
DECAY ESTIMATES AND SYMMETRY OF FINITE
ENERGY SOLUTIONS TO ELLIPTIC SYSTEMS IN Rn

JÉRÔME VÉTOIS

Abstract. We study a notion of finite energy solutions to ellip-
tic systems with power nonlinearities in Rn. We establish sharp
pointwise decay estimates for positive and sign-changing solutions.
By using these estimates, we obtain symmetry results when the
solutions are positive.

1. Introduction and main results

In this paper, we are interested in the nonlinear Schrödinger system{
−∆u = |v|p |u|r−1 u in Rn

−∆v = |u|q |v|s−1 v in Rn
(1.1)

where

n ≥ 3, p, q ≥ 1, r, s ≥ 0, and p− s ≥ q − r > −1. (1.2)

Systems of this type are closely related to the modeling of Bose–
Einstein condensates (see for instance Burke, Bohn, Esry and Greene [3]
and Frantzeskakis [14]) and also arise in nonlinear optics (see Kanna
and Lakshmanan [27] and Kivshar and Luther-Davies [29]).

We define

a :=
n (pq − (r − 1) (s− 1))

2 (p− s+ 1)
and b :=

n (pq − (r − 1) (s− 1))

2 (q − r + 1)

so that
p

b
+
r

a
=

2

n
+

1

a
and

q

a
+
s

b
=

2

n
+

1

b
. (1.3)

It follows from (1.3) that (1.1) is invariant under the change of scale(
µn/au (µx) , µn/bv (µx)

)
(1.4)

for all µ > 0. Moreover, the La–norm of u and Lb–norm of v are also
invariant under (1.4). We assume that

a, b >
n

n− 2
. (1.5)

It follows from (1.3) and (1.5) that for every (u, v) ∈ La (Rn)×Lb (Rn),
|v|p |u|r−1 u ∈ L1

loc (Rn) and |u|q |v|s−1 v ∈ L1
loc (Rn). We then say that

(u, v) ∈ La (Rn) × Lb (Rn) is a solution (or finite energy solution) of
(1.1) if both equations in (1.1) are satisfied in the distributional sense.
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By using Sobolev’s inequalities, it is easy to check that in case r =
s = 0, if a and b satisfy the critical condition

1

a
+

1

b
=
n− 2

n
, (1.6)

then our definition of finite energy solutions generalizes the more usual
definition of finite energy solutions as critical points in Sobolev spaces
of an energy functional (see Lions [35] for the variational framework in
this case, see also Hulshof and van der Vorst [25]). Remark that there
is no known energy functional for the system (1.1) in the general case
where r and s can be nonzero. In this case, our definition provides
a natural generalization of such solutions which preserves the scale
invariance (1.4).

It follows from a result of Chen, Li, and Ou [8] that in case r = s = 0,
if (1.6) holds true, then positive finite energy solutions are radially sym-
metric and decreasing about some point x0 ∈ Rn. Moreover, positive
finite energy solutions have been proven to exist in this case if and only
if (1.6) holds true (see Lions [35] for the existence and Chen and Li [7]
and Villavert [56] for the nonexistence). We also mention that positive
solutions with infinite energy of (1.1) have been proven to exist in case
r = s = 0 when the equality in (1.6) is replaced by < (see Mitidieri [38]
and Serrin and Zou [49]). In case of the converse inequality >, nonexis-
tence of positive solutions (with finite or infinite energy) of (1.1) with
r = s = 0 has been obtained in the radial case (see Mitidieri [38]
and Serrin and Zou [47]), in case n ≤ 4 (see Mitidieri [38], Serrin and
Zou [48], and Souto [51] in case n ∈ {1, 2}, Poláčik, Quittner, and
Souplet [42] and Serrin and Zou [48] in case n = 3, and Souplet [50] in
case n = 4), and under various additional assumptions in higher dimen-
sions (see for instance Busca and Manásevich [4], Chen and Li [7], de
Figueiredo and Felmer [11], Lei and Li [31], Quittner, and Souplet [42],
Mitidieri [38], Serrin and Zou [47,48], Souplet [50], and Villavert [56]).
We also refer to Lei and Li [30] and Villavert [56] for a qualitative
analysis of solutions of (1.1) in case r = s = 0.

Another case which has received a lot of attention is the case q+s =
p + r. In this case, Quittner and Souplet [44] obtained that every
positive solution (u, v) of (1.1) is such that either u ≡ 0, v ≡ 0, or u ≡ v
in Rn provided p ≥ r and r, s ≤ n/ (n− 2) (see also Montaru, Sirakov,
and Souplet [39] for extensions of this result and Guo and Liu [21] and
Li and Ma [32] for previous results in case p + r = (n+ 2) / (n− 2)).
In case u ≡ v, we are then left with the equation

−∆u = up+r−1 in Rn.

In particular, we can then apply Gidas and Spruck’s nonexistence re-
sult [16] in case p + r < (n+ 2) / (n− 2) and Caffarelli, Gidas and
Spruck’s classification result [5] in case p + r = (n+ 2) / (n− 2) (see
also Chen and Li [6] for an easier proof and Gidas, Ni, Nirenberg [15]
and Obata [40] for previous results).
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In the general case where r and s can be nonzero and p + r can
be different to q + s, nonexistence results of positive solutions of (1.1)
have been obtained under various subcritical-type conditions (see for
instance Bidaut-Véron and Giacomini [1], Bidaut-Véron and Pohozaev
[2], Chen and Lu [9], Clément, Fleckinger, Mitidieri, and de Thélin [10],
Mitidieri [38], Quittner [43], Reichel and Zou [45], and Zheng [58]).
Existence of radially symmetric solutions has also been established un-
der various supercritical-type conditions (see for instance Bidaut-Véron
and Giacomini [1] and Li and Villavert [33, 34]). However the optimal
conditions for existence of positive solutions of (1.1) are not yet known
even for radially symmetric solutions.

Note that in contrast with the case of a single equation (see Caffarelli,
Gidas and Spruck [5] and Chen and Li [6]), the system (1.1) is not
invariant under the Kelvin transform in the critical case (1.6) and the
moving plane method does not seem to be directly applicable to the
transformed system when p+ r > (n+ 2) / (n− 2).

In Theorem 1.1 below, we establish sharp pointwise decay estimates
for finite energy solutions (positive or not) of (1.1). We then use these
estimates to obtain symmetry results for positive solutions of (1.1) in
Theorems 1.2–1.4. These latter results extend previous works of Liu
and Ma [36, 37] who obtained symmetry results under decay assump-
tions on the solutions.

With regard to the signs of u and v, we assume that

u ≥ 0 in Rn if r = 0 and v ≥ 0 in Rn if s = 0 (1.7)

so that the nonlinearities in (1.1) are continuous functions of u and v.
Moreover, we assume that

u ≥ 0 in Rn if r < 1 and s < 1. (1.8)

The assumption (1.8) allows us to use a comparison result between u
and v in the sublinear case r, s < 1 (see Step 3.2).

We obtain the following decay estimates:

Theorem 1.1. Assume that (1.2) and (1.5) hold true. Let (u, v) ∈
La (Rn)×Lb (Rn) be a solution of (1.1) such that (1.7) and (1.8) hold
true. Then u, v ∈ C2 (Rn) and there exists a constant C0 such that{

|u (x)| ≤ C0(1 + |x|n−2)−1

|v (x)| ≤ C0 (1 + h (x))−1
∀x ∈ Rn (1.9)

where

h (x) :=


|x|n−2 if q + s > n/ (n− 2)

|x|n−2 ln (1 + |x|)−1/(1−s) if q + s = n/ (n− 2)

|x|((n−2)q−2)/(1−s) if q + s < n/ (n− 2) .

(1.10)
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Moreover, if u, v ≥ 0 in Rn, then either u ≡ v ≡ 0 in Rn or there exists
a constant C1 > 0 such that{

u (x) ≥ C1(1 + |x|n−2)−1

v (x) ≥ C1 (1 + h (x))−1
∀x ∈ Rn. (1.11)

Note that by using (1.2)–(1.5), we obtain that if q + s ≤ n/ (n− 2),
then s < 1 and q > 2/ (n− 2) hence the exponents in (1.10) are well
defined and positive.

In case of the equation −∆u = |u|4/(n−2) u (i.e. p + r = q + s =
(n+ 2) / (n− 2) and u ≡ v in Rn), the estimate (1.9) was obtained by
Jannelli and Solimini [26] (see also Vétois [55] and Xiang [57] for differ-
ent proofs of this result and generalizations to p–Laplace equations).

When u, v ≥ 0 in Rn and q+ s ≥ n/ (n− 2), we obtain the following
symmetry result:

Theorem 1.2. Assume that (1.2) and (1.5) hold true. Assume more-
over that q + s ≥ n/ (n− 2). Then for any solution (u, v) ∈ La (Rn)×
Lb (Rn) of (1.1) such that u, v ≥ 0 in Rn, the functions u and v are
radially symmetric and decreasing about some point x0 ∈ Rn.

We point out that in case q+s > n/ (n− 2), the result of Theorem 1.2
can be obtained directly by combining Theorem 1.1 and results of Liu
and Ma [36,37].

In case q + s < n/ (n− 2), we obtain the following result:

Theorem 1.3. Assume that (1.2) and (1.5) hold true. Assume more-
over that q+s < n/ (n− 2). Let (u, v) ∈ La (Rn)×Lb (Rn) be a solution
of (1.1) such that u, v ≥ 0 in Rn and

`qu`
s−1
v < Cn,q,s (1.12)

where

`u := lim sup
|x|→∞

(
|x|n−2 u (x)

)
and `v := lim inf

|x|→∞

(
|x|(q(n−2)−2)/(1−s) v (x)

)
and

Cn,q,s :=


(n− 2)2

4s
if 2q + s ≥ n+ 2

n− 2
((n− 2) q − 2) (n− (n− 2) (q + s))

s (1− s)2 if 2q + s <
n+ 2

n− 2

in case s ∈ (0, 1) and Cn,q,s =∞ in case s = 0 (hence (1.12) is always
true in case s = 0). Then the functions u and v are radially symmetric
and decreasing about some point x0 ∈ Rn.

