DECAY ESTIMATES AND A VANISHING PHENOMENON FOR THE
SOLUTIONS OF CRITICAL ANISOTROPIC EQUATIONS

JEROME VETOIS

ABSTRACT. We investigate the asymptotic behavior of solutions of anisotropic equations of
the form — 37, 0y, (10y,ul” "2 0y,u) = f (,u) in R", where p; > 1 foralli =1,...,n and f
is a Caratheodory function with critical Sobolev growth. This problem arises in particular from
the study of extremal functions for a class of anisotropic Sobolev inequalities. We establish
decay estimates for the solutions and their derivatives, and we bring to light a vanishing
phenomenon which occurs when the maximum value of the p; exceeds a critical value.

1. INTRODUCTION AND MAIN RESULTS

Weletn > 2and J = (p1,....pn) besuch that p; > 1foralli=1,...,nand > 1/p; > 1.
In this paper, we are interested in the solutions of problems of the form

{ —Apu=f(xr,u) inR",

ue D7 (R"), 1)

where Apu = > | 9y, (|00

completion of C¢® (R™) with respect to the norm [[ul] i3 gny = 2oy (fgn 1000
f R xR — R is a Caratheodory function such that

1 (z,8)] < Als|”"™" forall s e R and a.e. z € R", (1.2)

pi=2 8xiu) is the anisotropic Laplace operator, Dv? (R™) is the
b dx)l/pi, and

for some real number A > 0. Here, p* denotes the critical Sobolev exponent and is defined as

. n np _ 1 |
P == = with - := — =
21:1;%-_1 n—p p n;pi

The problem (1.1) with f (z,u) = |ul’" > u appears in the study of extremal functions for a
class of anisotropic Sobolev inequalities. Early references on anisotropic Sobolev inequalities
are Nikol'skii [24], Troisi [33], and Trudinger [34]. We also refer to Cianchi [5] for a more recent
work on the topic. Here we are interested in an inequality which appeared first in Troisi [33].
Among different equivalent versions (see Theorem 2.1 below), this inequality can be stated as

n p*/p
/R lul’” dz < C (Z/ |0, ul? da:) (1.3)

for some constant C' = C'(n, P) and for all functions u € C (R"). The inequality (1.3)
enjoys an anisotropic scaling law (see (2.3) below). As a corollary of the work of El Hamidi-
Rakotoson [14], we obtain in Theorem 2.2 below that there exist extremal functions for the
inequality (1.3) provided that p; < p* for alli =1,... n.
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In the presence of anisotropy, namely when the p; are not all equal, there is no explicit
formula for the extremal functions of (1.3). This motivates to find a priori estimates for these
functions, and more generally for the solutions of equations of type (1.1). The main difficulties
in this work come from the non-homogeneity of the problem and the lack of radial symmetry.

As a more general motivation, the solutions of problems of type (1.1) with f (z,u) = |u|” 2y
turn out to play a central role in the blow-up theories of critical equations in general domains.
Possible references in book form on this subject and its applications in the isotropic regime
are Druet—-Hebey—Robert [13], Ghoussoub [17], and Struwe [31]. A first step in the direction
of a blow-up theory in the anisotropic regime was taken in El Hamidi-Vétois [15] where we
extended the bubble tree decompositions of Struwe [30]. Now, if one wants to go further and
investigate a pointwise blow-up theory, then it is essential to know the asymptotic behavior
of the solutions of (1.1) with f (z,u) = |u[”" *u. The results in this paper can be seen as a
crucial step in this direction.

Anisotropic equations of type (1.1) have received much attention in recent years. In addition
to the above cited references [14, 15] and without pretending to be exhaustive, we mention
for instance the works by Cianchi [6] on symmetrization properties, Cirstea—Vétois [7] on the
fundamental solutions, Cupini-Marcellini-Mascolo [10] on the local boundedness of solutions,
Fragala—Gazzola—Kawohl [16] on the existence and non-existence of solutions in bounded do-
mains, Lieberman [22] on gradient estimates, Namlyeyeva—Shishkov—Skrypnik [23] on singular
solutions, and Vétois [37] on vanishing properties of solutions. More references can be found
for instance in [37].

Throughout this paper, we denote

- n—1 p(n—1)
Py :=max ({p; € P and p, = =5 = .
. ({pi € 7)) ST

(1.4)

The exponent p, is known to play a critical role in several results on the asymptotic behavior
of solutions of second order elliptic equations (see the historic paper of Serrin [28], see also for
instance the more recent paper of Serrin—Zou [29] and the references therein).

Our first result is as follows.

Theorem 1.1. Assume that py < p.. Let f : R" xR — R be a Caratheodory function such that
(1.2) holds true and u be a solution of (1.1). Then there exists a constant Co = Cy (n, T, A, u)
such that

ju ()

n n ) —1
P4 Z 0,0 ()| < Cy (1 + Z || P ) for a.e. x € R™, (1.5)
i=1 i=1

where p, is as in (1.4).

We point out that the decay rate in (1.5) is the same as the one obtained in Cirstea—Vétois [7]
for the fundamental solutions in R", namely the solutions of the equation —Azu = dp in R",
where ¢y is the Dirac mass at the point 0.

In case all p; are equal to p, as part of a more general result, Alvino—Ferone-Trombetti—
Lions [1] proved that the best constant in the inequality (1.3) is attained by the functions

p—n
p

Uap () = (wbé@i%) (1.6)
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for all a,b > 0. Moreover, Cordero-Erausquin—-Nazaret—Villani [8] proved that the functions
(1.6) are the only extremal functions of (1.3). In case where the norm of the gradient in (1.3)
is replaced bv the Euclidean norm, the existence of radially symmetric extremal functions was
found by Aubin [2], Rodemich [26], and Talenti [32]. Since p/ (p. —p) = (n —p)/(p — 1), the
decay rate in (1.6) coincides with the one in (1.5).

In case of the Laplace operator (p; = 2), Caffarelli-Gidas—Spruck [3] (see also Chen-Li [4])
proved that every positive solution of (1.1) with f (2, u) = u? ~!is of the form (1.6). This result
can be extended to the case where all p; are equal to p € (1,n) for positive solutions satisfying
the one-dimensional symmetry u (z) = u( Y], |£L’1‘P% ) for all z € R"™. Indeed, this result has
been proved by Guedda—Véron [19] in case of positive, radially symmetric solutions for the p—
Laplace equation — div (|Vu|p -2 Vu) =u”" 7! in R”, and it can easily be seen that both cases
lead to the same ordinary differential equation. We also mention that radial symmetry results
have been established for positive solutions in D' (R") in the case of p-Laplace equations

(see Damascelli-Merchdan—-Montoro—Sciunzi [12], Damascelli-Ramaswamy [11], Sciunzi [27],
and Vétois [38]).

Theorem 1.1 has been proved in Vétois [38] in case of the p—Laplace operator. We also
refer in case of the Laplace operator (p; = 2) to Jannelli-Solimini [20], where the decay
estimate (1.5) has been proved to hold true for solutions of (1.1) with right-hand side f (z,u) =
SN ai () [u]% P, where g i= 2% (1 —1/q:), ¢; € (n/2,00], |a; ()] = O \:U]in/q") for large
|z|, and a; belongs to the Marcinkiewicz space M% (R") for alli =1,..., N.

The next results concern the case p, > p,, namely p; > p, for some index . In particular,
we are now exclusively in the case where the exponents p; are not all equal.

In the limit case p, = p., we prove the following result.

Theorem 1.2. Assume that p. = p.. Let f : R" x R — R be a Caratheodory function such
that (1.2) holds true and u be a solution of (1.1). Then for any q > p., there exists a constant
Cy,=C(n, T, A, u, q) such that

"< Cq<1+2|aﬁi]‘f%) for a.e. x € R". (1.7)
i=1

u @)+ Y100 (@)

Beyond this limit case, namely when p, < py < p*, we find the following result.

