
DECAY ESTIMATES AND A VANISHING PHENOMENON FOR THE
SOLUTIONS OF CRITICAL ANISOTROPIC EQUATIONS

JÉRÔME VÉTOIS

Abstract. We investigate the asymptotic behavior of solutions of anisotropic equations of
the form −

∑n
i=1 ∂xi

(
|∂xi

u|pi−2 ∂xi
u
)

= f (x, u) in Rn, where pi > 1 for all i = 1, . . . , n and f
is a Caratheodory function with critical Sobolev growth. This problem arises in particular from
the study of extremal functions for a class of anisotropic Sobolev inequalities. We establish
decay estimates for the solutions and their derivatives, and we bring to light a vanishing
phenomenon which occurs when the maximum value of the pi exceeds a critical value.

1. Introduction and main results

We let n ≥ 2 and −→p = (p1, . . . , pn) be such that pi > 1 for all i = 1, . . . , n and
∑n

i=1 1/pi > 1.
In this paper, we are interested in the solutions of problems of the form{

−∆−→p u = f (x, u) in Rn,

u ∈ D1,−→p (Rn) ,
(1.1)

where ∆−→p u :=
∑n

i=1 ∂xi
(
|∂xiu|

pi−2 ∂xiu
)

is the anisotropic Laplace operator, D1,−→p (Rn) is the

completion of C∞c (Rn) with respect to the norm ‖u‖D1,−→p (Rn) :=
∑n

i=1

(∫
Rn |∂xiu|

pi dx
)1/pi , and

f : Rn × R→ R is a Caratheodory function such that

|f (x, s)| ≤ Λ |s|p
∗−1 for all s ∈ R and a.e. x ∈ Rn, (1.2)

for some real number Λ > 0. Here, p∗ denotes the critical Sobolev exponent and is defined as

p∗ :=
n∑n

i=1
1
pi
− 1

=
np

n− p
with

1

p
:=

1

n

n∑
i=1

1

pi
.

The problem (1.1) with f (x, u) = |u|p
∗−2 u appears in the study of extremal functions for a

class of anisotropic Sobolev inequalities. Early references on anisotropic Sobolev inequalities
are Nikol′skĭı [24], Troisi [33], and Trudinger [34]. We also refer to Cianchi [5] for a more recent
work on the topic. Here we are interested in an inequality which appeared first in Troisi [33].
Among different equivalent versions (see Theorem 2.1 below), this inequality can be stated as∫

Rn
|u|p

∗
dx ≤ C

(
n∑
i=1

∫
Rn
|∂xiu|

pi dx

)p∗/p

(1.3)

for some constant C = C (n,−→p ) and for all functions u ∈ C∞c (Rn). The inequality (1.3)
enjoys an anisotropic scaling law (see (2.3) below). As a corollary of the work of El Hamidi–
Rakotoson [14], we obtain in Theorem 2.2 below that there exist extremal functions for the
inequality (1.3) provided that pi < p∗ for all i = 1, . . . , n.
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In the presence of anisotropy, namely when the pi are not all equal, there is no explicit
formula for the extremal functions of (1.3). This motivates to find a priori estimates for these
functions, and more generally for the solutions of equations of type (1.1). The main difficulties
in this work come from the non-homogeneity of the problem and the lack of radial symmetry.

As a more general motivation, the solutions of problems of type (1.1) with f (x, u) = |u|p
∗−2 u

turn out to play a central role in the blow-up theories of critical equations in general domains.
Possible references in book form on this subject and its applications in the isotropic regime
are Druet–Hebey–Robert [13], Ghoussoub [17], and Struwe [31]. A first step in the direction
of a blow-up theory in the anisotropic regime was taken in El Hamidi–Vétois [15] where we
extended the bubble tree decompositions of Struwe [30]. Now, if one wants to go further and
investigate a pointwise blow-up theory, then it is essential to know the asymptotic behavior
of the solutions of (1.1) with f (x, u) = |u|p

∗−2 u. The results in this paper can be seen as a
crucial step in this direction.

Anisotropic equations of type (1.1) have received much attention in recent years. In addition
to the above cited references [14, 15] and without pretending to be exhaustive, we mention
for instance the works by Cianchi [6] on symmetrization properties, Ĉırstea–Vétois [7] on the
fundamental solutions, Cupini–Marcellini–Mascolo [10] on the local boundedness of solutions,
Fragalà–Gazzola–Kawohl [16] on the existence and non-existence of solutions in bounded do-
mains, Lieberman [22] on gradient estimates, Namlyeyeva–Shishkov–Skrypnik [23] on singular
solutions, and Vétois [37] on vanishing properties of solutions. More references can be found
for instance in [37].

Throughout this paper, we denote

p+ := max ({pi ∈ −→p }) and p∗ :=
n− 1∑n
i=1

1
pi
− 1

=
p (n− 1)

n− p
. (1.4)

The exponent p∗ is known to play a critical role in several results on the asymptotic behavior
of solutions of second order elliptic equations (see the historic paper of Serrin [28], see also for
instance the more recent paper of Serrin–Zou [29] and the references therein).

Our first result is as follows.

Theorem 1.1. Assume that p+ < p∗. Let f : Rn×R→ R be a Caratheodory function such that
(1.2) holds true and u be a solution of (1.1). Then there exists a constant C0 = C0 (n,−→p ,Λ, u)
such that

|u (x)|p∗ +
n∑
i=1

|∂xiu (x)|pi ≤ C0

(
1 +

n∑
i=1

|xi|
p∗pi
p∗−pi

)−1

for a.e. x ∈ Rn, (1.5)

where p∗ is as in (1.4).

We point out that the decay rate in (1.5) is the same as the one obtained in Ĉırstea–Vétois [7]
for the fundamental solutions in Rn, namely the solutions of the equation −∆−→p u = δ0 in Rn,
where δ0 is the Dirac mass at the point 0.

In case all pi are equal to p, as part of a more general result, Alvino–Ferone–Trombetti–
Lions [1] proved that the best constant in the inequality (1.3) is attained by the functions

ua,b (x) :=

(
a+ b

n∑
i=1

|xi|
p
p−1

) p−n
p

(1.6)
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for all a, b > 0. Moreover, Cordero-Erausquin–Nazaret–Villani [8] proved that the functions
(1.6) are the only extremal functions of (1.3). In case where the norm of the gradient in (1.3)
is replaced bv the Euclidean norm, the existence of radially symmetric extremal functions was
found by Aubin [2], Rodemich [26], and Talenti [32]. Since p/ (p∗ − p) = (n− p) / (p− 1), the
decay rate in (1.6) coincides with the one in (1.5).

In case of the Laplace operator (pi = 2), Caffarelli–Gidas–Spruck [3] (see also Chen–Li [4])
proved that every positive solution of (1.1) with f (x, u) = up

∗−1 is of the form (1.6). This result
can be extended to the case where all pi are equal to p ∈ (1, n) for positive solutions satisfying

the one-dimensional symmetry u (x) = u
(∑n

i=1 |xi|
p
p−1
)

for all x ∈ Rn. Indeed, this result has
been proved by Guedda–Véron [19] in case of positive, radially symmetric solutions for the p–
Laplace equation − div

(
|∇u|p−2∇u

)
= up

∗−1 in Rn, and it can easily be seen that both cases
lead to the same ordinary differential equation. We also mention that radial symmetry results
have been established for positive solutions in D1,p (Rn) in the case of p–Laplace equations
(see Damascelli–Merchán–Montoro–Sciunzi [12], Damascelli–Ramaswamy [11], Sciunzi [27],
and Vétois [38]).

Theorem 1.1 has been proved in Vétois [38] in case of the p–Laplace operator. We also
refer in case of the Laplace operator (pi = 2) to Jannelli–Solimini [20], where the decay
estimate (1.5) has been proved to hold true for solutions of (1.1) with right-hand side f (x, u) =∑N

i=1 ai (x) |u|q
∗
i−2 u, where q∗i := 2∗ (1− 1/qi), qi ∈ (n/2,∞], |ai (x)| = O

(
|x|−n/qi

)
for large

|x|, and ai belongs to the Marcinkiewicz space M qi (Rn) for all i = 1, . . . , N .

The next results concern the case p+ ≥ p∗, namely pi ≥ p∗ for some index i. In particular,
we are now exclusively in the case where the exponents pi are not all equal.

In the limit case p+ = p∗, we prove the following result.

Theorem 1.2. Assume that p+ = p∗. Let f : Rn × R → R be a Caratheodory function such
that (1.2) holds true and u be a solution of (1.1). Then for any q > p∗, there exists a constant
Cq = C (n,−→p ,Λ, u, q) such that

|u (x)|q +
n∑
i=1

|∂xiu (x)|pi ≤ Cq

(
1 +

n∑
i=1

|xi|
qpi
q−pi

)−1

for a.e. x ∈ Rn. (1.7)

Beyond this limit case, namely when p∗ < p+ < p∗, we find the following result.

Theorem 1.3. Assume that p∗ < p+ < p∗. Let f : Rn × R → R be a Caratheodory function
such that (1.2) holds true and u be a solution of (1.1). Then there exist a real number
q0 = q0 (n,−→p ) < p+ such that the two following assertions hold true.

(i) There exists a constant R0 = R0 (n,−→p ,Λ, u) such that

u (x) = 0 for all x ∈ Rn such that
∑
i∈I0

|xi| ≥ R0 , (1.8)

where I0 is the set of all indices i such that pi > q0. Moreover, I0 6= ∅ due to q0 < p+.
(ii) For any q > q0, there exists a constant Cq = C (n,−→p ,Λ, u, q) such that

|u (x)|q +
n∑
i=1

|∂xiu (x)|pi ≤ Cq

(
1 +

∑
i∈Ic0

|xi|
qpi
q−pi

)−1

for a.e. x ∈ Rn, (1.9)

where Ic0 := {1, . . . , n} \I0.
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We are able, moreover, to give an explicit definition in terms of n and −→p of a real number
q0 satisfying the above result (see Section 7).

The dependence on u of the constants C0, Cq, and R0 in the above results will be made
more precise in Remarks 6.3 and 7.3.

As a remark about the support of solutions, by a result in Vétois [37], we have that for
any nonnegative solution u of (1.1) with f (x, u) as in (1.2) (see [37] for the general as-
sumptions), if u (x) = 0 for some x ∈ Rn, then we have u ≡ 0 on the affine subspace
{y ∈ Rn : yi = xi ∀i = {1, . . . , n} \I−}, where I− is the set of all indices i such that pi =
min ({pj ∈ −→p }). In case all pi are equal to p, we obtain that either u > 0 or u ≡ 0, thus
recovering the same result as Vazquez [35] found for the p–Laplace operator. In the presence
of anisotropy, as shows for instance Theorem 1.3, this result does not hold true in general on
the whole Rn.

We also point out that in the limit case p+ = p∗, we are able to construct quasi-explicit

examples of solutions of (1.1) with f (x, u) = |u|p
∗−2 u for anisotropic configurations of type

−→p = (p−, . . . , p−, p+, . . . , p+) by using the method of separation of variables (see Vétois [36]).
These solutions turn out to vanish in the i-th directions corresponding to pi = p+, exactly like
what we prove to be true in Theorem 1.3 in case p∗ < p+ < p∗.

The paper is organized as follows. In Section 2, we present different equivalent versions
of the anisotropic Sobolev inequality, and we study the existence and scaling properties of
extremal functions for these inequalities.