Remark that it follows from Theorem 1.1 that we always have `u <∞
and `v > 0 when q+s < n/ (n− 2). In case u and v are asymptotically
equivalent to power functions, namely such that

lim
|x|→∞

(
|x|n−2 u (x)

)
= `u (1.13)
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and
lim
|x|→∞

(
|x|(q(n−2)−2)/(1−s) v (x)

)
= `v, (1.14)

we obtain the following result:

Theorem 1.4. Assume that (1.2) and (1.5) hold true. Assume more-
over that q+s < n/ (n− 2). Let (u, v) ∈ La (Rn)×Lb (Rn) be a solution
of (1.1) such that u, v ≥ 0 in Rn and (1.13) and (1.14) hold true. Then

`qu`
s−1
v =

((n− 2) q − 2) (n− (n− 2) (q + s))

(1− s)2

which is smaller than Cn,q,s hence it follows from Theorem 1.3 that the
functions u and v are radially symmetric and decreasing about some
point x0 ∈ Rn.

It is well-known that solutions of Schrödinger equations and systems
in Rn like (1.1) play a fundamental role in the blow-up analysis of
solutions of more general equations on arbitrary domains or manifolds.
We refer to Struwe [52] as an historic reference on this topic in case of

the equation −∆u = |u|4/(n−2) u. In case of systems, some references
on this topic are for instance Druet and Hebey [12], Hebey [23, 24],
and Thizy [53]. With regard to the study of finite energy solutions
for systems in Rn, it is also interesting to mention the recent works of
Gladiali, Grossi, and Troestler [18] and Guo, Li, and Wei [22] where
existence of nonradial finite energy solutions is obtained for a class of
systems with sums of power nonlinearities.

The proof of Theorem 1.1 is in two parts. First in Section 1, we ob-
tain regularity and integrability results in weak Lebesgue spaces. Then
in Section 2, we use the results of Section 1 to obtain sharp pointwise
estimates. The proof of Theorem 1.1 also relies on two preliminary
steps which are on the one hand, a preliminary pointwise estimate that
we obtain by using blow-up arguments and a doubling property (see
Poláčik, Quittner, and Souplet [42]) and on the other, a generalization
of comparison results obtained by Quittner and Souplet [44] in case
p + r = q + s and Souplet [50] in case r = s = 0 (see also Fazly and
Wei [13] for a refined inequality in the same spirit in case r = s = 0
and q = 1). We prove Theorems 1.2–1.4 in Section 3. The proof of
Theorems 1.2 and 1.3 is based on the moving plane method. As in the
papers of Liu and Ma [36, 37] (see also Chen and Li [6, 7]), we apply
the moving plane method to auxiliary functions with lower decay rates
at infinity than the functions u and v. We manage to extend the proof
of Liu and Ma [36, 37] in case q + s ≤ n/ (n− 2) by allowing our two
auxiliary functions to have different decay rates at infinity.

Acknowledgments. This work was supported by a Discovery Grant
from the Natural Sciences and Engineering Research Council of Canada.
The author is very grateful to Mostafa Fazly for fruitful discussions
and several references on systems of type (1.1). The author is also very
grateful to Pavol Quittner and Frederic Robert for helpful comments
on earlier versions of this paper.
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2. Regularity and integrability results

For any Lebesgue measurable set Ω ⊂ Rn and any σ ∈ (0,∞) and
τ ∈ (0,∞], we let Lσ,τ (Ω) be the Lorentz space defined as the set of
all measurable functions f : Ω→ R such that ‖f‖Lσ,τ (Ω) <∞, where

‖f‖Lσ,τ (Ω) :=


σ1/τ

(∫ ∞
0

hτ−1 meas ({|f | > h})τ/σ dh
)1/τ

if τ <∞

sup
h>0

(
hσ meas ({|f | > h})

)1/σ
if τ =∞

with meas ({|f | > h}) standing for the Lebesgue measure of the set
{x ∈ Ω : |f (x)| > h}. We refer to the book of Grafakos [19, Chapter 1]
for a general presentation of Lorentz spaces.

In Lemmas 2.1, 2.2, and 2.3 below, we recall the generalizations of
Hölder’s and Young’s inequalities for Lorentz spaces. These results are
due to O’Neil [41].

Lemma 2.1. (Hölder’s inequality) Let Ω be a Lebesgue measurable
subset of Rn and σ, σ1, σ2 ∈ (0,∞) and τ, τ1, τ2 ∈ (0,∞] be such that

1

σ1

+
1

σ2

=
1

σ
and

1

τ1

+
1

τ2

≥ 1

τ
(2.1)

with the convention that 1/∞ = 0. Then for any f1 ∈ Lσ1,τ1 (Ω) and
f2 ∈ Lσ2,τ2 (Ω), we have f1f2 ∈ Lσ,τ (Ω) and

‖f1f2‖Lσ,τ (Ω) ≤ C ‖f1‖Lσ1,τ1 (Ω) ‖f2‖Lσ2,τ2 (Ω)

for some constant C independent of Ω, f1, and f2.

Lemma 2.2. (Young’s inequality) Let σ, σ1, σ2 ∈ (1,∞), and τ, τ1, τ2 ∈
(0,∞] be such that

1

σ1

+
1

σ2

=
1

σ
+ 1 and

1

τ1

+
1

τ2

≥ 1

τ
(2.2)

with the convention that 1/∞ = 0. Then for any f1 ∈ Lσ1,τ1 (Rn) and
f2 ∈ Lσ2,τ2 (Rn), we have f1 ∗ f2 ∈ Lσ,τ (Rn) and

‖f1 ∗ f2‖Lσ,τ (Rn) ≤ C ‖f1‖Lσ1,τ1 (Rn) ‖f2‖Lσ2,τ2 (Rn)

for some constant C independent of Ω, f1, and f2.

Lemma 2.3. (A limit case in Young’s inequality) For any σ ∈ (1,∞),
f1 ∈ L1 (Rn), and f2 ∈ Lσ,∞ (Rn), we have f1 ∗ f2 ∈ Lσ,∞ (Rn) and

‖f1 ∗ f2‖Lσ,∞(Rn) ≤ C ‖f1‖L1(Rn) ‖f2‖Lσ,∞(Rn)

for some constant C independent of f1 and f2.

The main result of this section is the following:
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Lemma 2.4. Assume that (1.2) and (1.5) hold true. Then for any
solution (u, v) ∈ La (Rn)× Lb (Rn) of (1.1) such that (1.7) holds true,
we have u, v ∈ C2 (Rn) ∩ L∞ (Rn), u ∈ Ln/(n−2),∞ (Rn), and

v ∈

{
Ln/(n−2),∞ (Rn) if q + s > n/ (n− 2)

Ln(1−s)/((n−2)q−2),∞ (Rn) if q + s < n/ (n− 2) .
(2.3)

In case q+s = n/ (n− 2), we have v ∈ Lσ,∞ (Rn) for all σ > n/ (n− 2)
and

‖v‖Lσ,∞(Rn) ≤ Λ0

(
((n− 2)σ − n)−1/(1−s) + 1

)
(2.4)

for some constant Λ0 independent of σ.

Proof of Lemma 2.4. For this proof we borrow some ideas from Jannelli
and Solimini [26]. We fix a solution (u, v) ∈ La (Rn)×Lb (Rn) of (1.1).
We let Γ be the fundamental solution defined as

Γ (x) := ((n− 2)ωn−1)−1 |x|2−n ∀x ∈ Rn\ {0}
where ωn is the volume of the unit (n− 1)–dimensional sphere.

As a first step, we prove the following result:

Step 2.5. u ≡ Γ ∗
(
|v|p |u|r−1 u

)
and v ≡ Γ ∗

(
|u|q |v|s−1 v

)
in Rn.

Proof of Step 2.5. Since Γ ∈ Ln/(n−2),∞ (Rn), u ∈ La (Rn), and v ∈
Lb (Rn), by applying Lemma 2.2 and using (1.3) and (1.5), we ob-
tain ũ := Γ ∗

(
|v|p |u|r−1 u

)
∈ La (Rn) and ṽ := Γ ∗

(
|u|q |v|s−1 v

)
∈

Lb (Rn). Since moreover the equations −∆ũ = |v|p |u|r−1 u and −∆ṽ =
|u|q |v|s−1 v are satisfied in the distributional sense, we obtain that the
functions u− ũ and v − ṽ are harmonic in Rn. It follows from Greene
and Wu’s Liouville-type result for harmonic functions in Lp–spaces [20]
that u ≡ ũ and v ≡ ṽ in Rn. This ends the proof of Step 2.5. �

Then we prove the following result:

Step 2.6. There exists ε > 0 such that for any σ ∈ (n/ (n− 2) , a+ ε),
we have u ∈ Lσ (Rn).

