the e!ect of LDL-c on cardiovascular, we considered e!ect heterogeneity between

statin users and non-users. We noticed that the IVW estimate varied substantially with the addition

of statin use as a covariate. For example, the IVW MR OR for a 1 mmol/l increase in LDL-c on

MI was 1.88 95% CI (1.70, 2.08) in the model unadjusted for statin use and 1.23, (1.13, 1.34) in the

model adjusted for statin use. This di!erence suggests that the IV assumptions are violated in one

scenario or the other. To investigate this e!ect, we plotted the e!ect estimate of the IVs on LDL-c

and MI in both models (see below).
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Estimated e!ect of genetic variants on LDL-c levels and MI in models ad-
justed and unadjusted for statin use in the UK Biobank. Every point represents
a genetic variant used as an IV in the MR study of LDL-c levels. The e!ects are all
expressed with respect to the LDL-c increasing allele. The diagonal line represents the
identity.

We observe that adjustment for statin use increases the e!ect estimates for LDL-c and reduces

the MI e!ect estimates on average resulting in deflated ratio estimates in the model adjusted for

statin use. We could hypothesize that this e!ect is due to a statistical interaction where statin use

modifies the e!ect of genetic variants on LDL-c. For instance, that the true causal model is:

LDL-c = ωG+ ωi ·G · statin + U + ϑx

Y = ϖ · LDL-c + U + ϑy

Then, the regressions of LDL-c on the genetic variant (ωLDL-c|G) and of the outcome on the genetic

variant (ωY |G) would be:

ωLDL-c|G = ω + ωi · p

ωY |G = ϖ · (ω + ωi · p)

=↔ ωY |G/ωLDL-c|G = ϖ

With p = P (statin = 1) the prevalence of statin use. This shows that the Wald estimator (and,



by extension, the IVW estimator) is unbiased in the presence of unaccounted for genetic e!ect

heterogeneity when the true causal e!ect is linear.

We hypothesize that the di!erence between MR estimates of the e!ect of LDL-c on MI with

and without adjustment for statin use are due to a more complex causal structure. For example, a

genetic association with propensity for statin use (indication bias, I), which can be independently

associated with cardiovascular outcomes, could partially explain the observed e!ects (see tentative

causal graph below):

U

I

G LDL-c Y

Statin

Directed acyclic graph representing a causal structure where adjustment for
statin use could result in changes in the genetic e!ect estimates on the ex-
posure and outcome. The variable labeled “I” represents latent indication bias. It
can be interpreted as an unmeasured clinical variable physicians may use to decide to
initiate statin pharmacotherapy and that may also influence the outcome. Under that
DAG, adjusting for statin use reduces bias in the genetic e!ect estimates by blocking
the indirect path mediated by the latent indication.

D Supplemental Methods

D.1 Parametric MR estimators

The inverse variance weighted MR estimator is a weighted average of the ratio (or Wald) estimators

where the weights are the precision of the estimates. This method assumes that all variants are

valid IVs. The MR-Egger estimator relaxes the exclusion restriction assumption and relies on the

Instrument Strength Independent of Direct E!ects (InSIDE) assumption instead. This assumption

states that the direct (or pleiotropic) e!ects should be independent from the IV–exposure e!ects.

The median estimator uses the median of the ratio estimators as the causal e!ect estimate and is a



consistent estimator of the causal e!ect if at least 50% of the IVs are valid. The robust counterpart of

these estimates use strategies from robust regression to reduce the impact of extreme data points on

the estimate (see [62]). The penalized counterparts add a penalty based on the Cochran’s Q statistic

as a measure of heterogeneity in the causal estimates. All of these estimators are implemented in

the MendelianRandomization R package and are documented therein.

In addition to those estimators, we used the contamination mixture and the MR LASSO

methods that provide variant level statistical evidence of violations of the IV assumptions. The

contamination mixture algorithm is a two-component mixture of gaussians with a component cen-

tered at the causal e!ect and a second component centered at zero accounting for the variance from

invalid IVs [47]. The MR LASSO introduces a LASSO (ϱ1 norm) penalty on the intercept term

representing variant direct e!ects. Because of the sparsity inducing property of the LASSO penalty,

the variants with non-zero intercepts are considered to have pleiotropic e!ects and the others to be

valid IVs [46].

