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Abstract

We consider a priority-based selfish routing model, where agents may have different
priorities on a link. An agent with a higher priority on a link can traverse it with a
smaller delay or cost than an agent with lower priority. This general framework can be
used to model a number of different problems. The structural properties that lead to
inefficiencies in routing choices appear different in this priority-based model compared
to the classical model. In particular, in parallel link networks with nonatomic agents,
the price of anarchy is exactly one in the priority-based model; that is, selfish behaviour
leads to optimal routings. In contrast, in the standard model the worst possible price of
anarchy can be achieved in a simple two-link network. For multi-commodity networks,
selfish routing does lead to inefficiencies in the priority-based model. We present tight
bounds on the price of anarchy for such networks. Specifically, in the nonatomic case
the worst-case price of anarchy is exactly (d + 1)d+1 for polynomial latency functions
of degree d (hence 4 for linear cost functions). For atomic games, the worst-case price
of anarchy is exactly 3+ 2

√
2 in the weighted case, and exactly 17/3 in the unweighted

case. An upper bound of O(2ddd) is also shown for polynomial cost functions in the
atomic case, although this is not tight. Our framework (and results) also generalise to
include models similar to congestion games.
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1 Introduction

This work is motivated by the simple observation that, in a transportation network, a car
traversing a road can only cause congestion delays to those cars that use the road at a later
time. Moreover, this is a common feature of most traffic networks and queuing models.

The study of congestion and transportation networks is not new. The ideas were first
discussed qualitatively by Pigou [14] in 1920, and later placed on a sound mathematical
footing by Wardrop [20]. The book of Beckmann, McGuire and Winsten [4] gives a very
thorough treatment. More recently, applications to communication networks such as the
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Figure 1: Classical versus priority-based selfish routing

internet spurred interest from the computer science community. The concept of the price of
anarchy was introduced by Koutsoupias and Papadimitriou [12]. It is the ratio between the
costs of the worst Nash equilibrium and the optimal routing, and is essentially a quantitative
measure of the loss of efficiency attributable to the lack of a central coordinating authority.

In this classical selfish routing model, each link e has an associated cost function fe(x);
the delay experienced by the users of this link is then fe(xe), where xe is the total traffic
on the link. Thus all users of a link experience the same latency. One practical situation in
which this may arise is when users are continuously using a network, making the concept
of time redundant. There are many situations where this assumption is not valid however.
For example, imagine someone driving home during rush hour in a large city. The time
that they leave will make a big difference to how long the trip takes; it will be much shorter
if they leave early enough to avoid the worst of the traffic.

Here we show that a simple modification to the classical model does allow us to incor-
porate some elements of time dependence. In the classical model, the total cost associated
with a link e is the delay experienced on that link, multiplied by the number of players
using it, i.e. fe(xe)xe. In our model, the total cost will instead be given by the area under
the cost function, i.e. the integral

∫ xe

0 fe(z)dz. The idea is that the area under the cost
function can be partitioned amongst the users so that earlier users are associated with

smaller latencies. If a player j has an amount x
(j)
e of flow ahead of it, it will experience a

delay of fe(x
(j)
e ). The difference between the models is represented visually in Figure 1; the

total cost associated with link e in the classical model is given by the area of the lightly
shaded rectangle, and in the priority-based model it is given by the area under the curve.

There are other reasons aside from time-based considerations why different users might
experience different delays or costs; for instance, certain users might simply be given pri-
ority, and always experience lower latencies. Our model allows the ordering of the players
to be defined very generally; various examples will be discussed later.

Both the classical and priority-based models can be broadly divided into two variants;
atomic and nonatomic. In the atomic case, there are a finite number of agents, each with a
certain amount of flow to route. The flow may be splittable, or unsplittable, in which case
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each agent must pick a single path for its entire flow. In the nonatomic case, there are an
infinite number of agents, and each controls only a negligible fraction of the total flow. The
results and techniques will be different for these two variants; the atomic case is generally
more difficult to analyse.

This simple modification of using an integral rather than a rectangle to measure the cost
on a link has more of an effect than one might expect. Roughgarden and Tardos [18, 16]
showed that in the classical model with nonatomic agents, the worst-case price of anarchy
is 4/3 for linear cost functions, and (1− d(d + 1)−1−1/d)−1 = Θ(d log d) for polynomial cost
functions of degree d. By contrast, we show that in the nonatomic priority-based model,
the worst-case price of anarchy is exactly 4 for linear cost functions, and (d + 1)d+1 for
polynomial cost functions of degree d; these are considerably larger.

In addition, some of the causes of the inefficiencies due to selfish routing appear to
be different. In particular, it is known [16] that even in single-commodity networks (in
fact, even in simple parallel link networks), the above worst-case bounds in the standard
nonatomic model can be achieved. Thus the worst-case price of anarchy is essentially
independent of the network topology in the standard model. By contrast, we will show
that selfish routing leads to optimal solutions in parallel link networks in the priority-based
model, for any choice of priority scheme. For some important special cases of our model
(including the time-based model mentioned earlier), this is still true for arbitrary single-
commodity networks, where all agents have the same origin and destination.

The atomic unsplittable case of the classical model was considered by Azar, Awerbuch
and Epstein [3]. They show that for linear cost functions, (3+

√
5)/2 is a tight upper bound

for the price of anarchy; this is reduced to 2.5 in the unweighted case, where all users route
one unit of demand (see Christodoulou and Koutsoupias [5] for an independent proof). We
show that in the priority-based model with linear cost functions, the worst-case price of
anarchy is 3 + 2

√
2, and reduces to 17/3 in the unweighted case. They also show that for

polynomial cost functions of degree d, the worst possible price of anarchy is dΘ(d); this was
later determined exactly by Aland et al. [2] (see also Olver [13]). We show an upper bound
of O(2ddd) in our model for this case.

Related work Rosenthal [15] introduced atomic selfish routing games, as well as conges-
tion games, an important generalisation which removes the network structure. Our model
generalises in an analogous way.

Correa, Schulz and Stier-Moses [6] gave shorter proofs of some of the price of anarchy
results for nonatomic games, as well as some new results. Some of our proofs are inspired
by their technique.

Independently of this work, Harks, Heinz and Pfetsch [9] consider an online version
of the multicommodity routing problem. The greedy online algorithm they consider can
be interpreted as the Nash equilibrium in an instance of what we call the global priority
model, a special case of the priority-based model. Thus price of anarchy results in the
global priority model are related to online competitiveness results in their model. Harks
and Végh [10] generalise [9] to an online selfish routing game; in this game, a sequence of
standard selfish routing games are played, and players in a particular game are aware of
the choices made by the players in earlier games, but not later ones. This model are in
some sense a generalisation of the global priority model where some players have identical

3



priorities.

Paper outline In Section 2 we present the priority-based selfish routing model, considering
atomic and nonatomic agents. We also give a number of motivating applications, and show
some sufficient conditions for the existence of Nash equilibria. The bulk of the paper is
devoted to deriving the exact value for the price of anarchy under certain restrictions on
the cost functions. In Section 3, we consider the price of anarchy of nonatomic agents;
single-commodity networks are considered first, followed by the general multicommodity
case. Atomic agents are dealt with in Section 4.

