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Abstract

We used straightforward linear mixed effects models as described in Worsley et al.,
2002, together with recent advances in smoothing to control the degrees of freedom
(Worsley, 2005a), and random field theory based on discrete local maxima (Worsley,
2005b). This has been implemented in BRAINSTAT (Taylor et al., 2005), a Python
version of FMRISTAT. Our main novelty is voxel-wise inference for both magnitude
and delay (latency) of the hemodynamic response (Liao et al., 2002). Our analysis
appears to be more sensitive than that of Dehaene-Lambertz et al. (2006). Our main
findings are greater magnitude (1.08± 0.16%) and delay (0.148± 0.035s) for different
sentences compared to same sentences, together with a smaller but still significantly
greater magnitude for different speaker compared to same speaker (0.47± 0.08%).

1 Introduction

Our main aim is to duplicate part of the analysis of Dehaene-Lambertz et al. (2006) (hence-
forth DL) so that their methods using SPM can be compared directly with ours using BRAIN-
STAT/FMRISTAT.

To do this, we approach the Functional Image Analysis Contest (FIAC) data set as
a hierarchical study with three levels: runs, sessions and subjects. We analyse the event
sessions separately from the block sessions, but our analysis method is the same in both
cases. This common analysis method seeks to detect changes in magnitude and changes
in latency or delay of the responses to the stimuli, and provide standard errors for these
estimates.

The changes we looked at were 1) different minus same sentence (averaged over speakers);
2) different minus same speaker (averaged over sentences); 3) an interaction between the two.
All these estimates, both of magnitudes and delays, are combined in a hierarchical mixed-
effects analysis to produce one map of voxel-wise statistics for each of the three contrasts of
scientific interest just described.

In addition to these contrasts, DL also looked at sentence effects separately for different
and same speaker, and asymmetry differences between hemispheres, but only for magni-
tudes. Although BRAINSTAT/FMRISTAT can easily do these extra analyses, we chose to
concentrate just on the two main effects of sentence and speaker and their interaction, both
for magnitudes and delays.
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2 Methods

The details of our approach are as follows. The fMRI data were corrected for motion and
different slice acquisition times using the FSL package (Smith et al., 2004). This data was
then proportionally scaled to a percentage of the whole volume mean. The data were not
smoothed spatially, unlike DL, who used 8mm smoothing before combining the data over
subjects. Separate but identical analyses were conducted for the event data and the block
data.

2.1 First level: frames

At the first level (frames or scans), the statistical analysis of the percentages was based
on a linear model with correlated errors. The design matrix of the linear model was set
up in exactly the same way as in DL. For the event experiment, we constructed 5 variables
corresponding to all sentences except the first, separately for the 4 conditions, and to the first
sentence pooled across all conditions. For the block experiment, we constructed 5 variables
corresponding to the 2nd to 6th sentences in each block, separately for the 4 conditions,
and to the first sentence pooled across all conditions. This fifth variable, which removes any
effect due to the onset of the stimulus after a period of rest, was not used in any of the
contrasts.

Each of the variables consisted of 1’s and 0’s for the presence/abscence of each of the
conditions. The five variables were then convolved with a hemodynamic response function
(HRF) modelled as a difference of two gamma functions. To estimate delays, the variables
for each condition were shifted over a range of delays, and a singular value decomposition
was used to extract two basis functions per condition that optimally captured each shifted
variable (Liao et al. 2002). For each condition, these two basis functions, which closely
match the unshifted variables and their derivatives, were added as covariates to the design
matrix of the linear model, together with the fifth (“onset”) variable, giving eight covariates
for the conditions and one nuisance covariate (see Figure 1).

Information from their coefficients was used to estimate both the magnitude of the re-
sponse and the shift in its delay for each of the four conditions. An inverse tangent transfor-
mation was used, very similar to that of DL for experiment 1. The advantage of our delay
estimation method is that it can be applied to any experimental design, not necessarily pe-
riodic (as in DL), and either events or blocks. Another advantage is a theoretical Sd for the
delay as well as the magnitude, so that both magnitudes and delays can be further analysed
by the same statistical methods.