D.2 Evaluation of Quantile IV with simulated binary outcomes

To evaluate the performance of Quantile IV with binary outcomes, we discretized the continous

outcome corresponding to the simulation scenario with n = 50, 000, 10% of the variance in the

exposure explained by the IV, a quadratic relationship, a correlation of 0.3 between the errors of

the exposure and outcome and 10 simulated IVs. The binary variable was defined using an indicator

variable to achieve a prevalence of either 5% of 30%. Specifically, we computed the 70th and 95th

percentiles of the continuous outcome and set individuals as “cases” if their realized value of the

outcome was greater than the threshold. Because the total sample size for the simulation model

is 50,000, the simulated number of cases was either 2500 of 15,000. We repeated the discretization

procedure for the 200 simulation replicated and fit Quantile IV once for each replicate. By com-

parison, the number of cases included in our real data analysis ranged between 5 535 for ischemic

stroke and 33 516 for acute CAD (Table S2).

We now describe the causal log odds used as the target in the calculation of the root mean



squared error. We denote the latent continuous outcome as Y ↑ and the discretized outcome

Y := I(Y ↑ ↗ ς1→p) where p is the simulated prevalence and ς represents quantiles of Y ↑. From

Equation (8), we have:

P (Y = 1 | do(X=x)) = P (Y ↑ ↗ ς1→p | do(X = x))

= P (f(X) + ϑy ↗ ς1→p | do(X = x))

= P (ϑy ↗ ς1→p ↑ f(x))

= 1↑ !(ς1→p ↑ f(x))

Where ! is the CDF of the standard normal distribution, the marginal distribution of ϑy in our

simulation model. The causal log odds is

ln

(
P (Y = 1 | do(X=x))

1↑ P (Y = 1 | do(X=x))

)

Using this simulation setup, we compare the RMSE between the estimated causal log odds and the

true causal log odds for the compared models. For the binary trait simulation analysis, we compare

Quantile IV to the 2-stage control function estimator which is less biased than naive two-stage

procedure when estimating the log odds ratio [55]. We also compare to DeLIVR [14] using the same

strategy as for Quantile IV of modeling the outcome linearly on the log odds scale. We excluded

DeepIV from this comparison because the optimization of the estimator relies on a modified mean

squared error loss that is incompatible with binary outcomes [20]. This custom loss was designed

to avoid bias in the gradient computation.

D.3 Simulation scenario with causal e!ect heterogeneity and complex

confounding

The main simulation study aimed to assess the applicability of Quantile IV in realistic MR scenarios.

For this reason, it was designed to be conservative in the complexity of the data generating process.

Here, we consider a di!erent structure aimed at illustrating the advantages of using nonparametric



IV estimators. For this example, we compare DeLIVR and Quantile IV because the strong simulated

causal e!ect heterogeneity warrants estimation of the CATE (i.e. methods estimating the ATE

would not be competitive).

We consider a scenario with a unique continuous instrumental variable Z (e.g. a genetic

risk score), a normally distributed latent confounder of the exposure–outcome relationship (U) and

a uniformly distributed e!ect modifier (M) of the causal relationship between the exposure and

outcome taking values between -1 and 1. The exogenous random errors for the exposure (ϑx) are

sampled from the exponential distribution.

Drawing inspiration from [16], we introduce additional model complexity by inducing a corre-

lation between the instrumental variable e!ect on the exposure (ε) and the errors of the outcome

(ϑy). This implies that there is a latent variable with an e!ect on the outcome that also influences

the e!ect of the IV on the exposure. Specifically, we set
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Where ε is the coe"cient for the e!ect of the genetic IV on the exposure.

We introduce additional complexity in the form of e!ect modification by the observed variable

M and interactions with the latent confounder in the exposure model:

X = εZ ↑ 1.25 · Z ·M + Z · U + U + ϑx

The outcome is defined as

Y = f(X,M)↑ 0.8U + 0.1U2 + ϑy (11)

f(X,M) := M

(
exp(↑x2) +

x↑m

2

)
(12)

The causal function f was selected because the change in the CATE with respect to X is



globally decreasing at low values of the e!ect modifier (M), CATE = 0 when M = 0 and it

becomes globally increasing at high values of M while being nonlinear (Figure S9).

D.4 Genetic quality control

We excluded variants or individuals with a missing rate > 2%. The genetic and self-reported sex

variables were compared to ensure concordance between genetic and self-reported sex and individuals

with discrepancies or sex chromosome aneuploidies were excluded from the analysis dataset. To

mitigate bias due to population stratification, we restricted our analysis to individuals of European

ancestry because they represent the largest genetically homogeneous subgroup in the UK Biobank

and excluded participants that fell outside of a manually defined region on the principal component

analysis plot. Related individuals were excluded based on a kinship coe"cient cuto! of 0.0884,

corresponding to a relationship no closer than the 3rd degree. A total of 413,138 individuals

remained after this quality control process.

