SIGN-CHANGING BLOW-UP FOR SCALAR CURVATURE TYPE
EQUATIONS

FREDERIC ROBERT AND JEROME VETOIS

ABSTRACT. Given (M, g) a compact Riemannian manifold of dimension n >
3, we are interested in the existence of blowing-up sign-changing families
(ue)es>0 € C?9(M), 6 € (0,1), of solutions to

4
S5 —¢ .
Ague + hue = |ug|"=2" "u. in M,

where Ay := —divg(V) and h € C%9(M) is a potential. Assuming the exis-
tence of a nondegenerate solution to the limiting equation (which is a generic
assumption), we prove that such families exist in two main cases: in small

dimension n € {3,4,5,6} for any potential A or in dimension 3 < n < 9

when h = 4(7;7121) Scalg. These examples yield a complete panorama of the

compactness/noncompactness of critical elliptic equations of scalar curvature
type on compact manifolds. The changing of the sign is necessary due to the
compactness results of Druet [11] and Khuri-Marques—Schoen [19].

1. INTRODUCTION

Let (M,g) be a smooth compact Riemannian manifold of dimension n > 3.
Given 6 € (0,1), we consider solutions u € C*?(M) to the equation

(1) Agu+ hu = |u|2*72u in M,

where h € C%(M), A, := —div,(V) is the Laplace-Beltrami operator, and 2* :=
20 When h = 4&7’_21) Scaly (Scal, being the scalar curvature of (M, g)), (1) is the
Yamabe equation and rewrites

(2) Agu + cp Scalgu = |u|2*72u in M,
n—2
4(n—1)"
dynamic that makes equations (1) and (2) unstable. Taking inspiration from the
terminology introduced by R. Schoen [32], we say that equation (1) is compact
(resp. positively compact) if for any family (g.). € (2,2*] such that ¢. — 2* when
£ — 0 and for any family of functions (resp. positive functions) (u.). € C%%(M) of

solutions to

(3) Ague + hue = |ue| 2 u. in M

for € > 0 small, then a uniform bound on the Dirichlet energy (||Vue||2)e implies
the relative compactness of (uc). in C?(M), and therefore the convergence of a
subfamily of (u.). in C?(M). Otherwise, we say that equation (1) is noncompact
(resp. non positively-compact). A basic example of non compact equation is (2)

where ¢, = The conformal invariance of the Yamabe equation induces a
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on the canonical sphere (S™,can): we refer to the second part of this section for
(positive) compactness results for equations like (1).

We say that a family (u.).so € C??(M) blows-up when € — 0 if lim. 0 [|uc]|oc =
+oo. It is now well-known (see Struwe [34] for a description in Sobolev spaces
and Druet-Hebey—Robert [14] for a description in CY) that noncompactness is
described by bubbles. In the present paper, we investigate the existence of families
(uc). € C*%(M) of sign-changing blowing-up solutions to the equation

(4) Agu. + hu. = > " Fu. in M, e>0.

In the sequel, we say that a blowing-up family (u.). € C*?(M) is of type (ug — B)
if there exists ug € C%?(M) and a bubble (B.). (see definition (6) below) such that

(5) ue = up — Be +0(1),

where lim.,00(1) = 0 in HZ(M), the completion of C°°(M) for the norm u
[lu]l2 + || Vull2. Our first result is the following:

Theorem 1.1 (dimensions 3 < n < 6 and arbitrary potential). Let (M, g) be a
smooth compact Riemannian manifold of dimension 3 <n < 6 and let h € C’O’O(M)
(0 € (0,1)) be such that Ag+h is coercive. Assume that there exists a nondegenerate
solution ug € C*%(M) to equation (1). In case n = 6, assume in addition that
cn Scaly —h < 2ug in M. Then fore > 0 small, equation (4) admits a sign-changing
solution ue of type (ug — B). In particular, the family (ue)eso blows up as e — 0
and (1) is noncompact.

In full generality, it is not possible to construct positive blowing-up solutions
to (4). Indeed, in addition to the assumptions of Theorem 1.1, if we assume that
h < ¢, Scalg, then (1) is positively compact (Druet [11] and the discussion below),
and therefore any family of blowing-up solutions to (4) must be sign-changing. In
the early reference [10], Ding proved the existence of infinitely many nonequivalent
solutions to (2) on the canonical sphere, highlighting the diversity of the behavior
of solutions to (1) depending on whether they are positive or negative.

The nondegeneracy assumption in Theorem 1.1 is necessary. We refer to Proposition
3.1 in Section 3 for the proof of necessity. However, the nondegeneracy assumption
of Theorem 1.1 is generic in the sense that any degenerate solution to (1) can be
approached by a solution of a slight perturbation of (1). We refer to Proposition
3.2 of Section 3 for the precise genericity statement.

The above theorem outlines a role of the geometry in dimension n = 6. In higher
dimension n > 7, the geometry of (M, g) is more present. When the potential is
strictly below the scalar curvature (that is h < ¢, Scal,), equation (1) is compact
for n > 7, at least in the locally conformally flat case (Vétois [36]). Conversely, if
h(zo) > ¢ Scalg(xo) for some xg € M, then under some additional nondegeneracy
assumption, equation (1) is non-compact when n > 7 (see Pistoia—Vétois [29] for
general results). Our second result is in the case h = ¢, Scaly:

Theorem 1.2 (dimensions 3 < n < 9 and h = ¢, Scaly). Let (M,g) be a
smooth compact Riemannian manifold of dimension 3 < n < 9 with positive Yamabe
invariant. Assume that there exists a nondegenerate positive solution ug > 0 to the
Yamabe equation (2). Assume that h = ¢, Scaly,. Then for € > 0 small, equation
(4) admits a sign-changing solution u. of type (ug — B). In particular, the family
(te)eso blows up as e — 0 and (2) is noncompact.
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Constructing positive blowing-up solutions is not possible in this context. Indeed,
for 3 < n <9 and except for the canonical sphere, the scalar curvature equation (2)
is positively compact (see Li-Zhu [25], Druet [12], Marques [26], Li-Zhang [22, 23],
Khuri-Marques—Schoen [19], and the discussion below). We refer also to Druet—
Hebey [13] and Druet-Hebey—Vétois [15] for the extension of compactness issues to
stability issues.

The restriction of the dimensions in Theorem 1.2 is due to the geometry of the
manifold. We refer to Subsection 2.1 in Section 2 for the extension of Theorem 1.2
to dimension n = 10 in general and in any dimension in the locally conformally flat
case.

Here again, it is natural to ask about the nondegeneracy assumption of a solution
to the limit equation in Theorem 1.2: actually, it is both a necessary and a generic
assumption. Concerning necessity, on the standard sphere (where all positive so-
lutions to (2) are degenerate), it is not possible to construct blowing-up solutions
of type (up — B), see Proposition 3.1 in Section 3. However, it is proved in Khuri-
Marques—Schoen [19] that the nondegeneracy assumption is generic for the Yamabe
equation (2), at least in dimensions n < 24, see Proposition 3.3 in Section 3.

Here is a brief overview of the positive compactness results known so far for equa-
tions like (1).

In 1987, Schoen [32] adressed the question of positive compactness of equation (2)
for manifolds non conformally diffeomorphic to the canonical sphere (S™, can) (say
aspherical manifolds). The known results are the following: positive compactness
holds for aspherical locally conformally flat manifolds (Schoen [32,33]) and for
arbitrary aspherical manifolds of dimension 3 < n < 24 (Li-Zhu [25] (n = 3),
Druet [12] (n < 5), Marques [26] (n < 7), Li-Zhang [22-24] (n < 11), Kuhri-
Marques—Schoen [19] (n < 24)). But positive compactness does not hold in general
in dimension n > 25 (There are blowing-up examples by Brendle [5] and Brendle—
Marques [6]). Combining these results with Theorem 1.1, we get that equation (2)
is positively compact, but not compact, at least when 3 < n < 9.

