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Abstract. We extend Chen, Wei, and Yan’s constructions of fam-
ilies of solutions with unbounded energies ([5]) to the case of cubic
nonlinear Schrödinger equations in the optimal dimension four.

1. Introduction and main results

In this note, we consider the cubic nonlinear Schrödinger equation

∆gu+ fu = u3 in M (1.1)

where (M, g) is a Riemannian manifold of dimension 4, ∆g := − divg∇
is the Laplace-Beltrami operator, and f ∈ C0,α (M), α ∈ (0, 1).

In case (M, g) = (S4, g0) where g0 is the standard metric on the
sphere S4, we obtain the following result:

Theorem 1.1. Assume that (M, g) = (S4, g0) and f > 2 is constant.
Then there exists a family of positive solutions (uε)ε>0 to (1.1) such
that ‖∇uε‖L2(S4) →∞ as ε→ 0.

Theorem 1.1 extends a result obtained by Chen, Wei, and Yan [5] in
dimensions n ≥ 5 for positive solutions of the equation

∆gu+ fu = u2∗−1 in M (1.2)

where 2∗ := 2n/ (n− 2). The dimension four is optimal for this result
since Li and Zhu [11] obtained the existence of a priori bounds on the
energy of positive solutions to (1.2) in dimension three.

It is also interesting to mention that in case n 6∈ {3, 6} and f >
n(n−2)

4
on Sn (or more generally f > n−2

4(n−1)
Scalg on a general closed

manifold where Scalg is the scalar curvature), Druet [6] obtained a
compactness result for families of positive soutions (uε)ε>0 of (1.2) with
bounded energies, i.e. such that ‖∇uε‖L2(M) < C for some constant
C independent of ε. The above Theorem 1.1 together with the result
of Chen, Wei, and Yan [5] in dimensions n ≥ 5 show that the energy
assumption in Druet’s result is necessary at least in the case of the
standard sphere.
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In case f ≡ n(n−2)
4

and (M, g) = (Sn, g0), the positive solutions of
(1.2) have been classified by Obata [12] (see also Caffarelli, Gidas, and
Spruck [4]). In this case, the solutions are not bounded in L∞ (Sn)
but they all have the same energy. We refer to Brendle [2], Brendle
and Marques [3], Khuri, Marques, and Schoen [10] and the references
therein for results on the set of solutions of (1.2) in case f ≡ n−2

4(n−1)
Scalg

and (M, g) 6= (Sn, g0). On the other hand, in case f < n−2
4(n−1)

Scalg on a

general closed manifold, Druet [7] obtained pointwise a priori bounds
on the set of positive solutions of (1.2). Remark that if moreover
0 < f < n−2

4(n−1)
Scalg is constant, then Bidaut-Véron and Véron [1]

obtained that u ≡ f (n−2)/4 is the unique positive solution of (1.2). We
refer to the books of Druet, Hebey, and Robert [8] and Hebey [9] for
more results on equations of type (1.1) on a closed manifold.

As in the paper of Chen, Wei, and Yan [5], we obtain Theorem 1.1
by proving a more general result in case (M, g) = (R4, δ0) where δ0

is the Euclidean metric on R4. We let D1,2 (R4) be the completion of
the set of smooth functions with compact support in R4 with respect
to the norm ‖u‖D1,2(R4) = ‖∇u‖L2(R4). For simplicity, we will denote

∆ := ∆δ0 , 〈·, ·〉 := 〈·, ·〉δ0 , and |·| := |·|δ0 . We say that the operator

∆ + f is coercive in D1,2 (R4) if∫
R4

(
|∇u|2 + fu2

)
dx ≥ C ‖u‖2

D1,2(R4) ∀u ∈ D1,2
(
R4
)

for some constant C > 0. We obtain the following result:

Theorem 1.2. Assume that (M, g) = (R4, δ0) and f ∈ C0,α (R4) ∩
L2 (R4) is radially symmetric about the point 0. Assume moreover that
the operator ∆+f is coercive in D1,2 (R4) and the function r 7→ r2f (r)
has a strict local maximum point r0 > 0 such that f (r0) > 0. Then
there exists a family of positive solutions (uε)ε>0 in C2,α (R4)∩D1,2 (R4)
of (1.1) such that ‖∇uε‖L2(R4) →∞ as ε→ 0.

