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Combinatorial Auctions

n players

m items
Valuation vi : 2[m] → R.

vi(B) is player i’s value for bundle B.

Goal
Partition items into bundles B1, B2, . . . , Bn to maximize welfare:
v1(B1) + v2(B2) + . . . + vn(Bn)

Introduction 1
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Combinatorial Auctions

V1 V2 V3

Highly in-approximable if P 6= NP , unless we assume structure on
valuations.

We will consider a classes of valuations allowing constant factor
approximation algorithms.
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Example: Spectrum Auctions

Each telecom has a private value in $$ for each bundle of licenses
Dependencies: Some of the licenses are substitutes/complements

Introduction 2



Importance of Combinatorial Auctions
Paradigmatic problem in algorithmic mechanism design.
Many applications.
Theoretically clean and expressive.

Goal
Assuming valuations come from a class that naturally models some
application, we want a mechanism that is:

1 (Dominant strategy) incentive compatible (truthful in expectation)
2 Polynomial time
3 Guarantees a “good” approximation to the social welfare

Constant factor
Close to best of a polynomial time approximation algorithm

For which valuation classes is this possible?
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Previous Work

Positive Results:
O(logm log logm) for subadditive, demand oracle. [Dobzinski ’07]
O(logm/ log logm) for submodular, communication.
[Dobzinski, Fu, Kleinberg ’10]
1− 1/e for coverage valuations, computational.
[Dughmi, Roughgarden, Yan ’11]

Negative Results:
Ω(mα) for submodular, value oracle. [Dughmi, Vondrak ’11]
Ω(nα) for submodular, computational. [Dobzinski, Vondrak ’12]
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This Sucks

1 Only “good” upperbounds are for complement free valuations
In practice complements are present, and are the main obstacle.

2 Lower bounds are fragile
Rely on hardness of single-player utility maximization.
Fall apart when we assume access to a demand oracle.
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Modeling Complements

In general, nothing is possible
Even for “single-minded bidders”, computational lower-bound of
Ω(
√
m).

Ideally, want a model that is:
1 Parametrized by the “size” of complements
2 Admits approximation algorithms with guarantees that degrade

gracefully with size of complements.
3 Succinct
4 Admits a polynomial-time demand oracle

This Paper
We consider a such a natural model for combinatorial auctions with
complements.
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(Hyper) graph valuations

Valuation of a player i described by a graph on the items.
Weights vi(j) ≥ 0 on nodes j
Weights vi(j, k) ≥ 0 on edges (j, k)
vi(S) =

∑
j∈S vi(j) +

∑
j,k∈S vi(j, k)

10 5

7 2

2

3 1

0

5

Generalizing to hypergraphs, we model k-complements as a
k-hypergraph valuation.
Similar to models proposed earlier in the literature [Conitzer,
Sandholm, and Santi ’05, Chevaleyre et al ’08].
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Example: Spectrum Auctions
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Results

1 Polynomial-time k-approximation algorithm for k-complements.
2 Polynomial-time and Truthful PTAS for 2-complements when

valuation graphs exclude a fixed minor.
3 Polynomial-time and Truthful-in-expectation O(logk(m))

approximation in general.

Techniques: Proxy bidders approach of Dobzinski, Fu, and Kleinberg
’10, LP approach of Lavi and Swamy ’05.
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Mechanisms and Truthfulness

Mechanism
1 Bidding: Solicit valuations v1, . . . , vn : 2[m] → R
2 Allocation: Compute “good” allocation B1, . . . , Bn
3 Payment: Charge payments p0, . . . , pn

Truthfulness in Expectation
A mechanism is truthful in expectation if a player maximizes his
expected utility by reporting his true valuation, regardless of reports of
others.

utility(i) = vi(Bi)− pi

Technical Background 10
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VCG Mechanism

Vickrey Clarke Groves (VCG) Mechanism for CA
1 Solicit purported valuations v1, . . . , vn : 2[m] → R
2 Find allocation (B∗1 , . . . , B

∗
n) maximizing (purported) welfare:∑

i vi(B
∗
i )

3 Charge each player his externality
The increase in (purported) welfare of other players if he drops out

Technical Background 11
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VCG Mechanism

Vickrey Clarke Groves (VCG) Mechanism for CA
1 Solicit purported valuations v1, . . . , vn : 2[m] → R
2 Find allocation (B∗1 , . . . , B

∗
n) maximizing (purported) welfare:∑

i vi(B
∗
i )

3 Charge each player his externality
The increase in (purported) welfare of other players if he drops out

Problem
When the allocation problem is NP-hard, VCG cannot be implemented
in polynomial time.