Proof of Step 2.6. We fix ε > 0 and σ ∈ (n/ (n− 2) , a+ ε). We as-
sume by contradiction that u 6∈ Lσ (Rn). Integration theory yields that
there exists a sequence (ϕα)α∈N in C∞c (Rn) such that

lim
α→∞

∫
Rn
uϕαdx =∞ and ‖ϕα‖Lσ′ (Rn) ≤ 1 ∀α ∈ N (2.5)

where σ′ := σ/ (σ − 1). Moreover, since u ∈ La (Rn), we can choose ϕα
so that

2

∫
Rn
uϕαdx ≥ Sα := sup

u∈Kα

∫
Rn
uϕdx (2.6)

where

Kα :=

{
ϕ ∈ Lσ′ (Rn) ∩ La′ (Rn) ; ‖ϕ‖Lσ′ (Rn) ≤ ‖ϕα‖Lσ′ (Rn)

and ‖ϕ‖La′ (Rn) ≤ ‖ϕα‖La′ (Rn)

}
.
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On the other hand, since (u, v) ∈ La (Rn) × Lb (Rn), b ≥ a, and
p ≥ 1, by applying Hölder’s inequality and using (1.3), we obtain
|v|p−2 v |u|r−1 u ∈ Lµ (Rn) where

1

µ
:=

1

a
− 1

b
+

2

n
.

It follows that there exist sequences (fβ)β∈N in C∞c (Rn) and (gβ)β∈N in

Lµ (Rn) such that

lim
β→∞

‖gβ‖Lµ(Rn) = 0 and |v|p−2 v |u|r−1 u = fβ + gβ ∀β ∈ N. (2.7)

It follows from (2.7) and Step 2.5 that∫
Rn
uϕαdx =

∫
Rn

(Γ ∗ (fβv))ϕαdx+

∫
Rn

(Γ ∗ (gβv))ϕαdx. (2.8)

Since σ > n/ (n− 2), by applying Lemmas 2.1 and 2.2 and using (2.5),
we obtain∫

Rn
(Γ ∗ (fβv))ϕαdx

= O
(
‖Γ‖Ln/(n−2),∞(Rn) ‖fβv‖Lnσ/(n+2σ),σ(Rn) ‖ϕα‖Lσ′ (Rn)

)
= O

(
‖fβv‖Lnσ/(n+2σ),σ(Rn)

)
. (2.9)

With regard to the second integral in the right-hand side of (2.8), by
applying Fubini’s theorem and Step 2.5, we obtain∫

Rn
(Γ ∗ (gβv))ϕαdx =

∫
Rn
gβv (Γ ∗ ϕα) dx

=

∫
Rn
gβ
(
Γ ∗
(
|u|q |v|s−1 v

))
(Γ ∗ ϕα) dx

=

∫
Rn

(Γ ∗ (gβ (Γ ∗ ϕα))) |u|q |v|s−1 vdx. (2.10)

Since σ > n/ (n− 2), by applying Lemma 2.2, we obtain

‖Γ ∗ ϕα‖Lnσ/((n−2)σ−n),σ′ (Rn) = O
(
‖Γ‖Ln/(n−2),∞(Rn) ‖ϕα‖Lσ′ (Rn)

)
= O

(
‖ϕα‖Lσ′ (Rn)

)
. (2.11)

By letting ε be small enough so that

1

a
− 1

b
<

1

a+ ε
,

applying Lemmas 2.1 and 2.2, and using (2.7) and (2.11), we obtain
that if σ ∈ (n/ (n− 2) , a+ ε), then

‖Γ ∗ (gβ (Γ ∗ ϕα))‖Lν,σ′ (Rn)

= O
(
‖Γ‖Ln/(n−2),∞(Rn) ‖gβ‖Lµ,∞(Rn) ‖Γ ∗ ϕα‖Lnσ/((n−2)σ−n),σ′ (Rn)

)
= o
(
‖ϕα‖Lσ′ (Rn)

)
(2.12)

as β →∞ where
1

ν
:=

n− 2

n
+

1

a
− 1

b
− 1

σ
.
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Since q ≥ 1, it follows from (1.3), (2.12), and another application of
Lemma 2.1 that∥∥(Γ ∗ (gβ (Γ ∗ ϕα))) |u|q−2 u |v|s−1 v

∥∥
Lσ′ (Rn)

= O
(
‖(Γ ∗ (gβ (Γ ∗ ϕα)))‖Lν,σ′ (Rn) ‖u‖

q−1
La,∞(Rn) ‖v‖

s
Lb,∞(Rn)

)
= o
(
‖ϕα‖Lσ′ (Rn)

)
(2.13)

as β →∞. Similarly as in (2.11)–(2.13), we obtain∥∥(Γ ∗ (gβ (Γ ∗ ϕα))) |u|q−2 u |v|s−1 v
∥∥
La
′ (Rn)

= o
(
‖ϕα‖La′ (Rn)

)
(2.14)

as β →∞. It follows from (2.6), (2.10), (2.13), and (2.14) that∫
Rn

(Γ ∗ (gβv))ϕαdx = o

(∫
Rn
uϕαdx

)
(2.15)

as β →∞. Now by putting together (2.8), (2.9), and (2.15), we obtain∫
Rn
uϕαdx = O

(
‖fβv‖Lnσ/(n+2σ),σ(Rn)

)
(2.16)

for large β. Since fβ ∈ C∞c (Rn) and v ∈ Lb (Rn), we obtain a contra-
diction between (2.5) and (2.16) provided b > nσ/ (n+ 2σ). Moreover,
the latter inequality holds true when σ < a + ε for small ε > 0 as a
consequence of b ≥ a. This ends the proof of Step 2.6. �

Then we prove the following result:

Step 2.7. u ∈ Ln/(n−2),∞ (Rn).

Proof of Step 2.7. We let (fβ)β∈N and (gβ)β∈N be as in (2.7). It follows
from Step 2.5 that

u ≡ Γ ∗ (fβv) + Γ ∗
(
gβ
(
Γ ∗
(
|u|q |v|s−1 v

)))
in Rn. (2.17)

For any σ ∈ (n/ (n− 2) , a), by applying Lemmas 2.1 and 2.2 and
Step 2.6 and using (1.5), we obtain∥∥Γ ∗

(
|u|q |v|s−1 v

)∥∥
Lω,∞(Rn)

= O
(
‖Γ‖Ln/(n−2),∞(Rn) ‖u‖

q−1
La,∞(Rn) ‖v‖

s
Lb,∞(Rn) ‖u‖Lσ,∞(Rn)

)
= O

(
1
)

(2.18)

and then∥∥(Γ ∗ (gβ (Γ ∗ (|u|q |v|s−1 v
))))∥∥

Lσ,∞(Rn)

= O
(
‖Γ‖Ln/(n−2),∞(Rn) ‖gβ‖Lµ,∞(Rn)

∥∥Γ ∗
(
|u|q |v|s−1 v

)∥∥
Lω,∞(Rn)

)
= o
(
1
)

(2.19)

as β →∞ where
1

ω
:=

1

σ
+

1

b
− 1

a
.

It follows from (2.17)–(2.19) that

‖u‖Lσ,∞(Rn) ≤ 2 ‖Γ ∗ (fβv)‖Lσ,∞(Rn) (2.20)



10 JÉRÔME VÉTOIS

for large β. By passing to the limit into (2.20) as σ → n/ (n− 2), we
obtain

‖u‖Ln/(n−2),∞(Rn) ≤ 2 ‖Γ ∗ (fβv)‖Ln/(n−2),∞(Rn) . (2.21)

Since Γ ∈ Ln/(n−2),∞ (Rn), fβ ∈ C∞c (Rn), and v ∈ L1
loc (Rn), by ap-

plying Lemma 2.3, we obtain Γ ∗ (fβv) ∈ Ln/(n−2),∞ (Rn). Hence it
follows from (2.21) that u ∈ Ln/(n−2),∞ (Rn). This ends the proof of
Step 2.7. �

Our next step is as follows:

Step 2.8. Let σ̂, σ ∈ (0,∞) be such that u ∈ Lσ̂,∞ (Rn) and v ∈
Lσ,∞ (Rn). Then the following results hold true:

(i) If
2

n
<
p

σ
+
r

σ̂
< 1, (2.22)

then

‖u‖Lσ,∞(Rn) ≤ C ‖v‖pLσ,∞(Rn) ‖u‖
r
Lσ̂,∞(Rn) (2.23)

where
1

σ
:=

p

σ
+
r

σ̂
− 2

n
.

(ii) If
2

n
<
q

σ̂
+
s

σ
< 1, (2.24)

then

‖v‖Lσ,∞(Rn) ≤ C ‖u‖q
Lσ̂,∞(Rn)

‖v‖sLσ,∞(Rn) (2.25)

where
1

σ
=
q

σ̂
+
s

σ
− 2

n
.

Moreover, the constants C in (2.23) and (2.25) are such that

C ≤ Cn

(
nσ

n+ 2σ

)′
=

Cnnσ

(n− 2)σ − n
(2.26)

for some constant Cn depending only on n.

Proof of Step 2.8. Since Γ ∈ Ln/(n−2),∞ (Rn), the estimates (2.23) and
(2.25) follow from Step 2.5 by applying Lemmas 2.1 and 2.2. To obtain
the estimate (2.26), we remark that

‖f‖Lσ,∞(Rn) ≤ sup
0<|E|<∞

|E|−1/σ′
∫
E

|f | dx ≤ σ′ ‖f‖Lσ,∞(Rn) (2.27)

for all f ∈ Lσ,∞ (Rn) and σ ∈ (1,∞) (see for instance Grafakos [19,
Exercises 1.1.12]). It follows from (2.27) and the standard Young’s
inequality in L1 (Rn) that

‖f1 ∗ f2‖Lσ,∞(Rn) ≤ σ′1σ
′
2 ‖f1‖Lσ1,∞(Rn) ‖f2‖Lσ2,∞(Rn) (2.28)
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for all f1 ∈ Lσ1,∞ (Rn), f2 ∈ Lσ2,∞ (Rn), and σ, σ1, σ2 ∈ (1,∞) such
that (2.2) holds true. Moreover, we have

‖f1f2‖Lσ,∞(Rn) ≤
σ

1/σ1
1 σ

1/σ2
2

σ1/σ
‖f1‖Lσ1,∞(Rn) ‖f2‖Lσ2,∞(Rn) (2.29)

for all f1 ∈ Lσ1,∞ (Rn), f2 ∈ Lσ2,∞ (Rn), and σ, σ1, σ2 ∈ (0,∞) such
that (2.1) holds true (see for instance Grafakos [19, Exercise 1.1.15]).
The estimate (2.26) then follows from (2.28) and (2.29). �

Then we prove the following result:

Step 2.9. u, v ∈ C2 (Rn) ∩ L∞ (Rn).