2 The Model

We now define the model rigorously. We begin with the atomic unsplittable case, since this
is actually easier to define (although more difficult to analyse).

2.1 The unsplittable atomic case

We begin with a network, represented as a directed graph G = (V,E), and a finite number
n of players. Each player j has a flow requirement of wj units, which must be routed from
node sj to node tj. The players must each pick a single path to route their entire demand.
A particular routing is then defined by P = {P1, . . . , Pn}, where Pj is an sj − tj path for
each j, representing the route taken by that player. We also define the flow vector x(P) by
xe(P) =

∑

j:e∈Pj
wj , the total flow on edge e. We will write simply xe if the desired routing

is clear. Each edge has an associated cost function fe that is nonnegative and increasing.
We will also sometimes refer to these as latency functions, since they represent the delay
experienced by the user on the edge. So far, nothing we have described differs from the
standard network routing model. But now we introduce a priority scheme that will allow
us to order the users of a particular edge, prescribing different latencies to the users based
on this order. We will allow this to be very general—the priority ordering on an edge can
depend arbitrarily on the current routing P. This can include dependence on routings that
do not use that edge. If player i has higher priority than player j on edge e under routing
P, we write i ≻P,e j. For a fixed e and P , the relation ≻P,e must define a total ordering
of the players using edge e; this is the only restriction we impose. If it is clear from the
context what edge or routing is being referred to, we will omit it.

For an arbitrarily defined priority scheme, it might not be computationally feasible
to calculate a player’s best response, since there are an exponential number of paths to
consider and the priority orderings could be different for all of them. In that case, best
response dynamics and Nash equilibria would not be of much practical interest. Many
natural priority schemes that we consider do allow best responses to be easily calculated.
For example, one possibility would be to give an ordering to the players, and assign the
priority along all the edges based on this ordering. Another option would be to assign
priorities based on the time that the players arrive at the beginning of the link. We will
describe in detail a number of possible priority schemes, including these ones, in Section 2.2.

In the classical selfish routing model, the total (or social) cost of a routing is given
by C(P) =

∑

e∈E fe(xe)xe. As mentioned in the introduction, we will modify this in our
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model, and define the total cost as

C(P) =
∑

e∈E

∫ xe

0
fe(z) dz. (1)

Let x
(j)
e (P) be the amount of flow on edge e with a higher priority than player j under

routing P, i.e.

x(j)
e (P) =

∑

i:i≻P,e j

wi.

Then we define Cj(P), the cost attributable to player j, as

Cj(P) =
∑

e∈Pj

∫ x
(j)
e (P)+wj

x
(j)
e (P)

fe(x) dx. (2)

For P to be a Nash equilibrium, we must have for any player j and any sj − tj path P ′,

Cj(P) ≤ Cj(P ′) (3)

where P ′ = P\Pj ∪ P ′. This is simply a restatement of the condition that player j cannot
switch to a cheaper route.

There is a slight subtlety to the interpretation of our modified cost. The definition is
chosen so that the total cost on an edge is given by the integral

∫ xe

0 fe(x)dx, and so the total
cost of a routing P is given by (1). The analogous definition for the classical model was
that player j contributed fe(x)wj to the total cost; note that this is the delay experienced
by the player multiplied by his weight. Our definition should be interpreted similarly; so
the delay experienced by player j is Cj(P)/wj . Depending on the application, this might
not always be the “correct” choice; for instance, another natural option would be a delay

of fe(x
(r)
e ). The difference will often not be significant, and our choice is more amenable to

analysis. All of these difficulties disappear in the nonatomic version of the model, discussed
in Section 2.3

Analogously to the classical case [15], we can also consider the congestion game gener-
alisation of this priority-based model. Let I be a set of items; these will take the place of
the edges in the network model. A cost function and priority ordering is associated with
each item; again, the priority ordering can depend on the strategies chosen by the players.
But now, each player has a set of possible strategies Sj , where each strategy is some subset
of the items. There is no restriction on what subsets can be specified as a player’s allowed
strategies, or how many strategies a player may have. Notice that a network game is a
special case of a congestion game where the strategies of player j are exactly the subsets
corresponding to sj − tj paths.

We will call a routing P optimal if it has the minimum cost C(P) over all feasible
routings. We will often use the notation P∗ to refer to an optimal solution. Note that the
optimality of a routing does not depend in any way on the priority scheme used.
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2.2 Some possible priority schemes

Here we list some natural and interesting games that fall within the framework of our
model, by picking the priority scheme appropriately.

The global priority game This is the simplest possible case; the ordering is independent
of the routing, and is also the same for all edges. In other words, there is a fixed priority
ordering of the players.

This model has an interesting interpretation as an online routing problem, as discussed
by Harks et al. [9]. Suppose players are charged for their use of a network, and would like
to choose the cheapest route for their demand. The players arrive one at a time however,
and the amount charged to a player for using an edge depends on the current congestion
on the edge; later players may be charged more for some edges than earlier players. The
social optimum is taken to be the total cost incurred by all the players. In this setting, a
Nash equilibrium can be interpreted as a greedy online algorithm, and the price of anarchy
corresponds to the competitiveness of this algorithm. Most of the results in Harks et al.
correspond to the atomic model, but with splittable flow; for instance, they show that
with n unweighted splittable players, and linear cost functions, the price of anarchy cannot
exceed 4n/(2 + n).

The fixed priority game A more general model than the global priority one, here
we still insist that the priorities are independent of the routing, but we allow different
orderings on different edges. One application within this framework is Quality of Service
in telecommunication networks such as the internet. In the absence of network neutrality,
telecommunication companies could charge for faster access to the portion of the internet
that they own. The players in this case would be companies with a large internet presence;
these companies want to serve content to their users as quickly as possible. The priorities
would then be determined by contracts between the companies and the service providers.

The timestamp game The priorities of agents are determined by their arrival times at
the start of the edge. Associate with each agent j an additional value τj that represents
the starting time of that agent. Now take a specific routing P = {P1, . . . , Pn}. The time
agent j arrives at a vertex u ∈ Pj is then τj plus the time taken to traverse all the edges
on the subpath of Pj from sj to u, denoted Pj [sj , u].

Of course, the latency of player j along an edge in Pj [sj, u] depends on the priority of
j on that edge, which in turn depends on the start times of other agents. To see that we
have enough information to uniquely determine the priorities, imagine simulating the game.
Take the player with the smallest starting time, and move her along the first edge of her
path. Her timestamp is then adjusted to include the time taken to traverse this edge. We
then repeat, taking the player with the smallest timestamp after this update (this could
be the same player). When the simulation terminates and all players have reached their
destinations, we can read off the priority ordering on any edge; it is simply the order in
which the players traversed that edge in the simulation.