When h # ¢, Scaly, the situation is different. When h < ¢, Scaly, Druet [11] proved
that (3) is positively compact in dimension n > 3 (see also Li-Zhu [25] and Druet—
Hebey—Vétois [15] for n = 3). Conversely, in dimension n > 4, Micheletti-Pistoia—
Vétois [27] and Pistoia—Vétois [29] proved that if h is above ¢, Scal, somewhere,
then, under some some nondegeneracy assumption, equation (1) is not positively
compact. On the canonical sphere, there are blowing-up positive solutions with
arbitrarily high energy when h = Cte > ¢, Scalcan (Chen-Wei-Yan [7] for n > 5).
We refer to Esposito-Pistoia—Vétois [16] for blowing-up positive solutions in case
of a potential h depending on ¢ and approaching ¢, Scal,, and to Hebey-Wei [18]
for the construction of multi-peak solutions on the three-sphere with a potential
approaching constants arbitrarily larger than the scalar curvature. Here again,
combining Druet [11] and Theorem 1.2 yields the following: when h < ¢, Scal, and
3 <n <5, equation (1) is positively compact, but not compact.

The proofs of Theorems 1.1 and 1.2 rely on a Lyapunov—Schmidt reduction. Over
the past two decades, there has been intensive developments in Lyapunov—Schmidt
reductions applied to critical elliptic equations. In addition to the references in
the geometric context of a Riemannian manifold cited above, an early reference
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for single-bubble solutions is Rey [30]. Possible references on the construction of
blowing-up solutions to equations like (4) by glueing a fixed function to bubbles are
del Pino-Musso—Pacard—Pistoia [8,9] and Guo—Li-Wei [17] (for the Yamabe equa-
tion on the canonical sphere) and Wei—Yan [37] (for a Lazer-McKenna type prob-
lem). The list of constributions above does not pretend to exhaustivity: we refer to
the references of the above papers and also to the monograph [1] by Ambrosetti-
Malchiodi for further bibliographic complements. Our paper is organized as follows.
In Section 2, we discuss extensions and generalizations of the above theorems. In
Section 3, we discuss the nondegeneracy assumption. The finite dimensional re-
duction is performed in Section 4. The reduced problem is studied in Section 5.
Theorems 1.1 and 1.2 are proved in Section 6. The proof of the error estimate is
postponed to Section 7.

Acknowledgements: The authors express their gratitude to Emmanuel Hebey
and Lionel Bérard-Bergery for fruitful comments on this work.

2. MISCELLANEOUS EXTENSIONS

2.1. About the critical dimension n = 10 in Theorem 1.2. As mentioned in
the introduction, the method developed here fails to produce blowing-up solutions
to (4) in higher dimension. Indeed, in dimensions n > 7, a term involving the Weyl
tensor appear in the Taylor expansion (75) of the Lyapunov—Schmidt functional. In
dimension n < 10, this term is dominated by the contribution of ug. In dimension
n = 10, there is a competition between the Weyl tensor and ug, and one gets the
following result:

Theorem 2.1 (dimension n = 10 and h = ¢, Scaly). Let (M,g) be a smooth
compact Riemannian manifold of dimension n = 10 with positive Yamabe invariant.
Assume that there exists a nondegenerate positive solution to the Yamabe equation
(2). Assume that h = c, Scaly and that ug > 55| Weyl, |2. Then for e > 0 small,
equation (4) admits a sign-changing solution u. of type (ug — B). In particular, the
family (ug)eso blows up as e — 0.

In dimension n > 10, the Weyl tensor dominates the contribution of ug, and it
is not possible to produce blowing-up solutions in general (see the explicit Taylor
expansion (75) in Section 6). However, in the locally conformally flat case, that is
when the Weyl tensor vanishes (at least in dimension larger than four), one gets
the following result:

Theorem 2.2 (the locally conformally flat case in any dimension). Let
(M, g) be a smooth compact Riemannian manifold of dimension n > 3 with positive
Yamabe invariant. Assume that there exists a nondegenerate positive solution to
the Yamabe equation (2). Assume that (M, g) is locally conformally flat and that
h = ¢, Scaly. Then for e > 0 small, equation (4) admits a sign-changing solution
ue of type (ug — B). In particular, the family (ue)eso blows up as € — 0.

Examples of manifolds and metrics satisfying the hypothesis of Theorem 2.2 are
in Proposition 3.4. As stated in Theorems 2.1 and 2.2, the solutions we construct
change sign. Here again, it is natural to ask if there exist positive blowing-up
solutions to (4) under the assumptions of Theorems 2.1 and 2.2. The answer is
negative. Indeed, it follows from positive compactness theorems (Khuri-Marques—
Schoen [19] and Schoen [32,33]) that positive blowing-up solutions to equation (4)
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do not exist in the locally conformally flat and aspherical case. A consequence of
the above results is that the Yamabe equation (2) is positively compact, but not
compact in the context of Theorems 2.1 and 2.2.

2.2. Positive blowing-up solutions in dimension n = 6. In this subsection,
we focus on positive solutions to (4). A direct offshot of the techniques developed
for the proof of Theorem 1.1 yields the following result:

Theorem 2.3 (positive solutions in dimension n = 6). Let (M, g) be a smooth
compact Riemannian manifold of dimension n = 6 and let h € C%%(M) (6 € (0,1))
be such that Ay + h is coercive. Assume that there exists a nondegenerate solution
ug € C%%(M) to equation (1) and that

h —cgScaly > 2ug >0 in M.

Then for € > 0 small, equation (4) admits a positive solution u. > 0 such that
ue = ug + Be + o(1), where (B.). is a bubble and lime_,g0(1) = 0 in HZ(M).

This result is a complement to a specific 6-dimensional result: Druet ([11] and
private communication) showed that blow-up for positive solutions to (4) with
bounded energy necessarily occurs at points € M such that (h — cg Scalg)(z) >
2ug(z). Dimension six is critical when considering positive blowing-up solutions
with nontrivial weak limit ug > 0. More precisely, the blow-up analysis shows that
there is balance between the contributions of uy and h — ¢, Scaly: one of the terms
dominates the other when n # 6, and they compete at the same growth when n = 6.
We refer to the Taylor expansion (45) and to [11] to outline this phenomenon. We
refer to Druet—Hebey [13] for an extensive discussion on dimension six.

2.3. Prescription of the blow-up point. The above theorems show the existence
of blowing-up families of solutions, but the blow-up point (that is the point where
the bubble is centered) is not prescribed. The only information obtained from the
construction is that blow-up occurs at a minimum point of ug (for Theorems 1.1
and 1.2 when n # 6) or of uy — (¢, Scaly —h)/2 (for Theorem 1.1 when n = 6).
Prescribing the location of the blow-up point of the bubbles requires additional
informations. We define ® : M — R as follows:

ug + %(h —cp Scalg)1l,—¢ in Theorems 1.1, 1.2 and 2.2

P =1 wug — 507 | Weyl, |2 in Theorem 2.1
2(h — cg Scaly) — ug in Theorem 2.3.

Our prescription result is the following;:

Theorem 2.4 (Prescription of the blow-up point). In addition to the hypoth-
esis in Theorems 1.1, 1.2, 2.1, 2.2, and 2.3, assume that there exists &g € M which
is a strict local minimum point of ® with ®(&) > 0. Then the conclusions of the
above theorems hold with the extra information that the bubbles are centered at a
family (§&.)e € M such that lim._,0 & = &o.

In case h € C1(M) and there exists g € M which is a C*—stable critical point
of ® with ®(&y) > 0, the same conclusion holds with the convergence (45) holding
in C*.
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2.4. Comments and remarks. A natural extension of our results is the con-
struction of multi-peak changing-sign solutions glued on a fixed function ug. Since
the results are local in nature, a reasonable guess is that our techniques allow to
construct k > 2 peaks at k distinct strict local minima of ug if such minima exist.
Another natural but more difficult guess is that there are bubble-towers centered at
a Cl—stable critical point. The additional difficulty here is that the accumulation
of bubbles imposes to find a critical point around a saddle-type functional, which
requires to prove C'! —convergence for expansions like (45).

3. DISCUSSION ON THE DEGENERATE CASE

In the sequel, we say that (B:). is a bubble if there exists a family (z.). € M
and a family (uc)e € Ry such that lim. o ue = 0 and

2 \ T

n(n — 2) e

B = =2 for all M.
(6) - () <ﬂ§+dg(x,x5)2> orall z €

In this situation, we say that the bubble is centered at (z.).. We say that a solution
U € CZ’Q(M) to
(7) Aguo + hug = ug*_l in M

is nondegenerate if the linearization of the equation has a trivial kernel, that is
(8)  Knauo = {0 € CHM)/ Agp+ ho = (2 = Dol 2} = {0}.

Theorems 1.1 and 1.2 require the assumption that ug is a nondegenerate solution
to (7). In this section, we prove that this is a necessary assumption, and that it is
generic.

