
Summary. Coarsening in polycrystalline materials is a complex process. These systems are
often composed of several thousands of grain cells, giving a high degree of freedom. Describing the
behavior of each individual cell is unfeasible, hence continuum models are introduced. Although
losing information at microscopic level, this is crucial since continuum models are generally much
simpler and very powerful in describing system’s behavior at meso/macroscopic level. It is found
that during coarsening self-similarity holds, that is the geometric pattern looks the same though
at different length scales.

An important problem is to determine quantities with predictable behavior. This leads to
the notion of Grain Boundary Characteristic Distribution (GBCD), which is predicted to follow
a Fokker-Planck type equation. Such prediction is supported by numerical simulations and
experiments on two-dimensional polycrystals. Due to the significant geometric complexity of
such systems, the a satisfactory mathematical modeling exists only in one-dimensional setting in
literature. My contributions involve developing the mathematical modeling for such predictive
theory in two-dimensional and three-dimensional settings, with more general energy densities.

Coarsening in polycrystalline materials

Description of the problem. Coarsening in polycrystalline materials is a complex and widely
studied physical phenomenon, both theoretically and experimentally [1, 2, 5, 10, 7, 4, 6, 9, 11, 8,
14, 15, 19, 16, 18, 26, 27, 28, 29]. Most engineered materials are polycrystalline microstructures
composed of thousands of small grains separated by grain boundaries. The degree of freedom of
such systems easily reaches the order of thousands, thus (even with formally simple law governing
the evolution at microscope level) studying its behavior by analyzing the behavior of each single
cell is unfeasible. Statistical description (at meso/macroscopic) level is required. Mullins first
studied ([21, 22, 23]) the local dynamics of grain boundaries, by developing a “curvature driven
system”, in which the law governing local evolution has the form

vn =
(
∂2ψ

∂θ2 + ψ

)
κ.

Here vn denotes the velocity orthogonal to grain boundaries (for the sake of simplicity, regularity
issues are neglected), κ denotes the curvature, ψ = ψ(θ, α) the energy density, θ the normal
direction and α the misorientation angle (see Figure 1). A commonly accepted simplification is to
impose that the energy density depends only on misorientation angle, and that triple junctions are
stable (Herring condition). Barmak, Eggeling, Emelianenko, Epshtein, Kinderlehrer, Golovaty,
Sharp and Ta’asan formulate a predictive theory for curvature driven systems, and introduce the
concept of Grain Boundary Characteristic Distribution (GBCD). In [5, 10] the GBCD is found
to be the distribution ρ(α, t) of misorientation angles (rescaled to a probability measure). The
energy has the form ∫

ψ(α)ρ(α, t)dα,

where ψ denotes the energy density, which is assumed bounded away from zero. It is suggested
by simulations and experiments in 2D ([7]) that for curvature driven evolutionary systems, the
GBCD admits a steady state which is a Boltzmann distribution. The model comprises two key
points:

• the surface energy
∫
ψ(α)ρ(α, t)dα is decreasing in time,

• and an entropy term λ

∫
ρ log ρdα is introduced to account for critical events (i.e. grain

cells disappearing).
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Figure 1. A schematic representation of a grain boundary. Here α denotes the
misorientation between two grains. Grain boundaries Γ1, Γ2, Γ3 meet at the
triple junction T , which is stable due to the Herring condition.

Thus the authors propose in [5, 10, 7] that the GBCD evolves as steepest descent in the 2-
Wasserstein space of the “free energy”∫

ψρdα+ λ

∫
ρ log ρdα, (1)

where λ is a temperature-like value to be determined experimentally. In the 2-Wasserstein space,
the dissipation along steepest descent path is formally similar to the physical dissipation due to
frictional and viscous forces in fluid dynamics (as highlighted by Benamou and Brenier [12],
Landau and Lifschiz [20]). The theory of gradient flows in metric spaces is quite rich (the main
reference being the monograph [3] by Ambrosio, Gigli and Savaré), with several applications in
differential equations (cf. [13, 24, 25], also [30] and references therein). In particular a central
result (proven by Jordan, Kinderlehrer and Otto [13]) is that steepest descent paths of (1)
are solutions of Fokker-Planck type equations. Thus the GBCD satisfies a Fokker-Planck type
equation

C
∂ρ

∂t
= λ

∂2ρ

∂α2 + ∂

∂α

(
ρ
∂ψ

∂α

)
for some constant C > 0. This is supported by both simulations and experiments in 2D. Figure
2 (from [5]) is from a simulation with energy density

ψ(α) := 1 + 0.5 sin2 2α, α ∈ (−π/4, π/4),
starting with 215 + 1 cells, showing the distribution of misorientation angles at time T at which
80% of cells have disappeared. The distribution of misorientation angles is compared against the
Boltzmann distribution

ησ := e−ψ(α)/σ

Zσ
, Zσ :=

∫ π/4

−π/4
e−ψ(α)/σdα, σ := 0.0296915.
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Figure 2. The distribution of misorientation angles at T (red), compared
against the Boltzmann distribution ησ (black).
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