The technical issue of ties—two agents taking the same edge with the same timestamp—
can easily be resolved, either by prescribing a tie-breaking order for the players, or by
perturbing the starting times by sufficiently small values to break the ties without modifying
the ordering.
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One problem with this model is that a player using a link delays all players that tra-
verse the link afterwards. This is not very realistic—rather, the delaying effect of a player
should only last for a short time. Congestion effects, however, complicate the situation;
the duration of the delaying effect can vary quite dramatically depending on the situation.
If a link is heavily congested, a player might delayed by traffic from quite some time ago.
A better model could be obtained using a proper model of flow over time, where packets
have a well defined position at each moment in time, and so the amount of traffic on an
edge can vary. Such a “dynamic” model was introduced by Ford and Fulkerson [7], and has
received considerable attention. Köhler and Skutella [11] have proposed a dynamic model
with load-dependent transit times which can incorporate congestion effects. Investigating
the behaviour of such a dynamic model with selfish behaviour would be an interesting
avenue of research.

For the congestion game variant of our model, the following is one motivating example:

The subcontractor game Suppose there are a number of construction companies, each
involved with one or more large project. In order to complete various parts of these projects,
the construction companies need to enlist the services of subcontractors. There are many
subcontractors to choose from, and different subcontractors provide different subsets of
services (more than one subcontractor may offer the same service). Also, there might be
more than one way of completing a project, and so the construction company might have
a choice of which services are required. However, if two companies decide to use the same
subcontractor, and require some of the same services, the subcontractor will not be able
to complete both requests simultaneously. A delay in construction will negatively affect
the profit of the construction company, so essentially the company that gets delayed is
paying more for the service.1 The subcontractor’s choice as to which company to delay
could depend on many factors—the time that the contracts were made, the total value of
the contracts, previous business relationships with the companies, etc.

To model this as a priority-based congestion game, we will consider each company as an
agent, and each service offered by a subcontractor as an item (the same service offered by
multiple contractors will considered as multiple items). The possible strategies for an agent
will then be any combination of services from the subcontractors that together provide all
the needs of the agent. Since our model is so general, the priority ordering could be as
complicated as needed to take the various factors noted above into account.

2.3 The nonatomic case

If we let the fraction of the total flow controlled by any single player diminish to zero,
the game becomes nonatomic. We have to be quite careful in defining things formally
however—there are some subtleties that do not occur in the standard model. Our approach
to nonatomic games follows Schmeidler [19], in that the game is represented by an atomless
space of players, and each player has an associated payoff function.

Label the players by elements in the interval R = [0, 1]. We also have two measurable

1Alternatively, the subcontractor may experience increasing marginal costs; for example, these may be
due to overtime payments, increased costs arising from the need for additional production, etc. These
additional costs are then passed on to the construction companies.
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functions s, t : R → V , which specify the origin and destination of each player respectively.
For each r ∈ [0, 1], the strategy of player r is given by a unit sr − tr flow yr. We are

allowing splittable flow—the reason for this is discussed later in this section. A feasible
solution is given by P = {yr : r ∈ R}. A priority ordering is defined as before; for any edge
e and feasible solution P, ≻P,e is a total ordering of the players.

The total flow on edge e will then be xe =
∫

R yr(e)dµ. The amount of flow on edge e
ahead of player r is given by

x(r)
e (P) =

∫

L
(r)
e (P)

ys(e)dµ,

where L
(r)
e (P) = {s : s ≻P,e r}. We require that L

(r)
e (P) be Lebesgue measurable for all

e ∈ E, r ∈ R and feasible P; any reasonable ordering will satisfy this technical requirement.
The total latency experienced by player r, i.e. the time taken for the player to traverse

from the source to the sink, is

ℓr(P) =
∑

e∈Pr

fe

(

x(r)
e (P)

)

. (4)

Analogously to the atomic case, the requirement for P to be a Nash equilibrium is that for
any r ∈ R and any sr − tr path P ′,

ℓr(P) ≤ ℓr(P ′) (5)

where P ′ = P\Pj ∪ P ′.
The model is most easily thought of as a nonatomic version with splittable flow. There is

a reason for this; in general, we cannot assign an unsplittable flow to each nonatomic player.
For consider a simple two-link network with arcs e and e′, and define the cost functions
fe(x) = fe′(x) = x. Assign the global priority ordering r ≻ s iff r < s. Now suppose we
demand that each player routes an unsplittable flow; consider any such solution P where

the flows yr are all 0 − 1 vectors. Any Nash equilibrium must satisfy x
(r)
e = x

(r)
e′ = r/2 for

all r ∈ R. Now define F = {s ∈ R : yr(e) = 1}. Then

x(r)
e =

∫

R
ys(e)1s≻rdµ = µ(F ∩ [0, r]).

This implies that µ(F ∩ [r, s]) = (s − r)/2 for all [r, s] ⊂ [0, 1]. This however contradicts
Lebesgue’s density theorem, which states that a measurable set has density 1 almost ev-
erywhere in the set. Thus even in this very simple example, no Nash equilibrium exists
with unsplittable flow. On the other hand, setting yr(e) = yr(e

′) = 1/2 for all r is a Nash
equilibrium.

The nonatomic case in the classical model is comparatively much easier to define. In
the classical model, a solution is defined completely by the flow vector x—only the total
flow on an edge is important. Such games, where each player’s payoff depends only on
the aggregate action of the other players, have some useful simplifying properties (see e.g.
Schmeidler [19]).

It might not be clear then why this nonatomic game can be considered a suitable limit
of the atomic unsplittable game when wj → 0. For some intuition, take again this simple
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two-link example, but with atomic agents; suppose we have n agents (labelled from 1 to
n), all of size 1/n, going from the origin to the destination; the priority ordering is i ≻ j
iff i < j. Then one possible Nash equilibrium is for odd-numbered players to take arc e,
and all even-numbered players to take edge e′; call this solution Pn. Considering the set of
strategies, this does not lead to any sensible limit as n → ∞. For a fixed r ∈ [0, 1], we do
however have that

lim
n→∞

x(⌊rn⌋)
e (Pn) = r/2.

In that sense, we converge to the Nash equilibrium of the nonatomic game as we have
defined it.

Generalising to congestion games is done analogously to the atomic case.

2.4 Existence of Nash equilibria

We mention a few existence and nonexistence results regarding pure Nash equilibria. First,
an unsurprising negative result; in the atomic unsplittable case, allowing general priority
schemes, there need not be a pure Nash equilibrium. In particular, consider the fixed
priority game depicted in Figure 2. The edges in this network are undirected, and flow
in either direction contributes to the congestion on an edge (we will return to this point
shortly). There are two users, each of size 1, with source-destination pairs (s1, t1) and
(s2, t2) respectively. All edges have cost function fe(x) = x. The priorities on each edge
are shown in the figure. It is easy to see that no matter which direction each of the two
players choose to route their flow, the player with lower priority on the single edge these
routes have in common will have an incentive to change to the other route. Thus the game
has no pure Nash equilibria. Since this example is unweighted, this is in contrast with the
classical mode; unweighted atomic congestion games always have a pure Nash equilibrium
(but weighted ones need not) [15].

s1 s2

t1t2

2 ≻ 1

1 ≻ 2 1 ≻ 2

2 ≻ 1

Figure 2: A fixed-priority game with no pure Nash equilibria.

Of course, we have not explicitly allowed undirected edges in our model. But we can
replace each of the undirected edges in the construction with the widget shown in Figure 3;
v and w represent the endpoints of the replaced edge (this is a standard technique; see
e.g. [1]).