Proof of Step 2.9. It follows from Step 2.6 that u ∈ La+ε (Rn) for small
ε > 0. We let (σ̂α)α∈N and (σα)α∈N be the sequences defined by σ̂0 :=
a+ ε, σ0 := b, and

1

σα+1

:= max

(
q

σ̂α
+

s

σα
− 2

n
, 0

)
1

σ̂α+1

:= max

(
p

σα+1

+
r

σ̂α
− 2

n
, 0

) ∀α ∈ N

with the convention that 1/∞ = 0. By using (1.2) and (1.3), one can
see that σ̂α, σα ↗ ∞ as α → ∞. Moreover, by applying Step 2.8 to-
gether with an induction argument, we obtain that (u, v) ∈ Lσ̂,∞ (Rn)×
Lσ,∞ (Rn) for all σ̂ ∈ [a, σ̂α) and σ ∈ [b, σα). Hence we obtain that
u, v ∈ Lσ (Rn) for large σ > 0. By applying Step 2.5, Calderon–
Zygmund’s inequality, and an interpolation inequality (see Gilbarg–
Trudinger [17, Theorems 7.28 and 9.9]), it follows that u, v ∈ W 2,σ (Rn)
for large σ > 0. Finally, by applying Sobolev’s inequalities and stan-
dard elliptic regularity theory, we obtain u, v ∈ L∞ (Rn)∩C2 (Rn). �

Now we can prove the following result:

Step 2.10. (2.3) and (2.4) hold true.

Proof of Step 2.10. We separate the following cases: q+s < n/ (n− 2),
q + s = n/ (n− 2), [q + s > n/ (n− 2), q < n/ (n− 2), and s ≤ 1],
[q < n/ (n− 2) and s > 1], and [q ≥ n/ (n− 2) and s 6= 0].

Case q + s < n/ (n− 2). In this case, we fix σ̂ := n/ (n− 2) so that
(2.24) holds true for all σ such that

σ >
ns

n− (n− 2) q
. (2.30)

We let (σα)α∈N be the sequence defined by σ0 := b and

1

σα+1

:=
s

σα
+

(n− 2) q − 2

n
∀α ∈ N.

Since q + s < n/ (n− 2), we obtain

σα ↘
n (1− s)

(n− 2) q − 2
> max

(
ns

n− (n− 2) q
,

n

n− 2

)
(2.31)
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as α → ∞. It follows from (2.31) that (2.30) holds true with σ = σα
for all α ∈ N. By applying Step 2.8, we then obtain

‖v‖Lσα,∞(Rn) ≤
Cnnσα

(n− 2)σα − n
‖u‖q

Ln/(n−2),∞(Rn)
‖v‖sLσα−1,∞(Rn) (2.32)

for all α ≥ 1. It follows from (2.31) and Step 2.7 that

Cnnσα
(n− 2)σα − n

‖u‖q
Ln/(n−2),∞(Rn)

≤ C (2.33)

for some constant C independent of α. It follows from (2.32) and (2.33)
that

‖v‖Lσα,∞(Rn) ≤ C1+s+···+sα−1 ‖v‖s
α

Lb,∞(Rn) . (2.34)

By passing to the limit into (2.32) as α→∞, we obtain

‖v‖Ln(1−s)/((n−2)q−2),∞(Rn) ≤ C1/(1−s),

namely (2.3) holds true in case q + s < n/ (n− 2).

Case q + s = n/ (n− 2). In this case, we let σ̂ and (σα)α∈N be as in the
previous case but instead of (2.31), we obtain

σα ↘
n (1− s)

(n− 2) q − 2
=

ns

n− (n− 2) q
=

n

n− 2
(2.35)

as α→∞. Moreover, one can check that

(n− 2)σα − n =
n ((n− 2) b− n) sα

(n− 2) b− ((n− 2) b− n) sα

∼ n ((n− 2) b− n)

(n− 2) b
sα (2.36)

as α→∞. It follows from (2.35), (2.36), and Step 2.7 that

Cnnσα ‖u‖qLn/(n−2),∞(Rn)

(n− 2)σα − n
≤ Cs−α (2.37)

for some constant C independent of α. It follows from (2.32) and (2.37)
that

‖v‖Lσα,∞(Rn) ≤ C1+s+···+sα−1

s−α−(α−1)s−···−sα−1 ‖v‖s
α

Lb,∞(Rn)

∼ C1/(1−s)s(s−(1−s)α)/(1−s)2

∼ C ′ ((n− 2)σα − n)−1/(1−s) (2.38)

for some constant C ′ independent of α. The estimate (2.4) then follows
from (2.38) by an easy interpolation argument.

Case q + s > n/ (n− 2), q < n/ (n− 2), and s ≤ 1. In this case, we
choose σ̂ so that

q < σ̂ <
nq

n− (n− 2) s
. (2.39)

It follows from (2.39) that

sσ̂

σ̂ − q
<

ns

n− (n− 2) q
(2.40)



FINITE ENERGY SOLUTIONS TO ELLIPTIC SYSTEMS IN Rn 13

and (2.24) holds true for all σ such that

σ >
sσ̂

σ̂ − q
. (2.41)

Moreover, u ∈ Lσ̂,∞ (Rn) as a consequence of (2.39) and Steps 2.7
and 2.9. We let (σα)α∈N be the sequence defined by

1

σα+1

:=
s

σα
+
q

σ̂
− 2

n
∀α ∈ N

with σ0 chosen large enough so that v ∈ Lσ0,∞ (Rn). It follows from
the second inequality in (2.39) that

σα ↘
nσ̂ (1− s)
nq − 2σ̂

<
n

n− 2
(2.42)

as α → ∞. Moreover, it follows from (2.40) that we can choose σ0 so
that

sσ̂

σ̂ − q
< σα0 <

ns

n− (n− 2) q
(2.43)

for some α0 ≥ 1. It follows from (2.42) and (2.43) that (2.41) holds
true with σ = σα for all α ∈ {0, . . . , α0}. By applying Step 2.8, we
then obtain

‖v‖Lσα,∞(Rn) = O
(
‖u‖q

Lσ̂,∞(Rn)
‖v‖sLσα−1,∞(Rn)

)
(2.44)

for all α ∈ {1, . . . , α0}. It follows from (2.44) that

‖v‖Lσα0 ,∞(Rn) = O
(
‖u‖q(1+s+···+sα0−1)

Lσ̂,∞(Rn)
‖v‖s

α0

Lσ0,∞(Rn)

)
= O (1) . (2.45)

It follows from (2.43) that we can choose σ0 so that

σα0 < σ0 <
ns

n− (n− 2) q
(2.46)

By using (2.45), the first inequality in (2.46), and Step 2.9, we obtain
v ∈ Lσ0 (Rn). Moreover, by using the second inequality in (2.46), we
obtain

σ̂0 :=
qσ0

σ0 − s
>

n

n− 2
. (2.47)

It follows from (2.47) and Steps 2.7 and 2.9 that u ∈ Lσ̂0 (Rn) . By
applying Lemmas 2.1 and 2.3 and Step 2.5, we then obtain

‖v‖Ln/(n−2),∞(Rn) = O
(
‖Γ‖Ln/(n−2),∞(Rn) ‖u‖

q

Lσ̂0 (Rn)
‖v‖sLσ0 (Rn)

)
= O (1) ,

namely (2.3) holds true in case q+ s > n/ (n− 2), q < n/ (n− 2), and
s ≤ 1.

Case q < n/ (n− 2) and s > 1. Note that by using (1.2)–(1.5), we ob-
tain that s > 1 implies that q+ s > n/ (n− 2). In this case, we choose
σ̂ so that

1

a
<

1

σ̂
< min

(
n− 2

n
,

1

a
+
n− 2

nq
,

1

a
+

(n− 2) (q + s)− n
nsq

)
. (2.48)
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By using (2.48) and Step 2.7 and since u ∈ La (Rn), we obtain u ∈
Lσ̂,∞ (Rn). We let (σα)α∈N be the sequence defined by

1

σα+1

:=
1

σα
+
s− 1

b
+
q

σ̂
− 2

n
∀α ∈ N

with σ0 chosen large enough so that v ∈ Lσ0,∞ (Rn). It follows from
(1.3) and (2.48) that σα ↘ 0 as α→∞ and that we can choose σ0 so
that

n− (n− 2) q

ns
<

1

σα0

<
q

a
− q

σ̂
+
n− 2

n
(2.49)

for some α0 ≥ 1. It follows from (1.3), (2.48), and (2.49) that (2.24)
holds true with σ = sbσα/ ((s− 1)σα + b) for all α ∈ {0, . . . , α0}. By
applying Step 2.8 and Lemma 2.1, we then obtain

‖v‖Lσα,∞(Rn) = O
(
‖u‖q

Lσ̂,∞(Rn)
‖v‖s

Lsbσα−1/((s−1)σα−1+b),∞(Rn)

)
= O

(
‖u‖q

Lσ̂,∞(Rn)
‖v‖s−1

Lb,∞(Rn) ‖v‖Lσα−1,∞(Rn)

)
(2.50)

for all α ∈ {1, . . . , α0}. It follows from (2.50) that

‖v‖Lσα0 ,∞(Rn) = O
(
‖u‖α0q

Lσ̂,∞(Rn)
‖v‖α0(s−1)

Lb,∞(Rn)
‖v‖Lσ0,∞(Rn)

)
= O (1) .