Section 3 is concerned with preliminary properties satisfied by the solutions of (1.1), namely
global boundedness results and a weak decay estimate.

In Sections 4 and 5, we perform a Moser-type iteration scheme inspired from the one devel-
oped in Ĉırstea–Vétois [7] for the fundamental solutions. In order to treat a large part of the
proofs in a unified way, we consider a general family of domains defined as

Ω−→q (I1, R1, I2, R2, λ) :=

{
x ∈ Rn :

∑
i∈I1

|xi|qi<(1 + λ)R1 and

∣∣∣∣∑
i∈I2

|xi|qi−R2

∣∣∣∣<λR2

}
, (1.10)

where λ ∈ (0, 1), R1, R2 > 0, I1 and I2 are two disjoint subsets of {1, . . . , n}, I2 6= ∅, and
−→q = (qi)i∈I1∪I2 is such that qi > 1 for all i ∈ I1 ∪ I2. On these domains, we prove that the
solutions of (1.1) satisfy reverse Hölder-type inequalities of the form

‖u‖γ
Lγ(Ω−→q (I1,R1,I2,R2,λ))

≤ C max
i∈I1∪I2

(
(λ′ − λ)

−pi R
− pi
qi

δi
‖u‖γi

Lγi(Ω−→q (I1,R1,I2,R2,λ′))

) n
n−p

(1.11)

for all γ > p∗ − 1 and λ < λ′ ∈ (0, 1/2], where δi := 1 if i ∈ I1, δi := 2 if i ∈ I2,
γi := n−p

n
γ + pi − p for all i ∈ I1 ∪ I2, and C = C (n,−→p ,−→q , u, γ) (see Lemma 4.1 for more

details on the dependence of the constant with respect to u and γ). Since the right-hand side
of (1.11) involves different exponents γi in the anisotropic case, the number of exponents in the
estimates may grow exponentially when iterating this inequality. We overcome this issue in
Section 5 by controlling the values of the exponents with respect to the number of iterations.

In Section 6, we prove a vanishing result which will give Point (i) in Theorem 1.3. We prove

this result by applying our iteration scheme with R1 = R
1/ε
2 for small real numbers ε > 0 and

I1, I2 being the sets of all indices i such that pi < p0, pi = p0, respectively, for some large
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enough real number p0 ∈ −→p (see (6.3) for the exact condition on p0). Passing to the limit into
our iteration scheme, we obtain a pointwise estimate of the form

‖u‖L∞(Ω−→q (I1,R1/ε,I2,R,1/4)) ≤
(
CR−

1
pε

) 1
ε (1.12)

for some constant C = C (n,−→p , u) (see Lemma 6.2). When R is large enough, the right-hand
side of (1.12) converges to 0 as ε→ 0, and we thus obtain our vanishing result.

In Section 7, we prove Theorems 1.1, 1.2, and we complete the proof of Theorem 1.3 by
proving the decay estimates (1.9). The proofs of these results rely again on our iteration
scheme, this time applied with I1 = ∅ and I2 being the set of all indices i such that pi ≤ p0

for some real number p0 (see (6.1)).

Finally, in Appendix A, we prove a weak version of Kato’s inequality which is used in
Sections 3 and 4.

Acknowledgments. The author wishes to express his gratitude to Frédéric Robert for helpful
comments on the manuscript.

2. Application to the extremal functions of a class of
anisotropic Sobolev inequalities

As mentioned in the introduction, one of our main motivation in this paper is to apply our
results to the extremal functions of a class of anisotropic Sobolev inequalities which originates
from Troisi [33]. In this section, we first present in Theorem 2.1 below different equivalent
versions of these inequalities, and we then prove in Theorem 2.2 that all these inequalities
have extremal functions, and that with a suitable change of scale, these extremal functions
are solutions of (1.1) with f (x, u) = |u|p

∗−2 u.

We state the equivalent versions of the anisotropic Sobolev inequalities as follows.

Theorem 2.1. The following inequalities hold true.

(i) There exists a constant C = C
(
n,−→p

)
such that(∫

Rn
|u|p

∗
dx

)n/p∗
≤ C

n∏
i=1

(∫
Rn
|∂xiu|

pi dx

)1/pi

∀u ∈ C∞c (Rn) . (2.1)

(ii) For any
−→
θ = (θ1, . . . , θn) such that θi > 0 for all i = 1, . . . , n and

∑n
i=1 1/θi = n/p,

there exists a constant C−→
θ

= C
(
n,−→p ,

−→
θ
)

such that(∫
Rn
|u|p

∗
dx

)p/p∗
≤ C−→

θ

n∑
i=1

(∫
Rn
|∂xiu|

pi dx

)θi/pi
∀u ∈ C∞c (Rn) . (2.2)

In particular, we get (1.3) in case θi = pi for all i = 1, . . . , n.

As a remark, the inequalities (2.1) and (2.2) enjoy an anisotropic scaling law. Indeed, it can
easily be seen that every integral in these inequalities are invariant with respect to the change
of scale u 7→ uλ, where

uλ (x) = λu
(
λ(p∗−p1)/p1x1, . . . , λ

(p∗−pn)/pnxn
)

(2.3)

for all λ > 0 and x ∈ Rn.
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Proof of Theorem 2.1. We refer to Troisi [33, Theorem 1.2] for the proof of the inequality (2.1).
Then the inequality (2.2) follows from (2.1) by applying an inequality of weighted arithmetic
and geometric means. As a remark, we can also obtain (2.1) from (2.2) by applying the change
of scale (2.5) below. �

Regarding the extremal functions of (2.1) and (2.2), we prove the following result. The exis-
tence part in this result will be obtained as a corollary of the work of El Hamidi–Rakotoson [14]
and Proposition 2.3 below.

Theorem 2.2. If p+ < p∗, then there exist extremal functions u ∈ D1,−→p (Rn), u 6= 0, of (2.1)
and (2.2). Moreover, for any extremal function u of (2.1) or (2.2), there exist µ1, . . . , µn > 0
such that the function x ∈ Rn 7→ u (µ1x1, . . . , µnxn) is a constant-sign solution of (1.1) with

f (x, u) = |u|p
∗−2 u. In particular, every extremal function of (2.1) or (2.2) satisfies the a

priori estimates in Theorems 1.1, 1.2, and 1.3.

As a remark, due to the scaling law (2.3), every extremal function of (2.1) or (2.2) generates
in fact an infinite family of extremal functions.

Preliminary to the proof of Theorem 2.2, we prove the following result.

Proposition 2.3. Let
−→
θ = (θ1, . . . , θn) be such that θi > 0 for all i = 1, . . . , n and

∑n
i=1 1/θi =

n/p. Then the following assertions hold true.

(i) For any extremal function u of (2.2), u ◦ τ−→
θ

is an extremal function of (2.1), where

τ−→
θ

(x) :=
(
λ−→
θ ,1
x1, . . . , λ−→θ ,nxn

)
, λ−→

θ ,i
:= θ

1/θi
i

n∏
j=1

θ
−p/(nθiθj)
j , (2.4)

for all x ∈ Rn and i = 1, . . . , n.
(ii) For any extremal function u of (2.1), u ◦ σ−→

θ ,u
◦ τ−1
−→
θ

is an extremal function of (2.2),

where τ−→
θ

is as in (2.4) and

σ−→
θ ,u

(x) :=
(
µ−→
θ ,1

(u)x1, . . . , µ−→θ ,n (u)xn

)
, µ−→

θ ,i
(u) :=

n∏
j=1

(∫
Rn
∣∣∂xju∣∣pj dx)p/(nθipj)(∫

Rn |∂xiu|
pi dx

)1/pi
, (2.5)

for all x ∈ Rn and i = 1, . . . , n.

Proof of Proposition 2.3. We begin with proving Point (i). We fix an extremal function u0 of
(2.2). Since

∑n
i=1 1/θi = n/p, we obtain

n∏
i=1

(∫
Rn

∣∣∂xi(u0 ◦ τ−→θ
)∣∣pidx)p/(npi) ≤ p

n

n∑
i=1

1

θi

(∫
Rn

∣∣∂xi(u0 ◦ τ−→θ
)∣∣pidx)θi/pi . (2.6)

For any function u ∈ D1,−→p (Rn), simple calculations give

n∑
i=1

1

θi

(∫
Rn

∣∣∂xi(u ◦ τ−→θ )∣∣pidx)θi/pi =

(
n∏
j=1

θ
−p/(nθj)
j

)
n∑
i=1

(∫
Rn
|∂xiu|

pi dx

)θi/pi
(2.7)

and ∫
Rn

∣∣u ◦ τ−→
θ

∣∣p∗dx =

∫
Rn
|u|p

∗
dx . (2.8)
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By invertibility of τ−→
θ

and since u0 is an extremal function of (2.2), it follows from (2.7) and
(2.8) that

n∑
i=1

1
θi

(∫
Rn
∣∣∂xi(u0 ◦ τ−→θ

)∣∣pidx)θi/pi( ∫
Rn
∣∣u0 ◦ τ−→θ

∣∣p∗dx)p/p∗ = inf
u∈D1,−→p (Rn)

u6=0

n∑
i=1

1
θi

(∫
Rn |∂xiu|

pi dx
)θi/pi

(∫
Rn |u|

p∗ dx
)p/p∗ . (2.9)

Now, we claim that

inf
u∈D1,−→p (Rn)

u6=0

n∑
i=1

1
θi

(∫
Rn |∂xiu|

pi dx
)θi/pi

(∫
Rn |u|

p∗ dx
)p/p∗ ≤ n

p
· inf
u∈D1,−→p (Rn)

u 6=0

n∏
i=1

(∫
Rn |∂xiu|

pi dx
)p/(npi)

(∫
Rn |u|

p∗ dx
)p/p∗ . (2.10)

We prove this claim. For any function u ∈ D1,−→p (Rn), u 6= 0, by applying the change of scale
(2.5), we obtain (∫

Rn

∣∣∂xi(u ◦ σ−→θ ,u)∣∣pidx)θi/pi =
n∏
j=1

(∫
Rn

∣∣∂xju∣∣pj dx)p/(npj) (2.11)

for all i = 1, . . . , n, and ∫
Rn

∣∣u ◦ σ−→
θ ,u

∣∣p∗dx =

∫
Rn
|u|p

∗
dx . (2.12)

Since
∑n

i=1 1/θi = n/p, it follows from (2.11) and (2.12) that

n∑
i=1

1
θi

(∫
Rn
∣∣∂xi(u ◦ σ−→θ ,u)∣∣pidx)θi/pi(∫

Rn
∣∣u ◦ σ−→

θ ,u

∣∣p∗dx)p/p∗ =
n

p
·

n∏
i=1

(∫
Rn |∂xiu|

pi dx
)p/(npi)

(∫
Rn |u|

p∗ dx
)p/p∗ , (2.13)

and hence we obtain (2.10). It follows from (2.6), (2.9) and (2.10) that u0 ◦ τ−→θ is an extremal
function of (2.1). This ends the proof of Point (i).