Theorem 1.3. Assume that p, < py < p*. Let f : R" x R — R be a Caratheodory function
such that (1.2) holds true and u be a solution of (1.1). Then there exist a real number
do = qo (n, 7) < py such that the two following assertions hold true.

(i) There exists a constant Ry = Ry (n, 7', A, u) such that
u(x) =0 forall x € R" such that Z |z:| > Ry, (1.8)
i€y
where Ty is the set of all indices i such that p; > qo. Moreover, Ty # 0 due to qy < p..
(i) For any q > qo, there exists a constant Cy; = C (n, 7, A, u, q) such that

N -1
< (1 + Z ]Ii|q‘;’i > for a.e. x € R", (1.9)

€T

u @)+ 10 ()

where Z§ = {1,...,n}\Z.
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We are able, moreover, to give an explicit definition in terms of n and ? of a real number
qo satisfying the above result (see Section 7).

The dependence on u of the constants Cy, C,, and Ry in the above results will be made
more precise in Remarks 6.3 and 7.3.

As a remark about the support of solutions, by a result in Vétois [37], we have that for
any nonnegative solution w of (1.1) with f (z,u) as in (1.2) (see [37] for the general as-
sumptions), if u(xz) = 0 for some z € R"™, then we have u = 0 on the affine subspace
{yeR™: Yi = i Vi={1,...,n}\Z_}, where Z_ is the set of all indices ¢ such that p; =
mln({pj ey }) In case all p; are equal to p, we obtain that either v > 0 or v = 0, thus
recovering the same result as Vazquez [35] found for the p—Laplace operator. In the presence
of anisotropy, as shows for instance Theorem 1.3, this result does not hold true in general on
the whole R™.

We also point out that in the limit case p, = p*, we are able to construct quasi-explicit
examples of solutions of (1.1) with f (z,u) = |u[” 2 u for anisotropic configurations of type

=(p_,...,p_,Ds,...,ps) by using the method of separation of variables (see Vétois [36]).
These solutions turn out to vanish in the i-th directions corresponding to p; = p., exactly like
what we prove to be true in Theorem 1.3 in case p, < py < p*.

The paper is organized as follows. In Section 2, we present different equivalent versions
of the anisotropic Sobolev inequality, and we study the existence and scaling properties of
extremal functions for these inequalities.

Section 3 is concerned with preliminary properties satisfied by the solutions of (1.1), namely
global boundedness results and a weak decay estimate.

In Sections 4 and 5, we perform a Moser-type iteration scheme inspired from the one devel-
oped in Cirstea—Vétois [7] for the fundamental solutions. In order to treat a large part of the
proofs in a unified way, we consider a general family of domains defined as

2 Jail"

1€1o

<14+ A) Ry and

O (T1, R1, Io, Ry, \) = {x ER": D —R,

€1

<ARQ}, (1.10)

where A € (0,1), Ry, Ry > 0, Z; and Z, are two disjoint subsets of {1,...,n}, Zy # ), and
7 = (Qi)iezluIQ is such that ¢; > 1 for all : € 7; UZ,. On these domains, we prove that the
solutions of (1.1) satisfy reverse Holder-type inequalities of the form

/ —Ppi _% i =

H ||Lv(§27 7Zy,R1,12,R2, )\)) S Ole%ll%}%Q (<>‘ - >‘) 8 R&- Hu| Z’Y@(Q7(11’R1’Z2,R2,)\/)) ) (1'11>
for all v > p, — 1 and A < X € (0,1/2], where ¢, :== 1if i € Iy, §; = 2 if i € Iy,
Vi = =Ly +p—pforalicZi UL, and C = C’(n,?,?,u, 7v) (see Lemma 4.1 for more
details on the dependence of the constant with respect to u and ). Since the right-hand side
of (1.11) involves different exponents ; in the anisotropic case, the number of exponents in the
estimates may grow exponentially when iterating this inequality. We overcome this issue in
Section 5 by controlling the values of the exponents with respect to the number of iterations.

In Section 6, we prove a vanishing result which will give Point (i) in Theorem 1.3. We prove

this result by applying our iteration scheme with R; = RQ/ for small real numbers € > 0 and
7,1, I, being the sets of all indices ¢ such that p; < pg, p; = po, respectively, for some large
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enough real number py € P (see (6.3) for the exact condition on py). Passing to the limit into
our iteration scheme, we obtain a pointwise estimate of the form

1

_1
HUHL°°(Q7(Il,R1/€,I2,R,1/4)) < (CR ”E)E (1.12)

for some constant C' = C (n, P, u) (see Lemma 6.2). When R is large enough, the right-hand
side of (1.12) converges to 0 as € — 0, and we thus obtain our vanishing result.

In Section 7, we prove Theorems 1.1, 1.2, and we complete the proof of Theorem 1.3 by
proving the decay estimates (1.9). The proofs of these results rely again on our iteration
scheme, this time applied with Z; = () and Z, being the set of all indices i such that p; < p,
for some real number p, (see (6.1)).

Finally, in Appendix A, we prove a weak version of Kato’s inequality which is used in
Sections 3 and 4.

Acknowledgments. The author wishes to express his gratitude to Frédéric Robert for helpful
comments on the manuscript.

2. APPLICATION TO THE EXTREMAL FUNCTIONS OF A CLASS OF
ANISOTROPIC SOBOLEV INEQUALITIES

As mentioned in the introduction, one of our main motivation in this paper is to apply our
results to the extremal functions of a class of anisotropic Sobolev inequalities which originates
from Troisi [33]. In this section, we first present in Theorem 2.1 below different equivalent
versions of these inequalities, and we then prove in Theorem 2.2 that all these inequalities
have extremal functions, and that with a suitable change of scale, these extremal functions
are solutions of (1.1) with f (z,u) = |ul” > u.

We state the equivalent versions of the anisotropic Sobolev inequalities as follows.

Theorem 2.1. The following inequalities hold true.
(i) There exists a constant C = C (n, ?) such that

n/p* n
(/ |u|p*dx) gC’H(/ |0, 1
n Z:]_ n

(ii) For any = (61, ...,0,) such that 0; >0 for alli =1,....,n and Y, ,1/0; = n/p,
%
there exists a constant C5 = C’(n, 7, 9) such that

1/pi
2 dx) Vu € C (R"). (2.1)

n

* 0i/pi
. p/p b /p .
lul” dx < Cw E |0, ul” dx Vu € C° (R") (2.2)
n - 0 n IZ ¢ ' '

i=1
In particular, we get (1.3) in case 0; = p; for alli=1,... n.

As a remark, the inequalities (2.1) and (2.2) enjoy an anisotropic scaling law. Indeed, it can
easily be seen that every integral in these inequalities are invariant with respect to the change
of scale u + uy, where

uy () = u ()\(p*’pl)/plazl, . ,)\(p*’p")/p"xn) (2.3)
for all A > 0 and x € R™.
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Proof of Theorem 2.1. We refer to Troisi [33, Theorem 1.2] for the proof of the inequality (2.1).
Then the inequality (2.2) follows from (2.1) by applying an inequality of weighted arithmetic
and geometric means. As a remark, we can also obtain (2.1) from (2.2) by applying the change
of scale (2.5) below. O

Regarding the extremal functions of (2.1) and (2.2), we prove the following result. The exis-
tence part in this result will be obtained as a corollary of the work of El Hamidi-Rakotoson [14]
and Proposition 2.3 below.

Theorem 2.2. If p. < p*, then there exist extremal functions u € D7 (R™), u#0, of (2.1)
and (2.2). Moreover, for any extremal function u of (2.1) or (2.2), there exist pi1, ..., fin >0
such that the function © € R™ — u (11, . .., inZy) 1S a constant-sign solution of (1.1) with
f(z,u) = |ul’ 2u. In particular, every extremal function of (2.1) or (2.2) satisfies the a
priori estimates in Theorems 1.1, 1.2, and 1.5.