We then choose σ0 and σ̂0 as in (2.46) and (2.46) and we conclude in
the same way as in the previous case. This ends the proof of Step 2.10
and also Lemma 2.4.

Case q ≥ n/ (n− 2) and s 6= 0. In this case, we choose σ0 large enough
so that v ∈ Lσ0 (Rn) and we let σ̂0 be as in (2.46). We then obtain
σ̂0 > n/ (n− 2) hence u ∈ Lσ̂0 (Rn). We then conclude in the same
way as in the previous two cases. �

3. Decay estimates

In this section we establish the a priori estimates (1.9) and (1.11).
We assume that (1.2) and (1.5) hold true. We fix a solution (u, v) ∈
La (Rn)× Lb (Rn) of (1.1) such that (1.7) and (1.8) hold true.

First we establish the following preliminary (non-sharp) estimate:

Step 3.1. There exists a constant K0 such that

|u (x)|a + |v (x)|b ≤ K0 (1 + |x|n)
−1 ∀x ∈ Rn. (3.1)

Proof of Step 3.1. We assume by contradiction that (3.1) does not hold
true. Since u, v ∈ L∞ (Rn), it follows there exists a sequence of points
(xα)α∈N in Rn such that

|xα|M (xα) > 2α ∀α ∈ N
where

M (x) :=
(
|u (x)|a + |v (x)|b

)1/n
.

By applying a doubling property (see Poláčik, Quittner, and Sou-
plet [42, Lemma 5.1]), we obtain that for any α, there exists a point
yα ∈ Rn such that

|yα|M (yα) > 2α , M (xα) ≤M (yα) , (3.2)
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and
M (y) ≤ 2M (yα) ∀y ∈ B

(
yα, α/M (yα)

)
. (3.3)

We define{
uα (y) := M (yα)−n/a u

(
M (yα)−1 y + yα

)
vα (y) := M (yα)−n/b v

(
M (yα)−1 y + yα

) ∀y ∈ Rn.

By using (1.1), we obtain{
−∆uα = |vα|p |uα|r−1 uα in Rn

−∆vα = |uα|q |vα|s−1 vα in Rn.
(3.4)

Moreover, it follows from (3.3) that

|uα (y)|a + |vα (y)|b ≤ 2n ∀y ∈ B
(
0, α
)
. (3.5)

By applying standard elliptic estimates, it follows from (3.4) and (3.5)
that the sequences (uα)α∈N and (vα)α∈N converge up to a subsequence
in C2

loc (Rn) to some functions u∞ and v∞, respectively. On the other
hand, by using the definition of uα and vα, we obtain∫

B(0,R)

(
|uα|a + |vα|b

)
dx =

∫
B(yα,R/M(yα))

(
|u|a + |v|b

)
dx. (3.6)

for all R > 0. Since (u, v) ∈ La (Rn) × Lb (Rn) and u, v ∈ L∞ (Rn), it
follows from the first inequality in (3.2) that∫

B(yα,R/M(yα))

(
|u|a + |v|b

)
dx −→ 0 (3.7)

as α → ∞. It follows from (3.6) and (3.7) that u∞ ≡ v∞ ≡ 0 in Rn.
However by using the definitions of uα and vα, we obtain

|uα (0)|a + |vα (0)|b = 1

which gives

|u∞ (0)|a + |v∞ (0)|b = 1.

Thus we obtain a contradiction. This ends the proof of Step 3.1. �

Then we prove the following result:

Step 3.2. If p ≥ s (this holds true in case r < 1 as a consequence of
(1.2)) and u ≥ 0 in Rn, then

|v (x)|p−s+1

p− s+ 1
≤ u (x)q−r+1

q − r + 1
∀x ∈ Rn. (3.8)

Proof of Step 3.2. The inequality (3.8) has been obtained by Quittner
and Souplet [44] in case p+r = q+s and u, v ≥ 0 in Rn and Souplet [50]
in case r = s = 0 and u, v ≥ 0 in Rn. Here we adapt the proofs of [44]
and [50] to our setting. We assume that p ≥ s and u ≥ 0 in Rn. By
applying the strong maximum principle and since u, v ∈ L∞ (Rn), we
obtain that either u ≡ v ≡ 0 or u > 0 in Rn. Hence we can assume
that u > 0. We define

w := |v| − cuθ
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where

θ :=
q − r + 1

p− s+ 1
and c := θ−1/(p−s+1).

It follows from (1.2) that 0 < θ ≤ 1. Note that since u > 0 in Rn, we
obtain |v| > 0 in W := {w ≥ 0} hence w is smooth in W . Moreover,
by using (1.1) and since 0 < θ ≤ 1 and p ≥ s, we obtain

∆w = ∆ |v|+cθ (1− θ)uθ−2 |∇u|2−cθuθ−1∆u ≥ cθuθ+r−1 |v|p−uq |v|s

= cθ |v|s uθ+r−1
(
|v|p−s − cp−suθ(p−s)

)
≥ 0 in W. (3.9)

For any ε > 0, we define wε := εH (w/ε) where H ∈ C∞ (R) is such
that H (s) = 0 for all s ∈ (−∞, 0) and H (s) = s for all s ∈ (1,∞).
For any ε, R > 0, by integrating by parts, we obtain∫

B(0,R)

|∇wε|2 dx =

∫
∂B(0,R)

wε
∂wε
∂ν

dσ −
∫
B(0,R)

wε∆wεdx

which gives∫
B(0,R)

H ′ (w/ε)2 |∇w|2 dx = ε

∫
∂B(0,R)

H (w/ε)H ′ (w/ε)
∂w

∂ν
dσ

−
∫
B(0,R)

H (w/ε)
(
εH ′ (w/ε) ∆w +H ′′ (w/ε) |∇w|2

)
dx. (3.10)

By using (3.9) and passing to the limit into (3.10) as ε→ 0, we obtain∫
B(0,R)∩W

|∇w|2 dx ≤
∫
∂B(0,R)∩W

w
∂w

∂ν
dσ

=
1

2
Rn−1 d

dr

[∫
∂B(0,1)

w+ (rz)2 dσ (z)

]
r=R

(3.11)

where w+ := max (w, 0) and dσ is the volume element on ∂B (0, 1) and
∂B (0, R). On the other hand, by applying Step 3.1, we obtain

w (x) < |v (x)| ≤ K
1/b
0 (1 + |x|n)

−1/b ∀x ∈ Rn. (3.12)

It follows from (3.12) that there exists a sequence of positive real num-
bers (Rα)α∈N such that Rα →∞ as α→∞ and

d

dr

[∫
∂B(0,1)

w+ (rz)2 dσ (z)

]
r=Rα

< 0.

By applying (3.11) with R = Rα and letting α → ∞, we obtain that
∇w ≡ 0 in W . It follows from (3.12) that w ≤ 0 in Rn, namely (3.8)
holds true. This ends the proof of Step 3.2. �

Now we can establish our sharp upper bound estimates:

Step 3.3. The upper bound estimates (1.9) hold true.

Proof of Step 3.3. We separate the cases s < 1 and s ≥ 1.
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Case s < 1. In this case, it follows from (1.8) that either u ≥ 0 in Rn

or r ≥ 1. We begin with proving the upper bound estimate for u. For
any y ∈ Rn and R ≥ 1, we define

uR (y) := Rn−2u (Ry) . (3.13)

It follows from the first equation of (1.1) that

−∆uR (y) = fR (y) := R2 |v (Ry)|p |u (Ry)|r−1 uR (y) . (3.14)

By applying Step 3.1, together with Step 3.2 in case r < 1, and using
(1.3), we obtain

|fR (y)| ≤ C |y|−2 |uR (y)| (3.15)

for some constant C independent of y and R. Moreover, by applying
Kato’s inequality [28], we obtain

−∆ |uR| ≤ |∆uR| in Rn (3.16)

where the inequality must be understood in the weak sense. By apply-
ing a weak Harnack-type inequality (see Trudinger [54, Theorem 1.3]),
it follows from (3.14)–(3.16) that for any σ > 1, there exists a constant
Cσ independent of R such that

‖uR‖L∞(B(0,4)\B(0,2)) ≤ Cσ ‖uR‖Lσ(B(0,5)\B(0,1)) . (3.17)

By taking σ ∈ (1, n/ (n− 2)) and applying Lemma 2.1, we obtain

‖uR‖Lσ(B(0,5)\B(0,1)) ≤ C ′σ ‖uR‖Ln/(n−2),∞(B(0,5)\B(0,1)) (3.18)

for some constant C ′σ independent of R. We observe that

‖uR‖Ln/(n−2),∞(B(0,5)\B(0,1)) = ‖u‖Ln/(n−2),∞(B(0,5R)\B(0,R)) . (3.19)

It follows from (3.17)–(3.19), and Lemma 2.4 that

‖uR‖L∞(B(0,4)\B(0,2)) ≤ C (3.20)

for some constant C independent of R. By applying (3.20) with R =
|x| /3, we obtain

|u (x)| ≤ C (|x| /3)2−n ∀x ∈ Rn\B (0, 3) . (3.21)

Since on the other hand, u is continuous in Rn, we can deduce from
(3.21) that the upper bound estimate for u in (1.9) holds true.

Now we establish the upper bound estimate for v. For any y ∈ Rn

and R ≥ 1, we define

vR (y) :=


Rn−2v (Ry) if q + s > n/ (n− 2)

Rn−2v (Ry)

ln (1 +R)1/(1−s) if q + s = n/ (n− 2)

R((n−2)q−2)/(1−s)v (Ry) if q + s < n/ (n− 2) .