3.1. The conformal geometric equation and necessity of the nondegen-
eracy assumption. Let (M, g) be a compact Riemannian manifold of dimension
n > 3 with positive Yamabe invariant. Up to a conformal change of metric, it fol-
lows from the resolution of the Yamabe problem that we can assume that the scalar
curvature Scaly is a positive constant, and we consider ug 4 = (¢p Scalg)l/(z*’z)
the only positive constant solution to the Yamabe equation

(9) Agug g + cn Scalg ug g = ugqu in M.

As is easily checked, in this situation,

Scal
K., Scalg,uo,g — {‘P € 02(M>/A9‘P = . 'i%@} )

where the kernel is defined in (8). Therefore

1
28 ¢ Spec (),

where Spec (A,) is the nonnegative spectrum of A,. We define the Yamabe invari-
ant by

Uo,4 1s a nondegenerate solution to (9) <

.. [y Scaly dvy
(10) pig(M) = inf =5,

9'€lgl Volg (M) ™=
where [g] is the conformal class of g and dv, is the Riemannian element of volume.
The Yamabe invariant py (M) is positive iff the operator A, + ¢, Scaly is coercive
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for all ¢’ € [g]. It is well known that if ¢ is a Yamabe metric (that is a minimizer
of the Yamabe functional (10)), one has that Sncfllg < Ai(4y), the first nonzero
eigenvalue of A,. Note that equality is achieved on the canonical sphere (S”, can).
More generally, any positive solution to the Yamabe equation on the canonical

sphere is a Yamabe metric and is degenerate.

The following result shows that the conclusion of Theorems 1.1 and 1.2 do not hold
on the standard sphere (where positive solutions to the Yamabe equations are all
degenerate):

Proposition 3.1. There does not exist any family of functions (u.). € C*%(S")
of type (ug — B) to the equation

(11) Acante + ¢y, Scalean Ue = |u5|2*_2_8u5 in M
for all e € (0,2%).

Proof. We argue by contradiction and assume the existence of a family (u.). €
C%9(S™) of the form (5) of solutions to equation (11). Multiplying (11) by the
bubble B, and integrating by parts yield u¢ — 1 when e — 0. Fix ¢ € A;(S™, can),
the set of eigenfunctions of A1 (Acan) = n, the first nonzero eigenvalue of A.,, on S™:
indeed, see for instance Berger-Gauduchon-Mazet [3], we have that A;(S™,can) =
{ljgn /1 : R — R linear}. It follows from Kazdan—Warner [20] that

n—2
Acante <v¢7 Vus>can dVcan = D)
Sr n

Using equation (11) and integrating by parts yields

2
/ Acan¢|vus |can dvcan -
S§n

€ qﬁ|ug|2*_s AVean = 0.
S§n

Letting ¢ — 0 and using (6), (5), and (15) yields, up to a subsequence,

/ ¢u(2)* dvean + (/ U d$> ¢($0) =0,

where zy € S™. Passing to the weak limit in (11) when ¢ — 0 implies that
ug is a positive solutions to the Yamabe equation on S™. It then follows from
Obata [28] that [, ud" dvean = Jzn U? dx. Taking ¢ € A;(S", can) such that
min ¢ = ¢(—xzg) # 0 in the above equation yields a contradiction since ¢ Z 0. This
ends the proof of Proposition 3.1. O

3.2. Genericity of the nondegeneracy assumption. The following proposition
shows that the nondegeneracy hypothesis of Theorem 1.1 is generic:

Proposition 3.2. Let h € C%%(M) and let ug € C*%(M) be a positive solution to
Agup+huy = ug*_l. Fizv > 0. Then there exist h, € C%°(M) and i, € C*°(M)
such that ||h—h, || co.e +|[uo— o, ||c20 < v and g, > 0 is a nondegenerate solution
to Agig, + hyilo, = i, * in M.

Proof. We define
Ju(Vul2 4+ (h = (2" = Dug => = n)u?) du,

u€ H2(M)\{0} (fo 10l dvg) 3

M 2=
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for all n > 0. Testing the functional on ug yields pu, < 0 for all n > 0. As is
easily checked, lim,_,ou, = po < 0. Standard variational arguments yield the
existence of a positive minimizer w, € C?%(M) for u, such that Ajw, + (h —
(2" = Dud 72 = nw, = —(2* = 2)w? ~! in M for all > 0; moreover, the family
(wy)n>o0 is relatively compact in C?(M). Since ug is the only positive solution to
the equation Agv + (b — (2% — 1)u2 ~2)v = —(2* — 2)v¥" ! (let w be the quotient
of two positive solutions and estimate Agjw at extremal points of w), one gets that
lim, 0w, = uo in C?(M), and then C%9(M) by elliptic regularity. One defines
hy, = h7(2*71)(u3*_27w,27*’2)71]. Then Agwy,+hyw, = w2 ~ in M and spectral
theory yields the existence of 7o > 0 such that Kp, ., = {0} for all n € (0,70).
The conclusion of the proposition follows from taking g, := w, and h, = hy, for
1 > 0 small enough. O

We now focus on the geometric case, that is Theorem 1.2. We adopt the terminology
of Khuri-Marques—Schoen [19]: given M a compact manifold, gy a background
Riemannian metric on M, and w a volume form on M, to each class ¢ € C :=
{Conformal classes of Riemannian metrics on M}, we associate the unique metric
g € c for which the Riemannian n—volume form is w. The C*?-distance between
two classes is defined as the C*-distance between their representatives via this
analogy. The following result holds:

Proposition 3.3 (Khuri-Marques—Schoen [19]). There exists O C C an open dense
set such that for all ¢ € O, there exists exactly a finite nonzero number of metrics
g € ¢ (up to homothetic transformations) such that the constant positive function
Up,g 5 nondegenerate.

In other words, up to a perturbation in the conformal class, the hypothesis of
Theorem 1.2 holds.

3.3. A family of nondegenerate geometric solutions in the locally confor-
mally flat case. We exhibit here a situation in which the nondegeneracy assump-
tion is satisfied for the geometric equation in the locally conformally flat case (see
Theorem 2.2). For all k > 1 and ¢t > 0, (S¥(¢), can) is the canonical sphere ot radius
t in RF+1:

Proposition 3.4. Let M, := S!(r) x S"~1 be endowed with its canonical product
metric g, where v > 0. Then (M,,g,) is locally conformally flat with positive
constant scalar curvature. Moreover, for any r & { 7:72/2' € Zo}, the positive
constant solution to the Yamabe equation is nondegenerate.

Proof. Recall that on the canonical sphere S¥(t), the spectrum of the Laplacian
is {Z(kt#/z € Zxo} (see [3]). Then the spectrum of A, is {i—z +jn—2+
J)/ 4,5 € Z>o}. Independently, the scalar curvature is Scal,, := (n —1)(n — 2). As
a consequence,

Scalg,. i

Vn—2

In addition, it is standard that the product of a one-dimensional circle with a space
form is locally conformally flat. O

¢ Spec(ly,) & r¢ { /i€ Z>0} .

n—1
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4. FINITE DIMENSIONAL REDUCTION

Since the operator A, + h is coercive, the Sobolev space Hf (M) is endowed with
the scalar product (-,-), defined by

(12) (u,v)h:/ <Vu,Vv>gdvg+/ huvdv,
M M

for all u,v € HZ(M). We let || - || be the norm induced by (-,-),: this norm is
equivalent to the standard norm on HZ(M). We let i* : Ltz (M) — H? (M) be
such that for any w in L#+2 (M), the function u = i* (w) in H? (M) is the unique
solution of the equation Aju + hu = w in M. We then rewrite equation (4) as

(13) u=14"(fe(w), weH M),

In case (M, g) is locally conformally flat, it follows from the compactness of M that
there exists ro € (0,i4(M)) (where i4(M) > 0 is the injectivity radius of (M, g))
such that for any point £ in M, there exists A € C°° (M) such that the conformal
metric ge = Ag/("_g)g is flat in Be (o) and iy (M) > 7. As is easily seen, the
functions A¢ can be chosen smooth with respect to  and such that A¢ (§) = 1. If
the manifold is not locally conformally flat, then we let A¢ () = 1 for all points x
and ¢ in M, and we fix ro € (0,4,(M)) arbitrarily. We let x be a smooth cutoff
function such that 0 < x < 1in R, x = 1in [-7r/2,79/2], and x = 0in R\ (=g, ro).
For any positive real number § and any point £ in M, we define the function W ¢
on M by