Temporal drift was removed by adding a cubic spline in the frame times to the design
matrix (one covariate per 2 minutes of scan time), and spatial drift was removed by adding
a covariate in the whole brain average to give 15 covariates in the design matrix (see Figure
1).

The correlation structure was modelled as an autoregressive process of degree 1. At each
voxel, the autocorrelation parameter was estimated from the least squares residuals using the
Yule-Walker equations, after a bias correction for correlations induced by the linear model
(Worsley et al., 2002). The autocorrelation parameter was first regularized by 3D spatial
smoothing with a Gaussian filter to control the effective degrees of freedom (Df) to at least
100 (Worsley, 2005a). Smoothing was unnecessary for the event design since the effective
Df was already greater than 100, but for the block design 2.2 to 2.6mm smoothing was used
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Figure 1: Covariates of the linear model for the first run on the first subject (block experi-
ment). S=same, D=different, snt=sentence, spk=speaker, B=basis function. The first nine
covariates model the conditions, and the remaining six model the drift. For each condition,
the coefficient of the first basis function is the magnitude, and the coefficient of the second
basis function is used to estimate the delay shift.

Same sentence, Same sentence, Different sentence, Different sentence,
Contrast same speaker different speaker same speaker different speaker
Sentence -0.5 -0.5 0.5 0.5
Speaker -0.5 0.5 -0.5 0.5

Interaction 1 -1 -1 1

Table 1: Contrasts used for event and block designs, and for magnitudes and delays.

to achieve ∼100 effective Df for all contrasts. The smoothed autocorrelations were used to
‘whiten’ the data and the design matrix. The linear model was then re-estimated using least
squares on the whitened data to produce estimates of effects (contrasts) and their standard
deviations (Sd’s). There were three contrasts of interest: different – same sentence, different
– same speaker, and the interaction of the two (Table 1).

2.2 Second level: runs

The three effects in Table 1, both for magnitudes and delays, together with their estimated
(fixed effects) standard errors, were transformed linearly to Talairach space using a transfor-
mation estimated by the FSL package (Smith et al., 2004). Subjects 2 and 5 were dropped
due to problems with this registration (FSL needed some manual intervention which we were
not aware of), leaving 14 subjects for further analysis.

The contrasts from each of the 2 runs per subject were combined using a fixed effects
analysis for the effects (as data) with fixed effects Sd’s taken from the previous analysis,
leaving 14 effects and their Sd’s for further analysis.
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2.3 Third level: subjects

The 14 effects, one per subject, were combined using a mixed effects linear model for the
effects (as data), again with Sd’s taken from the previous analysis. This was fitted using
ReML implemented by the EM algorithm with a re-parameterization to avoid positivity
constraints that would bias the Sd. We then estimated the ratio of the random effects
variance to the fixed effects variance, then regularized this ratio by spatial smoothing with
a Gaussian filter. The variance of the effect was estimated by the smoothed ratio multiplied
by the fixed effects variance (Worsley et al., 2002). The amount of smoothing was chosen to
achieve 40 effective Df, and varied from 6.7 to 10.7mm.

2.4 Inference

The resulting T statistic images were thresholded at P = 0.05 using the minimum given by
a Bonferroni correction, random field theory, and discrete local maxima (Worsley, 2005b),
taking into account the non-isotropic spatial correlation of the errors (Hayasaka et al., 2004).
Both high and low values of the T statistic images were examined. For the magnitudes, the
search region was taken as the whole brain (minimum functional image >∼6000 BOLD units,
volume ∼1400cm3); for the latencies, the search region was the voxels where the T statistic
image for the overall magnitude exceeded 5 (12cm3 for the event design, 20cm3 for the block
design).

These higher level analyses were repeated 12 times, once for each combination of stimulus
type (event or block), contrast (sentence, speaker or interaction, see Table 1), and parame-
ter (magnitude or delay). No special code was added to BRAINSTAT to perform these
calculations, apart from a script to repeat the analyses as above.

The third level analysis was validated by changing the sign of the effects on 7 subjects
chosen at random from the 14. Such an analysis should give null results. In fact no false
positive local maxima or clusters were detected at the P = 0.05 level on 16 such analyses of
both magnitudes and delays. This gives us some assurance that the entire analysis is valid.
If on the other hand the amount of smoothing was increased to achieve 100 effective Df then
the excessive smoothing biased the Sd and resulted in too many false positives.

