Applications of nonlinear network flow models to market equilibria

László Végh
School of Computer Science, Georgia Tech

Bellairs Workshop on Algorithmic Game Theory April 82012

Linear Fisher markets

* B: buyers, G : goods.
* Buyer i has budget $m_{i, 1}$ divisible unit of each good j.
* Utility $U_{i j}$ for buyer i on 1 unit of good j.
* Market clearing: prices p_{j} and allocations $x_{i j}$ if:
* everything is sold
* all money is spent
* only best bang-per-buck purchases: max. $U_{i j} / p_{j}$.

$$
\begin{gathered}
U_{i j}=5 \\
p_{j}=\$ 3
\end{gathered} \quad \begin{aligned}
& U_{i j}=4 \\
& p_{j}=\$ 2
\end{aligned}
$$

Linear Fisher markets

* Formulated by Fisher in 189 r.
* Special case of the Arrow-Debreu model.
* An equilibrium exists under very general conditions (Arrow, Debreu, 1954).
* Nonconstructive proof based on Kakutani's fixed point theorem.
* The linear Fisher model can be captured by the convex program by Eisenberg and Gale '59.

Eisenberg-Gale convex program, 1959

$$
\begin{aligned}
& \max \sum_{i \in B} m_{i} \log U_{i} \\
& U_{i} \leq \sum_{j \in G} U_{i j} x_{i j} \quad \forall i \in B \\
& \sum_{i \in B} x_{i j} \leq 1 \quad \forall j \in G
\end{aligned}
$$

$$
x_{i j} \geq 0 \quad \forall i \in B, j \in G^{\substack{\text { pricess: optimal lag } \\ \text { multipiers }}}
$$

* Optimal solution corresponds to equilibrium prices.
* There exists a rational optimal solution.

Combinatorial algorithms for linear Fisher markets

* Devanur, Papadimitriou, Saberi, Vazirani 'O2: polynomial time combinatorial algorithm.
* Several extensions and generalizations studied during the last decade.
* Fisher's market with separable piecewise linear concave utilities: PPAD-complete (Vazirani\&Yannakakis 'II).

Market equilibria with rational convex programs and combinatorial algorithms

Linear Fisher	DPSV'o2/'o8 Orlin 'ıo: strongly poly.	
Perfect price discrimination	Goel\&Vazirani 'ıo	

Convex extensions of classical flow models:

* Concave generalized flows (CGF):
* Truemper '78, Shigeno ’o6
* We give the first combinatorial polytime algorithm.
* Minimum cost flows with separable convex objectives (MCCF):
* Combinatorial polytime algorithms: Minoux '86, Hochbaum\&Shantikumar '92, Karzanov\&McCormick '97
* We give a strongly poly algorithm for certain classes of objectives.

Market equilibria with (rationa) convex programs and combinatorial algorithms

Linear Fisher	DPSV'o2/'o8 Orlin 'ıo: strongly poly.	CGF	MCCF: strongly poly
Perfect price discrimination	Goel\&Vazirani 'ıo	CGF	
Spending constraint utilities	Devanur\&Vazirani 'o4/'ıo		MCCF: strongly poly
Arrow-Debreu Nash bargaining	Vazirani 'ıı	CGF	
Nonsymmetric ADNB	?	CGF	

CGF: concave generalized flows V. ‘‘ıb
MCCF: min. cost separable convex flows V. ‘ía

Generalized Flows

* Network flow model, with gain factors on the arcs.

$$
n_{0}^{40} \bigcirc \xrightarrow{\gamma=3 / 4} \bigcirc n^{30}
$$

* Maximize the flow amount reaching the sink t .
* Introduced by Kantorovich '39, Dantzig '62.
* Several applications: financial analysis, transportation, management, etc.

Generalized Flows

* Currency conversion with bounds: obtain the most $£$ from 1000\$.

Generalized Flows

* Linear program.
* Early combinatorial algorithms: Onaga ' 66 , Truemper ' 77 .
* First polynomial time combinatorial algorithm: Goldberg, Plotkin, Tardos '91.
* Followed by Cohen\&Megiddo '94, Goldfarb\&Jin '96, Goldfarb, Jin\&Orlin ' 97 , Tardos\&Wayne ' 98 , Wayne '02, Radzik '04, Restrepo\&Williamson 'o9, etc.