(14) Wae () i=x (dy (2,€)) Ae (0) 87U (67  expg’ ()

where dg, is the geodesic distance on M associated with the metric gg, the expo-
nential map is taken with respect to the same metric g¢ and

(15) U () = (W)

for all z € R™. For any positive real number §, the function Uy (z) = 5= U (67 12)

satisfies the equation AguqUs = U52*71 where Agyq is the Laplace operator asso-
ciated with the Euclidean metric. Moreover, by Bianchi-Egnell [4], any solution
in v € D? (R™) (the completion of C°(R™) for the norm [lul|pz := [|[Vull2) of the

linear equation Agyqv = (2* — 1)U 2"-2y is a linear combination of the functions

2
-1 ;
(16) Vo (z) = L and V; (z):= S —

(1+12%)" (1+127)"
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foralli=1,...,n and x € R". For any positive real number ¢ and any point (£, w)
in TM, we define the functions Zs¢ and Zs¢ ., in M by

a7 Zie () 1= (dy, (1, €)) A(a)p*s* e (0 20
(52 +dg, (2,6) )

exps ! T,w
(18) Zigw (x) = x (dge (2,0)) Ae(w)5? oai’ee),
(2 + dye (2,9)°)

for all z € M. We then let II5, and Hég be the projections of the Sobolev space
H? (M) onto the respective closed subspaces

K&g = { )\Zgé + Z&g,w / AeRandw € TgM}

n o
2

and
(19)
Kse={p € H (M) [ (¢, Zs¢), =0and (¢, Zs¢n), =0 forallwe TeM},
where the scalar product (-,-), is as in (12).
Recall that ug € C*?(M) is a nondegenerate positive solution to equation (7). We
construct solutions of type (ug — B) to equations (4), or equivalently (13), like
. 2
Ug = U — W5a(t5)755 + ¢5a(ta)s§a ? Wlth 65 (tE) = tggn—Z,

where W_ ;) ¢. is as in (14), ¢s.(r.) ¢ is a function in Ky, )., and t. > 0. As
easily checked, if ¢5_;.ye. — 0 in H2(M) when € — 0, then (u.) is of type ug — B.
We rewrite equation (4) as the couple of equations

(20) M. 0).¢ (w0 = Wo. .6 + @6 = 17 (Fe (w0 = W6 + @5.1.6))) =0

and
(21) 56 (1m0 = W, t).¢ + 06,006 — 1" (fe (w0 = W6 + 85.(0).¢))) = 0.
We begin with solving equation (21) in Proposition 4.1 below:

Proposition 4.1. Let ug € C*%(M) be a positive nondegenerate solution to (7).
Given two positive real numbers a < b, there exists a positive constant Cqp such
that for e small, for any real number t in [a,b], and any point & in M, there exists
a unique function Qs_(s).e N Kzi(t),ﬁ which solves equation (21) and satisfies
(22)

ellne] f3<n<6

_a )
65,00, < Capq €72 ifn=7
_nt2
£2n=2  4fn >7, h = ¢, Scaly, and (M,g) is loc. conf. flat.
Moreover, ¢5,(1).¢ is continuously differentiable with respect to t and §.

The sequel of this section is devoted to the proof of Proposition 4.1. For ¢ small, for
any positive real number J, and any point £ in M, we let the map L. 5 : K(%& —

K (%5 be defined by
(23) Le s (9) = Mie (& — " (fL (w0 — W) 6)
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for all ¢ € K5, where ug € C*?(M) is a nondegenerate positive solution to (7),
Ws.e is as in (14) and ngg is as in (19). Clearly, we get that L. 5¢ is linear and
continuous. In Lemma 4.2 below, we prove the invertibility of L. s¢ for 6 and €
small.

Lemma 4.2. Given two positive real numbers a < b, for e small, the map L. s5_1) ¢
is invertible for all real numbers t in [a,b] and all points & in M, where d. (t) =
te2/(n=2) gnd L. 5.(t),¢ is as in (23). Moreover, there exists a positive constant Cq
such that for e small, for any real number t € [a,b], any point & € M, and any
function ¢ € K(i(t),@ there holds

(24) HL6,5€(t),£ (¢)Hh > Ca,b H¢||h .

. . —1 . .
In particular, the inverse map Ls,zSE(t),g 18 continuous.

Proof. We prove (24). We proceed by contradiction. We assume that there exist
two sequences of positive real numbers (g4), and (to), such that ¢, — 0 for all
a — +oo and a < t, < b, a sequence of points (£,), in M, and a sequence of
functions (¢q),, such that

(25) (z)a S K(ia(ta){a 5 H¢o¢||h = 1a and HLEQ,EEQ (ta),€a (¢Q)Hh — 0
as a — +o00. We define Wy, := Ws__(¢,)¢,- First, we claim that
(26) [ =i (f2, (w0 = Wa) $a) ||, — 0

as a — +o0o. Passing if necessary to a subsequence, we may assume that all the
points £, belong to a small open subset {2 in M on which there exists a smooth
orthonormal frame. Thanks to this frame, we identify the tangent space T¢ M with
R™ for all points £ in §2, so that exp, is in fact the composition of the standard
exponential map with a linear isometry ¥ : R" — T¢M which is smooth with
respect to £. We define

(27) Z(),a = Z(;Ea (ta),Ea and Zi,a = Ztsea(ta),ﬁmei

for all i = 1,...,n, where ¢; is the i-th vector in the canonical basis of R™ and the
functions Zs__(1.),e. and Zs__(t.).cu.e; are as in (17)-(18). For any «, by definition
of Lc s, (to),60> We get that

(28) ¢oz —* (fém (uO - Wa) ¢a) - Laa,ésa (ta),€a ((rba) = Z Ai,aZi,a
=0

for some real numbers \; o, where the functions Z; , are as in (27). Taking into
account (25) and (28), one sees that in order to get (26), it suffices to prove that

Aiiw @ 0asa — oo foralli =0,...,n. Asis easily checked, for any i,5 =0,...,n,
there holds
(29) <Zi,av Zj,a>h — ”vvl”; 517'

as o — 400 where the function V; is as in (16) and the real numbers d;; are the
Kronecker symbols. By (28), (29), and since the functions ¢, and L. _ 5. (1.).c. ($a)
belong to Kg- (ta) e for any i =0,...,n, we get that

fa

G0 [ f (0= Wa) Ziabadiy = <N [TVl 40 | 3
M =0
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as a — +00. As is easily checked, we get that

(31) /M fé,, (UO - Wa) ZiaPadvg = /M féa (Wa) ZiaPadvg + 0 (1)

as a — +o0o. We find

( fM faa a ia(badvg

2* — 1 — g,
as o — o0, where the functions U and V; are as in (15) and (16), the cutoff
function x is as in Section 4 and
Xa = X (6, (ta) [2))* 7275,
Ao = Ag, (epra (0e,, (ta) @),
(33) Ga (@) = 0, (ta) 7 X (B, (ta) [2]) @a (expg, (0c, (ta) @),
(34) Jo () = expga g (55a (ta) )

for any o — +oo and z € R™ small enough. In the definitions above, the exponential
map is taken with respect to the metric g¢,. Since (¢,),, is bounded in Hf (M), we

n—2 *_1_ * o ~
=0, (ta) 2 6“/ XoAZ 1Ty 2 e Vipadug,

get that ($a)a is bounded in D12 (R™). Passing to a subsequence, we may assume

that (g}%)a converges weakly to some function qB in D%2 (R™). Passing to the limit
into (32) yields

(35) /M fL (Wa) Ziadadvy — (27 — 1) / U? =2V, dx

as o — +00. Since the function V; satisfies the equation Ag,V; = (2 — 1) 1)U 2y
in R™, and since, for any «, the function ¢, belongs to K () passing to the

limit as o — 4-00 into the equation (Z; o, ¢a), = 0, we get that

(36) / <vvi7 V<5> do = (2* — 1) / U2 ~2Vgdz = 0.

By (30), (31), (35), and (36), we get that

Xia=0(1)+0 (> [Nl
=0

as a — +oo. It follows that \; o — 0 as o« = +oo for all i = 0,...,n. The claim
(26) then follows from (25) and (28).

For any sequence (p,),, in Hf (M), and by (26), we get that
(37) ’ (ba,%@a / f (uo — Wa) GaPadig

= [(Ga =" (2, (w0 = Wa) @a) s 0a ),
< ||ba —i* (£, (wo = Wa) ¢a) [|,, all, = o (I#all,)

as a — +00.