Now for a positive result: in the global priority model, even in the atomic unsplittable
case, there is always a pure Nash equilibrium (as long as the cost functions are at least
nonnegative and increasing). This can be seen in the atomic case by an explicit algorithm
to construct the Nash: simply go through the agents in priority order, and route each along
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v wf(x)

Figure 3: Widget to imitate an undirected edge e = (v,w) with directed edges (dashed arcs
have zero cost).

a shortest path given the congestion effects of the higher priority agents that have already
been routed. In the single-commodity case, the timestamp game and the fixed priority
game are equivalent—the players can be ordered by their starting time. Our conjecture is
that existence is guaranteed even in the multicommodity case for the timestamp game.

In the nonatomic version of our game, existence of Nash equilibria is guaranteed under
some continuity conditions.

Definition 1. A nonatomic game is called continuous if all the cost functions are con-

tinuous, x
(r)
e (P) depends continuously on P, and

{s ∈ R : ℓs(P) < ℓr(P)}

is measurable for all feasible solutions P and r ∈ R.

Theorem 2.1. A continuous nonatomic game always has a pure Nash equilibrium.

Proof. Consider the strategy set of player r; it is the set of all unit sr − tr flows, and so
forms a convex and compact subset of R

E . The latency experienced by player r depends
continuously on P, because the game is continuous. This, along with the measurability re-
quirement, guarantees that the conditions for Theorem 1 from Schmeidler [19] are satisfied,
and so an equilibrium exists. Since each player’s strategy set is already convex, there is no
need to consider mixed equilibria.

2.5 A correspondence with the classical model

In this section and in following ones, we will use the standard term Wardrop equilibrium
when referring to Nash equilibria in a classical nonatomic congestion game. This is simply
to aid in distinguishing between the classical and priority-based models.

The optimal flows in the priority-based model can be related to the classical model:

Lemma 2.2. Given an instance G = (V,E) of the (atomic or nonatomic) priority-based
network game with cost functions fe, optimal flows are exactly the same as the optimal
flows in the classical game on the same network, but with cost functions

f̂e(x) =
1

x

∫ x

0
fe(z)dz. (6)
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Proof. This follows by noting that the cost of a flow x in the priority-based model,

C(x) =
∑

e∈E

∫ xe

0
fe(x)dx,

is exactly the same as the cost induced in the classical model with cost functions f̂e:

Ĉ(x) =
∑

e∈E

f̂e(xe)xe =
∑

e∈E

∫ xe

0
fe(x)dx.

Corollary 2.3. In a nonatomic priority-based game, the optimal flows are exactly the
Wardrop equilibria of the classical network game on the same network, with the same cost
functions.

Proof. The result follows directly from the following characterisation of optimal flows in
the classical model [4, 14, 17]:

A flow x is optimal for a classical nonatomic game with continuously differentiable,
semiconvex2 cost functions f̂e iff it is a Wardrop equilibrium for a game on the same
network, where the cost functions are replaced by

f∗
e (y) =

d

dy

(

y · f̂e(y)
)

.

But if the f̂e’s are defined as in Equation (6), then f∗
e (y) = fe(y), and the result follows.

3 The price of anarchy of nonatomic agents

The central topic of this paper is the question: how bad can the cost of a Nash equilibrium
be compared to the cost of an optimal solution? The price of anarchy is a quantitative
answer to this question:

Definition 2. The (pure) price of anarchy of an instance is the ratio between the cost of
the worst possible pure Nash equilibrium, and the cost of the optimal solution.

An analogous definition can be made for mixed Nash equilibria; however, we will only
consider pure Nash equilibria in this paper. As such, we will usually omit “pure”. We will
also use the term worst-case price of anarchy in relation to a class of possible instances (for
example, all instances with linear cost functions) to refer to the supremum of the price of
anarchy over all these instances.

Analysing the price of anarchy is easier in the nonatomic case, where there are an
infinite number of players, each controlling a negligible amount of flow. The special case of
single-commodity networks (particularly parallel link networks) give very different results
to general networks, and we discuss these separately.

2A function f(y) is semiconvex iff yf(y) is convex.
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3.1 Single-commodity networks

Single-commodity networks refer to the case where all agents have the same source s and
destination t. We only require the cost functions be continuous, nonnegative and increasing
for the following results.

Observation 1. For a single-commodity game with nonatomic agents, any flow x where
all of the s − t paths with non-zero flow are shortest paths (where length is determined
by the metric le = fe(xe)) is a Wardrop equilibrium in the classical model, and hence by
Corollary 2.3, an optimal flow in the priority-based model. In other words, a flow satisfying

∑

e∈P

fe(xe) ≤
∑

e∈P ′

fe(xe). (7)

for any s − t path P with xP > 0, and all s − t paths P ′, is optimal.

A particularly simple class of networks of this type are parallel link networks, which
consist only of a source node, a sink node, and some number of links between them. We
show the following:

Theorem 3.1. For parallel link networks with nonatomic agents and any choice of priority
scheme, the price of anarchy is one.

Proof. Let P be an arbitrary Nash equilibrium. Consider Equation (5). In our case, it can
be written

ℓr(P) ≤ fe′(x
(r)
e′ ) for all e′ ∈ E, (8)

for all players r. Now for each link e, either xe = 0 or there is a player r such that Pr = e

and x
(r)
e = xe. Equation (8) then yields

fe(xe) ≤ fe′(xe′) for all e′ ∈ E.

Hence the result follows by Observation 1.

These results are in contrast to the classical model, where Pigou’s two-link network
yields the largest possible price of anarchy in most cases [16]. If we consider general single-
commodity instances however, the price of anarchy can be larger than one, even for the
global priority scheme. Consider the example shown in Figure 4, which is recognisable as a
standard example of “Braess’s paradox”. There is one unit of demand between the source
s and the sink t. The optimal solution is to send half the flow along the top path, and half
along the bottom, with no flow using the zero cost “shortcut” edge. This solution has cost
C(OPT ) = 1 + 1/(d + 1).

With the global priority model, the unique Nash equilibrium uses the shortcut edge for
the higher priority half of the flow. The lower priority half of the flow then splits between
the upper and lower paths, but must now pay a larger cost; the non-constant edges now
have a total load of 3/4. The Nash has cost C(Nash) = 1/2 + (3/2)d+1/(d + 1). So the
price of anarchy is

ρ =
1/2 + (3/2)d+1/(d + 1)

1 + 1/(d + 1)
;

12
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(2x)d
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1

(2x)d
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Figure 4: A single-commodity game with price of anarchy larger than one.

this grows exponentially with d. For linear cost functions, this gives ρ = 13/12.
On the positive side, we can extend the parallel link result slightly for the global priority

model:

Theorem 3.2. Consider an instance where the underlying network is a series-parallel
graph, with all demand between the source and sink, with cost functions that are nonde-
creasing and nonnegative. Then in the global priority model, the price of anarchy is one.

The proof is a simple induction based on Theorem 3.1, and we omit it. (TODO: Is that
OK?)

3.2 Multicommodity networks

We now investigate the price of anarchy of the priority-based model for general networks,
where the behaviour is very different from the single-commodity case. We will obtain tight
bounds for linear and polynomial cost functions.