As a remark, due to the scaling law (2.3), every extremal function of (2.1) or (2.2) generates
in fact an infinite family of extremal functions.

Preliminary to the proof of Theorem 2.2, we prove the following result.

Proposition 2.3. Let Y = (64, ...,0,) be such that0; > 0 foralli=1,...,.nand) ;.  1/0; =
n/p. Then the following assertions hold true.

(i) For any extremal function u of (2.2), uwo Ty is an extremal function of (2.1), where

n

1/6; —p/(nf0;
75 (z) = ()\771x1, e )\77an> , Ags = 9/ Hﬁj P/n6:fs) (2.4)

j=1
forallx e R" andi=1,...,n.

(ii) For any extremal function u of (2.1), uooy o 7‘%1 is an extremal function of (2.2),

where T is as in (2.4) and

n (f]Rn ‘8mju|l’j dx)i’/(né’ipj)
j=1

og (@)= py (W, up (u)z,), p%i(u)::] : , (2.5)
g, ( g,1 1 0, ) g, (fRn |ax¢upi dx)l/pz

forallx e R" andi=1,...,n.

Proof of Proposition 2.3. We begin with proving Point (i). We fix an extremal function g of
(2.2). Since > 1/6; = n/p, we obtain

n

([ o)™ <252 [ Joorplar) 20
o T; 0 9 = - 91 " T; 0 i . .

i=1 "
For any function u € Dv? (R™), simple calculations give

n

0:/pi n n
S ([toneomaran) = (1) 32 ( [ s
7 n =1 n

1=1

0;/ps
b dx) (2.7)

/R}uorﬂp*dx—/m) |l d . (2.8)
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By invertibility of 7 and since g is an extremal function of (2.2), it follows from (2.7) and
(2.8) that

‘" 9%- (f]Rn |6xi (uo © 77) pidx)ei/pi 'n 0%- (fRn |0, Pi dx)(?i/pi
= ——— = inf = S 29)
(fRn |u0 °Ty p dm)? p ueDifo(]R“) (fRn |u D dl’)p p
Now, we claim that
ang% (fan [0z, ul™ dx)ei/pi ﬁ (Joun [0, dx)p/(npi)
nf e <o nf S s (2.10)
ueD;éO(R") (f]Rn ‘u p dx) D ueD;éO(Rn) (f]Rn ‘u P d:U)

We prove this claim. For any function u € DLVP (R™), u # 0, by applying the change of scale

(2.5), we obtain
AN o\ P/(p))
</ |0y, (u o ag’u) p’dm) = (/R |0, u|™ da:) (2.11)

foralli=1,...,n, and
/ |u007u|p*da::/ lul”" da . (2.12)
R ’ Rn

Since Y 7, 1/6; = n/p, it follows from (2.11) and (2.12) that

- i 03 /pi n

i;e%- (f]Rn |ax¢ (u o a?’u) P dx) I (fRn |0,,u
p* p/p* = 5 . o d p/p* ) (213)
(fe luo 07| da) (fo I de)

and hence we obtain (2.10). It follows from (2.6), (2.9) and (2.10) that ug o 7 is an extremal
function of (2.1). This ends the proof of Point (i).

Now, we prove Point (ii). We fix an extremal function ug of (2.1). By (2.13) and since
Yo 1/0; = n/p, we obtain

Pi dm)p/(nm)

» P i - pi p/(npi)
Z,Zzle_i (fan |0, (o © a?,uo) dm) " . Z];[1 (Jan 10z ul" dz)
* / * - 111 n * / *
<f]Rn |uo ©0F wo P da:)p g p “ED;Z(R ) (S Jul” dx)p P
'n 0%- (fRn |0,,u pi d$)9i/pi
< mf = i (2.14)
ueD;ﬁO(Rn) (fRn |u p dx)

It follows from (2.7) and (2.14) that ugo oy, © 7%)1 is an extremal function of (2.2). This

ends the proof of Point (ii). O
Now, we can prove Theorem 2.2 by using Proposition 2.3.

Proof of Theorem 2.2. We prove the results for the sole inequality (1.3). The results for (2.1)
and (2.2) then follow from Proposition 2.3.
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First, in case p; < p*, the existence of extremal functions of (1.3) follows from the work of
El Hamidi-Rakotoson [14]. Indeed, it has been proven in [14] that there exist minimizers for

"1
Z:= inf — Op.ulP dx . 2.15
ueDLF (R7) ; Di Jrn 19z, ( )
JgnlulPde=1 "

This infimum is connected with (1.3) by the change of scale u — u%}u - w0 pg ., where

. p/(np*)
)= i 0= ([ )

and 75 (z) is as in (2.4) for all x € R™ and u € DY (R™), u # 0. More precisely, simple
calculations give

< Di
> |00, (1, - w0 pg )| de = (ﬁp.—p“’”’j)) izlfRn O (2.16)
=1 Pi JRr o ’ j=1 ’ (fR” |u‘p* d$>p/p
and
/ |u%1u “u o p?7u|p*d:r =1, (2.17)
an ,
and hence

- p/(np;) Zl fRn |axiu Pida
T < f np; inf 1= . -
- ]1;[1293 uEDL?(Rn) p* dx)p/p ( )

u#0 (.[ n U

In particular, for any minimizer u of (2.15), since p3, = 1 and py, = 73, it follows from
(2.16)—(2.18) that u o 7%1 is an extremal function of (1.3).

Next, we prove that the extremal functions of (1.3) do not change sign. We let Cy be
the best constant and u be an extremal function of (1.3). By writing v = u; — u_, where
uy = max (u,0) and u_ := max (—u,0), we obtain

i |0, ulP do = (i / lu p* da:)p/p* _ (i / o da - i up*d$)l’/p*
i=1 JR" " Co Jpn Co Jrn Co Jgn
. p*/p . p/p+
< (Z/ |0, u_ [P d:v) + (Z/ |0ty
i=1 JR? i=1 JR?

p*/p
bi d:v) . (2.19)

It follows from (2.19) that either u— = 0 or uy = 0, and hence we obtain that the function u
has constant sign.
Finally, from the Euler-Lagrange equation satisfied by u, namely

. S0 fon |00 da
_ Zpiaxi (|8zlu pi—2 &Ciu) =\ (u) |u|p*72 u, where A (u) =1 7

p*
i=1 fRn ul|” dx

we derive that the function 2 € R™ — pu (a1, . . ., fin@n) With g := (A (u) /p;)"/" for all i =
1,...,nis asolution of (1.1) with f (z,u) = |u["" " u. This ends the proof of Theorem 2.2. [
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3. PRELIMINARY RESULTS
From now on, we are concerned with the general case of an arbitrary solution of (1.1).

For any s € (0,00) and any domain 2 C R", we define the weak Lebesgue space L*> (Q)
as the set of all measurable functions v : {2 — R such that

[ull fooo ) = iu[b) (h - meas ({|u| > h})l/s) < 00,

>
where meas ({|u| > h}) is the measure of the set {z € Q: [u(z)| > h}. The map [|-[| .
defines a quasi-norm on L% (€2). We refer, for instance, to the book of Grafakos [18] for the
material on weak Lebesgue spaces.

The first result in this section is as follows.

Lemma 3.1. Assume that p, < p*. Let f : R" xR — R be a Caratheodory function such that
(1.2) holds true. Then any solution of (1.1) belongs to W (R™) N LP==1>° (R™), and hence
by interpolation, to L* (R™) for all s € (p. — 1, 00].

Proof of Lemma 3.1. The L*°~boundedness of the solutions follows from a straightforward
adaptation of El Hamidi-Rakotoson [14, Propositions 1 and 2], the first proposition being in
turn adapted from Fragala—Gazzola-Kawohl [16, Theorem 2].