3 Results

3.1 Efficiencies

Before we start the analysis, it is worth looking at the efficiencies of the two designs (event,
block) at estimating the 3 contrasts in a single run. Efficiencies are just the inverse of the
Sd of a contrast; the lower the Sd, the more efficient is the design. Of course this depends
on the underlying Sd of the errors, so we measure Sd relative to the Sd of the errors (but
for delays it depends not on the Sd of the errors, but on the T statistic for the magnitude,
which we fix at 5). This allows us to compare designs, and to get some idea of the sizes of
effects we can hope to detect under ideal conditions.

The validity of the Sd’s rests on the assumptions of the linear model. In particular, they
depend on the constancy of the BOLD response throughout a block. Judging by the time-
courses in DL, this seems to be a reasonable approximation, though there is some evidence
of a steady decline in response after the 2nd event in a block.
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Figure 2: Sd of designs (lower is better) for a single run, assuming additivity of responses.
Interactions are harder to detect than main effects. For delays, the event design is more
efficient (lower sd) than the block design; the event design estimates sentence and speaker
delays to within 0.12 seconds.

These Sd’s depend only on the design matrix, the contrasts, and the temporal correlation
structure (AR(1) lag 1 correlation taken as 0.6) so they can be calculated before the data is
collected. This is useful at the planning stage to help choose the paradigm (event or block),
and parameters of the paradigm (inter-stimulus interval, block length) that give smallest Sd,
thus making best use of the time in the scanner.

Unfortunately it is only possible to do this at the first level in the hierarchy, that is within
subjects, since we usually have no idea in advance of the variability of an effect from one
subject to another, that is, the random subject effects. In the absence of random subject
effects, Sd’s will decrease as the square root of the number of subjects, but if random effects
are present, they will add an unknown (and sometimes large) extra component of variability
to the Sd’s which we can usually never estimate in advance of doing the experiment.

The efficiencies for a single run are shown in Figure 2 as Sd’s, relative to error (for
magnitudes), or in seconds (for delays, assuming a T statistic for magnitude of 5). Assuming
additivity of the responses, both designs are roughly equally efficient for all contrasts in the
magnitudes. For the delays the event design is much better for all contrasts. Of course this
is for a single run, and results may differ after combining effects in higher level analyses,
depending on the strengths of the random effects.

3.2 Mixed effects analysis over subjects at the third level

To illustrate the analyses, we show in Figures 4 and 5 a display of the single subject results
after level 2, and their combination in level 3. These figures are included only to show how
a mixed effects analysis works, and how it combines variability both within and between
subjects.

We chose just one contrast, different – same sentence, which shows the most interesting
results. We show the analyses of the event and block data for both magnitude and delay.
We chose part of just one slice (−74 ≤ x ≤ 70, −46 ≤ y ≤ 4, z = −2mm), rotated 90◦ so
that left is uppermost. This slice is located on Figures 6 and 7. The contour of the search
region is added to give some idea of anatomy.

The first row of each figure shows the estimated effect (Ef) for each of the 14 subjects
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from the first two levels of the analysis (200 frames/run, 2 runs/subject). The last panel is
the estimator combined over subjects using the mixed effects analysis at the third level.

The second row shows the estimated Sd of the first row and their effective Df. The Df’s
are substantially lower than 200× 2 = 400 due to the randomness of the estimated temporal
autocorrelations (Worsley et al., 2005). They are not quite identical since they depend on
the sequencing of the stimuli which varied from run to run.

The mixed effects Sd on the right is obtained by smoothing the ratio of random/fixed
effects Sd by an amount chosen to give 40 effective Df (Worsley et al., 2002). The amount of
smoothing varies because it depends on the inherent smoothness of the effects (as data). The
smoothed random/fixed effects Sd image is shown on the far right. A value of 1 indicates
that the mixed effects Sd is the same as the fixed effects Sd, so that the random effect is zero
and can be ignored. A value greater than 1 indicates the presence of a random effect. Only
magnitudes for the block design show some evidence of random effects (∼1.5), either due to
different sentence effects for different subjects, or due to different locations of these effects.