(3.22)

It follows from the second equation of (1.1) that

−∆vR (y) = gR (y) := R2 |u (Ry)|q |v (Ry)|s−1 vR (y) . (3.23)
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By using the upper bound estimate for u, we obtain

|gR (y)| ≤


CRn−(q+s)(n−2) |y|−q(n−2) |vR (y)|s if q + s > n/ (n− 2)

C ln (1 +R)−1 |y|−q(n−2) |vR (y)|s if q + s = n/ (n− 2)

C |y|−q(n−2) |vR (y)|s if q + s < n/ (n− 2)

≤ C ′ |y|−q(n−2) (|vR (y)|+ 1) (3.24)

for some constants C,C ′ independent of y and R. Moreover, by apply-
ing Kato’s inequality [28], we obtain

−∆ |vR| ≤ |∆vR| in Rn (3.25)

where the inequality must be understood in the weak sense. Now we
separate two cases. First we consider the case q + s 6= n/ (n− 2). By
applying a weak Harnack-type inequality (see Trudinger [54, Corol-
lary 1.1]), it follows from (3.23)–(3.25) that for any σ > 1, there exists
a constant Cσ independent of R such that

‖vR‖L∞(B(0,4)\B(0,2)) ≤ Cσ
(
‖vR‖Lσ(B(0,5)\B(0,1)) + 1

)
. (3.26)

By taking σ ∈ (1, σ0) where

σ0 :=

{
n/ (n− 2) if q + s > n/ (n− 2)

n (1− s) / ((n− 2) q − 2) if q + s < n/ (n− 2)

and applying Lemma 2.1, we obtain

‖vR‖Lσ(B(0,5)\B(0,1)) ≤ C ′σ ‖vR‖Lσ0,∞(B(0,5)\B(0,1)) (3.27)

for some constant C ′σ independent of R. We observe that

‖vR‖Lσ0,∞(B(0,5)\B(0,1)) = ‖v‖Lσ0,∞(B(0,5R)\B(0,R)) . (3.28)

It follows from (3.26)–(3.28), and Lemma 2.4 that

‖vR‖L∞(B(0,4)\B(0,2)) ≤ C (3.29)

for some constant C independent of R. By applying (3.29) with R =
|x| /3, we obtain

|v (x)| ≤ C (|x| /3)−n/σ0 ∀x ∈ Rn\B (0, 3) . (3.30)

Since on the other hand, v is continuous in Rn, we can deduce from
(3.30) that the upper bound estimate for v in (1.9) holds true. We now
consider the remaining case q + s = n/ (n− 2). In this case, we define

σR :=
n+ ln (1 +R)−1

n− 2
.

Similarly as in (3.26)–(3.27), we obtain

‖vR‖L∞(B(0,4)\B(0,2)) ≤ C
(
‖vR‖LσR,∞(B(0,5)\B(0,1)) + 1

)
(3.31)
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for some constant C independent of R. An easy calculation yields

‖vR‖LσR,∞(B(0,5)\B(0,1)) =
R((n−2)σR−n)/σR

ln (1 +R)1/(1−s) ‖v‖LσR,∞(B(0,5R)\B(0,R))

≤ C ln (1 +R)−1/(1−s) ‖v‖LσR,∞(B(0,5R)\B(0,R)) (3.32)

for some constant C independent of R. Moreover, it follows from
Lemma 2.4 that

‖v‖LσR,∞(B(0,5R)\B(0,R)) ≤ Λ0

(
((n− 2)σR − n)−1/(1−s) + 1

)
= Λ0

(
ln (1 +R)1/(1−s) + 1

)
(3.33)

By putting together (3.31)–(3.33), we obtain that (3.29) also holds
true in this case. By proceeding as in (3.30), we then conclude that
the upper bound estimate for v in (1.9) holds true in case s < 1.

Case s ≥ 1. Note that by using (1.2)–(1.5), we obtain that s ≥ 1 im-
plies that q + s > n/ (n− 2). In this case, we begin with proving the
upper bound estimate for v. For any R ≥ 1, we let vR and gR be as in
(3.22) and (3.23). By applying Step 3.1 and using (1.3), we obtain

|gR (y)| ≤ C |y|−2 |vR (y)| (3.34)

We deduce the upper bound estimate for v from (3.34) by proceeding
as in (3.16)–(3.21). We then define uR and fR as in (3.13) and (3.14).
By using the upper bound estimate for v, together with Step 3.1 and
(1.5) in case r ≥ 1, we obtain

|fR (y)| ≤

{
CRn−(p+r)(n−2) |y|−p(n−2) (|uR (y)|+ 1) if r < 1

CR−p(n−2−n/b) |y|−2−p(n−2−n/b) |uR (y)| if r ≥ 1

≤

{
C ′ |y|−p(n−2) (|uR (y)|+ 1) if r < 1

C ′ |y|−2−p(n−2−n/b) |uR (y)| if r ≥ 1
(3.35)

for some constants C,C ′ independent of y and R. We then deduce the
upper bound estimate for u from (3.35) by proceeding as in (3.25)–
(3.30). This ends the proof of Step 3.3. �

The last step in the proof of Theorem 1.1 is as follows:

Step 3.4. Assume that u, v ≥ 0 in Rn. Then either u ≡ v ≡ 0 in Rn

or the lower bound estimates (1.11) hold true.

Proof of Step 3.4. By applying the strong maximum principle and since
u, v ∈ L∞ (Rn), we obtain that either u ≡ v ≡ 0 or u, v > 0 in Rn. We
assume that we are in the latter case. By using Step 2.5, we obtain

u (x) ≥
∫
B(0,1)

Γ (x− y) v (y)p u (y)r dy ≥ C
(
1 + |x|n−2)−1 ∀x ∈ Rn

for some constant C independent of x, and thus we obtain that the
lower bound estimate for u in (1.11) holds true. Now we establish the
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lower bound estimate for v. By using Step 2.5 and the lower bound
estimate for u, we obtain∫

Rn
|x− y|2−n

(
1 + |y|n−2)−q v (y)s dy ≤ Cv (x) ∀x ∈ Rn (3.36)

for some constant C independent of x. We define

A0 := inf
|x|<1

v (x) , Ak := inf
2k−1<|x|<2k

v (x) ∀k ∈ N\ {0} ,

I0,k := inf
2k−1<|x|<2k

∫
B(0,1)

|x− y|2−n dy ∀k ∈ N\ {0} ,

and

Ij,k := inf
2k−1<|x|<2k

∫
B(0,2j)\B(0,2j−1)

|x− y|2−n dy ∀j, k ∈ N\ {0} .

It follows from (3.36) that
∞∑
j=0

2−jq(n−2)AsjIj,k ≤ CAk. (3.37)

for some constant C independent of j and k. An easy calculation gives

Ij,k ≥ c2nj−(n−2)k ∀j ∈ {0, . . . , k} (3.38)

for some constant c > 0 independent of k. It follows from (3.37) and
(3.38) that

Ak ≥


c2−k(n−2) if q + s > n/ (n− 2)

c2−k(n−2)k1/(1−s) if q + s = n/ (n− 2)

c2−k((n−2)q−2)/(1−s) if q + s < n/ (n− 2)

(3.39)

for some constant c > 0 independent of k. It follows from (3.39) that
the lower bound estimate for v in (1.11) holds true. This ends the proof
of Step 3.4 and also Theorem 1.1. �

4. Symmetry results

This section is devoted to the proofs of Theorems 1.2–1.4. We assume
that (1.2) and (1.5) hold true. We fix a solution (u, v) ∈ La (Rn) ×
Lb (Rn) of (1.1). By applying the strong maximum principle and since
u, v ∈ L∞ (Rn), we obtain that either u ≡ v ≡ 0 or u, v > 0 in Rn. We
assume that we are in the latter case. In case q + s < n/ (n− 2), we
assume moreover that (1.12) holds true.

This proof relies on the moving plane method and follows in great
part the lines of Liu and Ma [36] but with the key difference in case
q + s < n/ (n− 2) that we consider different powers in the definitions
of Uλ and V λ below. For any λ > 0, we define

Σλ := {x = (x1, x
′) ∈ Rn : x1 < λ}

and

Uλ (x) := uλ (x)− u (x) and Vλ (x) := vλ (x)− v (x)
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where

uλ (x) := u (xλ) , vλ (x) := v (xλ) , and xλ := (2λ− x1, x
′) .

By using (1.1) and applying the mean value theorem, we obtain

−∆Uλ = rvpξr−1
u,u Uλ + pξp−1

u,v u
r
λVλ in Rn (4.1)

and

−∆Vλ = suqξs−1
v,v Vλ + qξq−1

v,u v
s
λUλ in Rn (4.2)

for some functions ξu,u, ξu,v, ξv,u, ξv,v : Rn → R such that

min (u, uλ) ≤ ξu,u, ξv,u ≤ max (u, uλ) (4.3)

and

min (v, vλ) ≤ ξu,v, ξv,v ≤ max (v, vλ) . (4.4)

We define

θu = θv :=
n− 2

2
if q + s > n/ (n− 2)

θu = θv + ε :=
n− 2

2
if q + s = n/ (n− 2)

θu := θv +
n− (n− 2) (q + s)

1− s
+ ε

θv := min
(n− 2

2
,
(n− 2) q − 2

1− s
− 2ε

) if q + s < n/ (n− 2)

where ε is a small positive parameter to be fixed later on. One can
easily see that if ε is chosen small enough, then

0 < θu < n− 2 (4.5)

and

0 < θv <


n− 2 if q + s ≥ n/ (n− 2)

(n− 2) q − 2

1− s
if q + s < n/ (n− 2) .

(4.6)

We then define

Uλ (x) :=
(
1 + |x|2

)θu/2
Uλ (x) and V λ (x) :=

(
1 + |x|2

)θv/2
Vλ (x) .