Once we have the L>*-boundedness of the solutions, we obtain the L>*-boundedness of the
derivatives by applying Lieberman’s gradient estimates [22].

The proof of the LP+~%*-boundedness of the solutions follows exactly the same arguments
as in Vétois [38, Lemma 2.2]. One only has to replace |Vul” by Y7 | [0,ul™. O

For any solution u of (1.2), by Proposition A.1 in Appendix A, we obtain
~Aglul < f(@,u) -sgn () < Afuf 7 in RY, (3.1)

where sgn (u) denotes the sign of u and the inequality is in the sense that for any nonnegative,
smooth function ¢ with compact support in R", we have

Oy
EQAsz

We prove the following result.

p*—1

MQQMMH@MMxSA/

|u pdr.

n

Lemma 3.2. For any real number A > 0 and any nonnegative, nontrivial solution v €
DYP (R") of the inequality —Agv < AvP"~! in R™, we have [0[|p* gy = Ko for some con-
stant ko = Ko (n,p, A) > 0.

Proof. By testing the inequality —A5v < AvP" 1 with the function v, and applying the
anisotropic Sobolev inequality, we obtain

A/ o dx > Z/ |0, v
n 1/:1 n

for some constant K = K (n, 7). The result then follows from (3.2) with kg := (K/A)

n—p

Prde > K (/ vp*dx) ’ (3.2)

n—p
P2 |

O

As a last result in this section, we prove the following decay estimate. This result is not
sharp, but it turns out to be a crucial ingredient in what follows.
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Lemma 3.3. Assume that py < p*. Let kg be as in Lemma 3.2, f : R* x R — R be a
Caratheodory function such that (1.2) holds true, and u be a solution of (1.1). For any k > 0,
we define

7y (w) == inf ({r >0 : ||u||Lp*(Rn\B?(O7T)) < K}), (3.3)

where B3 (0,7) is the open ball of center 0 and radius r with respect to the distance function
d defined as

n *

op; —
dy (x,y) = Z |z, — yi| P with 6= b 5 p+7 (3.4)
i=1 +

for all x,y € R™. Then for any k € (0,ky) and r > r.(u), there exists a constant Ky =
KU (TL, ?a Aa KTy T (u) ) HuHLp* (R™) ) such that

n ] —1
u (z)] < KO(Z || 7 ) for all € R"™\ B (0,7). (3.5)
=1

Proof of Lemma 3.3. This proof is adapted from Vétois [38, Lemma 3.1] We fix A > 0, k €
(0,kg), K > kKo, 7 > 0, and ' € (0,r). We claim that in order to obtain Lemma 3.3, it is
sufficient to prove that there exists a constant K; = K (n, Tk K ) such that for any
solution w of (1.1) such that 7, (u) < v’ and [|Jul|pp+ gy < K, We have

dz (z, By (0,7")) |u (2)] < K; forallze R™\ B3 (0,7) , (3.6)
where 7" := (r + ') /2. Indeed, for any # € R"\ B (0,7), we can write
"
d (2,0) < d (z, B3 (0,7")) + " < dy (2, By (0,7)) + %d? (2,0) (3.7)
and hence by putting together (3.6) and (3.7), we obtain
s r 2r
d (2,0) |u(x)|” < - Ky = — K. (3.8)

By definition of d3, (3.5) then follows from (3.8). This proves our claim.

We prove (3.6) by contradiction. Suppose that for any o € N, there exists a Caratheodory
function f, : R™ x R — R such that (1.2) holds true, a solution u, of (1.1) with f = f, such
that r, (ua) <1’ and |ualpp gey < &', and a point z, € R"\B (0,r) such that

d3 (20, B3 (0,7)) |ua (z4)]° > 20 (3.9)

It follows from (3.9) and Poldcik—Quittner—Souplet [25, Lemma 5.1] that there exists y, €
R™\ B (0,7") such that

d? (yaa By (0, TH)) |Ue, (ya)|6 > 20, ug (2a)| < e (Ya)l (3.10)
and
1/6 -5
Jta (Y)] <27 |ua (ya)|  for all y € By (Yo, @ |ta (ya)| ). (3.11)
For any a and y € R", we define

Ue (y) = |t (ya)|_1 o (Ta (Y)), (3.12)

where
p1—p" pn—p*

To (Y) == Yo + (|uoz W)l 7 Y1, Jua (Ya)| Pe yn)
It follows from (3.11) and (3.12) that

U (0) =1 and |, (y)| < 2Y° for all y € B3 (0,a). (3.13)
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Moreover, by (1.1), we obtain

—Aptg = |ta (ya)ll_p* fo (Ta (U) s [Ua (Ya)| - Ua)  in R, (3.14)
and (1.2) gives
(e (o) '+ | fo (T (0) s [t (00| - Ta)| < A [T 7" (3.15)

By Lieberman’s gradient estimates [22], it follows from (3.13) and (3.15) that there exists a
constant C' > 0 such that for any R > 0, we have

||vuoc||Loo = (0,R)) <C (3.16)

for large . By Arzela—Ascoli Theorem and a diagonal argument, it follows from (3.13) and
(3.16) that (u,), converges up to a subsequence in CP_(R™) to some Lipschitz continuous

function u., such that |u (0)] = 1. Moreover, by testing (3.14)—(3.15) with u,, we obtain

n

> lonialde <A | Ul de=A | |ua dv < A(K) (3.17)

i=1 Rn R Rn”

Since |0y, |Ua|| = |0s,Ua| a.e. in R™, it follows from (3.17) that (|ua|), converges weakly up to
a subsequence to |ls| in DY7 (R™). Passing to the limit into (3.14)~(3.15), we then obtain
that |t | is a weak solution of the inequality

A3 [Uo] < At/ in R™ (3.18)

In particular, since |t (0)] = 1, it follows from Lemma 3.2 that [[ucol| s+ gy = Ko, and hence
there exists a real number R > 0 such that

||Uoo||Lp*(B(0,R)) > K. (3.19)
On the other hand, we have
|Wa||Lp*(37(o,R)) = Hua”LP*(B?(ya7R“ua(ya)|76)) : (3.20)

By (3.10) and since 7, (uq) < 7, we obtain

By (ya: R Jta (y2)| ™" ) N By (0,7 (ua)) = 0 (3.21)

for large a. By definition of 7, (u,), it follows from (3.20) and (3.21) that
HfdaHLp*(By(o,R)) <k (3.22)
for large o, which is in contradiction with (3.19). This ends the proof of Lemma 3.3. U

4. THE REVERSE HOLDER-TYPE INEQUALITIES

The following result is a key step in the Moser-type iteration scheme that we develop in the
next section.

Lemma 4.1. Assume that p, < p*. Let f : R" xR — R be a Caratheodory function such that
(1.2) holds true, u be a solution of (1.1), and K, r, and KO be as in Lemma 3.5. Let I; and
T, be two disjoint subsets of {1,...,n}, Io # 0, and ¢ = (¢;) iez,uz, be such that ¢; > 1 for all
i € TyUZ,. Then there exists a constant ¢y = co ( ? A, Ky) > 1 such that for any Ry, Ry > 0,
A< XN €(0,1/2], and v > p, — 1 such that Q7 (Il,Rl,IQ,RQ,)\ )N B (0,max (r,1)) =0 and
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Qg (Th, R1, I, Ry, N') Nisupp (u) is bounded, where Qg (I1, Ri, Ty, Ry, A) is as in (1.10), we
have

v p* : o —Di (\/ —Pi _Di
1l (@ 211 ooy = 07 ieﬂﬁé(ﬂlm(l,v 1) N =A) g

n

><R “ H | T(40)

L7 (Q4 (T1,R1,T2,Ra,\) ) )
where 6; :=1ifi € Iy, 0; == 2 if i € Iy, and v; := =Ly +p; —p for all i € I, UT,.
Preliminary to the proof of Lemma 4.1, we prove the following result.
Lemma 4.2. Let v be a nonnegative solution in D7 (R") of
—Azv < AP in R, (4.2)

for some real number A > 0, where the inequality must be understood in the weak sense as in
(3.1). Let B> —1 and n € C* (R") be such that 0 < n <1 inR", nu has compact support, and
nB+p)/re e OV (R™), where p_ := min ({p; € P'}) and py = max ({p; € T}). Then there
exists a constant C = C (n, ) such that

n—p

([ o ar) " <cqsr+n (a@+n? [ oo ra

+> min(1,8+1)7" / 10,1
i=1 R

The finiteness of the integrals in (4.3) is ensured by the fact that v € L (R"), nv has
compact support, and n#+P-)/P+ ¢ C1(R™).