First a useful inequality:

Theorem 3.3. For any Nash flow P, under any priority scheme,

C(P) ≤
∑

e∈E

fe(xe(P))x∗
e . (9)

where x∗ is an arbitrary flow (in particular, it may be an optimum flow).

Proof. We will use just xe to denote xe(P). Let P∗ = {P ∗
r : r ∈ R} be some assignment

of paths to players that obtains the flow x∗ (so formally, it is a valid routing such that
∫

r:e∈P ∗
r

1 dµ = x∗
e). Apply (5) with P ′

r = P ∗
r :

ℓr(P) ≤ ℓr(P(r))

=
∑

e∈P ∗
r

fe

(

x(r)
e (P(r))

)

,

where P(r) = P\Pr ∪ P ∗
r ; we have used Equation (4). Now clearly x

(r)
e (P(r)) ≤ xe, so

ℓr(P) ≤
∑

e∈P ∗
r

fe(xe).

13



Thus

C(P) =

∫

R
ℓr(P) dr

≤
∫

R

∑

e∈P ∗
r

fe(xe) dr

=
∑

e∈E

fe(xe)

∫

R
(1e∈P ∗

r
) dr

=
∑

e∈E

fe(xe)x
∗
e.

It is interesting to compare this to the classical model, where the variational inequality

∑

e∈E

fe(xe)xe ≤
∑

e∈E

fe(xe)x
′
e

holds if and only if x is a Wardrop equilibrium; note that the left hand side is the cost of the
flow x in the classical model. In our model, the inequality is necessary, but not sufficient.

Let us now find an upper bound in the case of linear cost functions. The result is
superseded by the more general polynomial case considered next, but the proof in the
linear case is simpler and more transparent.

Theorem 3.4. In the nonatomic case with linear cost functions, 4 is an upper bound on
the price of anarchy.

Proof. Note the following, for any flow vector x′:

∑

e∈E

fe(x
′
e)x

′
e = 2

∑

e∈E

1
2aex

′2
e + 1

2bex
′
e

≤ 2
∑

e∈E

∫ x′
e

0
aex + be dx

= 2C(x′). (10)

Beginning with the result of Theorem 3.3, we use a technique from [6], which they used to
give a short proof of the classical price of anarchy result.

C(P) ≤
∑

e∈E

fe(xe)x
∗
e

=
∑

e∈E

fe(x
∗
e)x

∗
e +

∑

e∈E

(fe(xe) − fe(x
∗
e))x∗

e

≤ 2C(P∗) +
∑

e∈E:xe≥x∗
e

(fe(xe) − fe(x
∗
e)) x∗

e from (10).

Now consider Figure 5.

14



fe(x
∗

e)

fe(xe)

x∗

e xe

Figure 5: A visual proof that (fe(xe) − fe(x
∗
e))x

∗
e ≤ 1

4fe(xe)xe.

Clearly the area of the grey rectangle is at most 1
4 of the area of the large rectangle.

Thus we obtain

C(P) ≤ 2C(P∗) +
1

4

∑

e∈E

fe(xe)xe

≤ 2C(P∗) +
1

2
C(P),

again using (10) in the final step. Thus C(P)/C(P∗) ≤ 4, as required.

We now extend this result to polynomial cost functions.

Theorem 3.5. For the nonatomic case with polynomial cost functions of maximum degree
d, there is an upper bound of (d + 1)d+1 for the price of anarchy.

Proof. The proof uses a generalisation of the technique used to prove Theorem 3.4. Let
α ≥ 1 be a constant to be chosen later. Let fe(x) =

∑d
i=0 ae,ix

i. We have

C(P) ≤
∑

e∈E

fe(xe)x
∗
e

= α
∑

e∈E

fe(x
∗
e)x

∗
e +

∑

e∈E

(fe(xe) − αfe(x
∗
e)) x∗

e

≤ α(d + 1)C(P∗) +
∑

e∈E:fe(xe)≥αfe(x∗
e)

(fe(xe) − αfe(x
∗
e)) x∗

e (11)
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Now consider:

(fe(xe) − αfe(x
∗
e))x

∗
e

fe(xe)xe
=

x∗
e

xe
− α · fe(x

∗
e)x

∗
e

fe(xe)xe

≤ x∗
e

xe
− α · min

0≤i≤d

ae,ix
∗i+1
e

ae,ix
i+1
e

=
x∗

e

xe
− α

(

x∗
e

xe

)d+1

(since x∗
e ≤ xe).

Since the maximum value of the function φ−αφd+1 occurs at φm = (α(d+1))−1/d, an easy
calculation yields

(fe(xe) − αfe(x
∗
e))x

∗
e ≤ d

d + 1
· 1

(α(d + 1))1/d
· fe(xe)xe.

Substituting into (11), and using
∑

e∈E fe(xe)xe ≤ (d + 1)C(P), it follows that

C(P)

C(P∗)
≤ α(d + 1)

1 − d(α(d + 1))−1/d
.

Now set α = (d + 1)d−1; this gives

C(P)

C(P∗)
≤ (d + 1)d+1.

Having obtained an upper bound, we now show that it cannot be improved, by demon-
strating how to construct a game with price of anarchy arbitrarily close to this upper bound.
We will need (and again later) the following useful lemma:

Lemma 3.6. For a, b ≥ 0, r ≥ 1 and 0 < γ < 1,

(a + b)r ≤ γ1−rar + (1 − γ)1−rbr. (12)

Proof.

(a + b)r =

(

γ

(

a

γ

)

+ (1 − γ)

(

b

1 − γ

))r

≤ γ

(

a

γ

)r

+ (1 − γ)

(

b

1 − γ

)r

(by convexity)

= γ1−rar + (1 − γ)1−rbr.

Theorem 3.7. For the nonatomic case with polynomial cost functions of maximum degree
d, there is a lower bound of (d + 1)d+1 for the worst-case price of anarchy in the global
priority model.
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Proof sketch. Some calculations have been omitted; the full proof is given in the appendix.
Consider a network of the form shown in Figure 6. There are two types of latency

function in the network. Each link of the form (si, si+1) has latency zero, and each link
ei = (si, t) has latency le(x) = xd/i. We have a large number of infinitesimally small agents,
all trying to get to t from one of the si’s. The total amount of traffic originating at each si is
unity. In addition, for all j < i all agents originating at si have higher priority than agents
originating at sj. Agents originating at the same vertex are indistinguishable, except for
some fixed priority ordering among them.

snsn−1s3s2s1

t

000

ln(x)

ln−1(x)l3(x)
l2(x)

l1(x)

Figure 6: Lower bound construction for polynomial cost functions.

Let Pn and P∗
n be respectively the Nash equilibria and optimum solutions of this con-

struction for each n.
Any agent is unaffected by the choices of lower priority agents, so we can calculate the

Nash by working from the highest priority agents (i.e those starting from sn) to the lowest
(starting at s1). Define xi,j to be the flow on the edge (si, t) after all the players with
origins in {sj , sj+1, . . . , sn} have played; in addition, define xi,n+1 = 0. Let yj = fej

(xj,j).
It is easy to see that the Nash condition implies that

fei
(xi,j) = fej

(xj,j) = yj for all i ≤ j.

