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Linear Fisher markets
B: buyers, G: goods.
Buyer i has budget mi, 1 divisible unit of each good j.
Utility Uij for buyer i on 1 unit of good j.
Market clearing: prices pj and allocations xij if:

everything is sold
all money is spent
only best bang-per-buck purchases: max. Uij/pj.

Uij=5 Uij=4
pj=$3 pj=$2

5/3 < 4/2
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Formulated by Fisher in 1891.

Special case of the Arrow-Debreu model.

An equilibrium exists under very general conditions 
(Arrow, Debreu, 1954).

Nonconstructive proof based on Kakutani’s fixed 
point theorem.

The linear Fisher model can be captured by the convex 
program by Eisenberg and Gale ’59.

Linear Fisher markets
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Eisenberg-Gale convex program, 1959

Optimal solution corresponds to equilibrium prices.

There exists a rational optimal solution.

max
�

i∈B

mi logUi

Ui ≤
�

j∈G

Uijxij ∀i ∈ B

�

i∈B

xij ≤ 1 ∀j ∈ G

xij ≥ 0 ∀i ∈ B, j ∈ G
prices: optimal Lagrange 

multipliers
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Combinatorial algorithms for linear Fisher 
markets

Devanur, Papadimitriou, Saberi, Vazirani ’02: 
polynomial time combinatorial algorithm.

Several extensions and generalizations studied during 
the last decade.

Fisher’s market with separable piecewise linear concave 
utilities: PPAD-complete (Vazirani&Yannakakis ’11).
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Market equilibria with rational convex 
programs and combinatorial algorithms

Linear Fisher DPSV ’02/’08
Orlin ’10: strongly poly.

Perfect price 
discrimination Goel&Vazirani ’10

Spending constraint 
utilities

Devanur&Vazirani
 ’04/ ’10

Arrow-Debreu Nash 
bargaining Vazirani ’11

Nonsymmetric ADNB
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Convex extensions of  classical flow models:

Concave generalized flows (CGF):

Truemper ’78, Shigeno ’06

We give the first combinatorial polytime algorithm.

Minimum cost flows with separable convex objectives 
(MCCF):

Combinatorial polytime algorithms: Minoux ’86, 
Hochbaum&Shantikumar ’92, Karzanov&McCormick ’97

We give a strongly poly algorithm for certain classes of 
objectives.
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Market equilibria with rational convex 
programs and combinatorial algorithms

Linear Fisher DPSV ’02/’08
Orlin ’10: strongly poly.

Perfect price 
discrimination Goel&Vazirani ’10

Spending constraint 
utilities

Devanur&Vazirani
 ’04/ ’10

Arrow-Debreu Nash 
bargaining Vazirani ’11

Nonsymmetric ADNB ?

CGF

CGF

CGF

CGF

CGF: concave generalized flows V. ‘12b
MCCF: min. cost separable convex flows V. ‘12a

MCCF:
strongly poly

MCCF:
strongly poly

(           )
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Generalized Flows

Network flow model, with gain factors on the arcs.

Maximize the flow amount reaching the sink t.

Introduced by Kantorovich ’39, Dantzig ’62.

Several applications: financial analysis, transportation, 
management, etc.

40 30γ=	 3/4
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Generalized Flows

Currency conversion with bounds: obtain the most ₤ 
from 1000$.

1000
γ=	 0.746

$ ₤€

¥
γ=	 77.95

γ=	 0.00957

γ=	 0.00808

γ=	 0.843

γ=	 0.641

C=500

C=500

C=500

C=1000

C=100000

C=100000 ???
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Generalized Flows

Linear program. 

Early combinatorial algorithms: Onaga ’66,Truemper ’77.

First polynomial time combinatorial algorithm: Goldberg, 
Plotkin, Tardos ’91.

Followed by Cohen&Megiddo ’94, Goldfarb&Jin ’96, 
Goldfarb, Jin&Orlin ’97, Tardos&Wayne ’98, Wayne ’02, 
Radzik ’04, Restrepo&Williamson ’09, etc.