Pi nﬁ-&-pf —Pivﬁ-i-pi d:U) ) (4.3)

Proof of Lemma 4.2. For any € > 0, we define v, := v + €7, where 7 is a cutoff function on a
neighborhood of the support of nv such that 7! € C'! (R"). Since v € DY (R™) N L (R™),

nP )l e OV (R™), and (B4 p-) /ps < (B+p-) [p- = 1+B/p-, we get ()™ P) ¢
Dv? (R™). By a generalized version of the anisotropic Sobolev inequality (see Cirstea—
Vétois [7, Lemma A.1]), we then obtain

n

el < C 3D IIHW% 0, ()| <o (14)

LPi(R)
for some constant C' = C' (n, ?) For any i = 1,...,n, we have

[ oo ot ar <2 ([ jouar
Since v € DVP (R") N L™ (R"), 7+ € C1 (R"), nB+p-)/p+ ¢ C1(R), and (B+p_) /p, <

B+ p_, we get nPPipftl € Dv? (R™). For any i = 1,...,n, since v. = v + ¢ on the support
of v, testing (4.2) with n®*Pivf*! gives

PuftPide + [ |0p 0.7 T)B“’ivfdx) . (4.5)
RTL

(B+1) Z/ |0u, 0| 7 Pifde < A | PP
j=1 /R ®

_ (ﬁ —|—pz) Z/ |axjvlp172 ((’“);,;jv) (83;]77) nﬂ+pi_lvf+1dft ‘ (46)
j=1 7R
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For any 7,5 = 1,...,n, Youngs inequality yields

— (B+pi) }836].1)‘”_2 (00,0) (yym) P10+

i ;
<BL (g 1)|oy,0f? ppreed + = 0P

N Pi pB+pi=p;iB+pi (4.7
Dj Dj (ﬁ+1)pj—1| J ‘ N € ( )

It follows from (4.6) and (4.7) that

1 ; _ *
Z _/ ‘(%jv‘% nﬁﬂ”"vfdx <AB+1) 1/ n6+pivp _1U§+1dx
J JR"

R”l
S Y

In particular, by (4.5) and (4.8), we obtain

/ (77115)'8 18, (nv.) Pidy < C(A (B + 1)—1/ 775+pivp*flveﬁ+ldx

+ Z min (17 B + 1)*pj / ‘amjn}pj ,’7/3+pi—pjvg+l)jdx + 8/34—])1' |axlﬁ
- R™ Rn

pi 775+piﬁﬁdx) (4.9)

for some constant C' = C (n, 7). Finally, since 77 < -, we get (4.3) by plugging (4.9) into
(4.4) and passing to the limit as ¢ — 0. This ends the proof of Lemma 4.2. O

Now, we can prove Lemma 4.1 by using Lemma 4.2.

Proof of Lemma 4.1. We denote § := *~P~ — p. In particular, v > p, — 1 is equivalent to
f > —1. In connexion with the sets Q- (Z;, Ri, 5, Ry, A), we define test functions of the form

3| R

0 () = [ﬁ (Rzl S fa )ﬁ (R; S,

i€y i€lo

for all x € R", where 7, /, M x € C’1 (0,00) satisfy 0 < 7, y, oy < 1in (0,00), 7, = 1
in [0,1+A], v =0in [L4+X,00), [7h,] <2in [1+)\ L+ N, oy = 1in [1 =\ 14 )],
M =0in[0,1 =N U1+ N, 00 and o] <2/(N=2)in[1=XN,1=XU[L+X1+N]
With these properties of 77, ,/ and m, x, We obtain

0<n<1inR", n=1inQz (T, R1,Zs, Ry, ), and n =0 in R"\Q (Zy, Ry, L, Ro, X') .

Since Q% (Zy, R1, 23, Ry, \') Nsupp (u) is bounded by assumption, we get that nu has compact
support. Moreover, since ¢; > 1 for all i € Z; U T, we get n(f+r-)/p+ ¢ C1 (R™) and

4 . Di P
B4+p——p; q; P+ a;
i (2)P PP < (X y max (1’ﬁ+p)> R;, (4.11)

|0z, (2)[7
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for all x € supp (1), where 6; :== 1 if i € 7, §; :== 2 if i € Z,. By applying Lemma 4.2 with
v = |u| and 7 as in (4.10), and using (4.11), we obtain

n—p

/ wda <C (8P +1) (A (B + 1)1/ uP P dx
Q5 (Z1,R1,72,Ra,)) Q5 (Z1,R1,72,Ra,\)

+ Y min(L,B+1)T N =) qfiR;%/
i€TIUT, Qg (11,R1,22,R2,X')
for some constant C' = C' (n, ?)
Now, we estimate the first integral in the right-hand side of (4.12). We claim that there
exists a constant C' = C' (n, 7, Ky) such that

u’8+p"dx) (4.12)

_Pig

u(z)? o < C'R,"™  forall x € Qg (T1, Ry, T, Ra, ), (4.13)

where K is the constant given by Lemma 3.3 and iy € Z, is such that
di, (p _pi0> — max <Qi (p _pi>> ) (414)
Dio i€y Di

We prove this claim. For any « € Q3 (Z1, R1,Zy, Ra, X'), since X' < 1/2, we obtain

R _ i) P ~Pi(a))

B Sl < ol <ndp (n,0) (4.15)

i€Lo

where i (x) € Z, is such that |z;(,)|%= = max ({|z;|* : i € Z,}), and the distance function d
and the real number ¢ are as in (3.4). Since Q3 (Zy, Ry, s, Ro, ') N B3 (0, max (1, 1)) = 0 by
assumption, (4.13) follows from (4.14), (4.15), and Lemma 3.3. In particular, (4.13) implies

pio

U6+p*d$ S O/R2 dig

uPPiody . (4.16)

/97(117131 L2,R2,\) /97(1171‘31 L2,R2,\")

Finally, (4.1) follows from (4.12), (4.16), and the fact that 8+ 1 = =2 (y —p. + 1) and

n

B+ p; = ;. This ends the proof of Lemma 4.1. 0

5. THE ITERATION SCHEME

In this section, we describe the iteration scheme which leads to the proofs of our main
results.

Let Z; and Z, be two disjoint subsets of {1,...,n}, Z, # 0, and ¢ = (i);ez,uz, be such that
q; > 1 for all © € Z; UZ,. The idea is to apply Lemma 4.1 by induction. For any v > p, — 1,
Lemma 4.1 provides an estimate of the L7-norm of u with respect to the set of L"1-norms of
u, where 7;, == “~Ly +p; —p for all iy € 7y UZ,. If 75, > p. — 1, then another application of
Lemma 4.1 gives estimates of the L71-norms of u with respect to the set of LY12—norms of
u, where 7,4, := “=27; + pi, — p, etc... By induction, we define

Yii,..., 1541 = T%l ..... i +pi]-+1 - D (5]‘)

for all j € N and 1,...,%;41 € Z; UZ,, with the convention that ~;,
particular, we obtain the formula

n—p\" = (n—p\*
%‘1 ..... ik = < n > 7 + Z ( n ) (p’LJ _p) (52>
j=1

i; =it =0. In

-----
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for all kK € N. The stopping condition in our induction argument is v;, ;, < % (pe — p), where

=(14+¢)py, po:=max(p.{p; 1€y UIQ}) , (5.3)

and ¢ is a fixed real number in (0,1). Note that - (pe —p) > %(p* —p) = p« — 1 so that we
can apply Lemma 4.1 as long as our stopping condition is not satisfied. For any k > 1, we
let ;.. be the set of all sequences of indices for which our induction argument stops after
exactly k iterations, namely

Dy e ::{(21,...,1k)€(I1UI2)k D Vi Zg(pa—p) forall j=0,....,k—1

n
and v, i < » (p — p) } (5.4)
The following result provides a control on the number of iterations in our induction argument.