Now, we prove Point (ii). We fix an extremal function u0 of (2.1). By (2.13) and since∑n
i=1 1/θi = n/p, we obtain

n∑
i=1

1
θi

(∫
Rn
∣∣∂xi(u0 ◦ σ−→θ ,u0

)∣∣pidx)θi/pi(∫
Rn
∣∣u0 ◦ σ−→θ ,u0

∣∣p∗dx)p/p∗ =
n

p
· inf
u∈D1,−→p (Rn)

u6=0

n∏
i=1

(∫
Rn |∂xiu|

pi dx
)p/(npi)

(∫
Rn |u|

p∗ dx
)p/p∗

≤ inf
u∈D1,−→p (Rn)

u6=0

n∑
i=1

1
θi

(∫
Rn |∂xiu|

pi dx
)θi/pi

(∫
Rn |u|

p∗ dx
)p/p∗ . (2.14)

It follows from (2.7) and (2.14) that u0 ◦ σ−→θ ,u0 ◦ τ
−1
−→
θ

is an extremal function of (2.2). This

ends the proof of Point (ii). �

Now, we can prove Theorem 2.2 by using Proposition 2.3.

Proof of Theorem 2.2. We prove the results for the sole inequality (1.3). The results for (2.1)
and (2.2) then follow from Proposition 2.3.
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First, in case p+ < p∗, the existence of extremal functions of (1.3) follows from the work of
El Hamidi–Rakotoson [14]. Indeed, it has been proven in [14] that there exist minimizers for

I := inf
u∈D1,−→p (Rn)∫
Rn |u|

p∗dx=1

n∑
i=1

1

pi

∫
Rn
|∂xiu|

pi dx . (2.15)

This infimum is connected with (1.3) by the change of scale u 7→ µ−1
−→p ,u · u ◦ ρ−→p ,u, where

ρ−→p ,u (x) := µ−→p ,u · τ−→p (x) , µ−→p ,u :=

(∫
Rn
|u|p

∗
dx

)p/(np∗)
,

and τ−→p (x) is as in (2.4) for all x ∈ Rn and u ∈ D1,−→p (Rn), u 6= 0. More precisely, simple
calculations give

n∑
i=1

1

pi

∫
Rn

∣∣∂xi(µ−1
−→p ,u · u ◦ ρ−→p ,u

)∣∣pidx =

(
n∏
j=1

p
−p/(npj)
j

) n∑
i=1

∫
Rn
∣∣∂xiu∣∣pidx(∫

Rn |u|
p∗ dx

)p/p∗ (2.16)

and ∫
Rn

∣∣µ−1
−→p ,u · u ◦ ρ−→p ,u

∣∣p∗dx = 1 , (2.17)

and hence

I ≤

(
n∏
j=1

p
−p/(npj)
j

)
inf

u∈D1,−→p (Rn)
u6=0

n∑
i=1

∫
Rn
∣∣∂xiu∣∣pidx(∫

Rn |u|
p∗ dx

)p/p∗ . (2.18)

In particular, for any minimizer u of (2.15), since µ−→p ,u = 1 and ρ−→p ,u = τ−→p , it follows from
(2.16)–(2.18) that u ◦ τ−1

−→p is an extremal function of (1.3).

Next, we prove that the extremal functions of (1.3) do not change sign. We let C0 be
the best constant and u be an extremal function of (1.3). By writing u = u+ − u−, where
u+ := max (u, 0) and u− := max (−u, 0), we obtain

n∑
i=1

∫
Rn
|∂xiu|

pi dx =

(
1

C0

∫
Rn
|u|p

∗
dx

)p/p∗
=

(
1

C0

∫
Rn
up
∗

− dx+
1

C0

∫
Rn
up
∗

+ dx

)p/p∗

≤

( n∑
i=1

∫
Rn
|∂xiu−|

pi dx

)p∗/p

+

(
n∑
i=1

∫
Rn
|∂xiu+|pi dx

)p∗/p
p/p∗

. (2.19)

It follows from (2.19) that either u− = 0 or u+ = 0, and hence we obtain that the function u
has constant sign.

Finally, from the Euler-Lagrange equation satisfied by u, namely

−
n∑
i=1

pi∂xi
(
|∂xiu|

pi−2 ∂xiu
)

= λ (u) |u|p
∗−2 u, where λ (u) :=

n∑
i=1

pi
∫
Rn
∣∣∂xiu∣∣pidx∫

Rn |u|
p∗ dx

,

we derive that the function x ∈ Rn 7→ µu (µ1x1, . . . , µnxn) with µi := (λ (u) /pi)
1/pi for all i =

1, . . . , n is a solution of (1.1) with f (x, u) = |u|p
∗−2 u. This ends the proof of Theorem 2.2. �
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3. Preliminary results

From now on, we are concerned with the general case of an arbitrary solution of (1.1).

For any s ∈ (0,∞) and any domain Ω ⊂ Rn, we define the weak Lebesgue space Ls,∞ (Ω)
as the set of all measurable functions u : Ω→ R such that

‖u‖Ls,∞(Ω) := sup
h>0

(
h ·meas ({|u| > h})1/s ) <∞ ,

where meas ({|u| > h}) is the measure of the set {x ∈ Ω : |u (x)| > h}. The map ‖·‖Ls,∞(Ω)

defines a quasi-norm on Ls,∞ (Ω). We refer, for instance, to the book of Grafakos [18] for the
material on weak Lebesgue spaces.

The first result in this section is as follows.

Lemma 3.1. Assume that p+ < p∗. Let f : Rn×R→ R be a Caratheodory function such that
(1.2) holds true. Then any solution of (1.1) belongs to W 1,∞ (Rn) ∩ Lp∗−1,∞ (Rn), and hence
by interpolation, to Ls (Rn) for all s ∈ (p∗ − 1,∞].

Proof of Lemma 3.1. The L∞–boundedness of the solutions follows from a straightforward
adaptation of El Hamidi–Rakotoson [14, Propositions 1 and 2], the first proposition being in
turn adapted from Fragalà–Gazzola–Kawohl [16, Theorem 2].

Once we have the L∞–boundedness of the solutions, we obtain the L∞–boundedness of the
derivatives by applying Lieberman’s gradient estimates [22].

The proof of the Lp∗−1,∞–boundedness of the solutions follows exactly the same arguments
as in Vétois [38, Lemma 2.2]. One only has to replace |∇u|p by

∑n
i=1 |∂xiu|

pi . �

For any solution u of (1.2), by Proposition A.1 in Appendix A, we obtain

−∆−→p |u| ≤ f (x, u) · sgn (u) ≤ Λ |u|p
∗−1 in Rn, (3.1)

where sgn (u) denotes the sign of u and the inequality is in the sense that for any nonnegative,
smooth function ϕ with compact support in Rn, we have

n∑
i=1

∫
Rn
|∂xi |u||

pi−2 (∂xi |u|) (∂xiϕ) dx ≤ Λ

∫
Rn
|u|p

∗−1 ϕdx .

We prove the following result.

Lemma 3.2. For any real number Λ > 0 and any nonnegative, nontrivial solution v ∈
D1,p (Rn) of the inequality −∆−→p v ≤ Λvp

∗−1 in Rn, we have ‖v‖Lp∗ (Rn) ≥ κ0 for some con-

stant κ0 = κ0 (n, p,Λ) > 0.

Proof. By testing the inequality −∆−→p v ≤ Λvp
∗−1 with the function v, and applying the

anisotropic Sobolev inequality, we obtain

Λ

∫
Rn
vp
∗
dx ≥

n∑
i=1

∫
Rn
|∂xiv|

pi dx ≥ K

(∫
Rn
vp
∗
dx

)n−p
n

(3.2)

for some constant K = K (n,−→p ). The result then follows from (3.2) with κ0 := (K/Λ)
n−p
p2 . �

As a last result in this section, we prove the following decay estimate. This result is not
sharp, but it turns out to be a crucial ingredient in what follows.
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Lemma 3.3. Assume that p+ < p∗. Let κ0 be as in Lemma 3.2, f : Rn × R → R be a
Caratheodory function such that (1.2) holds true, and u be a solution of (1.1). For any κ > 0,
we define

rκ (u) := inf
({
r > 0 : ‖u‖Lp∗(Rn\B−→p (0,r)) < κ

})
, (3.3)

where B−→p (0, r) is the open ball of center 0 and radius r with respect to the distance function
d−→p defined as

d−→p (x, y) :=
n∑
i=1

|xi − yi|
δpi

p∗−pi with δ :=
p∗ − p+

p+

, (3.4)

for all x, y ∈ Rn. Then for any κ ∈ (0, κ0) and r > rκ (u), there exists a constant K0 =
K0

(
n,−→p ,Λ, κ, r, rκ (u) , ‖u‖Lp∗ (Rn)

)
such that

|u (x)| ≤ K0

( n∑
i=1

|xi|
pi

p∗−pi

)−1

for all x ∈ Rn\B−→p (0, r) . (3.5)

Proof of Lemma 3.3. This proof is adapted from Vétois [38, Lemma 3.1] We fix Λ > 0, κ ∈
(0, κ0), κ′ > κ0, r > 0, and r′ ∈ (0, r). We claim that in order to obtain Lemma 3.3, it is
sufficient to prove that there exists a constant K1 = K1 (n,−→p , κ, κ′, r, r′) such that for any
solution u of (1.1) such that rκ (u) ≤ r′ and ‖u‖Lp∗ (Rn) ≤ κ′, we have

d−→p
(
x,B−→p (0, r′′)

)
|u (x)|δ ≤ K1 for all x ∈ Rn\B−→p (0, r) , (3.6)

where r′′ := (r + r′) /2. Indeed, for any x ∈ Rn\B−→p (0, r), we can write

d−→p (x, 0) ≤ d−→p
(
x,B−→p (0, r′′)

)
+ r′′ ≤ d−→p

(
x,B−→p (0, r′′)

)
+
r′′

r
d−→p (x, 0) , (3.7)

and hence by putting together (3.6) and (3.7), we obtain

d−→p (x, 0) |u (x)|δ ≤ r

r − r′′
·K1 =

2r

r − r′
·K1. (3.8)

By definition of d−→p , (3.5) then follows from (3.8). This proves our claim.
We prove (3.6) by contradiction. Suppose that for any α ∈ N, there exists a Caratheodory

function fα : Rn × R→ R such that (1.2) holds true, a solution uα of (1.1) with f = fα such
that rκ (uα) ≤ r′ and ‖uα‖Lp∗ (Rn) ≤ κ′, and a point xα ∈ Rn\B (0, r) such that

d−→p
(
xα, B−→p (0, r′′)

)
|uα (xα)|δ > 2α . (3.9)

It follows from (3.9) and Poláčik–Quittner–Souplet [25, Lemma 5.1] that there exists yα ∈
Rn\B−→p (0, r′′) such that

d−→p
(
yα, B−→p (0, r′′)

)
|uα (yα)|δ > 2α , |uα (xα)| ≤ |uα (yα)| , (3.10)

and
|uα (y)| ≤ 21/δ |uα (yα)| for all y ∈ B−→p

(
yα, α |uα (yα)|−δ

)
. (3.11)

For any α and y ∈ Rn, we define

ũα (y) := |uα (yα)|−1 · uα (τα (y)) , (3.12)

where

τα (y) := yα +
(
|uα (yα)|

p1−p
∗

p1 y1, . . . , |uα (yα)|
pn−p∗
pn yn

)
.