Friday, April 13, 2012



Concave Generalized Flows

Instead of  gain factors, concave increasing gain 
functions.

α Γ(α)Γ(.)
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Convex Program

max
�

j:jt∈E

Γjt(fjt)−
�

j:tj∈E

ftj

�

j:ji∈E

Γji(fji)−
�

j:ij∈E

fij ≥ bi ∀i ∈ V − t

�ij ≤ fij ≤ uij ∀ij ∈ E
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Concave Generalized Flows

First defined by Truemper ’78.

Solvable via general purpose convex solver.

Shigeno ’06 gave a combinatorial algorithm that is 
polynomial for some special classes of gain functions, 
including piecewise linear.

We give a polynomial combinatorial algorithm for 
finding an ε-approximate solution in running time

For problems with a rational optimal solution, we can 
find it in polynomial time with a final rounding.

O(m(m+ log n) log(MUm/ε))
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Eisenberg-Gale convex program, 1959

max
�

i∈B

mi logUi

Ui ≤
�

j∈G

Uijxij ∀i ∈ B

�

i∈B

xij ≤ 1 ∀j ∈ G

xij ≥ 0 ∀i ∈ B, j ∈ G
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Reduction for linear Fisher market

-1

-1

-1

0

0

0
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Extensions of  linear Fisher markets

Goel, Vazirani ’10: perfect price discrimination

(Piecewise linear) concave increasing utilities.

Middleman between buyers and firms. He charges 
different costumers at different rates they are 
capable of paying.

Replace                       by a piecewise linear concave 
function.

Using our model, it can be replaced by arbitrary 
concave!
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Nash bargaining, 1950

n players, set of possible outcomes 

In outcome                                   , player i gets utility si.

Disagreement point (status quo): 

The players have to agree together in an outcome. If 
they cannot agree, the status quo remains.

S ⊆ Rn
+

s = (s1, . . . , sn) ∈ S

σ ∈ S
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Nash bargaining, 1950

feasible region S

disagreement point σ

outcome

Which is the best outcome?

Four criteria:

Pareto optimality
Invariance under affine 
transformations
Symmetry
Indifference of  
independent alternatives
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Nash bargaining, 1950

Theorem (Nash, 1950)

For a convex feasible region, 
there exists a unique optimal 
solution, the one maximizing

�
i∈[n] log(si − σi)

feasible region S

disagreement point σ

outcome
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Arrow-Debreu Nash bargaining: Vazirani ’12

Nash bargaining between agents, each of them having an 
initial endowment of goods, giving utility ci to player i. 

Possible outcomes: distributions of goods.
max

�

i∈B

log(Ui − ci)

Ui ≤
�

j∈G

Uijxij ∀i ∈ B

�

i∈B

xij ≤ 1 ∀j ∈ G

xij ≥ 0 ∀i ∈ B, j ∈ G
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Arrow-Debreu Nash bargaining: Vazirani ’12

Vazirani ’12: sophisticated two phase algorithm, first 
deciding feasibility, then optimality.

max
�

i∈B

log(Ui − ci)

Ui ≤
�

j∈G

Uijxij ∀i ∈ B

�

i∈B

xij ≤ 1 ∀j ∈ G

xij ≥ 0 ∀i ∈ B, j ∈ G
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Reduction to Concave Generalized Flows

-1

-1

-1

0

0

0

c1

c2

c3
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Arrow-Debreu Nash bargaining: Vazirani, ’12

Nonsymmetric Nash bargaining: 
Kalai ’77

Different weights mi for player i.

Finding a combinatorial algorithm 
was left open. Our model also 
captures this, solving in

Vazirani ’12 for symmetric:

max
�

i∈B

mi log(Ui − ci)

Ui ≤
�

j∈G

Uijxij ∀i ∈ B

�

i∈B

xij ≤ 1 ∀j ∈ G

xij ≥ 0 ∀i ∈ B, j ∈ G

O(n8 logUmax + n4 logCmax)

O(m2(logCmax + n log(nUmaxMmax)))
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Further applications of  concave generalized 
flows

Jain, Vazirani ’10: single source multiple sink flow 
markets.