Concave Generalized Flows

* Instead of gain factors, concave increasing gain functions.

Convex Program

$$
\begin{gathered}
\max \sum_{j: j t \in E} \Gamma_{j t}\left(f_{j t}\right)-\sum_{j: t j \in E} f_{t j} \\
\sum_{j: j i \in E} \Gamma_{j i}\left(f_{j i}\right)-\sum_{j: i j \in E} f_{i j} \geq b_{i} \quad \forall i \in V-t \\
\ell_{i j} \leq f_{i j} \leq u_{i j} \quad \forall i j \in E
\end{gathered}
$$

Concave Generalized Flows

* First defined by Truemper ' 78 .
* Solvable via general purpose convex solver.
* Shigeno 'o6 gave a combinatorial algorithm that is polynomial for some special classes of gain functions, including piecewise linear.
* We give a polynomial combinatorial algorithm for finding an ε-approximate solution in running time

$$
O(m(m+\log n) \log (M U m / \varepsilon))
$$

* For problems with a rational optimal solution, we can find it in polynomial time with a final rounding.

Eisenberg-Gale convex program, 1959

$$
\begin{aligned}
& \max \sum_{i \in B} m_{i} \log U_{i} \\
& U_{i} \leq \sum_{j \in G} U_{i j} x_{i j} \quad \forall i \in B \\
& \sum_{i \in B} x_{i j} \leq 1 \quad \forall j \in G \\
& x_{i j} \geq 0 \quad \forall i \in B, j \in G
\end{aligned}
$$

Reduction for linear Fisher market

Extensions of linear Fisher markets

* Goel, Vazirani 'ıo: perfect price discrimination
* (Piecewise linear) concave increasing utilities.
* Middleman between buyers and firms. He charges different costumers at different rates they are capable of paying.
* Replace $\Gamma_{j i}(\alpha)=U_{i j} \alpha$ by a piecewise linear concave function.
* Using our model, it can be replaced by arbitrary concave!

Nash bargaining, 1950

* n players, set of possible outcomes $S \subseteq \mathbb{R}_{+}^{n}$
* In outcome $s=\left(s_{1}, \ldots, s_{n}\right) \in S$, player i gets utility s_{i}.
* Disagreement point (status quo): $\quad \sigma \in S$
* The players have to agree together in an outcome. If they cannot agree, the status quo remains.

Nash bargaining, 1950

feasible region S

* Which is the best outcome?
* Four criteria:
* Pareto optimality
* Invariance under affine transformations
* Symmetry
* Indifference of independent alternatives

Nash bargaining, 1950

feasible region S

Theorem (Nash, I950)

For a convex feasible region, there exists a unique optimal solution, the one maximizing

$$
\sum_{i \in[n]} \log \left(s_{i}-\sigma_{i}\right)
$$

disagreement point σ

Arrow-Debreu Nash bargaining: Vazirani '12

* Nash bargaining between agents, each of them having an initial endowment of goods, giving utility c_{i} to player i.
* Possible outcomes: distributions of goods.

$$
\begin{aligned}
& \max \sum_{i \in B} \log \left(U_{i}-c_{i}\right) \\
& U_{i} \leq \sum_{j \in G} U_{i j} x_{i j} \quad \forall i \in B \\
& \sum_{i \in B} x_{i j} \leq 1 \quad \forall j \in G \\
& x_{i j} \geq 0 \quad \forall i \in B, j \in G
\end{aligned}
$$

Arrow-Debreu Nash bargaining: Vazirani '12

* Vazirani '12: sophisticated two phase algorithm, first deciding feasibility, then optimality.

$$
\begin{aligned}
& \max \sum_{i \in B} \log \left(U_{i}-c_{i}\right) \\
& U_{i} \leq \sum_{j \in G} U_{i j} x_{i j} \quad \forall i \in B \\
& \sum_{i \in B} x_{i j} \leq 1 \quad \forall j \in G \\
& x_{i j} \geq 0 \quad \forall i \in B, j \in G
\end{aligned}
$$