Lemma 5.1. Let Z; and I, be two disjoint subsets of {1,...,n}, Iy # 0, and q = (g:) €T UTs
be such that ¢; > 1 for all © € Ty UZy. Then for any e > 0, v > %(pg— p), k € N, and

(11,...,1k) € (T4 UIQ)k, we have
n i _ n
7i1 ..... ik > 5 (pE _p) ka < k’y,g and %'1 ..... ik < E (pE _p) ka > k'yg) (55)

where iy, 95 as in (5.1), p. is as in (5.3), and k7 _ and kI are the smallest and largest
natural numbers, respectively, such that

n n Kl n n O\
n ( ) o< y< ( ) (.~ ). (5.6)
p\n—p p\n—p

and k > kT

€ ¥,€7

where p_ := min ({p; € F}). In particular, we have ®.,. = O for all k < k>
where @y, ., . is as in (5.4).

Proof of Lemma 5.1. Since p_ < p;; < po for all j =1,...,k, it follows from (5.2) that

-—ii(ngivkjfp—p—)SVn ..... %——(n;p)kaéig(ngijkJkﬂr—M- (5.7)

Moreover, by a simple calculation, we obtain

() s () <y 53

j=1

It follows from (5.7) and (5.8) that

k
n n—p n
—— < Vigooin — < = —p). 5.9
2= <~ (22) v < S =) (5.9)
Finally, (5.5) follows from (5.9) together with the definitions of A7 _ and k7 _. O

Now, we can prove the main result of this section.

Lemma 5.2. Assume that p, < p*. Let f : R" xR — R be a Caratheodory function such that
(1.2) holds true, u be a solution of (1.1), and k, r, and Ko be as in Lemma 3.3. Let I, and
Ty be two disjoint subsets of {1,...,n}, Iy # 0, and 7 = (@) iez,uz, be such that ¢; > 1 for all
i € Ty UZ,y. Then there exists a constant ¢; = 1 ( ? A, Ky) > 1 such that for any € € (0,1),
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v > % (pe —p), and Ry, Ry > 0 such that Q3 (Zy, R1, 15, Ry, 1/2) N By (0, max (r,1)) = 0 and
Q3 (Th, R1, Ty, Ry, 1/2) Nisupp (u) is bounded, we have

1

) < ¢f max (ql)

=
3

HUHL’Y(Q7(ILR1,IQ,R2,)\O v,€

T )Jﬁ Yig,..., i (%>k
X maX HR5 HUHL"/ll ,,,,, 7‘k (97(I17R17127R27Aky—y75)) 9 (5.10)

(11: ik G(I)'ye

where 0;, = 1 if iy € Ty, &, = 2 if i; € Iy, viy..q, 15 as in (5.1), p. is as in (5.3),
Q5 (1, R, Iy, Ry, Ai,) is as in (1.10), and

k‘+
1

Air.c ::Z(1+2k—’f¢»a-1) and @, = | By (5.11)
k=k3 .

with k7. and k. as in Lemma 5.1, and @y o as in (5.4).

Proof of Lemma 5.2. Applying Lemma 4.1 by induction with the stopping condition v;, . ;, <
% (pe — p) gives

. max <'Ak,’y X Bilym:ik—lz'y X Cil,~~-,ik,'y X Dilv--wikﬂ’ﬁ
(117 77'k)e<1)’ye

( n )J PzJ Yiq,.., i (%)k
(H R(S ||u||L’Y7,1 ..... i (Q;(Il)RLIZ:RQa)\k,'y,a)) )7 (512)

where Ay, and @, . are as in (5.11), and

HU’H LY (Q7 (Il,RhIQ,RQ,)\O,'y,E)) S

np; j

lkz_f(L)j k
. n—
Au o= G @) 5B =TT

n

: (Y
Cirroipry Hmln s Vit p*+1) v\

.
—

k . ,
,Z(L)J
Di,.igrre Nje — Aj- 1,7,5) ToAnTPo
=1

<.

Now, we fix (i1,...,%) € ®, . and estimate each of the terms in the right-hand side of (5.12).
Estimate of A, By using the fact that & < kJ_ and applying (5.6), we obtain

L n \ n-p n \" n no O\ y
oY A QY AU O TR LR
=0 n—p p n—p p\n—p €Po

Since ¢ > 1, ¢; > 1, and p; < pg for all i € 73 UZ,, it follows from (5.13) that

1

Apy < 7 max (g;) 55 . (5.14)

Estimate of B;, .. i,_,~- Forany j =1,... k, since p; < py for all i € Z; UTZ,, by (5.2), (5.6),
and (5.8), we obtain

j—1 kye=3d
n—p n n
Vit yeorijor S ( - ) v+ ; (po —p) < Cmax (L (n — p) ) (5.15)
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for some constant C' = C (n, P’) > 1. It follows from (5.15) that

-
k P N~
2y () 2y (3%5) (ke—d)
Bi1,~~7ik—17’7 =C JZl( ) (n ﬁp) - ' (516)
A simple calculation gives
ke j 2 kye—1 2 ky,e—1
n . n n Do, n n
kl.—j)=— —=(k.—-1)—-1| <=
;(n—p) (k3 =) P’ [(n—p) a (e =) ] P’ (n—p) ’
and hence by definition of £~ _, we obtain
i n d n n
Z( )(kw—ﬁS—- Rl (5.17)
“—~\n-p ’ P Pe—b- D DPe—D-
It follows from (5.13), (5.16), and (5.17) that
p* n p*fpf
Bi1,.‘.,ik717’7 S C'=ro n—op . (518)
Estimate of C,._ix - Since p.—1= 2 (p. —p) and y;;,..5;_, > 7 (p- —p) forall j =1,... K,
we obtain
n 15, (525 )
Cilv---vik—lﬂ/ S min <17 - (pé‘ - p*)) Wj:l T (519)
p
Since p;, < po for all j =1,...,k, it follows from (5.13) and (5.19) that
Cipvop 1y < min (1,2 (po—p) )~ (5.20)
p
Estimate of Dy, i, ~.e- By (5.11) and since k& < k¥_ and p;; < po for all j = 1,...,k, we
obtain
o (o) (ki) _ '8 () (i
~ Z i]' ﬁ k N j+4 2o . nL_p k N j+4
Diy,irye <2 = T <o A v (5.21)
We find
K e j ke
n n n ’ n n
Z( ) (ki.—j+4)=- ( > (3+—)—k;—3——
—\n-p) 7 p|\n—p p ’ p
kY.
S5 05)
p\n—p p
and hence by (5.6), we obtain
k:/rys j
n n n
Z( ) (ki —j+4) < . (3+—). (5.22)
“—~\n-p ’ epp N —p p
It follows from (5.21) and (5.22) that
Dy ie < 20755 (345), (5.23)

End of proof of Lemma 5.2. The estimate (5.10) follows from (5.12), (5.14), (5.18), (5.20),
and (5.23). O
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6. THE VANISHING RESULT

In this section, we prove a vanishing result which will give Point (i) in Theorem 1.3. We
define
Po :=max (p,, {p; € P : i € ©}), (6.1)
where p, is as in (1.4) and © is the set of all indices ¢ such that

(pi —p- — % (i —1s)) ;max (pi;jpj,o) > (p. — 1) (pi — p-) (6.2)

with p_ := min ({p; € P'}). We define T as the set of all indices 7 such that p; > .