The third row shows the T statistics, equal to the first row divided by the second.
The P = 0.05 threshold for the final T image on the right is based on the minimum of
Bonferroni, random field theory, and discrete local maxima (DLM) (Worsley at al., 2005b).
This requires calculation of the voxel-wise effective FWHM, shown in the panel at the far
right, which averages ∼8.6mm. The threshold is lower for delays because the search region
is much smaller (since it only makes sense to look at delays where there is some signal).
The positive T statistics, particularly on the left, indicate increased magnitude and delay
for different sentences over same sentences.

3.3 Comparison of block and event designs

Overall the block and event designs seem to be equally good for estimating the magnitude,
but the block design has slightly lower Sd’s, giving slightly larger T statistics. This is not
surprising, since they have roughly similar efficiencies in Figure 2. Note that the Sd for the
events design on subject 7 is high (and Df low) because only one run was available.

What is surprising is the delays. Here the block design gives T statistics as high as
the event design, despite the fact that the Sd’s are much lower (as anticipated by Figure
2). The explanation may lie with the assumed model. Delays are estimated from both the
onset and termination of the BOLD response, which is assumed to be constant throughout
a block. If the response diminishes over time or terminates early, then this will result in
decreased latency (see Figure 3). It is reasonable to suppose that this might happen more
for the same sentence condition (due to boredom) than with the different sentence condition
(novelty will sustain interest). The time courses given by DL appear to show just this linear
decline after the 2nd event in a block, more pronounced for the same sentence condition than
for the different sentence condition. The result might be an apparent increase in latency for
different sentences in the blocks design due perhaps to sustained response rather than delayed
response (see Figure 3).

Can the event and block results be combined? The answer appears to be yes, at least
for the magnitudes. The reason is that the magnitude effects are roughly equal between
events and blocks (see also Table 2). In fact most cannot be rejected as being different
by a two-sample T-test. Of course the delays cannot be combined because of the apparent
delay shifts in blocks due to a decline in BOLD response within a block, as just discussed.
Accordingly the events and blocks were combined at the second level of the hierarchy (over
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Figure 3: Illustration of how a decline in BOLD response during a block can alter both the
apparent magnitude and delay of the block.

runs within subjects), then combined in the usual way at the third level (over subjects).

3.4 Inference

The complete results are shown in Table 2 for comparison with other analyses. Local maxi-
mum T statistics inside a significant cluster are indicated in bold face. Clusters were thresh-
olded at P = 0.001 (uncorrected) for magnitudes, and P = 0.01 (uncorrected) for delays.
P-values for clusters are based on their spatial extent measured in resels, which allows for
spatially varying FWHM (Hayasaka et al., 2004). Only the events data was used for detecting
differences in delays.

There appear to be significant magnitude effects for sentence and speaker, but there is no
evidence of an interaction. The sentence contrast shows both positive and negative effects.
The combination of events and blocks detects more activation than either events or blocks
alone, as expected, since the combined Sd’s are lower. There is some evidence for a sentence
effect on delay for the events data but this is not supported by a significant cluster.

4 Conclusions

The most prominent effects are increases of magnitude for different – same sentence. We
estimate increases as high as 1.08±0.17% if events and blocks are combined. These increases
are spread all along the left mid-temporal gyrus, as reported in DL, and to a lesser extent
in the right mid-temporal gyrus (see Figure 6). There is some evidence for a decrease in
magnitude in the left and right inferior parietal lobule (Brodmann area 40), though it is
about half that of the increases (−0.52± 0.08).

There is also evidence for a speaker effect on magnitudes in roughly the same part of
the left mid-temporal gyrus as the sentence effect, Brodmann area 21. However the size of
the speaker effect is about half that of the sentence effect, peaking at 0.47 ± 0.08 for the
combined data.

Turning to delays, we note again that the delay local maximum is isolated and not
supported by a significant cluster. Nevertheless there is some evidence for increased delay
of 153ms for different sentences compared to same sentences in the right superior temporal
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gyrus, Brodmann area 22. What is interesting here is that the delay can be estimated so
accurately, to within 35ms.