Reduction to Concave Generalized Flows

Arrow-Debreu Nash bargaining: Vazirani, '12

* Nonsymmetric Nash bargaining: Kalai '77

$$
\begin{aligned}
& \max \sum_{i \in B} m_{i} \log \left(U_{i}-c_{i}\right) \\
& U_{i} \leq \sum_{j \in G} U_{i j} x_{i j} \quad \forall i \in B \\
& \sum_{i \in B} x_{i j} \leq 1 \quad \forall j \in G \\
& x_{i j} \geq 0 \quad \forall i \in B, j \in G
\end{aligned}
$$

* Different weights m_{i} for player i.
* Finding a combinatorial algorithm was left open. Our model also captures this, solving in

$$
O\left(m^{2}\left(\log C_{\max }+n \log \left(n U_{\max } M_{\max }\right)\right)\right)
$$

* Vazirani ' 12 for symmetric:

$$
O\left(n^{8} \log U_{\max }+n^{4} \log C_{\max }\right)
$$

Further applications of concave generalized flows

* Jain, Vazirani 'ıo: single source multiple sink flow markets.
* Jain 'II: online matching with concave utilities (offline optimum)

Linear and convex flow problems I.

flows
Minimum cost
circulations
Edmonds\&Karp ' 72

generalized flows

Linear

Convex
Concave generalized flows
V. 'I2b

Linear minimum cost flow problem

* $G=(V, E)$ directed graph
* On each arc $i j$, lower and upper capacities $l_{i j}, u_{i j}$.
* On each node i, node demand b_{i} : incoming flow minus outgoing flow should be b_{i}.
* Minimum cost flow problem: for a cost function c on the arcs, find a minimum cost feasible flow
* First weakly polynomial algorithm: Edmonds, Karp '72
* Strongly polynomial algorithms: Tardos '85, Goldberg, Tarjan '88, Orlin '93, ...

Strongly polynomial algorithms

* Problem given by N integers in the input, each at most C.
* (Weakly) polynomial algorithm: the running time is poly (N, $\log C$).
* Strongly polynomial algorithm: the algorithm consists of poly (N) elementary arithmetic operations, independent from C.
* The numbers in the operations are at most poly(C).
* Alternatively, we may allow computation with real numbers, assuming we can perform basic arithmetic operations in $O(1)$ time.

Minimum cost flows with separable convex objectives

* $G=(V, E)$ directed graph
* On each arc $i j$, lower and upper capacities $l_{i j}, u_{i j}$.
* On each node i, node demand b_{i} : incoming flow minus outgoing flow should be b_{i}.
* We want to minimize $\Sigma C_{i j}\left(f_{i j}\right)$ over feasible flows, where on each arc $i j, C_{i j}$ is a convex function.
* Convex program with several applications: traffic management, matrix balancing, stick percolation...

Minimum cost flows with separable convex objectives

* Selfish routing in urban traffic networks: transition time on a road is an increasing function of the traffic amount.

Minimum cost flows with separable convex objectives

* Selfish routing in urban traffic networks: transition time on a road is an increasing function of the traffic amount.

* Nash equilibrium: no car may find a shorter route if the others don't change.
* Computing a Nash-equilibrium is a separable convex cost flow problem.

Linear Fisher market: convex formulations

* Eisenberg\&Gale, '59

$x_{i j}$: amount of good j purchased by i
$\max \sum_{i \in B} m_{i} \log U_{i}$
$U_{i} \leq \sum_{j \in G} U_{i j} x_{i j} \quad \forall i \in B$
$\sum_{i \in B} x_{i j} \leq 1 \quad \forall j \in G$

$$
x \geq 0
$$

* concave generalized flow
* Shmyrev; Devanur '09
$y_{i j}$: amount of money payed by i for j
$\min \sum_{i \in G} p_{j}\left(\log p_{j}-1\right)-\sum_{i j \in E} y_{i j} \log U_{i j}$
$\sum_{j \in G} y_{i j}=m_{i} \quad \forall i \in B$
$\sum_{i \in B} y_{i j}=p_{j} \quad \forall j \in G$

$$
y \geq 0
$$

* flow with separable convex objective

Reduction for linear Fisher market

Reduction for linear Fisher market

Extensions of linear Fisher markets

* Devanur\&Vazirani ' 04 : spending constraint utilities
* The utility of the buyers is a piecewise linear concave function of the amount of money spent on the good.
* Vazirani 'ıo: combinatorial algorithm (extension of DPSV'o2)
* Devanur et al. 'ni: discovered the convex programming relaxation.
* V. 'ı2a: strongly polynomial algorithm