From this, it can be shown that

C(Pn) ≥ (d + 1)d
n
∑

j=1

j1/d
(

(j + 1)−1/d − (n + 2)−1/d
)d+1

. (13)

Applying Lemma 3.6 to (13) with a = (j + 1)−1/d − (n + 2)−1/d, b = (n + 2)−1/d and
r = d + 1, we obtain that for any constant 0 < γ < 1,

C(Pn) ≥ (d + 1)d



γd
n
∑

j=1

j−1(1 + 1
j )−1−1/d −

(

γ

1 − γ

)d

(n + 2)−1−1/d
n
∑

j=1

j1/d



 .

Some calculations then show that

C(Pn) ≥ γd(d + 1)dHn − Dγ ,

where Dγ is a constant that depends on γ, but not n.
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Let P ′
n be the solution obtained by sending all flow from si through arc ei for each i.

This yields a cost of

C(P ′
n) =

1

d + 1

n
∑

i=1

1

i
=

Hn

d + 1
,

which is an upper bound on the cost of the optimal solution P∗
n.

We thus get a bound for the price of anarchy for any given n:

C(Pn)

C(P∗
n)

≥ γd(d + 1)dHn − Dγ

(d + 1)−1Hn
= γd(d + 1)d+1 − Dγ(d + 1)

Hn
.

Consequently, letting n → ∞, we find that γd(d + 1)d+1 is a lower bound for the price of
anarchy. Finally, since γ was an arbitrary constant strictly less than 1, we send γ → 1 to
obtain (d + 1)d+1 as a lower bound.

Note that the priority ordering used in the above construction can also easily be pro-
duced in the timestamp case. Let any agent originating at si have an earlier start-time
τi than any agent originating at sj , for all j < i. The relative ordering of timestamps for
agents originating at the same vertex is unimportant. We may assume that that start-times
are measured to an arbitrary precision so that ties do not arise.

Combining the previous two theorems, we have an exact value of (d + 1)d+1 for the
worst-case price of anarchy of our model with polynomial latency functions.

4 The price of anarchy for unsplittable atomic agents

In this section we consider the case of unsplittable agents. We will present a tight upper
bound for the linear case, as well as a number of matching lower bound constructions for
different priority schemes. For polynomial cost functions, we will only provide an upper
bound.

Denote the set of players by J . As usual let P be a Nash flow, P∗ be an unsplittable
optimal flow, and define P(j) = P\Pj ∪ P ∗

j , where everyone follows P except player j. We
begin with a useful inequality that holds for any Nash flow P. Using equations (2) and (3),

Cj(P) ≤ Cj(P(j))

=
∑

e∈P ∗
j

∫ x
(j)
e (P(j))+wj

x
(j)
e (P(j))

fe(x) dx.

But x
(j)
e (P(j)) ≤ xe, so

Cj(P) ≤
∑

e∈P ∗
j

∫ xe+wj

xe

fe(x) dx.
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Summing over all j yields

C(P) ≤
∑

j∈J

∑

e∈P ∗
j

∫ xe+wj

xe

fe(x) dx

=
∑

e∈E

∑

j:e∈P ∗
j

∫ xe+wj

xe

fe(x) dx. (14)

4.1 Linear cost functions

Theorem 4.1. In the unsplittable case with linear latency functions, the price of anarchy
is at most 3 + 2

√
2.

Proof. Let P and P∗ be a Nash flow and an optimal unsplittable flow respectively. Writing
Equation (14) in the linear case with fe(x) = aex + be, we obtain

C(P) ≤
∑

e∈E

∑

j:e∈P ∗
j

(

(aexe + be)wj + 1
2aew

2
j

)

≤
∑

e∈E

(

(aexe + be)x
∗
e + 1

2aex
∗2
e

)

=
∑

e∈E

aexex
∗
e +

∑

e∈E

(1
2aex

∗
e + be)x

∗
e.

We now apply the Cauchy-Schwarz inequality to the first term to obtain

C(P) ≤
√

∑

e∈E

aex2
e ·
∑

e∈E

aex∗2
e + C(P∗)

≤
√

2C(P) · 2C(P∗) + C(P∗).

Let α = C(P)
C(P∗) . The above gives us α ≤ 2

√
α + 1, and so the price of anarchy is at most

3 + 2
√

2 ≈ 5.828.

We now provide some matching lower bounds for various game variants. We begin with
a weighted congestion game construction. We will require different priority orderings on
different edges.

Let the set of items be I = {1, 2, 3, 1̄, 2̄, 3̄}, and the players be J = {1, 2, 3, 1̄, 2̄, 3̄}. One
should think of the barred items as mirror copies of the originals, and the barred players
as reflected copies. We also define ¯̄1 = 1, etc. and {A} = {Ā}.

We define the set of strategies for player j ∈ J as Sj = {Sj , S
∗
j } where

S1 = {1, 2, 3} S∗
1 = {1̄}

S2 = {1, 2} S∗
2 = {2̄}

S3 = {1, 2} S∗
3 = {3̄}

and Sj̄ = S̄j for j = 1, 2, 3.
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The player weights wj are given by

w1 = w1̄ = w2 = w2̄ = 1,

w3 = w3̄ =
√

2 − 1.

The priority ordering is

1 ≻ 2 ≻ 3 ≻ 1̄ ≻ 2̄ ≻ 3̄ for items 1, 2, 3

1̄ ≻ 2̄ ≻ 3̄ ≻ 1 ≻ 2 ≻ 3 for items 1̄, 2̄, 3̄

The cost function for item i is fi(x) = aix where

a1 = a1̄ =
2
√

2

3 + 2
√

2
, (15)

a2 = a2̄ =
3

3 + 2
√

2
, (16)

a3 = a3̄ = 2
√

2 − 1. (17)

We claim that if all players pick strategy Sj, we have a Nash equilibrium. To show this,
we need to show that no player has an incentive to switch to S∗

j . Note that the priority
ordering is such that a player would have the lowest priority on an item if they switched.

Let the cost for player j when all players are playing Sj be Cj. Some easy calculations
yield:

C1 =

∫ w1

0
f1(x) + f2(x) + f3(x)dx =

√
2

C2 =

∫ w1+w2

w1

f1(x) + f2(x)dx =
3

2

C3 =

∫ w1+w2+w3

w1+w2

f1(x) + f2(x)dx =
√

2 − 1

2
.

Let C̃j be the cost player j pays upon switching. Then

C̃1 =

∫ w1̄+w2̄+w3̄+w1

w1̄+w2̄+w3̄

f1̄(x)dx =
√

2

C̃2 =

∫ w1̄+w2̄+w3̄+w2

w1̄+w2̄+w3̄

f2̄(x)dx =
3

2

C̃3 =

∫ w1̄+w3

w1̄

f3̄(x)dx =
√

2 − 1

2
.

So none of players 1, 2, 3 have an incentive to switch, and by symmetry neither do players
1̄, 2̄, 3̄. So we do have a Nash equilibrium. The optimal strategy is for all players to
play S∗

j . Now notice that the utilisation of each item under the Nash is exactly 1 +
√

2
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times the utilisation under the optimal strategy. It follows that the price of anarchy is
(1 +

√
2)2 = 3 + 2

√
2.