When p, > p., one easily sees that the condition (6.2) does not hold true for p; = p,, and
hence we have p, < py and Zy # 0.

We prove the following result.

Theorem 6.1. Assume that p. < py < p*. Let f: R" x R = R be a Caratheodory function
such that (1.2) holds true and u be a solution of (1.1). Then there exists a constant Ry =
Ry (n, P, A, u) such that uw(z) = 0 for all z € R™ such that > iez, [l = Ro.

The proof of Theorem 6.1 is based on the following result, which we obtain by applying the
iteration scheme in Section 5.

Lemma 6.2. Assume that p, < py < p*. Let f : R" x R — R be a Caratheodory function
such that (1.2) holds true, u be a solution of (1.1), and K, r, and Ky be as in Lemma 3.3. Let
Do be as in (6.1) and py € P be such that

po>Dy and R;(u) < oo for all indices i such that p; > po, (6.3)

where

R; (u) :=sup ({|=;] : « € supp (u)}). (6.4)
Let Ty, I be the sets of indices i such that p; < po, p; = po, respectively. For any e, A € (0,1)
and R > 1, we define

DPeDi p -
— afi e,
AL (RN) = Q% (T, RV, T, R, \)  with q;:={ Pe— P (6.5)
Pe ZfZ € IQ?
where pe := (1 +¢€)po. If Ac (R,1/2) N B3 (0, max (r,1)) = 0, then
11
el oo a1 /ay) < (caR77e)" (6.6)
for some constant ¢, = cy(n, T, A, Ko, [l =100 () » B0 (w)), where
Ry (u) :=max ({R; (u) : i € {1,...,n}\ (Z1 UZy)}). (6.7)

Proof of Lemma 6.2. As is easily seen, we have 1 < ¢; < sy for some constant sy = g (?)
Moreover, by (6.3), we obtain that p. —p, > po—p. > 0 and A, (R, 1/2)Nsupp (u) is bounded.
By Lemma 5.2, we then get that there exists a constant ¢; = ¢ (n, A, Ky) such that for
any v > & (p — p), we have

™ =

Yig,..., zk( n )k
-~ TOG i, Y,E -
Il S, s, (Rl G, ) 69)
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provided that A, (R,1/2) N By (0,max (r,1)) = 0, where ~;, .
are as in (5.11), and

is as in (5.1), Ay and D, .

ik

1 n Y\’
1.5k 7YHE 6’7]?8 ]:1 <n _ p> (ps p .7) ( )
We claim that for any v € (0,1) and (iy,...,%) € ®.., there exists a constant ¢, =

c(n, 7, Ko, el po—1.00 gy » Bo (w) v) such that

0] 5eees 2 k
WP e (6-10)
L1 ik (AE(R,)\k,—y,s)) - ’ |

1 n\" Y pe — pi
= 0, 1 -t e _Pi 6.11
s = (0, () (10 s ) 57 (6.11)

1€T1ULo

where

We separate two cases:
—Casel: p,—14+v <1y 4 < % (p: — p) (in which case 7, i, e = 0).

— Case 2: i,....i, <P« — 1+ v (in which case 7, i, 40 > 0).

We begin with proving (6.10) in Case 1. By interpolation (see, for instance, Grafakos [18,
Proposition 1.1.14]), and by Lemmas 3.1 and 3.3, we obtain

px—1 px—1
,%17 Viq,.ig Vi, 7711 ,,,,, i%
<
HUHL’YH AAAAA i (A (R)\k,yg)) (,%1 ik D + 1) HU Lp*_l’oo(AE(R,/\k )) || ” ( (RAk,'y,s))
-1
S CV’Yil AAAAA i < Cyp*—l (612)
for some constant C' = C(n, 7, Ko, [ p——— ). Moreover, since v;,, i, < v (p- —p) and
k < kI, by (5.6), we get

k
Vit ,oorin ( n ) <. " (p —p). (6.13)

g n—p €po M —Pp

Then (6.10) follows from (6.12) and (6.13).
Now, suppose that we are in Case 2. By (5.1) and since v, i, _, > - (pe — p) and p. > p.,
we obtain

n n
Yirrin 2 (Pe = p) +p- —pe > p (P« —p) +p- —pe=p- — 1. (6.14)
By Holder’s inequality, we then get
S D S
||u||L’Y'Ll """ ik <A€(R7>\k3,’7,5>> < |A (R )\k”YE) r1811131:)( ) it 'k ey ||u||LP*—1+V<A5<R7)\k,'y,E)) ’
(6.15)
Direct computations yield
_1 Pe —Pgq
€ >ksmSUPPU_ 6€i12i .
Ac (R, My, < CR™ iehim ” 6.16

for some constant C' = C'(n, 7, Ro (u) ), where Rq(u) is as in (6.7). Similarly to (6.12) and
(6.13), we obtain

=1
”uHLp*—HV(AE(R,A,CME)) < Curt (6.17)
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for some constant C' = C(n, 7, Ko, ||u||Lp*_1,oo(Rn) ), and

k
Yii,..., k< n ) < ) p <p*_1+l/) (618)
ol

Then (6.10) follows from (6.15)—(6.18).
By (6.8) and (6.10), we obtain

™ =

max RT’LI,4.4,7;]‘:,"/,67117o-i1,.4.,7;k,’y,€ (619)

HUHL’Y(AE(RV\O,%E)) < <Clcy) (1150518) EPy e

for all v € (0,1), where 0;,, 4 and 7;,, i, 4., are as in (6.9) and (6.11).
We claim that there exists a constant vy = vq (n, P) such that for any v € (0, 1), we have
n

1
Til,,..,ik,'y,s,y - O-il,..,,ik,'y,e S - <1 - % (pE - p)> . (620)

We prove this claim. By (5.2), we obtain

1 1 _ Yirein n k+1 d n j( )
Oy, i =—\1- —g —
Lyl VHE ep. n—p ,yj n—p Pe =P

v =1
1 1 n Y n n
=—\(1+= —(Pe = P) = Vs, z-)——p—p). 6.21
(1G5 Cep-en) - S e-n ). 62
Incase p, —1+v <, <%
Yy

------

(p: — p), since 7y, i, ~er = 0, we deduce (6.20) directly from
<

(6.21). In the remaining case «— 1+ v, by (6.11) and (6.21), we obtain

77777

1
7_7;17"'77;]%77871/ o O—i17"’7ik7775 S - 1 +

- <1_p —’.1“’+ 1/) Z E pl) —%(Ps—p)). (6.22)

If v is small enough so that p, — 1 +v < 2 (po —p), e v<? (po — ps), then

Z De — pz p Do — pz 0, (6.23)
1€11UL> (po - p) i€(T1UT2)¢ pi
where (Z; UZ,)  :={1,...,n}\ (Z1 ULy). It follows from (6.14), (6.22), and (6.23) that

1 1 : n
Til»“'?ikv’y»EvV - O-ily-~~7ik:’7:5 S _5 (1 + ; ( ) SOV (pE) - % (pg - p)) (6'24>
€

—1+

n—p

for all v € (0, 5 (po — p«)), where

(q—p)+p——q> q— p;
1€ ULy Pi

q— p_——q 2 q—Di
pe —14+v

=q—pP-—
1€11ULy 7'

for all ¢ € R. By (6.3) and by definition of p,, we obtain ¢q (pg) > 0. Moreover, it can easily
be seen that ¢y (p.) < 0. Observing that ¢q is a quadratic polynomial with positive leading
coefficient, we then get that g is increasing in [pg, 00). By continuity of ¢, with respect to v,
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it follows that ¢, (p.) < 0 provided that v < vy for some constant vy = vy (n, ?) By (6.24),
we then get (6.20).