It follows from (4.5), (4.6), and Theorem 1.1 that

lim
|x|→∞

Uλ (x) = 0 and lim
|x|→∞

V λ (x) = 0. (4.7)

Moreover, it follows from (4.1) and (4.2) that

−∆Uλ +
2θu

1 + |x|2
〈
x,∇Uλ

〉
+
θu
(
n+ (n− 2− θu) |x|2

)(
1 + |x|2

)2 Uλ

= rvpξr−1
u,u Uλ + pξp−1

u,v u
r
λ

(
1 + |x|2

)(θu−θv)/2
V λ in Rn (4.8)
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and

−∆V λ +
2θv

1 + |x|2
〈
x,∇V λ

〉
+
θv
(
n+ (n− 2− θv) |x|2

)(
1 + |x|2

)2 V λ

= suqξs−1
v,v V λ + qξq−1

v,u v
s
λ

(
1 + |x|2

)(θv−θu)/2
Uλ in Rn. (4.9)

As a first step, we prove the following result:

Step 4.1. Let ε be the positive constant in the definition of θu and θv.
There exists δ0, ε0 > 0 such that if ε ∈ (0, ε0), then for any δ ∈ (0, δ0)
and λ ∈ R, there exists Rδ,ε,λ > 0 such that

pv (x)p−1 u (x)r <
θu
(
n+ (n− 2− θu) |x|2

)
2
(
1 + |x|2

)2+(θu−θv)/2
, (4.10)

rv (x)p u (x)r−1 <
θu
(
n+ (n− 2− θu) |x|2

)
2
(
1 + |x|2

)2 if r ≥ 1, (4.11)

rv (x)p uµ (x)r−1 <
θu
(
n+ (n− 2− θu) |x|2

)
2
(
1 + |x|2

)2 if r < 1, (4.12)

qu (x)q−1 v (x)s <
δθv
(
n+ (n− 2− θv) |x|2

)(
1 + |x|2

)2+(θv−θu)/2
, (4.13)

su (x)q v (x)s−1 <
(1− δ) θv

(
n+ (n− 2− θv) |x|2

)(
1 + |x|2

)2 if s ≥ 1, (4.14)

su (x)q vµ (x)s−1 <
(1− δ) θv

(
n+ (n− 2− θv) |x|2

)(
1 + |x|2

)2 if s < 1 (4.15)

for all µ ≤ λ and x ∈ Σµ\B (0, Rδ,ε,λ).

Proof of Step 4.1. By using (1.2)–(1.5) and Theorem 1.1, we obtain

v (x)p−1 u (x)r

=


O
(
|x|−(n−2)(p+r−1) ) if q + s > n/ (n− 2)

O
(
|x|−(n−2)(p+r−1) ln (1 + |x|)(p−1)/(1−s) ) if q + s = n/ (n− 2)

O
(
|x|−((n−2)(q(p−1)+r(1−s))−2(p−1))/(1−s) ) if q + s < n/ (n− 2)

= o
(
|x|−2+θv−θu ) (4.16)

as |x| → ∞ provided ε is small enough so that

ε <

{
(n− 2) (p+ r)− n if q + s = n/ (n− 2)

2 ((n− 2) a− n) (p− s+ 1) / (n (1− s)) if q + s < n/ (n− 2) .
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Moreover, by using (1.2)–(1.5) and Theorem 1.1, we obtain

v (x)p u (x)r−1

=


O
(
|x|−(n−2)(p+r−1) ) if q + s > n/ (n− 2)

O
(
|x|−(n−2)(p+r−1) ln (1 + |x|)(r−1)/(1−s) ) if q + s = n/ (n− 2)

O
(
|x|−((n−2)(pq−(r−1)(s−1))−2p)/(1−s) ) if q + s < n/ (n− 2)

= o
(
|x|−2 ), (4.17)

u (x)q−1 v (x)s =


O
(
|x|−(n−2)(q+s−1) ) if q + s > n/ (n− 2)

O
(
|x|−2 ln (1 + |x|)s/(1−s)

)
if q + s = n/ (n− 2)

O
(
|x|−((n−2)(q+s−1)−2s)/(1−s) ) if q + s < n/ (n− 2)

= o
(
|x|−2+θu−θv ), (4.18)

and

u (x)q v (x)s−1 =


O
(
|x|−(n−2)(q+s−1) ) if q + s > n/ (n− 2)

O
(
|x|−2 ln (1 + |x|)−1 ) if q + s = n/ (n− 2)

O
(
|x|−2 ) if q + s < n/ (n− 2)

= o
(
|x|−2 ) if q + s ≥ n/ (n− 2) (4.19)

as |x| → ∞. Note that by using (1.2)–(1.5), we obtain that s ≥ 1
implies that q + s > n/ (n− 2). The estimates (4.10), (4.11), (4.13),
and (4.14) then follow from (4.16)–(4.19). Now we prove the remaining
estimates (4.12) and (4.14). By applying Young’s inequality, we obtain
that for any δ > 0, there exists Cδ > 0 such that

|xµ|2 = |x|2 + 4µ (µ− x1) ≤ (1 + δ) |x|2 + Cδλ
2. (4.20)

for all µ ≤ λ and x ∈ Σµ. The estimate (4.12) then follows from (4.17),
(4.20), and Theorem 1.1. In case q+s ≥ n/ (n− 2), the estimate (4.14)
follows from (4.19), (4.20), and Theorem 1.1. In case q+s < n/ (n− 2),
the estimate (4.14) follows from (1.12) and (4.20) provided δ and ε are
small enough. This ends the proof of Step 4.1. �

Remark that in order to have (4.15) in case q + s < n/ (n− 2) and
s 6= 0, it is necessary to make a decay assumption such as (1.12).
Moreover, the best constant in (1.12) with this approach is given by
maximizing θv (n− 2− θv) /s with ε = 0 under the constraint (4.6)
which gives the constant Cn,q,s defined in Theorem 1.3.

Then we prove the following result:

Step 4.2. Assume that ε ∈ (0, ε0) and let δ ∈ (0, δ0) where δ0 and ε0

are as in Step 4.1. Then Uλ ≥ 0 and Vλ ≥ 0 in Σλ for all λ ≤ −Rδ,ε,0

where Rδ,ε,0 is as in Step 4.1.

Proof of Step 4.2. We assume by contradiction that there exists λ ≤
−Rδ,ε,0 and y0 ∈ Σλ such that either Uλ (y0) < 0 or Vλ (y0) < 0. Since
the proof is similar in cases Uλ (y0) < 0 and Vλ (y0) < 0, we will assume
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that Uλ (y0) < 0. In this case, by using (4.7) and since Uλ ≡ 0 on ∂Σλ,
we obtain that there exists y1 ∈ Σλ such that

Uλ (y1) := min
{
Uλ (y) : y ∈ Σλ

}
< 0. (4.21)

It follows from (4.8) and (4.21) that

pξu,v (y1)p−1 uλ (y1)r
(
1 + |y1|2

)(θu−θv)/2
V λ (y1)

≤
(
θu
(
n+ (n− 2− θu) |y1|2

)(
1 + |y1|2

)2 − rv (y1)p ξu,u (y1)r−1

)
U (y1) . (4.22)

Since |y1| = −y1 > −λ ≥ Rδ,ε,0 and Uλ (y1) < 0, it follows from (4.3),
(4.11), and (4.12) that

rv (y1)p ξu,u (y1)r−1 <
θu
(
n+ (n− 2− θu) |y1|2

)
2
(
1 + |y1|2

)2 . (4.23)

By using (4.4), (4.21), (4.22), and (4.23) and since p ≥ 1 and r ≥ 0,
we obtain

pv (y1)p−1 u (y1)r
(
1 + |y1|2

)(θu−θv)/2
V λ (y1)

<
θu
(
n+ (n− 2− θu) |y1|2

)
2
(
1 + |y1|2

)2 Uλ (y1) < 0. (4.24)

By using (4.7) and since V λ ≡ 0 on ∂Σλ, it follows that there exists
y2 ∈ Σλ such that

V λ (y2) := min
{
V λ (y) : y ∈ Σλ

}
< 0. (4.25)

By repeating the above arguments and using (4.3), (4.4), (4.9), (4.14),
and (4.15), we obtain

qu (y2)q−1 v (y2)s
(
1 + |y2|2

)(θv−θu)/2
Uλ (y2)

<
δθv
(
n+ (n− 2− θv) |y2|2

)(
1 + |y2|2

)2 V λ (y2) < 0. (4.26)

It follows from (4.21), (4.25), and (4.26) that

qu (y2)q−1 v (y2)s
(
1 + |y2|2

)(θv−θu)/2
Uλ (y1)

<
δθv
(
n+ (n− 2− θv) |y2|2

)(
1 + |y2|2

)2 V λ (y1) < 0. (4.27)

It follows from (4.24) and (4.27) that(
pv (y1)p−1 u (y1)r

)
·
(
qu (y2)q−1 v (y2)s

)
>
θu
(
n+ (n− 2− θu) |y1|2

)
2
(
1 + |y1|2

)2+(θu−θv)/2
·
δθv
(
n+ (n− 2− θv) |y2|2

)(
1 + |y2|2

)2+(θv−θu)/2
. (4.28)

We obtain a contradiction by putting together (4.10), (4.13), and (4.28).
This ends the proof of Step 4.1. �
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We define

λ0 := sup {λ ∈ R : ∀µ ≤ λ, Uµ ≥ 0 and Vµ ≥ 0 in Σµ} . (4.29)

It follows from Step 4.2 that if ε ∈ (0, ε0), then λ0 > −∞. On the
other hand, it follows from Theorem 1.1 that Uλ (0) < 0 for large λ > 0
hence we obtain λ0 < +∞.