It follows from (3.11) and (3.12) that

|ũα (0)| = 1 and |ũα (y)| ≤ 21/δ for all y ∈ B−→p (0, α) . (3.13)
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Moreover, by (1.1), we obtain

−∆−→p ũα = |uα (yα)|1−p
∗
· fα (τα (y) , |uα (yα)| · ũα) in Rn, (3.14)

and (1.2) gives

|uα (yα)|1−p
∗
· |fα (τα (y) , |uα (yα)| · ũα)| ≤ Λ |ũα|p

∗−1 . (3.15)

By Lieberman’s gradient estimates [22], it follows from (3.13) and (3.15) that there exists a
constant C > 0 such that for any R > 0, we have

‖∇ũα‖L∞(B−→p (0,R)) ≤ C (3.16)

for large α. By Arzela–Ascoli Theorem and a diagonal argument, it follows from (3.13) and
(3.16) that (ũα)α converges up to a subsequence in C0

loc (Rn) to some Lipschitz continuous
function ũ∞ such that |ũ∞ (0)| = 1. Moreover, by testing (3.14)–(3.15) with ũα, we obtain

n∑
i=1

∫
Rn
|∂xiũα|

pi dx ≤ Λ

∫
Rn
|ũα|p

∗
dx = Λ

∫
Rn
|uα|p

∗
dx ≤ Λ (κ′)

p∗
. (3.17)

Since |∂xi |ũα|| = |∂xiũα| a.e. in Rn, it follows from (3.17) that (|ũα|)α converges weakly up to

a subsequence to |ũ∞| in D1,−→p (Rn). Passing to the limit into (3.14)–(3.15), we then obtain
that |ũ∞| is a weak solution of the inequality

−∆−→p |ũ∞| ≤ Λ |ũ∞|p
∗−1 in Rn. (3.18)

In particular, since |ũ∞ (0)| = 1, it follows from Lemma 3.2 that ‖u∞‖Lp∗ (Rn) ≥ κ0, and hence
there exists a real number R > 0 such that

‖u∞‖Lp∗ (B(0,R)) > κ . (3.19)

On the other hand, we have

‖ũα‖Lp∗ (B−→p (0,R)) = ‖uα‖Lp∗(B−→p (yα,R·|uα(yα)|−δ)) . (3.20)

By (3.10) and since rκ (uα) < r′′, we obtain

B−→p
(
yα, R · |uα (yα)|−δ

)
∩B−→p (0, rκ (uα)) = ∅ (3.21)

for large α. By definition of rκ (uα), it follows from (3.20) and (3.21) that

‖ũα‖Lp∗ (B−→p (0,R)) ≤ κ (3.22)

for large α, which is in contradiction with (3.19). This ends the proof of Lemma 3.3. �

4. The reverse Hölder-type inequalities

The following result is a key step in the Moser-type iteration scheme that we develop in the
next section.

Lemma 4.1. Assume that p+ < p∗. Let f : Rn×R→ R be a Caratheodory function such that
(1.2) holds true, u be a solution of (1.1), and κ, r, and K0 be as in Lemma 3.3. Let I1 and
I2 be two disjoint subsets of {1, . . . , n}, I2 6= ∅, and −→q = (qi)i∈I1∪I2 be such that qi > 1 for all

i ∈ I1∪I2. Then there exists a constant c0 = c0 (n,−→p ,Λ, K0) > 1 such that for any R1, R2 > 0,
λ < λ′ ∈ (0, 1/2], and γ > p∗ − 1 such that Ω−→q (I1, R1, I2, R2, λ

′) ∩B−→p (0,max (r, 1)) = ∅ and
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Ω−→q (I1, R1, I2, R2, λ
′) ∩ supp (u) is bounded, where Ω−→q (I1, R1, I2, R2, λ) is as in (1.10), we

have

‖u‖γ
Lγ(Ω−→q (I1,R1,I2,R2,λ))

≤ c0γ
p∗ max

i∈I1∪I2

(
min (1, γ − p∗ + 1)−pi (λ′ − λ)

−pi qpii

×R
− pi
qi

δi
‖u‖γi

Lγi(Ω−→q (I1,R1,I2,R2,λ′))

) n
n−p

, (4.1)

where δi := 1 if i ∈ I1, δi := 2 if i ∈ I2, and γi := n−p
n
γ + pi − p for all i ∈ I1 ∪ I2.

Preliminary to the proof of Lemma 4.1, we prove the following result.

Lemma 4.2. Let v be a nonnegative solution in D1,−→p (Rn) of

−∆−→p v ≤ Λvp
∗−1 in Rn, (4.2)

for some real number Λ > 0, where the inequality must be understood in the weak sense as in
(3.1). Let β > −1 and η ∈ C1 (Rn) be such that 0 ≤ η ≤ 1 in Rn, ηv has compact support, and
η(β+p−)/p+ ∈ C1 (Rn), where p− := min ({pi ∈ −→p }) and p+ := max ({pi ∈ −→p }). Then there
exists a constant C = C (n,−→p ) such that(∫

Rn
(ηv)

n(β+p)
n−p dx

)n−p
n

≤ C (|β|p + 1)

(
Λ (β + 1)−1

∫
Rn
ηβ+p−vβ+p∗dx

+
n∑
i=1

min (1, β + 1)−pi
∫
Rn
|∂xiη|

pi ηβ+p−−pivβ+pidx

)
. (4.3)

The finiteness of the integrals in (4.3) is ensured by the fact that v ∈ L∞ (Rn), ηv has
compact support, and η(β+p−)/p+ ∈ C1 (Rn).

Proof of Lemma 4.2. For any ε > 0, we define vε := v + εη, where η is a cutoff function on a
neighborhood of the support of ηv such that ηβ+1 ∈ C1 (Rn). Since v ∈ D1,−→p (Rn) ∩ L∞ (Rn),

η(β+p−)/p+ ∈ C1 (Rn), and (β + p−) /p+ ≤ (β + p−) /p− = 1 +β/p−, we get (ηvε)
min(1,1+β/p−) ∈

D1,−→p (Rn). By a generalized version of the anisotropic Sobolev inequality (see Ĉırstea–
Vétois [7, Lemma A.1]), we then obtain

‖ηvε‖β+p

L
n(β+p)
n−p (Rn)

≤ C (β + p)p
n∏
i=1

∥∥∥(ηvε)
β
pi ∂xi (ηvε)

∥∥∥ pn
Lpi (Rn)

<∞ (4.4)

for some constant C = C (n,−→p ). For any i = 1, . . . , n, we have∫
Rn

(ηvε)
β |∂xi (ηvε)|pi dx ≤ 2pi−1

(∫
Rn
|∂xiη|

pi ηβvβ+pi
ε dx+

∫
Rn
|∂xivε|

pi ηβ+pivβε dx

)
. (4.5)

Since v ∈ D1,−→p (Rn) ∩ L∞ (Rn), ηβ+1 ∈ C1 (Rn), η(β+p−)/p+ ∈ C1 (Rn), and (β + p−) /p+ ≤
β + p−, we get ηβ+pivβ+1

ε ∈ D1,−→p (Rn). For any i = 1, . . . , n, since vε ≡ v + ε on the support
of ηv, testing (4.2) with ηβ+pivβ+1

ε gives

(β + 1)
n∑
j=1

∫
Rn

∣∣∂xjv∣∣pj ηβ+pivβε dx ≤ Λ

∫
Rn
ηβ+pivp

∗−1vβ+1
ε dx

− (β + pi)
n∑
j=1

∫
Rn

∣∣∂xjv∣∣pj−2 (
∂xjv

) (
∂xjη

)
ηβ+pi−1vβ+1

ε dx . (4.6)



CRITICAL ANISOTROPIC EQUATIONS 13

For any i, j = 1, . . . , n, Youngs inequality yields

− (β + pi)
∣∣∂xjv∣∣pj−2 (

∂xjv
) (
∂xjη

)
ηβ+pi−1vβ+1

ε

≤ pj − 1

pj
· (β + 1)

∣∣∂xjv∣∣pj ηβ+pivβε +
1

pj
· (β + pi)

pj

(β + 1)pj−1

∣∣∂xjη∣∣pj ηβ+pi−pjvβ+pj
ε . (4.7)

It follows from (4.6) and (4.7) that

n∑
j=1

1

pj

∫
Rn

∣∣∂xjv∣∣pj ηβ+pivβε dx ≤ Λ (β + 1)−1

∫
Rn
ηβ+pivp

∗−1vβ+1
ε dx

+
n∑
j=1

1

pj
·
(
β + pi
β + 1

)pj ∫
Rn

∣∣∂xjη∣∣pj ηβ+pi−pjvβ+pj
ε dx . (4.8)

In particular, by (4.5) and (4.8), we obtain∫
Rn

(ηvε)
β |∂xi (ηvε)|pi dx ≤ C

(
Λ (β + 1)−1

∫
Rn
ηβ+pivp

∗−1vβ+1
ε dx

+
n∑
j=1

min (1, β + 1)−pj
∫
Rn

∣∣∂xjη∣∣pj ηβ+pi−pjvβ+pj
ε dx+ εβ+pi

∫
Rn
|∂xiη|

pi ηβ+piηβdx

)
(4.9)

for some constant C = C (n,−→p ). Finally, since ηpi ≤ ηp− , we get (4.3) by plugging (4.9) into
(4.4) and passing to the limit as ε→ 0. This ends the proof of Lemma 4.2. �

Now, we can prove Lemma 4.1 by using Lemma 4.2.

Proof of Lemma 4.1. We denote β := n−p
n
γ − p. In particular, γ > p∗ − 1 is equivalent to

β > −1. In connexion with the sets Ω−→q (I1, R1, I2, R2, λ), we define test functions of the form

η (x) :=

[
ηλ,λ′

(
R−1

1

∑
i∈I1

|xi|qi
)
η̃λ,λ′

(
R−1

2

∑
i∈I2

|xi|qi
)]max

(
1,

p+
β+p−

)
(4.10)

for all x ∈ Rn, where ηλ,λ′ , η̃λ,λ′ ∈ C1 (0,∞) satisfy 0 ≤ ηλ,λ′ , η̃λ,λ′ ≤ 1 in (0,∞), ηλ,λ′ = 1

in [0, 1 + λ], ηλ,λ′ = 0 in [1 + λ′,∞),
∣∣η′λ,λ′∣∣ ≤ 2 in [1 + λ, 1 + λ′], η̃λ,λ′ = 1 in [1− λ, 1 + λ],

η̃λ,λ′ = 0 in [0, 1− λ′] ∪ [1 + λ′,∞), and
∣∣η̃′λ,λ′∣∣ ≤ 2/ (λ′ − λ) in [1− λ′, 1− λ] ∪ [1 + λ, 1 + λ′].

With these properties of ηλ,λ′ and η̃λ,λ′ , we obtain

0 ≤ η ≤ 1 in Rn, η = 1 in Ω−→q (I1, R1, I2, R2, λ) , and η = 0 in Rn\Ω−→q (I1, R1, I2, R2, λ
′) .