The proof of Theorem 1.2 relies on a Lyapunov–Schmidt-type method
as in the paper of Chen, Wei, and Yan [5]. This method for construct-
ing solutions with infinitely many peaks was invented and successfully
used in previous works by Wang, Wei and Yan [13, 14] and Wei and
Yan [15–18]. A specificity in our case is that the number of peaks
in the construction behaves as a logarithm of the peak’s height while
it behaves as a power of the peak’s height in the higher dimensional
case (see the paper of Chen, Wei, and Yan [5]). Due to this logarithm
behavior, we need to introduce some suitable changes of variables in
order to find the critical points of the reduced energy in this case (see
the proof of Theorem 1.2 at the end of Section 2).
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2. Proof of Theorems 1.1 and 1.2

This section is devoted to the proof of Theorems 1.1 and 1.2. For
any integer k ≥ 1, we let Hk be the set of all functions u ∈ D1,2 (R4)
such that u is even in x2, x3, x4 and

u (r cos (θ) , r sin (θ) , x3, x4)

= u (r cos (θ + 2π/k) , r sin (θ + 2π/k) , x3, x4)

for all r > 0 and θ, x3, x4 ∈ R. Assuming that the operator ∆ + f is
coercive in D1,2 (R4), we can equip Hk with the inner product

〈u, v〉Hk :=

∫
R4

(〈∇u,∇v〉+ fuv) dx ∀u, v ∈ Hk

and the norm

‖u‖Hk :=
√
〈u, u〉Hk ∀u ∈ Hk.

For any k ≥ 1 and r, µ > 0, we define

Wk,r,µ :=
k∑
i=1

Ui,k,r,µ

where

Ui,k,r,µ (x) :=
2
√

2µ

1 + µ2 |x− xi,k,r|2
∀x ∈ R4

and

xi,k,r := (r cos (2 (i− 1)π/k) , r sin (2 (i− 1) π/k) , 0, 0) .

Moreover, we define

Pk,r,µ :=

{
φ ∈ Hk :

k∑
i=1

〈φ, Zi,j,k,r,µ〉Hk = 0 ∀j ∈ {1, 2}

}
where

Zi,1,k,r,µ :=
1

µ

d

dr
[Ui,k,r,µ] and Zi,2,k,r,µ := µ

d

dµ
[Ui,k,r,µ] .

First, in Proposition 2.1 below, we solve the equation

Qk,r,µ

(
Wk,r,µ + φ− (∆ + f)−1 ((Wk,r,µ + φ)3

+

))
= 0 (2.1)

where φ ∈ Pk,r,µ is the unknown function, Qk,r,µ is the orthogonal
projection of Hk onto Pk,r,µ, and u+ := max (u, 0) for all u : R4 → R.

We will prove the following result in Section 3:
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Proposition 2.1. Let f ∈ C0,α (R4)∩L2 (R4) be a radially symmetric
function about the point 0 and such that the operator ∆ + f is coercive
in D1,2 (R4). Then for any a, b, c, d > 0 such that a < b and c < d, there
exist constants k0 > 0 and C0 > 0 such that for any k ≥ k0, r ∈ [a, b],

and µ ∈
[
eck

2
, edk

2]
, there exists a unique solution φk,r,µ ∈ Pk,r,µ of

(2.1) such that

‖φk,r,µ‖Hk ≤ C0k/µ. (2.2)

Moreover, the map (r, µ) 7→ φk,r,µ is continuously differentiable and if

there exists a critical point (rk, µk) ∈ [a, b]×
[
eck

2
, edk

2]
of the function

(r, µ) 7−→ Ik (r, µ) := I (Wk,r,µ + φk,r,µ)

where

I (u) :=
1

2

∫
R4

(
|∇u|+ fu2

)
dx− 1

4

∫
R4

u4
+dx,

then the function Wk,rk,µk +φk,rk,µk is a positive solution in C2,α (R4)∩
Hk of the equation

∆u+ fu = u3 in R4. (2.3)

Then we will prove the following result in Section 4:

Proposition 2.2. Let f ∈ C0,α (R4)∩L2 (R4) be a radially symmetric
function about the point 0 and such that the operator ∆ + f is coercive
in D1,2 (R4). Then there exist constants c0, c1, c2 > 0 such that for any
a, b, c, d > 0 such that a < b and c < d,

I (Wk,r,µ + φk,r,µ) = c0k + c1f (r)
k lnµ

µ2
− c2k

3

r2µ2
+ o

(
k3

µ2

)
(2.4)

as k →∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
where φk,r,µ is as

in Proposition 2.1.