We can turn this into a network game, as shown in Figure 7. The dashed arcs have zero
cost, and the remaining arcs are labelled to correspond with the items of the congestion
game, and have the same cost functions, and the same priority orderings. The sources
sj and destinations tj of the players are also labelled. It can easily be verified that this
network game reduces to the above congestion game, and so also has a price of anarchy of
3 + 2

√
2.

s1 = s̄1 t2 = t̄2

s3 = t̄3

s̄3 = t3

s2 = t1

s̄2 = t̄1

1̄

1

2̄

2

3̄ 3

Figure 7: A network game construction with a price of anarchy of 3 + 2
√

2.

While the above construction uses different priorities on different edges, we can use
the basic idea for constructions with other priority schemes. First, let’s go back to the
congestion game formulation and consider the global priority game. Let N be some large
integer. Let the players be

J = {jr,s : 1 ≤ r ≤ 3, 1 ≤ s ≤ N}

and the items be
I = {ir,s : 1 ≤ r ≤ 3, 1 ≤ s ≤ N + 1}.

We now set, for 1 ≤ s ≤ N ,

Sj1,s
= {i1,s, i2,s, i3,s} S∗

j1,s
= {i1,s+1}

Sj2,s
= {i1,s, i2,s} S∗

j2,s
= {i2,s+1}

Sj3,s
= {i1,s, i2,s} S∗

j2,s
= {i3,s+1}

The weights are
wj1,s

= wj2,s
= 1, wj3,s

=
√

2 − 1.

The global priority ordering is

j1,N ≻ j2,N ≻ j3,N ≻ j1,N−1 ≻ j2,N−1 · · · ≻ j2,1 ≻ j3,1.

21



For s ≤ N , we set the cost functions as before, i.e. fir,s = ar for r = 1, 2, 3, with the ar

defined in Equation (15) to (17). The exception is the final group of items, which nobody
plays at Nash; thus we have to make it more expensive to ensure that players j1,N , j2,N

and j3,N do not have an incentive to switch. So simply set

fir,N+1
(x) = Cjr,N

(P).

Without this imperfection, the price of anarchy would be exactly as before, since we would
simply have N copies instead of two. The addition of the final group reduces the price
of anarchy slightly. However, as we increase N to infinity, the effect of this on the total
social cost becomes negligible. So we have a construction that yields a price of anarchy of
3 + 2

√
2 − ǫ, for any ǫ > 0; thus the upper bound is still tight in the global priority game.

This construction can be turned into a network game fairly easily, in much the same
way as before (we omit the details); once we have this, we can also obtain a timestamp
game construction by judicious choice of starting times. In particular, if we set the start
times as

τi1,i
= (N − i)K, τi2,i

= (N − i)K + 1, τi3,i
= (N − i)K + 2,

where K is sufficiently large, we clearly end up with the same priority ordering.
Next consider the unweighted case, where wj = 1 for all players j. We give a tight

result here also.

Theorem 4.2. For unweighted agents and linear cost functions, the price of anarchy is at
most 17/3.

Proof. We need the following easily proven lemma:

Lemma 4.3. Let i, j ≥ 0 be integers. Then

(2i + 1)j ≤ 2
5 i2 + 17

5 j2.

Now:

C(P) ≤
∑

e∈E

(aexe + be)x
∗
e +

∑

e∈E

∑

j:e∈P ∗
j

1
2aew

2
i

=
∑

e∈E

ae

(

xe + 1
2

)

x∗
e +

∑

e∈E

bex
∗
e (using wi = w2

i )

≤
∑

e∈E

1
2ae

(

2
5x2

e + 17
5 x∗

e
2
)

+
∑

e∈E

bex
∗
e (using Lemma 4.3)

≤ 2
5C(P) + 17

5 C(P∗).

Thus
C(P)

C(P∗)
≤ 17/5

1 − 2/5
=

17

3
.

22



The following construction shows that this upper bound is tight. Let

I = {1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄} and J = {1, 2, 3, 1̄, 2̄, 3̄}

be the items and players respectively. The strategies are

S1 = {1, 2, 3, 4} S∗
1 = {2̄, 3̄}

S2 = {1, 2, 3, 4} S∗
2 = {4̄}

S3 = {1, 2} S∗
3 = {1̄}

and Sj̄ = S̄j for j = 1, 2, 3. The priority ordering is

1 ≻ 2 ≻ 3 ≻ 1̄ ≻ 2̄ ≻ 3̄ on items 1, 2, 3, 4

1̄ ≻ 2̄ ≻ 3̄ ≻ 1 ≻ 2 ≻ 3 on items 1̄, 2̄, 3̄, 4̄

The cost function for item i is fi(x) = aix where

a1 = 5
7 , a2 = 2

7 , a3 = 1
5 and a4 = 9

5

(and symmetrically for the remaining items).
Defining P and P∗ as usual, it can easily be verified that

C1(P) = 3
2 = C1(P∗)

C2(P) = 9
2 = C2(P∗)

C3(P) = 5
2 = C3(P∗)

Hence P is a Nash equilibrium. The price of anarchy is then easily calculated to be 17/3,
as required.

Again, it is straightforward to convert this to a network game. Variations for more
restrictive priority schemes are possible using the same approach as for the weighted case.

4.2 Polynomial cost functions

We will give only an upper bound for the polynomial case. For the lower bound, we will
simply note that the (d+1)d+1 value obtained in the nonatomic case still applies by using the
same construction with sufficiently small agents. Clearly a better construction is possible,
and the upper bound is also unlikely to be tight. We will not discuss the unweighted
variations here. The proof uses a combination of the techniques used earlier, and is given
in the appendix.

Theorem 4.4. The price of anarchy is O(2ddd) in the unsplittable atomic case with poly-
nomial cost functions of maximum degree d.

Further work In the atomic version of the model, a pure Nash equilibrium need not always
exist. It should be easy to extend our results to handle mixed strategy Nash equilibria. It
is not clear however if these are of much interest in our model; another avenue would be
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to investigate in these games the so called “price of sinking”, introduced by Goemans et
al. [8].

We have considered only linear and polynomial latency functions. Other cost functions
are of course possible, and may be of interest. All of the cost functions we have considered
are convex. This is generally assumed for traffic congestion, but may not apply for all ap-
plications of this model. However, utilising concave cost functions in the service game could
sometimes be appropriate, e.g. manufacturers facing decreasing marginal costs. This would
also allow for the modelling of other complex interactions between companies and manufac-
turers; for example, manufacturers could pass on the gains from decreasing marginal costs
to more favoured customers.

As noted earlier, it would be very interesting to consider selfish routing in a dynamic
flow model, in order to obtain a much more realistic version of the timestamp game.
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Appendix

Proof of Theorem 3.7. Recall the network shown in Figure 6. Each link of the form (si, si+1)
has latency zero, and each link ei = (si, t) has latency le(x) = xd/i. For each i, there is
one unit of traffic going from si to t, and for all j < i, all agents originating at si have
higher priority than agents originating at sj. Agents originating at the same vertex are
indistinguishable, except for some fixed priority ordering among them.