The last step in the proof of Theorems 1.2 and 1.3 is as follows:

Step 4.3. Assume that ε ∈ (0, ε0) where ε0 is as in Step 4.1. Let λ0

be as in (4.29). Then Uλ0 ≡ 0 and Vλ0 ≡ 0 in Σλ0.

Proof of Step 4.3. It follows from the definition of λ0 and the continuity
of Uµ and Vµ with respect to µ that Uλ0 ≥ 0 and Vλ0 ≥ 0 in Σλ0 . By
using (4.1) and (4.2) and applying the strong maximum principle, we
then obtain that either Uλ0 ≡ Vλ0 ≡ 0 or Uλ0 , Vλ0 > 0 in Σλ0 . We
assume by contradiction that Uλ0 , Vλ0 > 0 in Σλ0 . By definition of λ0,
we obtain that there exists a sequence of real numbers (µα)α∈N such
that µα ↘ λ0 as α→∞ and either

inf {Uµα (y) : y ∈ Σµα} < 0 or inf {Vµα (y) : y ∈ Σµα} < 0 (4.30)

for all α. Since the proof is similar in both cases, we will assume that
the first inequality in (4.30) holds true. By using (4.7) and since Uλ ≡ 0
on ∂Σλ, we then obtain that there exists yα ∈ Σµα such that

Uµα (yα) = min
{
Uµα (y) : y ∈ Σµα

}
< 0. (4.31)

By extracting a subsequence, we can assume that either |yα| > Rδ,ε,µ0

or |yα| ≤ Rδ,ε,µ0 for all α where δ ∈ (0, δ0) is fixed and δ0 and Rδ,ε,µ0

are as in Step 4.1. In case |yα| ≤ Rδ,ε,µ0 , since yα ∈ Σµα and µα → λ0

as α → ∞, we obtain that up to a subsequence yα → y∞ ∈ Σλ0 as
α →∞. By passing to the limit into (4.31) and since Uλ0 > 0 in Σλ0 ,
we obtain

Uλ0 (y∞) = min
{
Uλ0 (y) : y ∈ Σλ0

}
= 0 and ∇Uλ0 (y∞) = 0. (4.32)

It follows from (4.32) and the definition of Uλ0 that

Uλ0 (y∞) = min
{
Uλ0 (y) : y ∈ Σλ0

}
= 0 and ∇Uλ0 (y∞) = 0. (4.33)

Since Uλ0 is a solution of (4.1) and Uλ0 , Vλ0 > 0 in Σλ0 , we obtain a
contradiction between (4.32) and Hopf’s Lemma. Now we consider the
case |yα| > Rδ,ε,µ0 . Since µα < µ0, by proceeding as in (4.22)–(4.25),
we obtain that there exists zα ∈ Σµα such that

V µα (zα) = min
{
V µα (y) : y ∈ Σµα

}
< 0.

In case |zα| > Rδ,ε,µ0 , we obtain a contradiction by repeating the argu-
ments in (4.26)–(4.28). In case |zα| ≤ Rδ,ε,µ0 , we also obtain a contra-
diction by proceeding as in case |yα| ≤ Rδ,ε,µ0 . This ends the proof of
Step 4.3. �
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End of proof of Theorems 1.2 and 1.3. Since we can apply the moving
plane method in any direction, it follows from Step 4.3 that u and v
are radially symmetric and decreasing about some point x0 ∈ Rn. This
ends the proof of Theorem 1.2 and 1.3. �

Finally we prove Theorem 1.4.

Proof of Theorem 1.4. We assume that q + s < n/ (n− 2) and (1.13)
and (1.14) hold true. By applying Step 2.5, we obtain

v (x) = Γ ∗ (uqvs) (x) = I1 (x) + I2 (x) (4.34)

where

I1 (x) :=

∫
B
(

0,
√
|x|
) Γ (x− y)u (y)q v (y)s dy

and

I2 (x) :=

∫
Rn\B

(
0,
√
|x|
) Γ (x− y)u (y)q v (y)s dy.

By using (1.13) and (1.14), we obtain

I1 (x) = o

(∫
B(0,|x|)

|x− y|2−n |y|(2s−q(n−2))/(1−s) dy

)
= o
(
|x|(2−q(n−2))/(1−s) ) = o (v (x)) (4.35)

as |x| → ∞. It follows from (1.13), (1.14),(4.34), and (4.35) that

1

`qu`s−1
v

= lim
|x|→∞

(∫
Rn\B

(
0,
√
|x|
) Γ (x− y)

|x|(q(n−2)−2)/(1−s)

|y|(q(n−2)−2s)/(1−s)dy

)

= lim
|x|→∞

(∫
Rn\B

(
0,1/
√
|x|
) Γ
( x
|x|
− y
)
|y|(2s−q(n−2))/(1−s) dy

)

=

∫
Rn

Γ (ω − y) |y|(2s−q(n−2))/(1−s) dy (4.36)

where ω is an arbitrary point on ∂B (0, 1). By observing that the
function ϕ : Rn\ {0} → R defined as

ϕ (x) =
(1− s)2 |x|(2−q(n−2))/(1−s)

((n− 2) q − 2) (n− (n− 2) (q + s))

is a distributional solution of the equation

−∆ϕ = |x|(2s−q(n−2))/(1−s) in Rn

and ϕ (x)→ 0 as |x| → ∞, we obtain∫
Rn

Γ (ω − y) |y|(2s−q(n−2))/(1−s) dy

= ϕ (ω) =
(1− s)2

((n− 2) q − 2) (n− (n− 2) (q + s))
. (4.37)
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It follows from (1.13), (1.14),(4.36), and (4.37) that

`qu`
s−1
v =

((n− 2) q − 2) (n− (n− 2) (q + s))

(1− s)2 .

This ends the proof of Theorem 1.4. �
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[4] J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden sys-
tems, Indiana Univ. Math. J. 51 (2002), no. 1, 37–51.

[5] L. A. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behav-
ior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure
Appl. Math. 42 (1989), no. 3, 271–297.

[6] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equa-
tions, Duke Math. J. 63 (1991), no. 3, 615–622.

[7] , An integral system and the Lane-Emden conjecture, Discrete Contin.
Dyn. Syst. 24 (2009), no. 4, 1167–1184.

[8] W. Chen, C. Li, and B. Ou, Classification of solutions for a system of integral
equations, Comm. Partial Differential Equations 30 (2005), no. 1-3, 59–65.

[9] S. Chen and G. Lu, Existence and nonexistence of positive radial solutions for
a class of semilinear elliptic system, Nonlinear Anal. 38 (1999), no. 7, 919–932.

[10] P. Clément, J. Fleckinger, E. Mitidieri, and F. de Thélin, Existence of posi-
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[21] Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic
system in RN , Comm. Partial Differential Equations 33 (2008), no. 1-3, 263–
284.

[22] Y. Guo, B. Li, and J. C. Wei, Entire nonradial solutions for non-cooperative
coupled elliptic system with critical exponents in R3, J. Differential Equations
256 (2014), no. 10, 3463–3495.

[23] E. Hebey, Critical elliptic systems in potential form, Adv. Differential Equa-
tions 11 (2006), no. 5, 511–600.

[24] , Diagonal compactness for critical elliptic systems in potential form,
Comm. Partial Differential Equations 32 (2007), no. 10-12, 1837–1881.

[25] J. Hulshof and R. van der Vorst, Asymptotic behaviour of ground states, Proc.
Amer. Math. Soc. 124 (1996), no. 8, 2423–2431.

[26] E. Jannelli and S. Solimini, Concentration estimates for critical problems,
Ricerche Mat. 48 (1999), no. suppl., 233–257.

[27] T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing colli-
sions, and partially coherent solitons in coupled nonlinear Schrödinger equa-
tions, Phys. Rev. Lett. 86 (2001), no. 22, 5043–5046.

[28] T. Kato, Schrödinger operators with singular potentials, Proceedings of the
International Symposium on partial Differential Equations and the Geometry
of Normed Linear Spaces (Jerusalem, 1972), 1973, pp. 135–148.

[29] Y. S. Kivshar and B. Luther-Davies, Dark optical solitons: Physics and appli-
cations, Phys. Rep. 298 (1998), no. 2-3, 81-197.

[30] Y. Lei and C. Li, Decay properties of the Hardy-Littlewood-Sobolev systems of
the Lane-Emden type (2013). Preprint on arXiv:1302.5567.

[31] , Sharp criteria of Liouville type for some nonlinear systems, Discrete
Contin. Dyn. Syst. 36 (2016), no. 6.

[32] C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems
with critical exponents, SIAM J. Math. Anal. 40 (2008), no. 3, 1049–1057.

[33] C. Li and J. Villavert, A degree theory framework for semilinear elliptic sys-
tems, Proc. Amer. Math. Soc. 144 (2016), no. 9, 3731–3740.

[34] , Existence of positive solutions to semilinear elliptic systems with su-
percritical growth, Comm. Partial Differential Equations 41 (2016), no. 7, 1029–
1039.

[35] P.-L. Lions, The concentration-compactness principle in the calculus of varia-
tions. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201.

[36] B. Liu and L. Ma, Symmetry results for decay solutions of elliptic systems in
the whole space, Adv. Math. 225 (2010), no. 6, 3052–3063.

[37] , Radial symmetry results for fractional Laplacian systems, Nonlinear
Anal. 146 (2016), 120–135.

[38] E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems
in RN , Differential Integral Equations 9 (1996), no. 3, 465–479.

[39] A. Montaru, B. Sirakov, and P. Souplet, Proportionality of components, Liou-
ville theorems and a priori estimates for noncooperative elliptic systems, Arch.
Ration. Mech. Anal. 213 (2014), no. 1, 129–169.

[40] M. Obata, The conjectures on conformal transformations of Riemannian man-
ifolds, J. Differential Geometry 6 (1971/72), 247–258.

[41] R. O’Neil, Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963),
129–142.
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