Now, we prove Theorem 1.2 by using Propositions 2.1 and 2.2.

Proof of Theorem 1.2. Since f (r0) > 0 and r0 is a strict local maxi-
mum point of the function r 7→ r2f (r), we obtain that there exists
δ0 > 0 such that

0 < r2f (r) < r2
0f (r0) ∀r ∈ [r0 − δ0, r0 + δ0] . (2.5)

For any k ≥ 1 and s > 0, we define µk (s) := esk
2
. By applying

Proposition 2.2, we obtain

Ik (r, µk (s)) = c0k + k3e−2sk2
(
c1f (r) s− c2

r2
+ o (1)

)
(2.6)

as k → ∞ uniformly in (r, s) in compact subsets of (0,∞)2. Remark
that the function

s 7−→ e−2sk2
(
c1f (r) s− c2

r2

)
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attains its maximal value at the point

sk (r) :=
c2

c1f (r) r2
+

1

2k2

for all k ≥ 1 and r ∈ [r0 − δ0, r0 + δ0]. We define

Jk (r, t) := Ik (r, µk (sk (r) + t)) .

By using (2.5), we obtain that there exists t0 > 0 such that

t0 < min
(sk (r0)

2
,
2

3
(sk (r0 + δ0)− sk (r0)) ,

2

3
(sk (r0 − δ0)− sk (r0))

)
(2.7)

for all k ≥ 1. Since t0 < sk (r0) /2, it follows from (2.6) that

Jk (r, t) = c0k + k3e−2(sk(r)+t)k2 (c1f (r) t+ o (1)) (2.8)

as k → ∞ uniformly in (r, t) ∈ [r0 − δ0, r0 + δ0] × [−t0, t0]. Since
sk (r) > sk (r0) and f (r) > 0, it follows from (2.8) that

Jk (r, t0) < Jk (r0, t0/2) (2.9)

and

Jk (r,−t0) < Jk (r0, t0/2) (2.10)

as k →∞ uniformly in r ∈ [r0 − δ0, r0 + δ0]. Moreover, by using (2.7)
and (2.8), we obtain

Jk (r0 ± δ0, t) < Jk (r0, t0/2) (2.11)

as k → ∞ uniformly in t ∈ [−t0, t0]. It follows from (2.9)–(2.11) that
the function Jk has a local maximum point (rk, tk) ∈ [r0 − δ0, r0 + δ0]×
[−t0, t0] for large k. We then obtain ∇Ik (rk, µk (sk (rk) + tk)) = 0 and
so by applying the second part of Proposition 2.1, we obtain that the
function Wk,rk,µk(sk(rk)+tk) +φk,rk,µk(sk(rk)+tk) is a positive solution of the
equation (2.3). Moreover, by using (2.2) together with the definition
of Wk,rk,µk(sk(rk)+tk), we easily obtain∥∥∇ (Wk,rk,µk(sk(rk)+tk) + φk,rk,µk(sk(rk)+tk)

)∥∥
L2 →∞

as k →∞. This ends the proof of Theorem 1.2. �

Finally, we prove Theorem 1.1 by using Theorem 1.2.

Proof of Theorem 1.1. By using a stereographic projection, we can see
that the equation (1.1) on (M, g) = (S4, g0) is equivalent to the problem

∆u+
4 (f − 2)(
1 + |y|2

)2u = u3 in R4

u ∈ D1,2
(
R4
)
.

(2.12)

It is easy to check that if f > 2 is a constant, then the potential function
in (2.12) satisfies the assumptions of Theorem 1.2. With this remark,
Theorem 1.1 becomes a direct corollary of Theorem 1.2. �
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3. Proof of Proposition 2.1

We prove Proposition 2.1 in this section. Throughout this section,
we assume that f ∈ C0,α (R4)∩L2 (R4) is radially symmetric about the
point 0 and the operator ∆ + f is coercive in D1,2 (R4).