D.5 Mendelian randomization exposure and outcome definitions

The exposure for the MR study is circulating sclerostin levels as measured using the Olink Explore

high throughput proteomics platform. This platform uses the proximity extension assay technol-

ogy where antibodies bind the target protein and allow hybridization of complementary a"xed

olignucleotides which are amplified and used to quantify protein levels. Sclerostin is assayed on

this platform (protein #2527) and we extracted measurements in the normalized protein expression

(NPX) format at the baseline instance. The NPX values are provided by the UK Biobank follow-

ing the Olink QC and quantification process and have an approximately logarithmic interpretation

(see UK Biobank resources #4654 to #4658 for additional information on the quality control and

quantification) [6]. We visually confirmed that the extracted sclerostin levels had an approximately

normal distribution with no outliers. A total of 42,830 individuals had available sclerostin mea-

surements at the baseline visit and were included in our dataset accounting for our genetic quality

control (Table S2).

For the MR study, we considered heel bone mineral density, osteoporosis, MI, PCI/CABG,



acute CAD and ischemic stroke as outcomes. We used data from ultrasound bone densitometry

which provides an estimate of heel bone mineral density in g/cm2. We extracted measurements from

the initial assessment visit and used the average measurement when multiple values were present for

a same individual. We standardized the measurements to have a mean of 0 and standard deviation

(s.d.) of 1. The reported e!ects in the s.d. scale can be converted back to g/cm2 by multiplying

by 0.14 and represent changes about the mean which is of 0.54 g/cm2.

We defined the osteoporosis variable as self-reported osteoporosis (UK Biobank variable

#20002) or from ICD10 codes M80 (osteoporosis with pathological fracture), M81 (osteoporosis

without pathological fracture), M84.4 (pathological fracture, not elsewhere classified) or M85.9

(disorder of bone density and structure, unspecified) in the hospitalization records. We relied on

hospitalization and death records to capture acute cardiovascular events using the definitions we

previously developed in collaboration with physician researchers at the Montreal Heart Institute

(Table S1). Our previous definitions did not include ischemic stroke, so we relied on the definition

from the UK Biobank Outcome Adjudication Group based on self-reported ischemic stroke and the

codes reported in Table S1). In addition to the coding of cases based on the diagnostic codes, we

excluded individuals with self-reported MI from the controls of the MI and acute CAD variable and

the individuals with self-reported ischemic stroke from the controls of the ischemic stroke variable.

D.6 Post hoc simulation analysis of linear e!ect underestimation by

Quantile IV

The causal e!ect estimate of a 1 s.d. reduction in sclerostin levels on heel BMD by Quantile IV is

much smaller than the estimate from linear models. To evaluate whether Quantile IV systematically

underestimates linear e!ects under our conditions, we conducted a simulation based evaluation using

a semi-synthetic data approach.

For every simulation replicate, we sampled with replacement 413,048 real genotypes for the

two instruments (rs6416905 and rs66838809) from the UK Biobank genetic dataset. This ensured

that the distribution of the genetic variants was preserved in our simulation in terms of frequency



and LD. We then simulated an exposure variable with unit variance while fixing the genetic e!ects

to the observed allelic e!ects for the two variants. We used the point estimates from the joint linear

regression model adjusted for age, sex and ancestry principal components (coe"cient of 0.049 for

rs6416905 “A” allele and coe"cient of -0.076 for rs66838809 “A” allele). We simulated a standard

normal outcome while fixing the linear causal e!ect of the exposure to have a coe"cient of -0.526

corresponding to the point estimate from PC-GMM in our real data analysis. The latent confounder

was modeled using the same correlated errors strategy as for the original MR simulation study with

a correlation between the errors of -0.4. To mimic our study design, we partitioned our dataset into

a stage 1 sample (n1 = 42, 830) used to train the model relating the IV to the exposure and a stage

2 sample (n2 = 370, 218) used to train the model relating the IV to the outcome. We repeated the

simulation procedure for 200 replicates.

After fitting Quantile IV, we obtained a linear approximation of the IV regression function by

using linear regression to predict the estimator’s output. This allowed us to report a mean slope

estimate that can be easily compared to the true slope parameter (-0.526). We additionally report

the raw nonlinear estimates to show that Quantile IV did not estimate functions that substantially

deviated from a linear e!ect.
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