Our conclusions can be summarized as follows:

• an increase of sentence magnitude in the left and right mid-temporal gyri, and in the
left inferior temporal gyrus;

• a smaller decrease of sentence magnitude in the left and right inferior parietal lobule,
Brodmann area 40;

• a smaller increase in speaker magnitude in the left mid-temporal gyrus, Brodmann
area 21;

• an increase in sentence delay in the right superior temporal gyrus, Brodmann area 22.

5 Discussion: Comparison with Dehaene-Lambertz et

al. (2006)

We chose covariates identical to those of DL: four covariates for each condition after the first
in a block or run, and one for the first event in any block or run. We analysed exactly the
same contrasts, though DL analysed several others that we did not attempt: sentence effects
under same and different speaker conditions, and tests of asymmetry.

DL also looked at delays, but for a different data set (experiment 1) from the FIAC data
analysed here. They reported increased delay in temporal poles and inferior frontal regions,
compared to Heschl’s gyrus. DL was more interested in differential regional delays of the
same stimulus. These differences could be partly attributed to differences in hemodynamics,
rather than neuronal activity, although DL argue that hemodynamics cannot explain all
the observed delay differences. On the other hand, we were looking for differential stimulus
delays in the same region, which is unaffected by regional differences in hemodynamics, and
so presumably only attributable to neuronal activity.

We compared our results in Table 2 with those reported by DL in their Table 2. Overall
we found more significant activations than DL, indicating that our analysis is more sensitive,
while maintaining the same false positive rate. This is based on the fact that none of the
local maxima reported by DL reached statistical significance, whereas we found four in the
same blocks data set. DL reported only one significant cluster of 1.6cm3, whereas we found
three ranging in size from 2.7 to 7.9cm3 at the same cluster threshold. Whereas DL only
found evidence for an increase of sentence magnitude, we found evidence for a decrease as
well. Yet this is despite that fact that we analysed 14 subjects, whereas DL analysed 16.

It is difficult to pin-point which aspects of our analysis make it more sensitive. Note first
that there were several non-statistical factors that could come into play:

• different slice timing and motion correction;

• different registration;

• different smoothing (DL used 8mm smoothing, but we did not smooth the actual data).

Their are several minor differences on the statistical side, such as the shape of the HRF, but
the main ones are:
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• different drift covariates,

• different strategies for dealing with temporal correlation (DL used a spatially constant
temporal correlation structure, whereas ours varied spatially);

• mixed effects rather than pure random effects at the subject level;

• spatial smoothing of the random/fixed effects Sd ratio to boost the effective Df from
13 to 40;

• the new DLM P-values (Worsley, 2005b) that reduced the P-values of local maxima by
∼43% for P-values near 0.05.

These last two factors may be one of the main contributors. We ran the same analysis as
in Table 2 but with no smoothing, so that the effective Df was 13 (as in DL) rather than 40.
Significant clusters were reduced from 20 to 14, and significant local maxima were reduced
from 16 to 4, with one in the blocks data. This is still more than in DL, so smoothing of
the random/fixed effects Sd ratio cannot be the only factor that contributes to the increased
sensitivity of our analysis. We tried switching off the DLM P-values, using just the best of
Bonferroni and random field theory (as in DL). This increased P-values by ∼10% but did not
reduce the number of local maxima (switching off DLM without switching off the smoothing
reduced the local maxima from 16 to 11, with 3 in the blocks data). This is still more than
DL, so smoothing of the random/fixed effects Sd ratio and the new DLM P-values cannot
be the only factors that contribute to the increased sensitivity of our analysis.

Finally, it is reassuring that the centres of activation that are reported by DL do coincide
with ours.
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Magnitude
Contrast Expt T Ef ± Sd(%) P x y z Area
Sentence Event 6.57 0.86 ± 0.13 0.003 -54 -12 -20 LITG

6.08 0.88 ± 0.14 0.015 -58 -44 -2 LMTG
5.43 0.64 ± 0.12 0.109 -18 -64 18 LPRE
4.98 0.62 ± 0.12 0.426 54 -16 -14 RMTG
-4.73 -0.48 ± 0.10 0.860 -58 -48 34 LSmG