We claim that ¢, — 0 weakly in HZ(M) when o — +o0o. We prove the claim.
Since (¢q) is bounded in HZ(M), up to a subsequence, there exists ¢ € HZ(M)
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such that (¢,) — ¢ weakly in H?(M) when o — +o00. Then for any ¢ € HZ(M),
taking ¢, = ¢ in (37) and letting a« — 400 yields

(6,00 = /M<2* 1) 2,

for all ¢ € H(M), and then Ay + he = (2* — 1)u8*72q§, which implies ¢ = 0 since
ug is nondegenerate. This proves the claim.
We claim that ¢, — 0 weakly in D?(R™) when a — +o00, where $o has been

defined in (33). We prove the claim. Given a smooth function ¢ with compact
support in R™, we define

fa (@) 1= X (dyg, (@,€2)) 82, () T 0 (02 (ta) ' expg ()
for all x € M. Tt follows from (37) together with a change of variable that

(38) / A% (Vba, Vo), dvg, + 0z, (o)’ / AZ% i (expg, (Be., (ta) 7)) Baspduy,

=6.. (ta)* /n A;z*f;a (wo,0(x) — W (expg,, (0c, (ta)x))) aagadvgu +o(1)

as o — 400, where ug o (-) := uo (expg, (0c, (ta))), $o and g, are as in (33) and
(34). One easily checks that

Agz*ésa (ta)2 f;a (UO (enga (6€a (ta) )) - Wa (engu (65a (ta) )))

goes to (25 —1)U? =2 as o — +o0 in C?

loc

weakly to ¢ in D? (R™), passing to the limit into (38) as a — +oo yields

(39) / <V<;3, V<p> dz = (2° — 1) / U2 2¢pdz .

Since (39) holds for all smooth functions ¢ with compact support in R™, we get
that the function ¢ satisfies the equation Agya¢ = (2* —1)U? ~2¢ in R™. By
Bianchi-Egnell [4], it follows that ¢ = 31" ; \;V; for some real numbers );. It then
follows from the orthogonality condition (36) that é = 0 is identically zero. This
proves the claim.

(R™). Moreover, since (%a)a converges

Letting 4 := ¢o and using (37) together with a change of variable, we get
Jally = (28 =1 =20) [ uo =Wl 75 gy + 0 (1)
<C [ GRau, 0 [ Wl du, 4o ()
M M
<c [ g +c [ WG, o)

as a — +o00, where $a and g, are as in (33) and (34). Since ¢, — 0 strongly
in L2(M), (%g)a is bounded in L7-2 (R™) and converges almost everywhere to
0, standard elliptic theory yields ¢, — 0 as a — +oo in HZ (M). This is a
contradiction with (25). This ends the proof of (24).

The invertibility of L. s_(4)¢ follows from the Fredholm alternative. This ends the
proof of Lemma 4.2. O
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Now, we prove Proposition 4.1 by using Lemma 4.2 together with the error estimate
in Section 7.

Proof of Proposition 4.1. We let a and b be two positive real numbers such that
a < b. For € small, for any real number ¢ in [a,b], and any point £ in M, equation
(21) is equivalent to

(40) Le sty (#) = Nes.v),e (@) + Be 5. (t).6 5
where 6, (t) = te?/ ("2 L ;5 )¢ is as in (23), and
(41)  Negqo.e (@) = 50, (1" (fe (w0 — W .6 + 0)
= fe (0 = Ws_(1).) = fL (uo = Ws_ (1)) 6))
and
(42) Re 5.6 =51y (" (f2 (0 = Wo(y.6)) — w0 + W (ry.¢)

By Lemma 4.2, for € small, we get that the map L. 5_(;)¢ is invertible for all real
numbers ¢ in [a, b] and all points £ in M. We then let the map T, 5_s)¢ K(i(t) e

Ki( £ be defined for all ¢ € K&i(t),.f by

71
Tg,éa(t)’g (¢) T LE,(SE(t),g (Nsa‘si(t)7f (¢) + RE»(Sa(t)’g) ’

where N. 5 (1), (¢) and R.s_(1),¢ are as in (41) and (42). For any positive real

number =, we let B. 5_(+),¢ (£) be the closed ball defined by

Beswe(8) = {0 € Kie/ Iol, < Zve},
where v, > 0 is the error obtained in Lemma 7.1 of Section 7, namely
gllneg] fn<6

t)

4 .
(43) ve:=( €32 ifn>7
82&4:22) if n >7, h =c¢,Scaly, and (M, g) loc. conformally flat.
We fix 0y € (0,min{1,2* — 2}), so that u + f.(u) is locally in C*% on HZ(M)

uniformly with respect to € > 0 small. By Lemma 4.2 and by continuity of i*, for
e small, for any real number ¢ in [a, b], any point £ in M, and any functions ¢, ¢1,
and ¢o in HZ(M), we get that

Tz 5. 00,6 (1) = Tes iy (92)]), < C- (maX{||¢1||Z°7 ||<752||Z°}> N1 — p2lln

for some positive constant C' independent of =, ¢, t, &, ¢, ¢1, and @2, where v,
is as in (43). By Lemma 7.1, we have that ’|T5755(t)7§ (O)H < Cv.. We then get
that for = > 0 large enough, and then for ¢ small, for any real number ¢ in [a, b],
and any point § in M, then the map T 5_¢;).¢ is a contraction map from the closed
ball Ee,és(t),ﬁ (Z£) into itself . We then get that the map 7. 5_«;) ¢ admits a unique
fixed point ¢;_(¢),¢ in the ball Es,gs(t)é (Z). In other words, the function ¢s_(;)¢ is
the unique solution of equation (40), or equivalently (21), which satisfies (22) with
Cop=2Z=.

The continuous differentiability of (¢,£) +— ¢5_¢).c on (a,b) x M is standard. This
ends the proof of Proposition 4.1. O
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5. THE REDUCED PROBLEM

For ¢ small, we introduce the functional J. defined on H? (M) by

1 1
Je (u) := 3 /M |Vu|3 dvy + 3 /M hu*dv, — /M Fe (u) dvg,

where F. (u) := [, f= (s) ds. The critical points of J; are the solutions of equation
(13). For any positive real number ¢ and any point £ in M, we define

(44) j{;‘ (t7§) = JE (UQ - W‘Ss(t)’f + ¢5a(t)7£) ?

where Ws_4) ¢ is as in (14) and ¢s_4),¢ is given by Proposition 4.1. We solve
equation (20) in Proposition 5.1 below:

Proposition 5.1. Let ug € C*%(M) be a positive nondegenerate solution to (7).
Assume that either {h € C*%(M) and 3 <n <6} or {h € C*(M) and 3 <n < 9}
or {(M, g) is locally conformally flat and h = ¢, Scaly}. Then

(45)
T (t,€) = c1(n,up) + ca(n,up)e + cz(n)elne + Q(ﬂ)sln% +cs5(n) (st%uo €3]

n"7 (n— 2)%6 (n— 1)wn5ﬁt2

2n=1(n —4) w1

as € — 0, uniformly with respect to t in compact subsets of Rso and with respect
to the point & in M, w, (resp. wn_1) is the volume of the unit n-sphere (resp.
(n — 1)-sphere), c¢;(n,ug) (i = 1,2) are positive constants depending only on n,
ug, and the manifold, c;(n) (i = 3,4,5) depend only on n, and c4(n),cs(n) > 0.
Moreover, given two positive real numbers a < b, for e small, if (t.,&:) € (a,b) x M
is a critical point of Je, then the function uo — Ws_1.).e. + @s.(1.),c. 5 a solution
to equation (13), or equivalently (4).

+ (h (§) = eaSealy () Luzs ) +0()

This section is devoted to the proof of Proposition 5.1. We define the optimal
Sobolev constant K,, by

) — 2w/
(46) — = in IVullz = n(n Jw )
Ky uep2®)\{0} |ul2r 4

where w,, is the volume of the unit n-sphere: see Aubin [2], Talenti [35], Ro-
demich [31]. The infimum in (46) is achieved by the function U defined in (15).