Jain ’11: online matching with concave utilities (offline 
optimum)
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Linear and convex flow problems I.

Minimum cost 
circulations

Edmonds&Karp ’72

Minimum cost 
circulations w. 

separable convex cost
Minoux ’86

Generalized flows
Goldberg, Plotkin, 

Tardos’91

Concave generalized 
flows
V. ‘12b

flows

Linear

Convex

generalized flows
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Linear minimum cost flow problem

G=(V,E) directed graph 

On each arc ij, lower and upper capacities lij, uij.

On each node i, node demand bi: incoming flow minus 
outgoing flow should be bi.

Minimum cost flow problem: for a cost function c on 
the arcs, find a minimum cost feasible flow

First weakly polynomial algorithm: Edmonds, Karp ’72

Strongly polynomial algorithms: Tardos ’85, Goldberg, 
Tarjan ’88, Orlin ’93, ...
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Strongly polynomial algorithms

Problem given by N integers in the input, each at most C.

(Weakly) polynomial algorithm: the running time is      
poly(N, log C).

Strongly polynomial algorithm: the algorithm consists of 
poly(N) elementary arithmetic operations, independent 
from C.

The numbers in the operations are at most poly(C).

Alternatively, we may allow computation with real 
numbers, assuming we can perform basic arithmetic 
operations in O(1) time.
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Minimum cost flows with separable convex 
objectives

G=(V,E) directed graph 

On each arc ij, lower and upper capacities lij, uij.

On each node i, node demand bi: incoming flow minus 
outgoing flow should be bi.

We want to minimize ∑Cij(fij) over feasible flows, where 
on each arc ij, Cij is a convex function.

Convex program with several applications: traffic 
management, matrix balancing, stick percolation...
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Minimum cost flows with separable convex 
objectives

Selfish routing in urban traffic networks: transition 
time on a road is an increasing function of the traffic 
amount.

1 1

x 1

x1

0
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Minimum cost flows with separable convex 
objectives

Selfish routing in urban traffic networks: transition 
time on a road is an increasing function of the traffic 
amount.

1 1

x 1

x1

0

Nash equilibrium: no car may find a shorter route if the others 
don’t change.
Computing a Nash-equilibrium is a separable convex cost flow 
problem.
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Linear Fisher market: convex formulations

Eisenberg&Gale, ’59 Shmyrev; Devanur ’09

xij : amount of good j purchased by i

max
�

i∈B

mi logUi

Ui ≤
�

j∈G

Uijxij ∀i ∈ B

�

i∈B

xij ≤ 1 ∀j ∈ G

x ≥ 0

yij : amount of money payed by i for j

min
�

i∈G

pj(log pj − 1)−
�

ij∈E

yij logUij

�

j∈G

yij = mi ∀i ∈ B

�

i∈B

yij = pj ∀j ∈ G

y ≥ 0

concave generalized 
flow

flow with separable 
convex objective
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Reduction for linear Fisher market

-1

-1

-1

0

0

0
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Reduction for linear Fisher market

0

0

0

mi
−yij logUij

−
�

mi

pj(log pj − 1)

Friday, April 13, 2012



Extensions of  linear Fisher markets

Devanur&Vazirani ’04: spending constraint utilities

The utility of the buyers is a piecewise linear 
concave function of the amount of money spent on 
the good.

Vazirani ’10: combinatorial algorithm (extension of 
DPSV’02)

Devanur et al. ’11: discovered the convex programming 
relaxation.

V. ‘12a: strongly polynomial algorithm
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When is there a strongly polynomial 
algorithm for MCCF?