We rewrite (2.1) as

Lk,r,µ (φ) = Qk,r,µ (Nk,r,µ (φ) +Rk,r,µ)

where

Lk,r,µ (φ) := Qk,r,µ

(
φ− (∆ + f)−1 (3W 2

k,r,µφ
))
,

Nk,r,µ (φ) := (∆ + f)−1 ((Wk,r,µ + φ)3
+ −W

3
k,r,µ − 3W 2

k,r,µφ
)
,

Rk,r,µ := (∆ + f)−1 (W 3
k,r,µ

)
−Wk,r,µ.

First, we obtain the following result:

Lemma 3.1. For any a, b, c, d > 0 such that a < b and c < d, there
exist constants k1 > 0 and C1 > 0 such that for any k ≥ k1, r ∈ [a, b],

and µ ∈
[
eck

2
, edk

2]
, Lk,r,µ is an isomorphism from Pk,r,µ to itself and

‖Lk,r,µ (φ)‖Hk ≥ C2 ‖φ‖Hk ∀φ ∈ Pk,r,µ.

Proof. The proof of this result follows the same lines as in the paper of
Chen, Wei, and Yan [5]. �

We then estimate the error term Rk,r,µ. We obtain the following
result:

Lemma 3.2. For any a, b, c, d > 0 such that a < b and c < d, there
exist constants k2 > 0 and C2 > 0 such that

‖Rk,r,µ‖Hk ≤ C2k/µ. (3.1)

for all k ≥ k2, r ∈ [a, b], and µ ∈
[
eck

2
, edk

2]
.

Proof. For any φ ∈ Hk, by integrating by parts, we obtain

〈Rk,r,µ, φ〉Hk =

∫
R4

(
W 3
k,r,µ −∆Wk,r,µ − fWk,r,µ

)
φdx

=

∫
R4

(
W 3
k,r,µ −

k∑
i=1

U3
i,k,r,µ − fWk,r,µ

)
φdx

= O

( k∑
i=1

∫
R4

(∑
j 6=i

k∑
l=1

Uj,k,r,µUl,k,r,µ + |f |
)
Ui,k,r,µ |φ| dx

)
. (3.2)

By using Hölder’s inequality and Sobolev’s inequality, it follows from
(3.2) that

‖Rk,r,µ‖Hk =
k∑
i=1

O

(
k
∑
j 6=i

∥∥U2
i,k,r,µUj,k,r,µ

∥∥
L4/3 +‖fUi,k,r,µ‖L4/3

)
. (3.3)
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We start with estimating the first term in (3.3). For any α ∈ {1, . . . , k},
we define

Ωα,k,r :=
{

(y1, y2, y3, y4) ∈ R4 : 〈(y1, y2, 0, 0) , xα,k,r〉 ≥ cos (π/k)
}
.

We then write∫
R4

U
8/3
i,k,r,µU

4/3
j,k,r,µdx =

k∑
α=1

∫
Ωα,k,r

U
8/3
i,k,r,µU

4/3
j,k,r,µdx. (3.4)

We observe that if α 6= j, then

|x− xj,k,r| ≥ |x− xα,k,r| and |x− xj,k,r| ≥
1

2
|xα,k,r − xj,k,r| (3.5)

for all x ∈ Ωα,k,r. For any i, j, α ∈ {1, . . . , k} such that i 6= j, by using
(3.4), we obtain

Ui,k,r,µ (x)8/3 Uj,k,r,µ (x)4/3

≤



28/3
(
2
√

2
)4
µ4/3(

1 + µ2 |x− xi,k,r|2
)8/3 |xi,k,r − xj,k,r|8/3

if α = i

28/3
(
2
√

2
)4
µ4/3(

1 + µ2 |x− xα,k,r|2
)8/3 |xi,k,r − xα,k,r|8/3

if α 6= i

(3.6)

for all x ∈ Ωα,k,r\ {xα,k,r}. By using (3.4) and (3.6) and straightforward
estimates, we obtain∫

R4

U
8/3
i,k,r,µU

4/3
j,k,r,µdx = O

(
µ−8/3

|xi,k,r − xj,k,r|8/3
+
∑
α 6=i

µ−8/3

|xi,k,r − xα,k,r|8/3

)

