
Summary. Optimal centroid Voronoi tessellations (CVT) have a wide range of applications, such as vector
quantization, data analysis, image processing and resource management. A centroid Voronoi tessellation is a
tessellation of a region such that the generating points are centroids of their Voronoi regions.

We consider the three dimensional space, with domain being the unit cube Q, uniform density and square
distance interaction. A configuration Y is optimal if the CVT associated to Y has the lowest possible energy
among all configurations with the same cardinality.

Such configurations are closely related to Gersho’s conjecture:
• (Gersho’s conjecture) there exists a polytope V with |V | = 1 which tiles the space with congruent copies
such that the following holds: let (Yn)n be a sequence of minimizers, with Yn ∈ argmin]Y=nE(Y ), then
the Voronoi cells of points Yn are asymptotically congruent to n−1/3V as n→ +∞.

Gersho’s conjecture is trivial in 1D, and has been proven in 2D. For higher dimensions it is still open. My
contribution involves giving an explicit upper bound, independent of n, on the geometric complexity of Voronoi
regions in optimal CVTs.

Quantization in 3D: energy estimate and Gersho’s conjecture

Description of the problem. Optimal centroid Voronoi tessellations (CVT) have a wide range of applications, such
as vector quantization, data analysis, image processing and resource management. A centroid Voronoi tessellation
is a tessellation of a region such that the generating points are centroids of their Voronoi regions.

We consider the three dimensional space, and restrict our domain to the unit cube Q. Moreover, we will
consider the case of uniform density and square distance interaction: that is, the energy associated to a mesh Y is

E(Y ) :=
∫
Q

d2(x, Y )dx =
]Y∑
k=1

E(Vk), E(Vk) :=
∫
Vk

|x− yk|2dx, k = 1, · · · , ]Y,

where Vk denotes the Voronoi region generated by yk ∈ Y , k = 1, · · · , ]Y . The centroid of Vk is a point y ∈ Vk
satisfying ∫

Vk

(x− y) · ejdx = 0, j = 1, 2, 3,

with ej denoting the unit vector with “1” in the j-th position. It is straightforward to check that y is a centroid
of Vk if and only if ∫

Vk

|x− y|2dx = min
y′∈Vk

∫
Vk

|x− y′|2dx.

A configuration Y is optimal if the CVT associated to Y has the lowest possible energy among all configurations
Y ′ with ]Y ′ = ]Y .

Such configurations are closely related to Gersho’s conjecture:
• (Gersho’s conjecture) there exists a polytope V with |V | = 1 which tiles the space with congruent copies
such that the following holds: let (Yn)n be a sequence of minimizers, with Yn ∈ argmin]Y=nE(Y ), then
the Voronoi cells of points Yn are asymptotically congruent to n−1/3V as n→ +∞.

Gersho’s conjecture is trivial in 1D, and has been proven in 2D: it is known (see for instance [5, 3]) that the
optimal CVT is a tessellation with regular hexagons.

For higher dimensions, it is open. The following partial results are known:
(1) Zador’s asymptotic formula [6]. For the 3D case, it reads: there exists some constant τ > 0 such that

given any sequence (Yn)n, with Yn ∈ argmin]Y=nE(Y ), then n2/3E(Yn)→ τ . Moreover, it is known that

τ ≥ 0.6 · ( 3
4π )2/3.

(2) Gruber’s uniform distribution result [4]. In the 3D case, with domain being the unit cube Q, this reads:
let Yn be a sequence of minimizers, and it holds (for n� 1):
(a) there exists β > 1 such that Yn is a (1/βn1/3, 1/n1/3)-Delone set,

(b) Yn is uniformly distributed in Q, i.e.

](K ∩ Yn) = |K|n+ o(n) as n→ +∞

for any Jordan measurable set K ⊆ Q.
(3) Barnes and Sloane [1]: the BCC (body centered cubes) lattice is asymptotically optimal among all lattices.

It is worthy noting that, even in view of the above results, Gersho’s conjecture is still a nonlocal problem, and the
optimal polytope V can still have arbitrarily large number of faces.
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Research results. In collaboration with Rustum Choksi (McGill University), we were able to bound the geometric
complexity of each Voronoi cell of optimal CVTs. The main result is:
Theorem. There exists an explicit universal constant N , such that given an arbitrary sequence (Yn)n of minimizers
(i.e. Yn ∈ argmin]Y=nE(Y ) for any n), then for sufficiently large n, any optimal CVT is composed of Voronoi
cells which are polyhedra with at most N faces.

This result reduces Gersho’s conjecture to a local, finite problem: indeed if one can prove the following results:
(1) given a tessellation of Q with convex polyhedra, the average number of faces per polyhedron is m.
(2) The function

f(n) := min
V convex, |V |=1

V has at most n faces

∫
V

|x− y|2dx, y = centroid of V,

is convex for all n ≤ N (with N as in the Theorem above), and an optimal polytope for n = m is space
tiling. In principle this condition can be checked numerically.

Then Gersho’s conjecture would follow. This because we can follow the Gruber’s idea in the proof (from [2]) of
Gersho’s conjecture in 2D: let

g(α, n) := min
V convex, |V |=α

V has at most n faces

∫
V

|x− y|2dx, y = centroid of V,

and g is convex in both variables. Then, for any arbitrary tessellation Yn (with ]Yn = n), of Q, let {Vk} be the
collection of Voronoi cells, and let αk be the number of faces of Vk. Thus it follows

E(Yn) =
n∑
k=1

∫
Vk

|x− y|2dx ≥
n∑
k=1

g(αk, |Vk|) ≥ ng(m, 1/n) + error due to boundary effects.

Since the error due to boundary effects is a higher order term (compared to ng(m, 1/n), as n→ +∞) it follows
that the optimal tessellation (as n → +∞) consists of congruent copies of a space tiling polyhedron realizing
g(m, 1/n).

References

[1] Barnes E.S. and Sloane N.J.A., The optimal lattice quantizer in three dimensions, SIAM J. Algebraic Discr., vol. 4 pp. 30-41,
1983

[2] Gruber, P.M.: A short analytic proof of Fejes T’oth’s theorem on sums of moments, Aequationes Math., vol. 58, pp. 291-295,
1999

[3] Gruber, P.M.: Optimal configurations of finite sets in Riemannian 2-manifolds, Geom. Dedicata, vol. 84, pp. 271-320, 2001
[4] Gruber, P.M.: Optimum quantization and its applications, Adv. Math., vol. 186, pp. 456-497, 2004
[5] T’oth, F.: A stability criterion to the moment theorem, Studia Sci. Math. Hungar. vol. 34, pp. 209-224, 2001
[6] Zador, P.L., Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inform. Theory,

vol. IT-28, pp. 139-148, 1982


	Summary
	Quantization in 3D: energy estimate and Gersho's conjecture
	Description of the problem
	Research results

	References