Since Ω−→q (I1, R1, I2, R2, λ
′)∩ supp (u) is bounded by assumption, we get that ηu has compact

support. Moreover, since qi > 1 for all i ∈ I1 ∪ I2, we get η(β+p−)/p+ ∈ C1 (Rn) and

|∂xiη (x)|pi η (x)β+p−−pi ≤
(

4qi
λ′ − λ

max

(
1,

p+

β + p−

))pi
R
− pi
qi

δi
(4.11)
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for all x ∈ supp (η), where δi := 1 if i ∈ I1, δi := 2 if i ∈ I2. By applying Lemma 4.2 with
v = |u| and η as in (4.10), and using (4.11), we obtain(∫

Ω−→q (I1,R1,I2,R2,λ)

uγdx

)n−p
n

≤ C (|β|p + 1)

(
Λ (β + 1)−1

∫
Ω−→q (I1,R1,I2,R2,λ′)

uβ+p∗dx

+
∑

i∈I1∪I2

min (1, β + 1)−pi (λ′ − λ)
−pi qpii R

− pi
qi

δi

∫
Ω−→q (I1,R1,I2,R2,λ′)

uβ+pidx

)
(4.12)

for some constant C = C (n,−→p ).
Now, we estimate the first integral in the right-hand side of (4.12). We claim that there

exists a constant C ′ = C (n,−→p ,K0) such that

u (x)p
∗−pi0 ≤ C ′R

−
pi0
qi0

2 for all x ∈ Ω−→q (I1, R1, I2, R2, λ
′) , (4.13)

where K0 is the constant given by Lemma 3.3 and i0 ∈ I2 is such that

qi0 (p∗ − pi0)
pi0

= max
i∈I2

(
qi (p

∗ − pi)
pi

)
. (4.14)

We prove this claim. For any x ∈ Ω−→q (I1, R1, I2, R2, λ
′), since λ′ ≤ 1/2, we obtain

R2

2
≤
∑
i∈I2

|xi|qi ≤ n · |xi(x)|qi(x) ≤ n · d−→p (x, 0)
qi(x)(p

∗−pi(x))
δpi(x) , (4.15)

where i (x) ∈ I2 is such that |xi(x)|qi(x) = max ({|xi|qi : i ∈ I2}), and the distance function d−→p
and the real number δ are as in (3.4). Since Ω−→q (I1, R1, I2, R2, λ

′) ∩B−→p (0,max (r, 1)) = ∅ by
assumption, (4.13) follows from (4.14), (4.15), and Lemma 3.3. In particular, (4.13) implies∫

Ω−→q (I1,R1,I2,R2,λ′)

uβ+p∗dx ≤ C ′R
−
pi0
qi0

2

∫
Ω−→q (I1,R1,I2,R2,λ′)

uβ+pi0dx . (4.16)

Finally, (4.1) follows from (4.12), (4.16), and the fact that β + 1 = n−p
n

(γ − p∗ + 1) and
β + pi = γi. This ends the proof of Lemma 4.1. �

5. The iteration scheme

In this section, we describe the iteration scheme which leads to the proofs of our main
results.

Let I1 and I2 be two disjoint subsets of {1, . . . , n}, I2 6= ∅, and −→q = (qi)i∈I1∪I2 be such that
qi > 1 for all i ∈ I1 ∪ I2. The idea is to apply Lemma 4.1 by induction. For any γ > p∗ − 1,
Lemma 4.1 provides an estimate of the Lγ–norm of u with respect to the set of Lγi1–norms of
u, where γi1 := n−p

n
γ + pi1 − p for all i1 ∈ I1 ∪ I2. If γi1 > p∗ − 1, then another application of

Lemma 4.1 gives estimates of the Lγi1–norms of u with respect to the set of Lγi1i2–norms of
u, where γi1i2 := n−p

n
γi1 + pi2 − p, etc... By induction, we define

γi1,...,ij+1
:=

n− p
n

γi1,...,ij + pij+1
− p (5.1)

for all j ∈ N and i1, . . . , ij+1 ∈ I1 ∪ I2, with the convention that γi1,...,ij := γ if j = 0. In
particular, we obtain the formula

γi1,...,ik =

(
n− p
n

)k
γ +

k∑
j=1

(
n− p
n

)k−j (
pij − p

)
(5.2)
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for all k ∈ N. The stopping condition in our induction argument is γi1,...,ik <
n
p

(pε − p), where

pε := (1 + ε) p0 , p0 := max (p∗, {pi : i ∈ I1 ∪ I2}) , (5.3)

and ε is a fixed real number in (0, 1). Note that n
p

(pε − p) > n
p

(p∗ − p) = p∗ − 1 so that we

can apply Lemma 4.1 as long as our stopping condition is not satisfied. For any k ≥ 1, we
let Φk,γ,ε be the set of all sequences of indices for which our induction argument stops after
exactly k iterations, namely

Φk,γ,ε :=
{

(i1, . . . , ik) ∈ (I1 ∪ I2)k : γi1,...,ij ≥
n

p
(pε − p) for all j = 0, . . . , k − 1

and γi1,...,ik <
n

p
(pε − p)

}
. (5.4)

The following result provides a control on the number of iterations in our induction argument.

Lemma 5.1. Let I1 and I2 be two disjoint subsets of {1, . . . , n}, I2 6= ∅, and −→q = (qi)i∈I1∪I2
be such that qi > 1 for all i ∈ I1 ∪ I2. Then for any ε > 0, γ ≥ n

p
(pε − p), k ∈ N, and

(i1, . . . , ik) ∈ (I1 ∪ I2)k, we have

γi1,...,ik >
n

p
(pε − p) if k < k−γ,ε and γi1,...,ik <

n

p
(pε − p) if k ≥ k+

γ,ε , (5.5)

where γi1,...,ik is as in (5.1), pε is as in (5.3), and k−γ,ε and k+
γ,ε are the smallest and largest

natural numbers, respectively, such that

n

p

(
n

n− p

)k+γ,ε−1

εp0 < γ <
n

p

(
n

n− p

)k−γ,ε
(pε − p−) , (5.6)

where p− := min ({pi ∈ −→p }). In particular, we have Φk,γ,ε = ∅ for all k < k−γ,ε and k > k+
γ,ε,

where Φk,γ,ε is as in (5.4).

Proof of Lemma 5.1. Since p− ≤ pij ≤ p0 for all j = 1, . . . , k, it follows from (5.2) that

−
k∑
j=1

(
n− p
n

)k−j
(p− p−) ≤ γi1,...,ik −

(
n− p
n

)k
γ ≤

k∑
j=1

(
n− p
n

)k−j
(p0 − p) . (5.7)

Moreover, by a simple calculation, we obtain

k∑
j=1

(
n− p
n

)k−j
=
n

p

(
1−

(
n− p
n

)k)
<
n

p
. (5.8)

It follows from (5.7) and (5.8) that

−n
p

(p− p−) < γi1,...,ik −
(
n− p
n

)k
γ <

n

p
(p0 − p) . (5.9)

Finally, (5.5) follows from (5.9) together with the definitions of k−γ,ε and k+
γ,ε. �

Now, we can prove the main result of this section.

Lemma 5.2. Assume that p+ < p∗. Let f : Rn×R→ R be a Caratheodory function such that
(1.2) holds true, u be a solution of (1.1), and κ, r, and K0 be as in Lemma 3.3. Let I1 and
I2 be two disjoint subsets of {1, . . . , n}, I2 6= ∅, and −→q = (qi)i∈I1∪I2 be such that qi > 1 for all

i ∈ I1∪I2. Then there exists a constant c1 = c1 (n,−→p ,Λ, K0) > 1 such that for any ε ∈ (0, 1),
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γ > n
p

(pε − p), and R1, R2 > 0 such that Ω−→q (I1, R1, I2, R2, 1/2) ∩ B−→p (0,max (r, 1)) = ∅ and

Ω−→q (I1, R1, I2, R2, 1/2) ∩ supp (u) is bounded, we have

‖u‖Lγ(Ω−→q (I1,R1,I2,R2,λ0,γ,ε)) ≤ c
1
ε
1 max (qi)

1
ε
· n
n−p (pε − p∗)−

1
ε
· n
n−p

× max
(i1,...,ik)∈Φγ,ε

((
k∏
j=1

R
− 1
γ ( n

n−p)
j pij
qij

δij

)
‖u‖

γi1,...,ik
γ ( n

n−p)
k

L
γi1,...,ik (Ω−→q (I1,R1,I2,R2,λk,γ,ε))

)
, (5.10)

where δij := 1 if ij ∈ I1, δij := 2 if ij ∈ I2, γi1,...,ik is as in (5.1), pε is as in (5.3),
Ω−→q (I1, R1, I2, R2, λk) is as in (1.10), and

λk,γ,ε :=
1

4

(
1 + 2k−k

+
γ,ε−1

)
and Φγ,ε :=

k+γ,ε⋃
k=k−γ,ε

Φk,γ,ε (5.11)

with k−γ,ε and k+
γ,ε as in Lemma 5.1, and Φk,γ,ε as in (5.4).

Proof of Lemma 5.2. Applying Lemma 4.1 by induction with the stopping condition γi1,...,ik <
n
p

(pε − p) gives

‖u‖Lγ(Ω−→q (I1,R1,I2,R2,λ0,γ,ε)) ≤ max
(i1,...,ik)∈Φγ,ε

(
Ak,γ × Bi1,...,ik−1,γ × Ci1,...,ik,γ ×Di1,...,ik,γ,ε

×

(
k∏
j=1

R
− 1
γ ( n

n−p)
j pij
qij

δij

)
‖u‖

γi1,...,ik
γ ( n

n−p)
k

L
γi1,...,ik (Ω−→q (I1,R1,I2,R2,λk,γ,ε))

)
, (5.12)

where λk,γ,ε and Φγ,ε are as in (5.11), and

Ak,γ :=
(
c0 ·max

(
q
npi
n−p
i

)) 1
γ

k−1∑
j=0

( n
n−p)

j

, Bi1,...,ik−1,γ :=
k∏
j=1

γ
p
γ ( n

n−p)
j

i1,...,ij−1
,

Ci1,...,ik−1,γ :=
k∏
j=1

min
(
1, γi1,...,ij−1

− p∗ + 1
)− pij

γ ( n
n−p)

j

,

Di1,...,ik,γ,ε :=
k∏
j=1

(λj,γ,ε − λj−1,γ,ε)
−
pij
γ ( n

n−p)
j

.

Now, we fix (i1, . . . , ik) ∈ Φγ,ε and estimate each of the terms in the right-hand side of (5.12).

Estimate of Ak,γ. By using the fact that k ≤ k+
γ,ε and applying (5.6), we obtain

k−1∑
j=0

(
n

n− p

)j
=
n− p
p

[(
n

n− p

)k
− 1

]
<
n

p

(
n

n− p

)k+γ,ε−1

<
γ

εp0

. (5.13)

Since c0 > 1, qi > 1, and pi ≤ p0 for all i ∈ I1 ∪ I2, it follows from (5.13) that

Ak,γ < c
1
εp0
0 max (qi)

1
ε
· n
n−p . (5.14)

Estimate of Bi1,...,ik−1,γ. For any j = 1, . . . , k, since pi ≤ p0 for all i ∈ I1 ∪ I2, by (5.2), (5.6),
and (5.8), we obtain

γi1,...,ij−1
≤
(
n− p
n

)j−1

γ +
n

p
(p0 − p) ≤ C max

(
1,

(
n

n− p

)k−γ,ε−j )
(5.15)
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for some constant C = C (n,−→p ) > 1. It follows from (5.15) that

Bi1,...,ik−1,γ ≤ C
p
γ

k∑
j=1

( n
n−p)

j (
n

n− p

) p
γ

k−γ,ε∑
j=1

( n
n−p)

j
(k−γ,ε−j)

. (5.16)

A simple calculation gives

k−γ,ε∑
j=1

(
n

n− p

)j (
k−γ,ε − j

)
=
n2

p2

[(
n

n− p

)k−γ,ε−1

− p

n

(
k−γ,ε − 1

)
− 1

]
<
n2

p2

(
n

n− p

)k−γ,ε−1

,

and hence by definition of k−γ,ε, we obtain

k−γ,ε∑
j=1

(
n

n− p

)j (
k−γ,ε − j

)
≤ n

p
· γ

pε − p−
<
n

p
· γ

p∗ − p−
. (5.17)

It follows from (5.13), (5.16), and (5.17) that

Bi1,...,ik−1,γ ≤ C
p∗
εp0

(
n

n− p

) n
p∗−p−

. (5.18)