= O

(
µ−8/3

|xi,k,r − xj,k,r|8/3
+
k8/3

µ8/3

)
. (3.7)

It follows from (3.7) that∑
j 6=i

∥∥U2
i,k,r,µUj,k,r,µ

∥∥
L4/3 = O

(
k (k/µ)2) (3.8)

Now, we estimate the second term in (3.4). Since f ∈ L∞ (R4) ∩
L2 (R4), by applying Hölder’s inequality and straightforward estimates,
we obtain∫

R4\B(xi,k,r,1)

|fUi,k,r,µ|4/3 dx = O

(∫
R4\B(xi,k,r,1)

|Ui,k,r,µ|4 dx

)1/3


= O
(
µ−4/3

)
(3.9)
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and ∫
B(xi,k,r,1)

|fUi,k,r,µ|4/3 dx = O

(∫
B(xi,k,r,1)

|Ui,k,r,µ|4/3 dx

)
= O

(
µ−4/3

)
. (3.10)

It follows from (3.9) and (3.10) that

‖fUi,k,r,µ‖L4/3 = O (1/µ) . (3.11)

Finally, (3.1) follows from (3.8) and (3.11). �

We can now prove Proposition 2.1 by using Lemmas 3.1 and 3.2.

Proof of Proposition 2.1. We define

Tk,r,µ (φ) := L−1
k,r,µ (Qk,r,µ (Nk,r,µ (φ) +Rk,r,µ)) ∀φ ∈ Pk,r,µ

and

Vk,r,µ :=
{
φ ∈ Pk,r,µ : ‖φ‖Hk ≤ C0k/µ

}
where C0 > 0 is a constant to be fixed later on. It follows from Lem-
mas 3.1 and 3.2 that

‖Tk,r,µ (φ)‖Hk ≤ C1

(
‖Nk,r,µ (φ)‖Hk + C2k/µ

)
(3.12)

for all k ≥ k2, r ∈ [a, b], and µ ∈
[
eck

2
, edk

2]
. By integrating by parts

and using Hölder’s inequality, Sobolev’s inequality, and straightforward
estimates, we obtain

〈Nk,r,µ (φ) , ψ〉Hk =

∫
R4

(
(Wk,r,µ + φ)3

+ −W
3
k,r,µ − 3W 2

k,r,µφ
)
ψdx

= O
((
‖Wk,r,µ‖L4 ‖φ‖2

Hk
+ ‖φ‖3

Hk

)
‖ψ‖Hk

)
(3.13)

for all ψ ∈ Hk. Proceeding as in (3.4)–(3.8), we obtain∫
R4

W 4
k,r,µdx = O

(
k∑
i=1

∫
R4

(
U4
i,k,r,µ +

∑
j 6=i

U2
i,k,r,µU

2
j,k,r,µ

)
dx

)
= O

(
k + k (k/µ)4 lnµ

)
. (3.14)

It follows from (3.13) and (3.14) that

‖Nk,r,µ (φ)‖Hk = O
(
k1/4 ‖φ‖2

Hk
+ ‖φ‖3

Hk

)
. (3.15)

Letting C0 be large enough so that C0 > C1C2, it follows from (3.12)
and (3.15) that there exists a constant k3 > 0 such that

Tk,r,µ (Vk,r,µ) ⊂ Vk,r,µ (3.16)

for all k ≥ k3, r ∈ [a, b], and µ ∈
[
eck

2
, edk

2]
. Now, we prove that if k is

large enough, then Tk,r,µ is a contraction map from Vk,r,µ to itself, i.e.

‖Tk,r,µ (φ1)− Tk,r,µ (φ2)‖Hk ≤ C ‖φ1 − φ2‖Hk ∀φ1, φ2 ∈ Vk,r,µ. (3.17)
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for some constant C ∈ (0, 1). It follows from Lemma 3.1 that

‖Tk,r,µ (φ1)− Tk,r,µ (φ2)‖Hk ≤ C1 ‖Nk,r,µ (φ1)−Nk,r,µ (φ2)‖Hk (3.18)

By integrating by parts and using Hölder’s inequality, Sobolev’s in-
equality, and (3.14), we obtain