Some “special” approximation algorithms, when plugged into VCG, pre-
serve truthfulness and recover polytime.
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Maximal in Distributional Range Algorithms

Maximal in Distributional Range

1 Fix subset R of distributions over allocations up-front, called the
distributional range.

Independent of player valuations
2 Given player values, find the distribution in R maximizing

expected social welfare.
3 Sample this distribution

Technical Background 12
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Maximal in Distributional Range Algorithms

Output

V1 V2 V3

Maximal in Distributional Range
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Maximal in Distributional Range and Truthfulness

Plugging an MIDR algorithm into VCG yields a truthful-in-expectation
mechanism

Simply VCG applied to the “smaller” problem of finding the best
lottery in R, which we solve optimally.

Upshot
Reduced designing a truthful mechanism to designing an
approximation algorithm of this MIDR variety.

Technical Background 13
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Designing MIDR Algorithms

A good MIDR Algorithm achieves a good “trade-off” between
approximation ratio, and runtime

At one extreme: R = all distributions
Approximation ratio = 1
NP-hard if the problem is NP-hard

At another extreme: R = {x} a singleton
Definitely polytime
Approximation ratio is terrible

Is there a “sweet spot”?
Large enough for good approximation
Small/well-structured enough for polytime optimization

Technical Background 14
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Example of MIDR

Independent lottery:
Associates with each player i and item j probability xij that i gets j
Each item j assigned independently with those probabilities.

Each set of fractions xij defines a different independent lottery
The set of independent lotteries is a distributional range.
Fact: MIDR over all independent lotteries is NP-hard.

Ours will be the range of independent lotteries where each
xij ∈ {0, 1/ logm}.

Technical Background 15
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The Distributional Range

Divide each item into logm raffle tickets
Each ticket is a 1/ logm chance of winning the item.

Consider allocations of raffle tickets s.t. no player getting more
than one ticket per item.
Each such allocation of raffle tickets maps to a random allocation
of original items

Independently for each item, randomly choose one of the raffle
tickets as the winner.

The family of resulting random allocations is our range R.

A Polylog Approximation Mechanism 16
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The Approximation Guarantee

Lemma
For every allocation (S1, . . . , Sn) of items, there is a lottery in the range
with 1/ log2m fraction of the welfare.

Since we plan to optimize over the range, we will get a log2m
approximation.

A Polylog Approximation Mechanism 17



The Approximation Guarantee

Lemma
For every allocation (S1, . . . , Sn) of items, there is a lottery in the range
with 1/ log2m fraction of the welfare.

Since we plan to optimize over the range, we will get a log2m
approximation.

A Polylog Approximation Mechanism 17



The Approximation Guarantee

Proof.
Replace each item in each Si with a raffle ticket for that item.

Corresponds to a lottery in the range, by running raffles.

Consider an edge (j, k) with both endpoints in Si.
He gets each of j,k with probability 1/ logm in the raffle.

Gets both with probability 1/ log2 m.

Since his utility is additive over edges, done.

2

3
1

A Polylog Approximation Mechanism 18
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Optimizing over the Distributional Range

Observation
Value of player i for raffle tickets for Si is simply:

v′i(Si) = vi(Si)/ log2m

Therefore: Graph valuation with weights scaled down by log2m.
Optimization problem for our range is combinatorial auctions with
graph valuations and logm supply of each item.

Fact (Folklore)
A large linear programming relaxation, called the configuration LP, is
solvable in polytime when valuations admit a demand oracle.

Fact (Informal)
The configuration LP “essentially” has integrality gap 1 when we have
logm supply.

A Polylog Approximation Mechanism 19
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Optimizing over the Distributional Range

Lemma
(Hyper)graph valuations admit a polynomial-time demand oracle.

Proof.
Recall: Given prices pj for each j ∈ [m], want to find set S ⊆ [m]
maximizing

v(S)−
∑
j∈S

pj

Rewriting, want to maximize
∑

j∈S v(j) +
∑

j,k∈S v(j, k)−
∑

j∈S pj .
Clearly supermodular, so can be maximized in polynomial time.
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Open Questions

1 Main open question: Is there a constant factor polytime truthful
mechanism for CA with restricted complements?

Existing results rule out deterministic VCG based.
Existing techniques, such as Lavi/Swamy, proxy valuations, and
Convex Rounding, don’t seem to work.

2 What about other classes of valuations, such as submodular, if
equipped with a demand oracle?

3 More generally: assuming individual agents can maximize their
own utility, does truthfulness + polytime follow?

4 Other ways of modeling complements?
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