Estimate of Ci1,...,ik−1,γ. Since p∗−1 = n
p

(p∗ − p) and γi1,...,ij−1
> n

p
(pε − p) for all j = 1, . . . , k,

we obtain

Ci1,...,ik−1,γ ≤ min
(

1,
n

p
(pε − p∗)

)− 1
γ

k∑
j=1

pij(
n
n−p)

j

. (5.19)

Since pij ≤ p0 for all j = 1, . . . , k, it follows from (5.13) and (5.19) that

Ci1,...,ik−1,γ ≤ min
(

1,
n

p
(pε − p∗)

)− 1
ε
· n
n−p

. (5.20)

Estimate of Di1,...,ik,γ,ε. By (5.11) and since k ≤ k+
γ,ε and pij ≤ p0 for all j = 1, . . . , k, we

obtain

Di1,...,ik,γ,ε ≤ 2
1
γ

k∑
j=1

pij(
n
n−p)

j
(k+γ,ε−j+4)

≤ 2

p0
γ

k+γ,ε∑
j=1

( n
n−p)

j
(k+γ,ε−j+4)

. (5.21)

We find
k+γ,ε∑
j=1

(
n

n− p

)j (
k+
γ,ε − j + 4

)
=
n

p

[(
n

n− p

)k+γ,ε (
3 +

n

p

)
− k+

γ,ε − 3− n

p

]

<
n

p

(
n

n− p

)k+γ,ε (
3 +

n

p

)
,

and hence by (5.6), we obtain

k+γ,ε∑
j=1

(
n

n− p

)j (
k+
γ,ε − j + 4

)
<

γ

εp0

· n

n− p

(
3 +

n

p

)
. (5.22)

It follows from (5.21) and (5.22) that

Di1,...,ik,γ,ε ≤ 2
1
ε
· n
n−p(3+n

p ). (5.23)

End of proof of Lemma 5.2. The estimate (5.10) follows from (5.12), (5.14), (5.18), (5.20),
and (5.23). �
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6. The vanishing result

In this section, we prove a vanishing result which will give Point (i) in Theorem 1.3. We
define

p0 := max (p∗, {pi ∈ −→p : i ∈ Θ}) , (6.1)

where p∗ is as in (1.4) and Θ is the set of all indices i such that(
pi − p− −

n

p
(pi − p∗)

) n∑
j=1

max

(
pi − pj
pj

, 0

)
≥ (p∗ − 1) (pi − p−) (6.2)

with p− := min ({pi ∈ −→p }). We define I0 as the set of all indices i such that pi > p0.

When p+ > p∗, one easily sees that the condition (6.2) does not hold true for pi = p+, and
hence we have p0 < p+ and I0 6= ∅.

We prove the following result.

Theorem 6.1. Assume that p∗ < p+ < p∗. Let f : Rn × R → R be a Caratheodory function
such that (1.2) holds true and u be a solution of (1.1). Then there exists a constant R0 =
R0 (n,−→p ,Λ, u) such that u (x) = 0 for all x ∈ Rn such that

∑
i∈I0 |xi| ≥ R0.

The proof of Theorem 6.1 is based on the following result, which we obtain by applying the
iteration scheme in Section 5.

Lemma 6.2. Assume that p∗ < p+ < p∗. Let f : Rn × R → R be a Caratheodory function
such that (1.2) holds true, u be a solution of (1.1), and κ, r, and K0 be as in Lemma 3.3. Let
p0 be as in (6.1) and p0 ∈ −→p be such that

p0 > p0 and Ri (u) <∞ for all indices i such that pi > p0 , (6.3)

where

Ri (u) := sup ({|xi| : x ∈ supp (u)}) . (6.4)

Let I1, I2 be the sets of indices i such that pi < p0, pi = p0, respectively. For any ε, λ ∈ (0, 1)
and R > 1, we define

Aε (R, λ) := Ω−→q
(
I1, R

1/ε, I2, R, λ
)

with qi :=


pεpi
pε − pi

if i ∈ I1 ,

pε if i ∈ I2 ,
(6.5)

where pε := (1 + ε) p0. If Aε (R, 1/2) ∩B−→p (0,max (r, 1)) = ∅, then

‖u‖L∞(Aε(R,1/4)) ≤
(
c2R

− 1
pε

) 1
ε (6.6)

for some constant c2 = c2(n,−→p ,Λ, K0, ‖u‖Lp∗−1,∞(Rn) , R0 (u)), where

R0 (u) := max ({Ri (u) : i ∈ {1, . . . , n} \ (I1 ∪ I2)}) . (6.7)

Proof of Lemma 6.2. As is easily seen, we have 1 < qi < s0 for some constant s0 = s0 (−→p ).
Moreover, by (6.3), we obtain that pε−p∗ > p0−p∗ > 0 and Aε (R, 1/2)∩supp (u) is bounded.
By Lemma 5.2, we then get that there exists a constant c̃1 = c̃1 (n,−→p ,Λ, K0) such that for
any γ > n

p
(pε − p), we have

‖u‖Lγ(Aε(R,λ0,γ,ε))
≤ c̃

1
ε

1 max
(i1,...,ik)∈Φγ,ε

(
R−σi1,...,ik,γ,ε ‖u‖

γi1,...,ik
γ ( n

n−p)
k

L
γi1,...,ik (Aε(R,λk,γ,ε))

)
(6.8)
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provided that Aε (R, 1/2) ∩ B−→p (0,max (r, 1)) = ∅, where γi1,...,ik is as in (5.1), λk,γ,ε and Φγ,ε

are as in (5.11), and

σi1,...,ik,γ,ε :=
1

εγpε

k∑
j=1

(
n

n− p

)j (
pε − pij

)
. (6.9)

We claim that for any ν ∈ (0, 1) and (i1, . . . , ik) ∈ Φγ,ε, there exists a constant cν =
c
(
n,−→p ,K0, ‖u‖Lp∗−1,∞(Rn) , R0 (u) , ν

)
such that

‖u‖
γi1,...,ik

γ ( n
n−p)

k

L
γi1,...,ik (Aε(R,λk,γ,ε))

≤ c
1
ε
νR

τi1,...,ik,γ,ε,ν , (6.10)

where

τi1,...,ik,γ,ε,ν := max

(
0 ,

1

εγpε

(
n

n− p

)k (
1− γi1,...,ik

p∗ − 1 + ν

) ∑
i∈I1∪I2

pε − pi
pi

)
. (6.11)

We separate two cases:

− Case 1: p∗ − 1 + ν ≤ γi1,...,ik <
n
p

(pε − p) (in which case τi1,...,ik,γ,ε,ν = 0).

− Case 2: γi1,...,ik < p∗ − 1 + ν (in which case τi1,...,ik,γ,ε,ν > 0).

We begin with proving (6.10) in Case 1. By interpolation (see, for instance, Grafakos [18,
Proposition 1.1.14]), and by Lemmas 3.1 and 3.3, we obtain

‖u‖Lγi1,...,ik (Aε(R,λk,γ,ε)) ≤
(

γi1,...,ik
γi1,...,ik − p∗ + 1

) 1
γi1,...,ik ‖u‖

p∗−1
γi1,...,ik

Lp∗−1,∞(Aε(R,λk,γ,ε))
‖u‖

1− p∗−1
γi1,...,ik

L∞(Aε(R,λk,γ,ε))

≤ Cν
−1

γi1,...,ik ≤ Cν
−1
p∗−1 (6.12)

for some constant C = C
(
n,−→p ,K0, ‖u‖Lp∗−1,∞(Rn)

)
. Moreover, since γi1,...,ik <

n
p

(pε − p) and

k ≤ k+
γ,ε, by (5.6), we get

γi1,...,ik
γ

(
n

n− p

)k
≤ 1

εp0

· n

n− p
(pε − p) . (6.13)

Then (6.10) follows from (6.12) and (6.13).
Now, suppose that we are in Case 2. By (5.1) and since γi1,...,ik−1

≥ n
p

(pε − p) and pε > p∗,

we obtain

γi1,...,ik ≥
n

p
(pε − p) + p− − pε >

n

p
(p∗ − p) + p− − p∗ = p− − 1 . (6.14)

By Hölder’s inequality, we then get

‖u‖Lγi1,...,ik (Aε(R,λk,γ,ε)) ≤ |Aε (R, λk,γ,ε) ∩ supp (u)|
1

γi1,...,ik
− 1
p∗−1+ν ‖u‖Lp∗−1+ν(Aε(R,λk,γ,ε)) .

(6.15)
Direct computations yield

|Aε (R, λk,γ,ε) ∩ supp (u)| ≤ CR
1
εpε
·
∑

i∈I1∪I2

pε−pi
pi

(6.16)

for some constant C = C
(
n,−→p ,R0 (u)

)
, where R0 (u) is as in (6.7). Similarly to (6.12) and

(6.13), we obtain

‖u‖Lp∗−1+ν(Aε(R,λk,γ,ε)) ≤ Cν
−1
p∗−1 (6.17)
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for some constant C = C
(
n,−→p ,K0, ‖u‖Lp∗−1,∞(Rn)

)
, and

γi1,...,ik
γ

(
n

n− p

)k
<

1

εp0

· p

n− p
(p∗ − 1 + ν) . (6.18)

Then (6.10) follows from (6.15)–(6.18).
By (6.8) and (6.10), we obtain

‖u‖Lγ(Aε(R,λ0,γ,ε))
≤ (c̃1cν)

1
ε max

(i1,...,ik)∈Φγ,ε
Rτi1,...,ik,γ,ε,ν−σi1,...,ik,γ,ε (6.19)

for all ν ∈ (0, 1), where σi1,...,ik,γ,ε and τi1,...,ik,γ,ε,ν are as in (6.9) and (6.11).
We claim that there exists a constant ν0 = ν0 (n,−→p ) such that for any ν ∈ (0, ν0), we have

τi1,...,ik,γ,ε,ν − σi1,...,ik,γ,ε ≤ −
1

εpε

(
1− n

γp
(pε − p)

)
. (6.20)

We prove this claim. By (5.2), we obtain

σi1,...,ik,γ,ε =
1

εpε

(
1− γi1,...,ik

γ

(
n

n− p

)k
+

1

γ

k∑
j=1

(
n

n− p

)j
(pε − p)

)

=
1

εpε

(
1 +

1

γ

(
n

n− p

)k (
n

p
(pε − p)− γi1,...,ik

)
− n

γp
(pε − p)

)
. (6.21)

In case p∗ − 1 + ν ≤ γi1,...,ik <
n
p

(pε − p), since τi1,...,ik,γ,ε,ν = 0, we deduce (6.20) directly from

(6.21). In the remaining case γi1,...,ik < p∗ − 1 + ν, by (6.11) and (6.21), we obtain

τi1,...,ik,γ,ε,ν − σi1,...,ik,γ,ε ≤ −
1

εpε

(
1 +

1

γ

(
n

n− p

)k (
n

p
(pε − p)− γi1,...,ik

−
(

1− γi1,...,ik
p∗ − 1 + ν

) ∑
i∈I1∪I2

pε − pi
pi

)
− n

γp
(pε − p)

)
. (6.22)

If ν is small enough so that p∗ − 1 + ν < n
p

(p0 − p), i.e. ν < n
p

(p0 − p∗), then

1− 1

p∗ − 1 + ν

∑
i∈I1∪I2

pε − pi
pi

<
p

n (p0 − p)
∑

i∈(I1∪I2)c

p0 − pi
pi

< 0 , (6.23)

where (I1 ∪ I2)c := {1, . . . , n} \ (I1 ∪ I2). It follows from (6.14), (6.22), and (6.23) that

τi1,...,ik,γ,ε,ν − σi1,...,ik,γ,ε ≤ −
1

εpε

(
1 +

1

γ

(
n

n− p

)k
ϕν (pε)−

n

γp
(pε − p)

)
(6.24)

for all ν ∈ (0, n
p

(p0 − p∗)), where

ϕν (q) : = q − p− −
(

1−
n
p

(q − p) + p− − q
p∗ − 1 + ν

) ∑
i∈I1∪I2

q − pi
pi

= q − p− −
q − p− − n

p
(q − p∗)

p∗ − 1 + ν

∑
i∈I1∪I2

q − pi
pi

for all q ∈ R. By (6.3) and by definition of p0, we obtain ϕ0 (p0) > 0. Moreover, it can easily
be seen that ϕ0 (p∗) ≤ 0. Observing that ϕ0 is a quadratic polynomial with positive leading
coefficient, we then get that ϕ0 is increasing in [p0,∞). By continuity of ϕν with respect to ν,
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it follows that ϕν (pε) ≤ 0 provided that ν < ν0 for some constant ν0 = ν0 (n,−→p ). By (6.24),
we then get (6.20).