〈Nk,r,µ (φ1)−Nk,r,µ (φ2) , ψ〉Hk

=

∫
R4

(
(Wk,r,µ + φ1)3

+ − (Wk,r,µ + φ2)3
+ − 3W 2

k,r,µ (φ1 − φ2)
)
ψdx

= O
( (
‖Wk,r,µ‖L4 + ‖φ1‖Hk + ‖φ2‖Hk

)
×
(
‖φ1‖Hk + ‖φ2‖Hk

)
‖φ1 − φ2‖Hk ‖ψ‖Hk

)
= O

( (
k1/4 + ‖φ1‖Hk + ‖φ2‖Hk

)
×
(
‖φ1‖Hk + ‖φ2‖Hk

)
‖φ1 − φ2‖Hk ‖ψ‖Hk

)
(3.19)

It follows from (3.19) that

‖Nk,r,µ (φ1)−Nk,r,µ (φ2)‖Hk = o
(
‖φ1 − φ2‖Hk

)
(3.20)

as k → ∞ uniformly in r ∈ [a, b], µ ∈
[
eck

2
, edk

2]
, and φ1, φ2 ∈ Vk,r,µ.

We then obtain (3.17) by putting together (3.18) and (3.20). It follows
from (3.16) and (3.17) that there exists a constant k4 ≥ k3 such that for

any k ≥ k4, r ∈ [a, b], and µ ∈
[
eck

2
, edk

2]
, there exists a unique solution

φk,r,µ ∈ Vk,r,µ of (2.1). The continuous differentiability of (r, µ) 7→ φk,r,µ
is standard.

Now, we prove the last part of Proposition 2.1. We let (rk, µk) ∈
[a, b]×

[
eck

2
, edk

2]
be a critical point of Ik. Since φk,r,µ is a solution of

(2.1), we obtain that there exist c1,k and c2,k such that

DI (Wk,rk,µk + φk,rk,µk) =
2∑
j=1

cj,k

k∑
i=1

〈Zi,j,k,rk,µk , ·〉Hk . (3.21)

It follows from (3.21) that

0 =
∂Ik
∂r

(rk, µk)

=
2∑
j=1

cj,k

k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dr
[Wk,r,µk + φk,r,µk ]r=rk

〉
Hk

=
2∑
j=1

cj,k

k∑
i=1

(
µk

k∑
α=1

〈Zi,j,k,rk,µk , Zα,1,k,rk,µk〉Hk

+

〈
Zi,j,k,rk,µk ,

d

dr
[φk,r,µk ]r=rk

〉
Hk

)
(3.22)
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and

0 =
∂Ik
∂µ

(rk, µk)

=
2∑
j=1

cj,k

k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dµ
[Wk,rk,µ + φk,rk,µ]µ=µk

〉
Hk

=
2∑
j=1

cj,k

k∑
i=1

(
1

µk

k∑
α=1

〈Zi,j,k,rk,µk , Zα,2,k,rk,µk〉Hk

+

〈
Zi,j,k,rk,µk ,

d

dµ
[φk,rk,µ]µ=µk

〉
Hk

)
. (3.23)

For any i, α ∈ {1, . . . , k} and j, β ∈ {1, 2}, direct calculations yield

〈Zi,j,k,rk,µk , Zα,β,k,rk,µk〉Hk = Λjδiαδjβ + o (1) (3.24)

as k →∞ where Λj > 0 is a constant and δiα := 1 if α = i and δiα := 0
if α 6= i. Moreover, since φk,r,µ ∈ Pk,r,µ, we obtain

k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dr
[φk,r,µk ]r=rk

〉
Hk

= −
k∑
i=1

〈
d

dr
[Zi,j,k,r,µk ]r=rk , φk,rk,µk

〉
Hk

and therefore by using Cauchy–Schwartz inequality and (2.2), we ob-
tain ∣∣∣∣∣

k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dr
[φk,r,µk ]r=rk

〉
Hk

∣∣∣∣∣
≤

∥∥∥∥∥
k∑
i=1

d

dr
[Zi,j,k,r,µk ]r=rk

∥∥∥∥∥
Hk

‖φk,rk,µk‖Hk = o (kµk) . (3.25)

Similarly, we obtain∣∣∣∣∣
k∑
i=1

〈
Zi,j,k,rk,µk ,

d

dµ
[φk,rk,µ]µ=µk

〉
Hk

∣∣∣∣∣
≤

∥∥∥∥∥
k∑
i=1

d

dµ
[Zi,j,k,rk,µ]µ=µk

∥∥∥∥∥
Hk

‖φk,rk,µk‖Hk = o
(
kµ−1

k

)
. (3.26)

It follows from (3.22)–(3.26) that if k is large enough, then c1,k = c2,k =
0, i.e. the function Wk,rk,µk +φk,rk,µk is a weak solution of the equation

∆u+ fu = u3
+ in R4.