Block 7.61 1.00 ± 0.13 <0.001 -60 -10 -10 LMTG
5.94 0.62 ± 0.10 0.021 56 -14 -6 RMTG
5.69 1.17 ± 0.21 0.048 -56 -42 -2 LMTG
-6.48 -0.58 ± 0.09 0.004 -52 -52 46 LIPl, B40

Comb. 7.85 0.96 ± 0.12 <0.001 -60 -10 -10 LMTG
6.30 1.08 ± 0.17 0.007 -56 -42 -2 LMTG
5.93 0.79 ± 0.13 0.022 -52 -10 -22 LITG
5.74 0.69 ± 0.12 0.039 56 -14 -12 RMTG
5.69 0.51 ± 0.09 0.047 60 -10 -6 RMTG
-6.65 -0.52 ± 0.08 0.002 -52 -56 44 LIPl
-6.37 -0.38 ± 0.06 0.006 -50 -56 34 LIPl
-5.61 -0.40 ± 0.07 0.060 50 -48 40 RIPl

Speaker Block 5.46 0.58 ± 0.11 0.098 -64 -40 -2 LMTG, B21
Comb. 5.97 0.47 ± 0.08 0.020 -64 -40 -2 LMTG, B21

5.77 0.38 ± 0.07 0.038 -58 -34 -2 LMTG

Delay
Contrast Expt T Ef ± Sd(s) P x y z Area
Sentence Event 4.33 0.153 ± 0.035 0.048 58 -18 2 RSTG, B22

Table 2: Local maximum T statistics (T = Ef/Sd, 40 Df), P-values (P ≤ 0.05, corrected),
effect (Ef) ± standard deviation (Sd), and x, y, z Talairach coordinates (mm). Only local
maxima separated by more than one FWHM (8.6mm) are shown. Bold face indicates a local
maximum inside a significant cluster (P ≤ 0.05, corrected). Comb is the combination of the
event and block data. Only the events data was used for delay. L=Left, R=Right, I=Inferior,
S=Superior, M=Middle, T=Temporal, G=Gyrus, Sm=Supramarginal, Pl=Parietal lobule,
B=Brodmann. The threshold for delay local maxima is lower than that for magnitude
because the delay search region is much smaller (20-37cm3) than the magnitude search
region (1424cm3). There were no significant activations for the interaction contrast, nor for
the speaker contrast in the delays.
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(a) Event design
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(b) Block design
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Figure 4: Single subject results after level 2, and their combination in level 3 for magnitudes
of different – same sentence for (a) event design, and (b) block design, rotated 90◦ so that
left is uppermost (located on Figures 6 and 7).
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(a) Event design
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(b) Block design

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

−2

0

2

Left                R
ight                Left                R

ight                Left                R
ight                

P
ost.

A
nt.

0

202

1

202

3

204

4

205

6

204

7

203

8

201

9

202

10

200

11

206

12

205

13

202

14

204

15

200 40

Subj
 Mixed 
effects

Ef

Sd

T

df

Delay shift (secs), diff − same sentence, block experiment

Slice range is −74<x<70mm, −46<y<4mm,  z=−2mm; Contour is: magnitude, stimulus average, T statistic > 5

Random    
/fixed    
effects sd
smoothed  
8.8952mm

FWHM (mm)

P=0.05 threshold for local maxima is +/− 4.3

0.5

1

1.5

0

5

10

15

y (mm)

   
   

x 
(m

m
)

−40   0

−50

0

50

0

5

10

15

Figure 5: Single subject results after level 2, and their combination in level 3, for delays of
different – same sentence for (a) event design, and (b) block design, rotated 90◦ so that left
is uppermost (located on Figures 6 and 7).
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Figure 6: Sentence and speaker magnitude T statistics (40 Df) for event superimposed
on block superimposed on combined data sets, thresholded at P < 0.05 (corrected) and
superimposed on the average anatomy of the 14 subjects. The portion of the slice used in
Figures 4 and 5 is outlined in yellow dashes.
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Figure 7: Sentence delay T statistics (40 Df) for the event data set, thresholded at P < 0.05
(corrected), superimposed on the search region where all conditions are activated, superim-
posed on the average anatomy of the 14 subjects. The portion of the slice used in Figures 4
and 5 is 4mm below the dashed yellow outline.
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