Finally, we fix ν = ν0/2, and we obtain (6.6) by passing to the limit as γ →∞ into (6.19)
and (6.20) and using the fact that pε > p0 and R > 1. This ends the proof of Lemma 6.2. �

Now, we can conclude the proof of Theorem 6.1.

Proof of Theorem 6.1. We proceed by contradiction. Suppose that there exists a solution u of
(1.1) such that

p0 := max ({pi ∈ −→p : Ri (u) =∞}) > p0 , (6.25)

where Ri (u) is as in (6.4). Then we can apply Lemma 6.2. For any ε ∈ (0, 1) and x ∈ Rn, it
follows from (6.6) that

|u (x)| ≤
(
c2Rε (x)−

1
pε

) 1
ε where Rε (x) :=

∑
i∈I2

|xi|pε (6.26)

provided that
∑

i∈I1 |xi|
pεpi
pε−pi < 5

4
Rε (x)1/ε and Aε (Rε (x) , 1/2)∩B−→p (0,max (r, 1)) = ∅, where

I1 and I2 are as in Lemma 6.2, and r is as in Lemma 3.3. One easily gets that there exists a
constant Rr = R (n,−→p , r) > 1 such that for any ε ∈ (0, 1) and R > Rr, we have Aε (R, 1/2)∩
B−→p (0,max (r, 1)) = ∅. By passing to the limit as ε → 0 into (6.26), we then obtain that
u (x) = 0 for all x ∈ Rn such that∑

i∈I2

|xi|p0 > max (Rr, c
p0
2 ) ,

and hence Ri (u) <∞ for all i ∈ I2, which is in contradiction with (6.25). This ends the proof
of Theorem 6.1. �

Remark 6.3. As one can see from the above proof, the constant R0 that we obtain in Theo-
rem 6.1 depends on n, −→p , Λ, κ, r, rκ (u), and ‖u‖Lp∗−1,∞(Rn).

7. The decay estimates

In this section, we prove Theorem 1.1 in case p+ < p∗ and Theorem 7.1 below in case
p∗ ≤ p+ < p∗. The latter implies Theorem 1.2 in case p+ = p∗ and allows us to complete the
proof of Theorem 1.3 in case p∗ < p+ < p∗.

We let p0 and I0 be as in Section 6. We define q0 as the largest real number such that for
any q > q0, we have (

q − p− −
n

p
(q − p∗)

)∑
i∈Ic0

q − pi
pi

< (p∗ − 1) (q − p−) , (7.1)

where Ic0 := {1, . . . , n} \I0. It easily follows from the definition of p0 and the fact that p0 < p+

in case p+ > p∗ that {
q0 = p0 = p∗ in case p+ ≤ p∗ ,

p0 ≤ q0 < p+ in case p+ > p∗ .

We prove the following result.
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Theorem 7.1. Assume that p∗ ≤ p+ < p∗. Let f : Rn × R → R be a Caratheodory function
such that (1.2) holds true and u be a solution of (1.1). Let q0 be defined as above. Then for
any q > q0, there exists a constant Cq = C (n,−→p ,Λ, u, q) such that

|u (x)|q +
n∑
i=1

|∂xiu (x)|pi ≤ Cq

(
1 +

∑
i∈Ic0

|xi|
qpi
q−pi

)−1

for a.e. x ∈ Rn. (7.2)

We conclude the proofs of Theorems 1.2 and 1.3 as follows.

Proof of Theorem 1.2. In case p+ = p∗, since q0 = p0 = p∗, we get that (7.2) holds true for all
q > p∗. Since in this case we have Ic0 = {1, . . . , n}, this is exactly the result in Theorem 1.2. �

Proof of Theorem 1.3. In case p∗ < p+ < p∗, Points (i) and (ii) in Theorem 1.3 follow directly
from Theorems 6.1 and 7.1 and the fact that p0 ≤ q0 < p+. �

Now, it remains to prove Theorems 1.1 and 7.1. By another application of the iteration
scheme in Section 5, we prove the following result.

Lemma 7.2. Assume that p+ < p∗. Let f : Rn×R→ R be a Caratheodory function such that
(1.2) holds true, u be a solution of (1.1), and κ, r, and K0 be as in Lemma 3.3. Let q = p∗ in
case p+ < p∗ and q ∈ (q0, p

∗) in case p∗ ≤ p+ < p∗. For any λ ∈ (0, 1) and R > 1, we define

Aq (R, λ) := Ω−→q (∅, 1, Ic0, R, λ) with qi :=
qpi
q − pi

for all i ∈ Ic0 . (7.3)

If Aq (R, 1/2) ∩B−→p (0,max (r, 1)) = ∅, then

‖u‖L∞(Aq(R,1/4)) ≤ cqR
− 1
q , (7.4)

for some constant cq = c
(
n,−→p ,Λ, K0, ‖u‖Lp∗−1,∞(Rn) , R0, q

)
, where R0 is as in Theorem 6.1.

Proof of Lemma 7.2. By Theorem 6.1, we obtain that Aq (R, λ) ∩ supp (u) is bounded. By
Lemma 5.2, we then get that for any ε ∈ (0, 1), there exists a constant cq,ε = c (n,−→p ,Λ, K0, q, ε)
such that for any γ > n

p
(pε − p), where pε := (1 + ε) p0, we have

‖u‖Lγ(Aq(R,λ0,γ,ε))
≤ cq,ε max

(i1,...,ik)∈Φγ,ε

(
R−σi1,...,ik,q,γ ‖u‖

γi1,...,ik
γ ( n

n−p)
k

L
γi1,...,ik (Aq(R,λk,γ,ε))

)
, (7.5)

provided that Aq (R, 1/2) ∩ B−→p (0,max (r, 1)) = ∅, where γi1,...,ik is as in (5.1), λk,γ,ε and Φγ,ε

are as in (5.11), and

σi1,...,ik,q,γ :=
1

γq

k∑
j=1

(
n

n− p

)j (
q − pij

)
. (7.6)

End of proof of Lemma 7.2 in case p∗ ≤ p+ < p∗ and q0 < q < p∗. In this case, we follow in
large part the same arguments as in the proof of Lemma 6.2. We set ε := (q − p0) /p0

so that q = pε. Since q < p∗ and p0 ≥ p∗, we get ε < (p∗ − p∗) /p∗ ≤ 1. Similarly to
(6.10), we then obtain that for any (i1, . . . , ik) ∈ Φγ,ε and ν ∈ (0, 1), there exists a constant
cν = c

(
n,−→p ,Λ, K0, ‖u‖Lp∗−1,∞(Rn) , R0, ν

)
such that

‖u‖
γi1,...,ik

γ ( n
n−p)

k

L
γi1,...,ik (Aq(R,λk,γ,ε))

≤ c
1
ε
νR

τi1,...,ik,q,γ,ν , (7.7)

where

τi1,...,ik,q,γ,ν := max

(
0 ,

1

qγ

(
n

n− p

)k (
1− γi1,...,ik

p∗ − 1 + ν

)∑
i∈Ic0

q − pi
pi

)
. (7.8)
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It follows from (7.5) and (7.7) that

‖u‖Lγ(Aq(R,λ0,γ,ε))
≤ cq,εc

1
ε
ν max

(i1,...,ik)∈Φγ,ε
Rτi1,...,ik,q,γ,ν−σi1,...,ik,q,γ (7.9)

for all ν ∈ (0, 1), where σi1,...,ik,q,γ and τi1,...,ik,q,γ,ν are as in (7.6) and (7.8).
In the same way as in the proof of (6.20), we then obtain

τi1,...,ik,q,γ,ν − σi1,...,ik,q,γ ≤ −
1

q

(
1− n

γp
(q − p)

)
(7.10)

provided that

q − p− −
q − p− − n

p
(q − p∗) + ν

p∗ − 1 + ν

∑
i∈Ic0

q − pi
pi

> 0 . (7.11)

By (7.1), we get that (7.11) holds true provided that ν < ν0 for some constant ν0 = ν0 (n,−→p ).
Finally, we fix ν = νq/2, and we obtain (7.4) by passing to the limit as γ → ∞ into (7.9)

and (7.10). This ends the proof of Lemma 7.2. �

Proof of Lemma 7.2 in case p+ < p∗ and q = p∗. In this case, we have p0 = p∗ and Ic0 =
{1, . . . , n}. We claim that there exists a constant ε0 = ε0 (n,−→p ) ∈ (0, 1) such that for any
ε ∈ (0, ε0) and (i1, . . . , ik) ∈ Φγ,ε, we have

‖u‖
γi1,...,ik

γ ( n
n−p)

k

L
γi1,...,ik (Aq(R,λk,γ,ε))

≤ cεR
τi1,...,ik,p∗,γ (7.12)

for some constant cε = c
(
n,−→p ,Λ, K0, ‖u‖Lp∗−1,∞(Rn) , ε

)
, where

τi1,...,ik,p∗,γ :=
p∗ − 1− γi1,...,ik

p∗γ

(
n

n− p

)k
. (7.13)

We assume that (1− ε) p∗ > p, i.e. ε < p−1
n−1

, and we separate two cases:

− Case 1: γi1,...,ik ≤ n
p

((1− ε) p∗ − p),
− Case 2: n

p
((1− ε) p∗ − p) < γi1,...,ik <

n
p

((1 + ε) p∗ − p).
We begin with proving (7.12) in Case 1. By a generalized version of Hölder’s inequality (see
for instance Grafakos [18, Exercise 1.1.11]), we obtain

‖u‖γi1,...,ik
L
γi1,...,ik (Aq(R,λk,γ,ε))

≤ p∗ − 1

p∗ − 1− γi1,...,ik
|Aq (R, λk,γ,ε)|1−

γi1,...,ik
p∗−1 ‖u‖γi1,...,ik

Lp∗−1,∞(Aq(R,λk,γ,ε))
.