G = (V,E) directed graph

Cij : [�ij , uij ] → R convex, (differentiable)

min
�

ij∈E

Cij(fij)

�

j:ji∈E

fji −
�

j:ij∈E

fij = bi ∀i ∈ V

�ij ≤ fij ≤ uij ∀ij ∈ E

G = (V,E) directed graph

Cij : [�ij , uij ] → R convex, (differentiable)

min
�

ij∈E

Cij(fij)

�

j:ji∈E

fji −
�

j:ij∈E

fij = bi ∀i ∈ V

�ij ≤ fij ≤ uij ∀ij ∈ E
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Previously known cases

Linear costs (Cij(x)=cijx)

Quadratic costs (Cij(x)=cijx2+dijx, cij≥0)

Series parallel graphs: Tamir ’93.

Transportation problem with fixed number of 
sources: Cosares&Hochbaum ’94.

Other nonlinear

Fisher’s market with linear utilities: Orlin ’10.
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Negative results for strongly polynomiality

Optimal solution can be irrational (even non-algebraic!)

Q: is it possible to find an ε-approximate solution in 
time polynomial in the input size and log 1/ε?

Even this is impossible if the Cij’s are polynomials of 
degree ≥3 (Hochbaum ’94)

Reason: impossible to ε-approximate roots of 
polynomials in strongly polynomial time (Renegar 
’87)

This does not apply for quadratic objectives!
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Our result 
(STOC 2012)

Strongly polynomial algorithm under certain oracle 
assumptions on the objective.

Key assumption: we can compute an optimal solution, 
provided its support.

Special cases include:

Convex quadratic objectives.

Fisher’s market with linear and with spending 
constraint utilities.
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Linear and convex flow problems I.

Minimum cost 
circulations

Edmonds&Karp ’72

Minimum cost 
circulations w. 

separable convex cost
Minoux ’86

Generalized flows
Goldberg, Plotkin, 

Tardos’91

Concave generalized 
flows
V. ‘12b

flows

Linear

Convex

generalized flows
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Linear and convex flow problems I.

Minimum cost 
circulations

Edmonds&Karp ’72

Minimum cost 
circulations w. 

separable convex cost
Minoux ’86

Orlin’93

V. ‘12a

weakly polynomial

Linear

Convex

strongly polynomial
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Main algorithmic ideas
Edmonds, Karp ’72: capacity scaling algorithm:

Successive shortest paths method, first transporting 
the huge parts of the excesses.

Minoux ’86: naturally extends to convex costs, with 
linearizing the cost in Δ chunks in the Δ-phase.

Cij(fij +∆)− Cij(fij)

∆
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Main algorithmic ideas
V ‘12a: apply Minoux’s algorithm, and maintain a subset 
F of arcs guaranteed to be in the support of (the) 
optimal solution. F shall be extended in every O(log n) 
iterations.
In certain phases, we make a guess: maybe  F is already 
optimal? We compute an optimal solution based on the 
assumption that it’s support is F.

if yes: great!
if not: either it still gives a better solution than the 
current one: Δ decreases radically;
or it gives a guarantee that F must soon be extended.
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Market equilibria with rational convex 
programs and combinatorial algorithms

Linear Fisher DPSV ’02/’08
Orlin ’10: strongly poly.

Perfect price 
discrimination Goel&Vazirani ’10

Spending constraint 
utilities

Devanur&Vazirani
 ’04/ ’10

Arrow-Debreu Nash 
bargaining Vazirani ’11

Nonsymmetric ADNB ?

CGF

CGF

CGF

CGF

CGF: concave generalized flows V. ‘12b
MCCF: min. cost separable convex flows V. ‘12a

MCCF:
strongly poly

MCCF:
strongly poly
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Further questions

Concave generalized flows: the algorithm is not 
strongly polynomial

No strongly polynomial algorithm exists for linear 
generalized flows!

Solving that could help develop strongly poly. alg. for 
certain concave gain functions.

Linear Arrow-Debreu markets: no combinatorial 
algorithm known. Convex programming formulation: 
Nenakov&Primak ’83, Jain ’06.
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Thank you for your 
attention!
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