By using the coercivity of the operator ∆ + f in D1,2 (R4), we obtain
that u ≥ 0 a.e. in R4. It then follows from standard elliptic regularity
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theory and the strong maximum principle that Wk,rk,µk + φk,rk,µk is a
strong positive solution in C2,α (R4) of (2.3). �

4. Proof of Proposition 2.2

We prove Proposition 2.2 in this section. Throughout this section,
we assume that f ∈ C0,α (R4) ∩ L2 (R4) is radially symmetric about
the point 0 and the operator ∆ + f is coercive in D1,2 (R4). First, we
obtain the following result:

Lemma 4.1. There exist constants c0, c1, c2 > 0 such that for any
a, b, c, d > 0 such that a < b and c < d,

I (Wk,r,µ) = c0k + c1f (r)
k lnµ

µ2
− c2k

3

r2µ2
+ o

(
k3

µ2

)
(4.1)

as k →∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
.

Proof. By integrating by parts, we obtain

I (Wk,r,µ) =
1

2

∫
R4

(∆Wk,r,µ + fWk,r,µ)Wk,r,µdx−
1

4

∫
R4

W 4
k,r,µdx

=
1

2

∫
R4

( k∑
i,j=1

U3
i,k,r,µUj,k,r,µ + fW 2

k,r,µ −
1

2
W 4
k,r,µ

)
dx

=
1

2

k∑
i=1

∫
R4

(
fU2

i,k,r,µ +
1

2
U4
i,k,r,µ −

∑
j 6=i

U3
i,k,r,µUj,k,r,µ

+ f
∑
j 6=i

Ui,k,r,µUj,k,r,µ

)
dx

+ O

( k∑
i,l=1

∑
j 6=i

∑
m6=l

∫
R4

Ui,k,r,µUj,k,r,µUl,k,r,µUm,k,r,µdx

)

=
1

2

k∑
i=1

∫
R4

(
fU2

i,k,r,µ +
1

2
U4
i,k,r,µ −

∑
j 6=i

U3
i,k,r,µUj,k,r,µ

+ f
∑
j 6=i

Ui,k,r,µUj,k,r,µ

)
dx+ O

(
k2

k∑
i=1

∑
j 6=i

∫
R4

U2
i,k,r,µU

2
j,k,r,µdx

)
(4.2)

Direct calculations yield∫
R4

U4
i,k,r,µdx =

(
2
√

2
)4
∫
R4

dx(
1 + |x|2

)4 . (4.3)

and ∫
R4

fU2
i,k,r,µdx = 16π2f (r)

lnµ

µ2
+ o

(
lnµ

µ2

)
(4.4)
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as k →∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
. By splitting the

integral as in (3.4) and estimating each term, we obtain∑
j 6=i

∫
R4

U3
i,k,r,µUj,k,r,µdx =

∑
j 6=i

∫
Ωi,k,r

64µ2(
1 + µ2 |x− xi,k,r|2

)3

×

(
1 + O

(
1Ωi,k,r\B(xi,|x1,k,r−x2,k,r|/2)

)
|xi,k,r − xj,k,r|2

+ O

(
µ−2 + |x− xi,k,r| |xi,k,r − xj,k,r|

|xi,k,r − xj,k,r|4
1B(xi,|x1,k,r−x2,k,r|/2)

))
dx

+ O

(∑
α 6=i

kµ

|xi,k,r − xα,k,r|3
∫

Ωα,k,r

dx(
1 + µ2 |x− xα,k,r|2

)5/2

)

=
∑
j 6=i

(
64µ−2

|xi,k,r − xj,k,r|2
∫
R4

dx(
1 + |x|2

)3 + O

(
kµ−3

|xi,k,r − xj,k,r|3

))