(7.14)

Direct computations give

|Aq (R, λk,γ,ε)| ≤ CR

n∑
i=1

p∗−pi
p∗pi = CR

p∗−1
p∗ (7.15)

for some constant C = C (n,−→p ). Since γi1,...,ik ≤ n
p

((1− ε) p∗ − p) and u ∈ Lp∗−1,∞ (Rn), it

follows from (7.14) and (7.15) that

‖u‖γi1,...,ik
L
γi1,...,ik (Aq(R,λk,γ,ε))

≤ Cε−1R
p∗−1−γi1,...,ik

p∗ (7.16)

for some constant C = C
(
n,−→p , ‖u‖Lp∗−1,∞(Rn)

)
. Moreover, since k ≤ k+

γ,ε, by (5.6), we get

1

γ

(
n

n− p

)k
<

1

ε (n− 1)
. (7.17)

Then (7.12) follows from (7.16) and (7.17).
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Now, suppose that we are in case 2. By interpolation, we obtain

‖u‖Lγi1,...,ik (Aq(R,λk,γ,ε)) ≤ ‖u‖
θ

L
n
p ((1−ε)p∗−p)(Aq(R,λk,γ,ε))

‖u‖1−θ
L
n
p ((1+ε)p∗−p)(Aq(R,λk,γ,ε))

, (7.18)

where θ ∈ (0, 1) is such that

θ
n
p

((1− ε) p∗ − p)
+

1− θ
n
p

((1 + ε) p∗ − p)
=

1

γi1,...,ik
. (7.19)

Similarly to (7.16), we get

‖u‖
n
p

((1−ε)p∗−p)

L
n
p ((1−ε)p∗−p)(Aq(R,λk,γ,ε))

≤ Cε−1R
n
p
ε (7.20)

for some constant C = C
(
n,−→p ,K0, ‖u‖Lp∗−1,∞(Rn)

)
. On the other hand, Lemma 4.1 gives

‖u‖
n
p

((1+ε)p∗−p)

L
n
p ((1+ε)p∗−p)(Aq(R,λk,γ,ε))

≤ C max
i=1,...,n

(
ε−piR

pi−p∗
p∗ ‖u‖ε(n−1)+pi−1

Lε(n−1)+pi−1(Aq(R,1/2))

) n
n−p

(7.21)

for some constant C = C (n,−→p ,Λ, K0). We define ε0 := (p∗ − p+) / (p∗ + 2n− 2) so that for
any ε ∈ (0, ε0) and i = 1, . . . , n, we have

ε (n− 1) + pi − 1 <
n

p
((1− ε) p∗ − p) .

Similarly to (7.16), we then get

‖u‖ε(n−1)+pi−1

Lε(n−1)+pi−1(Aq(R,λk+1,γ,ε))
≤ CR

p∗−pi−ε(n−1)

p∗ (7.22)

for some constant C = C
(
n,−→p ,K0, ‖u‖Lp∗−1,∞(Rn)

)
. By putting together (7.18)–(7.22), we

obtain

‖u‖γi1,...,ik
L
γi1,...,ik (Aq(R,λk,γ,ε))

≤ Cε−sR
p∗−1−γi1,...,ik

p∗ (7.23)

for some constants C = C
(
n,−→p ,Λ, K0, ‖u‖Lp∗−1,∞(Rn)

)
and s = s (n,−→p ) > 0. Then (7.12)

follows from (7.17) and (7.23).
By (7.5) and (7.12), we obtain that for any ε ∈ (0, ε0), there exists a constant c̃ε =

c
(
n,−→p ,Λ, K0, ‖u‖Lp∗−1,∞(Rn) , ε

)
such that

‖u‖Lγ(Aq(R,λ0,γ,ε))
≤ c̃ε max

(i1,...,ik)∈Φγ,ε
Rτi1,...,ik,p∗,γ−σi1,...,ik,p∗,γ , (7.24)

where σi1,...,ik,p∗,γ and τi1,...,ik,p∗,γ are as in (7.6) and (7.13).
From (5.2), we derive

σi1,...,ik,p∗,γ =
1

p∗

(
1 +

1

γ

(
n

n− p

)k
(p∗ − 1− γi1,...,ik)−

p∗ − 1

γ

)
,

and hence

τi1,...,ik,p∗,γ − σi1,...,ik,p∗,γ = − 1

p∗

(
1− p∗ − 1

γ

)
. (7.25)

Finally, we fix ε = ε0/2, and we obtain (7.4) by passing to the limit as γ →∞ into (7.24) and
(7.25). This ends the proof of Lemma 7.2 in case p+ < p∗ and q = p∗. �

Now, we can prove Theorems 7.1 and 1.1.
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Proof of Theorem 7.1. As is easily seen, it is sufficient to prove (7.2) for q ∈ (q0, p
∗). Let u be

a solution of (1.1) and q > q0. We define

uR (y) := R
1
q · u (τR (y)) , where τR (y) :=

(
R

q−p1
qp1 y1, . . . , R

q−pn
qpn yn

)
for all R > 1 and y ∈ Rn. By Lemma 7.2, we obtain

‖uR‖L∞(Aq(1,1/4)) ≤ cq . (7.26)

provided that Aq (R, 1/2)∩B−→p (0,max (r, 1)) = ∅, where r be as in Lemma 3.3. One easily gets
the existence of a constant Rr = R (n,−→p , r) > 1 such that Aq (R, 1/2)∩B−→p (0,max (r, 1)) = ∅
for all R > Rr. Moreover, by (1.1), we obtain

−∆−→p uR = R
q−1
q · f

(
τR (y) , R−

1
q · uR

)
in Rn, (7.27)

and (1.2) gives ∣∣R q−1
q · f

(
τR (y) , R−

1
q · uR

)∣∣ ≤ Λ ·R
q−p∗
q · |uR|p

∗−1 . (7.28)

Since q − p∗ ≤ 0, by (7.26)–(7.28) and Lieberman’s gradient estimates [22], we get that there
exists a constant c′q = c (n,−→p ,Λ, cq) such that

‖∇uR‖L∞(Aq(1,1/8)) ≤ c′q . (7.29)

For any x ∈ Rn, it follows from (7.26) and (7.29) that

|u (x)|q +
n∑
i=1

|∂xiu (x)|pi ≤ c′′qR (x)−1 where R (x) :=
∑
i∈Ic0

|xi|
qpi
q−pi

for some constant c′′q = c (n,−→p ,Λ, cq), provided that R (x) > Rr. This ends the proof of
Theorem 7.1. �

Proof of Theorem 1.1. We fix q = p∗ in this case and we follow the same arguments as in the
above proof of Theorem 7.1. �

Remark 7.3. As one can see from the above proofs, the constants C0 and Cq that we obtain in
(1.5) and (7.2) depend on n, −→p , q, Λ, κ, r, rκ (u), ‖u‖Lp∗−1,∞(Rn), and ‖u‖W 1,∞(Rn\Ωr), where

Ωr :=
{
x ∈ Rn :

∑n
i=1 |xi|

qpi
q−pi > Rr

}
for some constant Rr = R (n,−→p , r).

Appendix A. Kato-type inequality

In this section, we prove a weak version of Kato’s inequality [21] for the operator ∆−→p . This
result is used in Sections 3 and 4. A similar result has been proven by Cuesta Leon [9] in the
context of the p–Laplace operator.

For any f ∈ L1
loc (Rn), we say that a function u ∈ D1,−→p (Rn) is a solution of the inequality

−∆−→p u ≤ f in Rn

if we have
n∑
i=1

∫
Rn
|∂xiu|

pi−2 (∂xiu) (∂xiϕ) dx ≤
∫
Rn
fϕ dx

for all nonnegative, smooth function ϕ with compact support in Rn.

We state our result as follows.
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Proposition A.1. Let f1, f2 ∈ L1
loc (Rn) and u1, u2 ∈ D1,−→p (Rn) be solutions of the inequalities

−∆−→p uj ≤ fj in Rn (A.1)

for j = 1, 2. Then the function u := max (u1, u2) is a solution of the inequality

−∆−→p u ≤ f in Rn, (A.2)

where f (x) := f1 (x) if u1 (x) > u2 (x), f (x) := f2 (x) if u1 (x) ≤ u2 (x) for all x ∈ Rn.

Proof of Proposition A.1. We essentially follow the lines of Cuesta Leon [9, Proposition 3.2].
For any ε > 0 and x ∈ Rn, we define

η1,ε (x) := ηε (u1 (x)− u2 (x)) and η2,ε (x) := 1− η1,ε (x) ,

where ηε ∈ C1 (R) is such that ηε ≡ 0 in (−∞, 0], ηε ≡ 1 in [1,∞), 0 ≤ ηε ≤ 1 and η′ε ≥ 0 in
(0, 1). In particular, for j = 1, 2, we have ηj,ε ∈ D1,−→p (Rn), 0 ≤ ηj,ε ≤ 1 in Rn, and

ηj,ε (x) −→
{

1 if x ∈ Ωj

0 if x ∈ Rn\Ωj
(A.3)

as ε → 0 for all x ∈ Rn, where Ω1 := {x ∈ Rn : u1 (x) > u2 (x)} and Ω2 := Rn\Ω1. For any
nonnegative, smooth function ϕ with compact support in Rn, testing (A.1) with ϕηj,ε gives

n∑
i=1

∫
Rn
|∂xiuj|

pi−2 (∂xiuj) (∂xiϕ) ηj,εdx

+ (−1)j−1
n∑
i=1

∫
Rn
|∂xiuj|

pi−2 (∂xiuj) (∂xiu1 − ∂xiu2) η′ε (u1 − u2)ϕdx ≤
∫
Rn
fjϕηj,εdx . (A.4)

By (A.3) and since fj ∈ L1
loc (Rn) and uj ∈ D1,−→p (Rn), we obtain∫

Rn
fjϕηj,εdx −→

∫
Ωj

fjϕdx , (A.5)∫
Rn
|∂xiuj|

pi−2 (∂xiuj) (∂xiϕ) ηj,εdx −→
∫

Ωj

|∂xiuj|
pi−2 (∂xiuj) (∂xiϕ) dx (A.6)

as ε→ 0 for all i = 1, . . . , n. Moreover, since η′ε ≥ 0 and ϕ ≥ 0, we get
n∑
i=1

∫
Rn

(
|∂xiu1|pi−2 ∂xiu1 − |∂xiu2|pi−2 ∂xiu2

)
(∂xiu1 − ∂xiu2) η′ε (u1 − u2)ϕdx ≥ 0 . (A.7)

It follows from (A.4)–(A.7) that

2∑
j=1

n∑
i=1

∫
Ωj

|∂xiuj|
pi−2 (∂xiuj) (∂xiϕ) dx ≤

2∑
j=1

∫
Ωj

fjϕdx (A.8)

and hence (A.2) holds true since u ≡ uj and f ≡ fj on Ωj for j = 1, 2. �
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H. Poincaré Anal. Non Linéaire 14 (1997), no. 2, 275–293.
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[25] P. Poláčik, P. Quittner, and P. Souplet, Singularity and decay estimates in superlinear problems via
Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J. 139 (2007), no. 3, 555–579.

[26] E. Rodemich, The Sobolev inequalities with best possible constants, Analysis Seminar at California Institute
of Technology (1966).

[27] B. Sciunzi, Classification of positive D1,p
(
RN
)
–solutions to the critical p–Laplace equation in RN . Preprint

at arXiv:1506.03653.
[28] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), no. 1, 247–302.
[29] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equa-

tions and inequalities, Acta Math. 189 (2002), no. 1, 79–142.
[30] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinear-

ities, Math. Z. 187 (1984), no. 4, 511–517.
[31] , Variational methods: Applications to nonlinear partial differential equations and Hamiltonian

systems, Springer-Verlag, Berlin, 1990.
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