When is there a strongly polynomial algorithm for MCCF?

$$
\begin{gathered}
G=(V, E) \text { directed graph } \\
C_{i j}:\left[\ell_{i j}, u_{i j}\right] \rightarrow \mathbb{R} \text { convex, (differentiable) } \\
\min \sum_{i j \in E} C_{i j}\left(f_{i j}\right) \\
\sum_{j: j i \in E} f_{j i}-\sum_{j: i j \in E} f_{i j}=b_{i} \quad \forall i \in V \\
\ell_{i j} \leq f_{i j} \leq u_{i j} \quad \forall i j \in E
\end{gathered}
$$

Previously known cases

* Linear costs $\left(C_{i j}(x)=c_{i j} x\right)$
* Quadratic costs $\left(C_{i j}(x)=c_{i j} x^{2}+d_{i j} x, c_{i j} \geq 0\right)$
* Series parallel graphs: Tamir '93.
* Transportation problem with fixed number of sources: Cosares\&Hochbaum '94.
* Other nonlinear
* Fisher's market with linear utilities: Orlin 'ıo.

Negative results for strongly polynomiality

* Optimal solution can be irrational (even non-algebraic!)
* Q : is it possible to find an ε-approximate solution in time polynomial in the input size and $\log 1 / \varepsilon$?
* Even this is impossible if the $C_{i j}$'s are polynomials of degree ≥ 3 (Hochbaum '94)
* Reason: impossible to ε-approximate roots of polynomials in strongly polynomial time (Renegar '87)
* This does not apply for quadratic objectives!

Our result (STOC 2012)

* Strongly polynomial algorithm under certain oracle assumptions on the objective.
* Key assumption: we can compute an optimal solution, provided its support.
* Special cases include:
* Convex quadratic objectives.
* Fisher's market with linear and with spending constraint utilities.

Linear and convex flow problems I.

flows
Minimum cost
circulations
Edmonds\&Karp ' 72

generalized flows

Linear

Convex
Concave generalized flows
V. 'I2b

Linear and convex flow problems I.

weakly polynomial strongly polynomial

Minimum cost circulations Edmonds\&Karp '72

.
Minimum cost circulations w. separable convex cost Minoux '86

Orlin'93

Main algorithmic ideas

* Edmonds, Karp '72: capacity scaling algorithm:
* Successive shortest paths method, first transporting the huge parts of the excesses.
* Minoux '86: naturally extends to convex costs, with linearizing the cost in Δ chunks in the Δ-phase.

$$
\frac{C_{i j}\left(f_{i j}+\Delta\right)-C_{i j}\left(f_{i j}\right)}{\Delta}
$$

Main algorithmic ideas

* V'i2a: apply Minoux's algorithm, and maintain a subset F of arcs guaranteed to be in the support of (the) optimal solution. F shall be extended in every $O(\log n)$ iterations.
* In certain phases, we make a guess: maybe Fis already optimal? We compute an optimal solution based on the assumption that it's support is F.
* if yes: great!
* if not: either it still gives a better solution than the current one: Δ decreases radically;
* or it gives a guarantee that F must soon be extended.

Market equilibria with rational convex programs and combinatorial algorithms

Linear Fisher	DPSV'o2/'o8 Orlin'ıo: strongly poly.	CGF	MCCF: strongly poly
Perfect price discrimination	Goel\&Vazirani 'ıo	CGF	
Spending constraint utilities	Devanur\&Vazirani 'O4/'ıo		MCCF: strongly poly
Arrow-Debreu Nash bargaining	Vazirani'ıI	CGF	
Nonsymmetric ADNB	?	CGF	

CGF: concave generalized flows V. ‘ı 2 b
MCCF: min. cost separable convex flows V. ‘ía

Further questions

* Concave generalized flows: the algorithm is not strongly polynomial
* No strongly polynomial algorithm exists for linear generalized flows!
* Solving that could help develop strongly poly. alg. for certain concave gain functions.
* Linear Arrow-Debreu markets: no combinatorial algorithm known. Convex programming formulation: Nenakov\&Primak '83, Jain'o6.

Thank you for your attention!