Lemma 5.2. Let ug € C%(M) be a positive solution to (14). Assume that either
{he C% (M) and 3 <n <6} or {h € C>(M) and 3 <n <9} or {(M,g) is locally
conformally flat and h = ¢, Scalg}. Then

1 . . 1
47 Je (uo - Ws. @) 5) = —/ ug dvg + i/ ug Inug — — ) duy
N ? n M 2* M 2*

K- —9 —9)? N, et T
" (n(n—2)) " w,

+

(h(€) — e Sealy () Luzo + 0 (&) )
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as € — 0, uniformly with respect to t in compact subsets of R~q and with respect to
the point & in M, where w,, (resp. wn—1) is the volume of the unit n-sphere (resp.
(n —1)-sphere), K, is as in (46), and

(48)

+oo 1 t5% (1+7) (n—2)?
, =23 —22“’"*1/ L d 1-nl ~2)).
b (n=2) wn Jo (1+7)" i ( ninyn (n ))

Proof. All our estimates in this proof are uniform with respect to t in compact
subsets of R+, with respect to the point £ in M, and with respect to € in (0, &p)
for some fixed positive real number £¢. Expanding J. (uo — W(;E(t)é), using that ug
is a solution to (7) and rough estimates yield

1 . . 1
(49)  J. (uo — Ws_(1),¢) = —/ ud dvg + 3/ ud <1DUO - ) dv,
' n Sy 2% I 2%
+heretTocie—Icre+0(e7)

when £ — 0 where

1 2 1 9 1 9%
Dete = 3 /M |VW55(t),£|g dvg + 3 /M hW(;E(t),&dvg BT / I/V(S (tf&dvg,

Ipeie = /M Wi g “dvg

Iycte = /M (Fe (uo = Ws.(1).¢) — Fe (u0) — Fe (Ws(1).¢)
+ fe (u0) Wi (1.6 + f= (Ws, (1).¢) o) dvg -
We estimate these terms separately.
Step 1: Estimate of I1 ¢ +¢ in the locally conformally case when h = ¢, Scalg.

In case h = ¢y, Scal; and the manifold is locally conformally flat, the conformal

change of metric g¢ = Ag/ (=24 vields

1 2 1 2 2" —¢
3 /M [VWs.0).¢], dvg + 3 /M hWs. (1),6dVg — 55— 6/ Wi 0).£@0g

1 7 74 2 eTi/2" —¢
= §/M |VW5e(t)7§‘g§dU9s o / AW iy e@ge

where W;_ t),e = Ws_(t),¢/Ae. In this case, since the metric ge is flat in Be (ro), we
find

/M |VVV/5E(t)75|§§dvg§ = /]R |VU|? dz + O (55 (t)"_2> =K, " +0(c%)
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when € — 0. Moreover, since g¢ is flat around &, we get that

1

eTrr2"—¢
> ¢y A Wi (), §dvge
2227 -e) et -1
-9 1 n—2 25¢(t) d

_(n(n=2)) an-d: (07 S+ 000"

2% —¢ 0 (1 +r2) 72 (2% —¢)
+0(ed: (1))
_ n—2 —n 2ﬂn n—2 2 2
== K <1+n_25+51n6+ elnt>+0(€ [Ine| )—1—0(556@)),

where K, is as in (46), and 3, is as in (48). Therefore, we get that

K" —2 —2)?
(50) Lere= :L <1 — Bne — D2 e %sln t> +o(e)

when ¢ — 0 uniformly for all £ € M and ¢ in a compact of (0,+00) when h =
¢n Scaly and (M, g) is locally conformally flat.

Step 2: Estimate of Iy . ¢¢ in the general case.
Cartan’s expansion of the metric in geodesic normal coordinates yields for any
a,B=1,...,n and for y close to 0, there holds

(51) \/ |9 (expe y) |7177 Z Ry (€ y”+P3(y)+0(|yI4>,

pr=1

where the function |g| is the determinant of the metric, the functions R,,, are the
components of the Ricci curvature tensor in geodesic normal coordinates associated
with the map exp, and P3(y) is a homogenous polynomial of degree three. Using
(51) together with expression of the gradient of a radially symmetrical function in
geodesic normal chart, we get that

n42

(52) / |VW55(t),§}zdvg:n%2 (n—2)"2 wp1
M

mm gt 1 2 9 4 4
></0 (n<1—6nScalg(§)§5(t) 2 +0(5(0)'r ))dr

1+72)
+0 (55 (t)H)
K3® 40 (%) ifn=3
_ K (1+i8calg(§)t2€21ns>+O(52) ifn=4

n n+ 2 _a_ 8 .
Kn (1671(71_4)Scalg (g)t2€"2> +O<€"72 +52 |1H5‘> 1fnZ5
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when € — 0. Taylor’s expansion at £ yields on the one hand

1 _ (n (n_ 2))”772(2*_5) n_2
(53) ﬁ/ Wy oredvg = > 2 wn—10: (1) 7 °

255@) n 1 1 ),
/ (1+1r2) 222 (2% —¢) <1 - 671803‘19 (&)o- (t)"r

((sg ))dr+0< ")

-2 n -2 1 _a
<1+ ﬁ €+€1n€+n €lnt6(n_2)SCalg(f)t25n42>
+0 (sm + % |Ine| )
when € — 0. On the other hand,
(54) /M hW3 (1 edvg = R (n—2)°7 0. (1)’

X/B ©) M(NFO@ t)? |z|?)) dz + O (65 (t)n72)

(1 + [af2)"
0 (%) ifn=3
—%K;4h(§)t2621n5+0(62) ifn=4
4(n—1)

m&?"h (€)%= + O(R.) ifn>5

when £ — 0, where

2(2+46)

B en7 4 e2[lne|  if h e C2(M)
: gz if h e CO9(M).

Plugging together (52), (54), and (53) yields

K" n—2 n—2)>
(65) Iiepe= ; (1—ﬁn5—261n5—( 1 ) elnt

2(n—1) emTt2

R )y ey

(h (€) — e Scal, (€)) 1) to(2)+O(R.)
when ¢ — 0.

Step 3: Estimate of Ioc .

(56) / W5 (t) ¢  “dvg = (n(n — 2))%(2*717‘5) Wn—1ug (&) 0c (t)%(lﬂ)
M

255(‘> =l ( 2 9 ) nt2
X 1+0 (6. () r dr +0 (6. (t) 2
,/0 (1 _|_7n2) 72 (2 —1—¢) ( (*) ) ( () )

_ Z”wn,lK,j”uo (f) tnT72€

—2
n"t (n— 2)n4 W,

+0 (5% IIne| + &2 |1n5|)
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when & — 0, where K, is as in (46), and 3, is as in (48). We have used here that
Jzn U 1 dz = limp_ 400 fBR(O) AguwaU dx and integrated by parts.

Step 4: Estimate of Isc .
We have that

(57) /M (Fe (uo — Wi, 1)) — Fx (o) — Fo (Ws, (1))

+fe (u0) Wiy, + f (Wi (0).¢) uo) dvg

<

F. (ug — W, —F. (W + w. ug| dv
/Bs<M)| s (w0 = Ws.y.e) = F= (Ws.(1.¢) + f= (Ws.0).¢) wo| dvg

+/ |Fe (uo = Wi, (ry.e) — Fe (uo) + f= (u0) Ws. (1) ¢| dvg
M\B¢ (v/32(6))

T / P ()| dvg + /
Be(4/0:(1)) Be(y/de (1)

+ Fe (W, dv Jr/ w. ug| dv, .
/M\Bg( 55(t))| 6( 55(t)7§)| g M\Bg(M)UE( 65(75)7&) o| g

As is easily checked, Taylor expansions of F(ug — Wj_¢).¢) yield

) | f= (o) Ws_ 1), | dvg

/Bg(M) |Fe (uo = W) — Fe (Ws.y,e) + fo (Ws.(0),¢) uo| dvg
" 0 </<m) U?JW(?S@??dvg) ,

/M\Bs(M) |F2 (w0 — Ws.(1),¢) — Fe (wo) + f= (uo) W (1),¢| dvg
) =0 (/M\Bs(m) ug*2€W525(t)1§dvg> .

Bounding ug and W;_(4),¢ pointwisely roughly from above in (58) and (59) and
plugging this in (57) yields

O (%) if n=3
(60) Iere =14 O(%|lnel) ifn=4

O(e72) ifn>5
when ¢ — 0.