=
32k2

π2r2µ2

∫
R4

dx(
1 + |x|2

)3

∞∑
j=1

1

j2
+ o

(
k2

µ2

)
(4.5)

as k → ∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
. Moreover,

straightforward estimates give∑
j 6=i

∫
R4\(B(xi,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2)∪B(xj,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2))

U2
i,k,r,µU

2
j,k,r,µdx

= O

(
µ−4

∑
j 6=i

∫
R4\(B(xi,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2)∪B(xj,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2))

|x− xi,k,r,µ|−4 |x− xj,k,r,µ|−4 dx

)

= O

(∑
j 6=i

µ−4

|xi,k,r,µ − xj,k,r,µ|4

)
= O

(
(k/µ)4) , (4.6)

∑
j 6=i

∫
B(xi,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2)∪B(xj,k,r,µ,|xi,k,r,µ−xj,k,r,µ|/2)

U2
i,k,r,µU

2
j,k,r,µdx

= O

(∑
j 6=i

µ−4

|xi,k,r,µ − xj,k,r,µ|4

∫
B(0,µ|xi,k,r,µ−xj,k,r,µ|/2)

dx(
1 + |x|2

)2

)

= O

(∑
j 6=i

µ−4 lnµ

|xi,k,r,µ − xj,k,r,µ|4

)
= O

(
(k/µ)4 lnµ

)
, (4.7)

∑
j 6=i

∫
R4\(B(xi,k,r,µ,1)∪B(xj,k,r,µ,1))

fUi,k,r,µUj,k,r,µdx

= O

∑
j 6=i

(∫
R4\B(xj,k,r,µ,1)

U4
j,k,r,µdx

)1/2




CUBIC NONLINEAR SCHRÖDINGER EQUATIONS IN DIMENSION FOUR 13

= O

k(∫
R4\B(0,µ)

dx(
1 + |x|2

)4

)1/2
 = O

(
k

µ2

)
, (4.8)

and ∑
j 6=i

∫
B(xi,k,r,µ,1)∪B(xj,k,r,µ,1)

fUi,k,r,µUj,k,r,µdx

= O

(∑
j 6=i

∫
B(xi,k,r,µ,1)

Ui,k,r,µUj,k,r,µdx

)

= O

(∑
j 6=i

∫
B(xi,k,r,µ,1)

µ−2dx

|x− xi,k,r,µ|2 |x− xj,k,r,µ|2

)

= O

(
µ−2

∑
j 6=i

ln
1

|xi,k,r,µ − xj,k,r,µ|

)
= O

(
k ln k

µ2

)
(4.9)

as k → ∞ uniformly in r ∈ [a, b] and µ ∈
[
eck

2
, edk

2]
. Finally, (4.1)

follows from (4.2)–(4.9). �

We can now prove Proposition 2.2 by using Lemma 4.1.

Proof of Proposition 2.2. By integrating by parts, we obtain

I (Wk,r,µ + φk,r,µ) = I (Wk,r,µ)− 〈Rk,r,µ, φk,r,µ〉Hk +
1

2
‖φk,r,µ‖2

Hk

− 1

4

∫
R4

(
(Wk,r,µ + φk,r,µ)4

+ −W
4
k,r,µ − 4W 3

k,r,µφk,r,µ
)
dx. (4.10)

By using Cauchy–Schwartz inequality, Lemma 3.1, and Proposition 2.1,
we obtain

−〈Rk,r,µ, φk,r,µ〉Hk +
1

2
‖φk,r,µ‖2

Hk
= O

(
(k/µ)2) . (4.11)

Moreover, by using Hölder’s inequality, Sobolev’s inequality, (3.14),
and Lemma 3.1, we obtain∫

R4

(
(Wk,r,µ + φk,r,µ)4

+ −W
4
k,r,µ − 4W 3

k,r,µφk,r,µ
)
dx

= O

(∫
R4

(
W 2
k,r,µ + φ2

k,r,µ

)
φ2
k,r,µdx

)
= O

(
‖Wk,r,µ‖2

L4 ‖φk,r,µ‖2
Hk

+ ‖φk,r,µ‖4
Hk

)
= O

(√
k (k/µ)2 + (k/µ)4 ). (4.12)

Finally, (2.4) follows from (4.10)–(4.12). �
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