Any agent is unaffected by the choices of lower priority agents, so we can calculate the
Nash by working from the highest priority agents (i.e those starting from sn) to the lowest
(starting at s1). Define xi,j to be the flow on the edge (si, t) after all the players with
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origins in {sj , sj+1, . . . , sn} have played; in addition, define xi,n+1 = 0. Let yj = fej
(xj,j).

The Nash condition implies that

fei
(xi,j) = fej

(xj,j) = yj for all i ≤ j.

Inverting this gives
xi,j = (iyj)

1/d for all i ≤ j.

Now since the total flow from sj is 1, we have
∑j

i=1(xi,j − xi,j+1) = 1, so

j
∑

i=1

(

(iyj)
1/d − (iyj+1)

1/d
)

= 1.

Define hk :=
∑k

i=1 i1/d. Then

y
1/d
j = h−1

j + y
1/d
j+1.

Thus

y
1/d
j =

n
∑

k=j

h−1
k ,

as yn+1 = 0.
Since the sequence (i1/d)ji=1 is increasing, we have the bound

hk ≤
∫ k+1

0
x1/ddx =

d

d + 1
(k + 1)1+1/d.

Hence

y
1/d
j ≥ d + 1

d

n
∑

k=j

(k + 1)−(1+1/d)

≥ d + 1

d

∫ n+1

j
(x + 1)−(1+1/d) dx

= (d + 1)((j + 1)−1/d − (n + 2)−1/d)

We can now get a lower bound on the cost of the Nash flow Pn. Since the flow from
s1, s2, . . . , sj−1 does not use edge ej , the total flow along edge ej at Nash is xj,j. Thus

C(Pn) =

n
∑

j=1

∫ xj,j

0
fej

(x) dx

=
n
∑

j=1

1

j(d + 1)
xd+1

j,j

=
1

d + 1

n
∑

j=1

j1/dy
1+1/d
j

≥ 1

d + 1

n
∑

j=1

j1/d
(

(d + 1)((j + 1)−1/d − (n + 2)−1/d)
)d+1

= (d + 1)d
n
∑

j=1

j1/d
(

(j + 1)−1/d − (n + 2)−1/d
)d+1

. (18)
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We can rewrite the statement of Lemma 3.6 as

ar ≥ γr−1(a + b)r −
(

γ

1 − γ

)r−1

br.

Apply this to (18) with a = (j + 1)−1/d − (n + 2)−1/d, b = (n + 2)−1/d and r = d + 1 to
obtain, for any constant 0 < γ < 1,

C(Pn) ≥ (d + 1)d



γd
n
∑

j=1

j−1(1 + 1
j )−1−1/d −

(

γ

1 − γ

)d

(n + 2)−1−1/d
n
∑

j=1

j1/d



 .

We deal with each term separately. We have

(n + 2)−1−1/d
n
∑

j=1

j1/d = (n + 2)−1
n
∑

j=1

(

j

n + 2

)1/d

< (n + 2)−1 · n,

and so the second term is O(1). For the first term, note that

j−1
(

1 − (1 + 1
j )−1−1/d

)

≤ j−1
(

1 − (1 + 1
j )−2

)

≤ 3

(j + 1)2
.

It follows that
∑

j−1
(

1 − (1 + 1
j )−1−1/d

)

is a convergent series, and hence that

n
∑

j=1

j−1(1 + 1
j )−1−1/d − Hn = O(1),

where Hn is the harmonic series. Thus there exists a constant Dγ , depending on γ but not
n, such that

C(Pn) ≥ γd(d + 1)dHn − Dγ .

Let P ′
n be the solution obtained by sending all flow from si through arc ei for each i.

This yields a cost of

C(P ′
n) =

1

d + 1

n
∑

i=1

1

i
=

Hn

d + 1
,

which is an upper bound on the cost of the optimal solution P∗
n.

We thus get a bound for the price of anarchy for any given n:

C(Pn)

C(P∗
n)

≥ γd(d + 1)dHn − Dγ

(d + 1)−1Hn
= γd(d + 1)d+1 − Dγ(d + 1)

Hn
.

Consequently, letting n → ∞, we find that γd(d + 1)d+1 is a lower bound for the price of
anarchy. Finally, since γ was an arbitrary constant strictly less than 1, we send γ → 1 to
obtain (d + 1)d+1 as a lower bound.
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Proof of Theorem 4.4. Let fe(x) =
∑d

i=0 ae,ix
i. Begin from Equation (14):

C(P) ≤
∑

e∈E

∑

j:e∈P ∗
j

∫ xe+wj

xe

fe(x)dx

≤
∑

e∈E

∑

j:e∈P ∗
j

fe(xe + wj)wj

=
∑

e∈E

∑

j:e∈P ∗
j

ae,0wj +
∑

e∈E

d
∑

i=1

∑

j:e∈P ∗
j

ae,i(xe + wj)
iwj .

Now apply Lemma 3.6, with a = xe, b = wj, r = i and γ to be determined later:

C(P) ≤
∑

e∈E

∑

j:e∈P ∗
j

ae,0wj +
∑

e∈E

d
∑

i=1

∑

j:e∈P ∗
j

(

ae,iγ
1−ixi

ewj + ae,i(1 − γ)1−iwi+1
j

)

.

Now since
∑

j:e∈P ∗
j

wj = x∗
e, and hence

∑

j:e∈P ∗
j

wi
j ≤ x∗i

e for i ≥ 1,

C(P) ≤
∑

e∈E

ae,0x
∗
e +

∑

e∈E

d
∑

i=1

(

ae,iγ
1−dxi

ex
∗
e + ae,i(1 − γ)1−dx∗i+1

e

)

≤
∑

e∈E

d
∑

i=0

(

ae,iγ
1−dxi

ex
∗
e + ae,i(1 − γ)1−dx∗i+1

e

)

= γ1−d
∑

e∈E

fe(xe)x
∗
e + (1 − γ)1−d

∑

e∈E

fe(x
∗
e)x

∗
e

≤ γ1−d
∑

e∈E

fe(xe)x
∗
e + (1 − γ)1−d(d + 1)C(P∗).

The technique used for the nonatomic case is applicable to the first term (see the proof of
Theorem 3.5). We thus obtain, for any α ≥ 1 and 0 < γ < 1,

C(P) ≤ γ1−d
(

α(d + 1)C(P∗) + d(α(d + 1))−1/dC(P)
)

+ (1 − γ)1−d(d + 1)C(P∗).

Thus

ρ ≤ (d + 1) · γ1−dα + (1 − γ)1−d

1 − γ1−dd(α(d + 1))−1/d
.

Now set α = 2ddd and γ = 1 − 1
2d . Then

γ1−d = (1 − 1
2d )1−d ≤ (e−1/2d)1−d ≤ e1/2

d

(α(d + 1))1/d
= 2−1d1/d(d + 1)−1/d ≤ 1

2 .
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Thus

ρ ≤ (d + 1) ·
√

e2ddd + 2d−1dd−1

1 − 1
2

√
e

=

( √
e + 1

2

1 − 1
2

√
e

)

2ddd−1(d + 1)

So we have that ρ = O(2ddd).
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