Step 5: End of proof of Lemma 5.2.
The asymptotic expansion (47) follows from (49), (50), (55), (56) and (60). O

In Lemma 5.3 below, we show that the first order terms in the asymptotic ex-
pansion of J; (t,€), defined in (44), are the same as for J. (uo — Wis_(1)¢)-

Lemma 5.3. Assume that either {3 < n <9} or {(M,g) is locally conformally flat
and h = ¢, Scalg}. Then

(61) T (t,€) = Jz (uo — Ws_(1),¢) +0(e)
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as € — 0, uniformly with respect to t in compact subsets of R~q and with respect to
the point € in M.

Proof. All the estimates in this proof are uniform with respect to ¢ on compact
subsets of R+, with respect to the point £ in M, and with respect to € in (0, &)
for some fixed positive real number £5. We get that

(62) T (t,€) — Je (uo — Ws.(1).¢)
= (uo = Ws,ty.e — 1" (f= (w0 = Wi, (.6)) » #s.(t).6), + O (||¢5s(t>,5|}i)

when € — 0. Proposition 4.1 and Lemma 7.1 yield

(63) (w0~ Wi, e = 1" (J (10 = Wo..6)) s 85060 + O ([|0s. 0.7
0 (52 |1n5\2) ifn<6
={o (5%) ifn>7
0 (5%> if n>7, h=c,Scaly, (M,g) loc. conformally flat
when ¢ — 0. Finally, (61) follows from (62), and (63). O

The asymptotic expansion (45) follows from Lemmas 5.2 and 5.3. Now, we prove
the second part of Proposition 5.1.

End of proof of Proposition 5.1. Given two positive real numbers a < b, it remains
to prove that for e small, if (t.,&.) € [a,b] x M is a critical point of J., then
the function ug — Wi_¢.).¢. + @5.(.),¢. 15 a solution of equation (13). In order to
prove this claim, we consider a sequence of points ({,),, in M and two sequences of
positive real numbers (e,), and (t,), such that e, — 0 as o = +00, a < t, < b,
and (tq,&q) is a critical point of 7. for all a. It is enough to show that for o large,
the function ug — W, _(1,).e. + @s.. (ta).ca 18 @ solution of equation (13). As in the
proof of Lemma 4.2, up to a subsequence, we identify the tangent space with R™
around the £,’s. We define

(64) 206, (ta) b = Zs., (ta) ke ANA Zis. (ta).60 = Lo, (o) fares

for all i = 1,...,n, where e; is the i-th vector in the canonical basis of R™ and the
functions Zs__(1.),e. and Zs,_(1,).¢..e; are as in (17) and (18). By Proposition 4.1,
we get that

(65) DJ., (uo = Ws. ()60 + Do, (ta)bn) = Z Nia (Zis. (ta)€as '>h
1=0

for some real numbers A;,, where the functions Z;s_ (s,)e, are as in (64). It
follows from (65) that

N - d
(66) a: (to“ é‘0‘) - Z )\i,og<Zi765a (ta):€a> % (7W‘;5a (t):€a + ¢6ea (t)vga) >h .
1=0 t=ta
On the one hand, we find
d n>2 ( 2)"7“
n1 (n—
(67) 7 Voea (0) 6 o Th 20,620, (ta) £a
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On the other hand, for any ¢ = 0,...,n and any «, since the function ¢s__(s,).¢.
belongs to Kélg (ta)fa differentiating <Zi’55a ().6a> Ds.., (t)ﬁ§a>h = 0 with respect to

t yields
d
> = - < %Ziy(ssa (t)vfa ’ (b‘ssa (t(,),fa > :
t=ta [ p, t=tg, h

=0(1)
h
as a@ — +o00. Proposition 4.1, (68), (69), (29), (66), and (67) yield

n—2 n+2 n
N/ ni (n—2)1
(70) (o) =~ =D Ty IVVOlE +o (Z |Ai,a|>

d
(68) <Zi752a (ta)vfa’ %(bésa (t)vga

Moreover, one easily checks

d

(69) %sta ()60

t=tqo

ot 2t =

as a — 400, where the function Vj is as in (16). For any ¢ = 1,...,n, by (65), we
get that

d

7\760( taanP y

dy; ( o ) 40

= d
— Z )\j,a Zj75ga (ta),€a> df <_W§Ea (t“)’exPia y + ¢6Eu (ta),expga y) )
§=0 Yi y=0/,

where the exponential map is taken with respect to the metric g¢,. On the one
hand, direct computations yield

n— n+2
d n"t (n—2) 1
dyi O (ta)7exp£a Y =0 = 66& (f) (Zi765u (ta),éa + Ri755a (trx)xﬁa) ’
where R; 5. (t.).c. — 0 as @ = +oo in Hi (M). Forany i =1,...,n, j =0,...,n,

and any «, since the function ¢s__(¢,).¢, € K, i (to) s differentiating the equation

<Zj,5ga(ta),exp§a ys Ps..., (ta)expe,, y>h = 0 with respect to y; at 0 yields

d d
<Zj,asa (ta)Ea> djﬁ%ga (ta) expe,, y>h =- <dinj,65a (ta)sexpe,, 12 Poey (ta) Lo >h
Moreover, one easily checks
1
ofi)
R0

d
Tyzjvésa (tcx)aexpga Yy
1
as a — 4o0. Similarly to the derivative in the t—direction, we get that
(71)

y=0

n— nt2 -
=0T (n-2)"T NallVVill,+o [ Y Nl
y=0 j=0

a

Be. (ta) -

jsa (tow expga y)

as @ — +oo, where the function V; is as in (16). If (t,,&,) is a critical point of
Je,, for all a, then it follows from (70) and (71) that for any ¢ = 0,...,n, there
Xio = 0 for all 4 = 0,...,n. By (65), if follows that for « large, the function
uo — Wi, (ta),€a T @5, (ta).6. 15 @ critical point of the functional J;,, and therefore
a solution of equation (13). This ends the proof of Proposition 5.1. (]
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6. PROOF OF THE THEOREMS

Proof of Theorems 1.2 and 2.2. We let G be the function defined on Ry x M by

1 n—
(72) G (£,€) = ealn) In -+ es(n)t T ug (6),
where c4(n) and c5(n) are as in (45). Since ug is positive and M is compact, we get
(73) lmG(1,6) =+oo and  lm G(1,€) = +oo

uniformly with respect to £ € M. Since h = ¢, Scal, and either {3 < n < 9} or
{(M, g) is locally conformally flat}, it follows from Proposition 5.1 that

(14) T 2 (2 (56) — er(mw0) — ealn,uo)e — es(m)elne) = G (4,)

uniformly with respect to ¢ in compact subsets of R+ ¢ and with respect to the point &£
in M. For € small, by (73), (74), and by continuity of J. and G, we get the existence
of a family of points (., ) which realize the minimum values of the functions J; in
(a,b)x M for some positive real numbers a < b independent of €. By Proposition 5.1,
it follows that for € small, the function ue = uo — Wis_(1.).e. + @s.(1.),¢. 18 a solution
of equation (2), where Wis_() ¢ is as in (14) and ¢s_(¢),¢ is given by Proposition 4.1.

We get that lim. ,oue = ug in HZ, . (M \ {}) where & := lim. ,o& (up to a

1,loc.
subsequence): it then follows from standard elliptic theory that lim. o us = ug in

C? (M \ {&}). Independently, lim. o 6. (ta)%2 ue(exp&-) = —U in Hiloc_ (R™),
and still by elliptic theory, one then gets the convergence in CIQOC(R”). This proves
that (uc)es>o changes sign and blows-up when ¢ — 0. This ends the proof of

Theorems 1.2 and 2.2. O

Proof of Theorems 1.1 and 2.3. In dimensions 3 < n < 5, the proof of Theorem 1.1
is similar to the proof of Theorem 1.2. The specificity of dimension n = 6, is that
the function G in (72) is replaced by

1

G (t.6) = ca(6) 7 +3(0) (1w €)-+ 5 (1 (€) = coSealy (€) ) 2

where ¢4(6), ¢5(6) > 0 are as in (45): therefore (73) holds with the hypothesis of
Theorem 1.1 and the proof of Theorem 1.1 goes as for Theorem 1.2. We focus on
Theorem 2.3. In dimension n = 6, computations similar to (45) yield

JE (w0 + Wi (1),¢) = c1(6,u0) + c2(6,ug)e + c3(6)e Ine

1 1
- (cato)m -+ es(6) (5 (6) — oSl (6) — uo(©) ) # )+ o)
as € — 0, where JI (u) := 3 [, |Vu|§ dvg + 3 [, hudvy — 51— [,, u> ~Sdv,. The
proof then is similar to the proof of Theorem 1.1. O

Proof of Theorem 2.1. The introduction of another type of model for blow-up is re-

quired here. It follows from Lee-Parker [21] that for any { € M, there exists A¢ €
4

C°°(M) positive such that g := A/~ g satisfies dvg, = (1+0(dg,(§,)")) dx in a ge-

odesic normal chart. An immediate consequence is that Scaly, (§) = |V Scaly, (§)| =

0 and A, Scalg, (§) = §| Weyl, (€)]2. Moreover, we can assume that (&, z) — Ag(x)
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is C*° and VA¢(€§) = 0. We define W5 ¢ in (14) with the function A¢ above. When
h = ¢, Scaly, the conformal law of change of metric yields the Taylor expansion

(75)

K" ((n—2)? 1
Je (uo — W(;E(t)’g) = c1(n,up) + ca(n,ugp)e + cz(n)elne + ; ((n4)aln -

2" w1 n-2 | Weyl (§)|§ .y s
T o= 2))(n—2>/4“(5)5t " 2= 437(” e ) +o (e tem )

when ¢ — 0 for n > 7. When n < 10, the term involving the Weyl tensor is
neglictible. When n = 10, it competes with the one involving ug: arguing as in the
proofs above, we get the existence of a blowing-up family when ug > %| Weyl, \3,
which proves Theorem 2.1 since the additional terms involving ¢s_ (4),¢ are neglictible
when n < 17. When n > 10, the Weyl tensor dominates but the negative sign does
not allow to construct a critical point for the reduced functional. O

Proof of Theorem 2.4. 1f & € M is a strict minimizer of ® on Bg,(v9) C M with
vy > 0, the arguments above extend by minimizing G on (0, +00) X Be, (). O

7. ERROR ESTIMATE

This section is devoted to the error estimate used in previous sections. All
notations refer to Section 4. The estimate is as follows:

Lemma 7.1. Given two positive real numbers a < b, there exists a positive constant
C\., such that for e small, for any real number t in [a,b], and any point § in M,

there holds

(76)  [|i* (fe (uo = We.v).¢)) — 1o + Wa.uy.ell,,
ellne] ifn<6

<Cl,gen? ifn>7
£ if n>7, h = ¢y Scaly, and (M, g) loc. conformally flat,
where 0. (t) = te¥ "= and Ws_ (1) ¢ is as in (14).

Proof. All our estimates in this proof are uniform with respect to ¢ in [a, b, £ in M,
and ¢ in (0,&¢) for some fixed positive real number €. The continuity of i* yields

7% (f= (w0 = Ws.(0).¢)) = w0 + Wa. oy,
= O (|14 (o = Wo.(tr.6) = (&g +h) (w0 = Wo0.6) | 2. )
It follows that
(77) || (f= (wo — Wi, (0),6)) — uo + Was(t),th =0 (jl,e,t,ﬁ +Ioese+ fg,e,t,g),

where y
L = || fe (w0 = Wary ) — fo (uo) + fo (Wooy.¢) Hn% ;

Dc e = || fe (u0) — Agtio — huto| 2,

Iycre = |[fe Wo.a.6) = AgWoio.6 = hWoqogl 2, -

We estimate these terms separately.
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Step 1: Estimate of I~1787t75.
We get

Ticne < ||(F (w0 = Wa0,6) + £ (Ws0.0) L /)

2n
n+2

+ H (fe (w0 = Wo.0.¢) = F= (w0)) 1y . (/o

|

|

Je (o) 1p (/5=

As is easily checked, Taylor’s expansion for f. (uo — Wés(t),g) yields

fE W6 (t), 5) M\ Be( /5. (®)

2

[ 7= (a0 = W) + f Wo.0.0) Loy |y,

*—1-—e

—2—¢ 2
=¢ (H uoW;, & LBe/5 0 )Hi H“O Lo (/5

2n >
n+2

and

H (f2 (w0 = Ws.1y.¢) — [= (u0)) Ly Be (/o) 2n

2% —2— 2% _1—
= <H“0 Wo 1 a5z | o, + Vo0 Tanssecyiz )
n+2 n+2

Estimating roughly these terms yields
O (e) ifn<5

(78) Frove = o(aune\%) =6
0(5%> ifn>7
when € — 0.

Step 2: Estimate of fg’gyt’g.
Since wy is a solution of (7), we get that

(79) Dyee = || f- (uo) = fo (uo)l| 2a = O (e).

nt2

Step 3: Estimate of I~3787t75.
We define x¢ (+) = x (dg, (.€)), Use () = 527TnU(5’1 expg1(~)), where the function
U is as in (15) and the exponential map is taken with respect to the metric ge.

Step 8.1: Estimate of Ise.¢ when (M,g) is locally conformally flat and h =
cp Scalg.

4/(n—2)
A£

Since g¢ = g is flat, we get that

fe Wo..6) = BgWo. .6 = hWo, 0. = 4 (Agefs (Wﬁs(t)f) - AggVNV(ss(t),g) )

where Wés(t),f = Ws_),e/A¢. In this case, since the metric g is flat in Bg (rp) and
since the function U is a solution of the equation AgualU = U% ~1 in R”, we get
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that
2% —1—¢ 2% —1— 2% 1
(80) Tsene < || Oeete)” 7 (UE G - UG .
2% —1— — 2% —1772"—1 2% —1
+H<X€ g xe) AU e A+HA£ Us. (0.6 BoeXe | 4,
n+2 n

+2 HA?‘1 (Vxe, VUas(t),5>gs

2n
Step 3.2: Estimate of Isc ¢ in the general case.
In general, we get that
(81)
2" —1— 21— 2% —1 21— 2% —1
Lee < ng ) (Uss(tm - U&(t)@) P H (Xf - Xé) Us.(t).€]] 20
n+2 n+2

2n
n+2

+ HXE (Uai(?)l,g - AgUés(t)é)

+2|[(Vxe, VUs.1.),

+1Us. 0.6 0% | 2o,

o +HhX§U55(t),§H%.
n+2

Step 3.3: Estimates of the terms in (80) and (81).
Since x¢ =1 on Be(rg/2) and x¢ =0 on M \ Be(ro), we get that

2" —1— 2% —1— 2" —1
(82) /M (xede) ) (Uasa),g - U@(t),&)
2n
*—1—e g—e *— *—1 |n+2
) (A - ) AU

(84) / Ag*_lUge(t)’gAg)Q [ O (6"%2)
M

when ¢ — 0. A rough L* upper bound for |VUs_g)¢| on M\ B, /2(€) yields

) /

etz
Since AgualU = U2 ~1, we get in the chart exp, that

2n
n+2

dvg =0 (6"% |1na|’37*$) ,

dvy =0 (5%) ,

dvy = O (57%2) .

<A§*_1VX5, VU65<t>,¢>g

AgUs. . = Us (e = —(97 = 6)0iUs.(1).6 + 9 T100Us. .6 »

where the g%/’s are the coordinate of the metric g = g¢ and ') 5's are the Christoffel
symbols of the metric g in the normal chart exp,. Cartan’s expansion of the metric
yields |g¥ (z) — 69| < Clx|? and |Ff](x)\ < C|z| around 0, and therefore

3:(t),€
via the chart exp,. Therefore, we get that

‘UT_l - AgU&(tm’ < ClaP|V2Us. ¢l + Clal - [VUs (1) ¢

O(en%) ifn<5

2n
n+2

2*—1 _ 3 —
(86) /M‘Xf (Uaeu),s AgUaEam) dvg = 0(62 \lné‘l) ifn==6

o) (ei«rwﬁ?’wn) ifn>T.
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It remains to compute

0 (c72) ifn <5
(87) / |hxeUs. (1), B2 dvg =14 O (E% |1n5|> ifn==6
; O (emtma) ifn>7

when £ — 0.

Step 3.4: End of estimate of I3 1.
By (81)—(87), we get

(83)

O(ellne]) ifn<6

/e (Wa.c0.6) = BaWo. o6 = MWo.ionell 2, = 4 () itz

In case h = ¢, Scaly and the manifold is locally conformally flat, by (80), (82)—(85),
we get

(89)

whe

1£= (Wo.(t).6) = BgWo.).6 = hWo. 1y €| 2o, = O (e [ne])

ne—0.

Step 4: End of proof of (76).

Finally, (76) follows from (77), (78), (79), (88), and (89). O
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