Finally, we fix v = 14/2, and we obtain (6.6) by passing to the limit as v — oo into (6.19)
and (6.20) and using the fact that p. > py and R > 1. This ends the proof of Lemma 6.2. O

Now, we can conclude the proof of Theorem 6.1.

Proof of Theorem 6.1. We proceed by contradiction. Suppose that there exists a solution u of
(1.1) such that

po:=max ({pi € T : Ri(u) =00}) > Py, (6.25)
where R; (u) is as in (6.4). Then we can apply Lemma 6.2. For any ¢ € (0,1) and = € R", it
follows from (6.6) that

u(@)| < (2R ()77 )° where R.(x) =3 |uif"" (6.26)

i€1y

PePj

provided that » 7, || PP < °R. (z)"% and A (R. (z),1/2) N B3 (0, max (r,1)) = 0, where
7, and Z, are as in Lemma 6.2, and r is as in Lemma 3.3. One easily gets that there exists a
constant R, = R (n, J/,r) > 1 such that for any £ € (0,1) and R > R,, we have A, (R,1/2)N
B4 (0,max (r,1)) = (. By passing to the limit as ¢ — 0 into (6.26), we then obtain that
u (x) = 0 for all z € R"™ such that

Z ‘xi|p0 > max (Rra 050) )

1€Lo

and hence R; (u) < oo for all i € Z,, which is in contradiction with (6.25). This ends the proof
of Theorem 6.1. O

Remark 6.3. As one can see from the above proof, the constant Ry that we obtain in Theo-
rem 6.1 depends onn, P, A, k, v, 7. (u), and [T m——"

7. THE DECAY ESTIMATES

In this section, we prove Theorem 1.1 in case p; < p, and Theorem 7.1 below in case
P« < py < p*. The latter implies Theorem 1.2 in case p, = p, and allows us to complete the
proof of Theorem 1.3 in case p, < py < p*.

We let p, and Z, be as in Section 6. We define ¢y as the largest real number such that for
any q > qp, we have

(1=p- = a=p)) P <= D= p), (7.1)

ieTs

where Z§ := {1,...,n} \Zy. It easily follows from the definition of p, and the fact that p, < p4
in case p. > p, that

go =Dy =P« 1ncase py < py,

Do < qo < p+ In case py > p .

We prove the following result.
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Theorem 7.1. Assume that p. < py < p*. Let f :R" X R — R be a Caratheodory function
such that (1.2) holds true and u be a solution of (1.1). Let qo be defined as above. Then for
any q > qo, there exists a constant C, = C (n, ?, A, u,q) such that

—1
\q+2|3 u(x) < C, (1+Z|xz\q m) for a.e. x € R". (7.2)
1€L§
We conclude the proofs of Theorems 1.2 and 1.3 as follows.

Proof of Theorem 1.2. In case py = p., since gy = Py = p«, we get that (7.2) holds true for all
q > p.. Since in this case we have Z§ = {1, ..., n}, this is exactly the result in Theorem 1.2. [

Proof of Theorem 1.3. In case p, < p;y < p*, Points (i) and (ii) in Theorem 1.3 follow directly
from Theorems 6.1 and 7.1 and the fact that p, < ¢o < p4. 0J

Now, it remains to prove Theorems 1.1 and 7.1. By another application of the iteration
scheme in Section 5, we prove the following result.

Lemma 7.2. Assume that p,. < p*. Let f : R" xR — R be a Caratheodory function such that
(1.2) holds true, u be a solution of (1.1), and k, r, and Ky be as in Lemma 3.3. Let ¢ = ps in
case py < p. and q € (qo,p*) in case p, < py < p*. For any A € (0,1) and R > 1, we define

Ag (R, A) =Q5 (0,1,Z5, R, \)  with ¢ :==——— foralli€Ij. (7.3)
If Ay (R,1/2) N B3 (0,max (r,1)) = 0, then
HUHLOO(ALI(RJM)) < ¢l (7.4)

or some constant ¢, = ¢ n,?,A, Ko, ||| 7 pu—1.00mny s R0, q), where Ry is as in Theorem 6.1.
q L R™)

Proof of Lemma 7.2. By Theorem 6.1, we obtain that A, (R, \) Nsupp (u) is bounded. By
Lemma 5.2, we then get that for any € € (0, 1), there exists a constant ¢, . = ¢ (n T A Ko, q, e €)
such that for any v > 2 (p. — p), where P, := (1 + &) Py, we have

n—p

Yig,..., ’Lk( n )k
—0; )
||u||LW(Aq(R7>\o,%E)) < e (z‘l,...r,rz‘lg}é@m (R 1o oY HUHLwl ,,,,, ik (Aq<R7)\k,-y,s)) )7 (7.5)

provided that A, (R,1/2) N By (0,max (r,1)) = 0, where ~;, _;, is as in (5.1), Az and O,
are as in (5.11), and

L&
T,y “— % Z <

j=1

j
) ). (7.
End of proof of Lemma 7.2 in case p, < py < p* and gy < q¢ < p*. In this case, we follow in
large part the same arguments as in the proof of Lemma 6.2. We set ¢ := (¢ —7y) /Do
so that ¢ = Pp.. Since ¢ < p* and Dy > ps, we get ¢ < (p* —ps) /p« < 1. Similarly to
(6.10), we then obtain that for any (i1,...,7) € ®,. and v € (0, 1), there exists a constant
C, = c(n, 7, A, K, Hu||Lp*,1,w(Rn) , Ry, 1/) such that

Yig,..., i n k
5 (75)

H HL’YZI vvvv ik ( q(R7>\kaW7€))

1 n k q—Dpi
- . 0 L 1 i 7.8
Ti1sensite,0,Y, max ( qy (n - p) ( - 1 + V) i€L$ ) ( )

n—p

1
S Cﬁ RTil,...,ik,q,'y,V’ (77)

where
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It follows from (7.5) and (7.7) that

1

||UHL’Y(Aq(R7)\O,-y,s)) S Cq,z—:cﬁ (il,“%s}é(b’y’s RTil,u.,’ikaq“‘/,ufa'il,.4.,ik,q/‘/ (79)

for all v € (0,1), where 0;,, ;4 a0d 7, i, 4~ are as in (7.6) and (7.8).
In the same way as in the proof of (6.20), we then obtain

1 n
Tiesites @Yy T1,ein,qyy < _5 (1 - % (q - p)) (710)

provided that
G=p-—3(a—p)+V ~q—pi
ps—1+v Di

q—p- — > 0. (7.11)
€15
By (7.1), we get that (7.11) holds true provided that v < 1 for some constant vy = vq (n, 7).

Finally, we fix v = v,/2, and we obtain (7.4) by passing to the limit as v — oo into ( 9)

and (7.10). This ends the proof of Lemma 7.2.

Proof of Lemma 7.2 in case p; < p. and ¢ = p,. In this case, we have p, = p* and Z§ =
{1,...,n}. We claim that there exists a constant ey = £ (n 7) € (0,1) such that for any
£ € (0 o) and (i1, ...,1i) € ®, ., we have

D] yeees 7 n k
W2 (712
L'Yzl ..... T (Aq (R,)\k,'y,s)) - c |

for some constant ¢, = c(n, 7, A\, Ky, HuHL,,*_l,oo(Rn) ,5), where

Pe— 1=y n \"
T’ilw-,ik,p*ﬁ = - Lotk ( ) . (7.13)

Py n—p
We assume that (1 — 5)p* > p, e € < B, and we separate two cases:
— Case 1t 75,5 < 2 (1 =€) ps —p),
— Case 2 p((1—€>p*—p)<'7z1 ..... Zk<%<<1+€)p*_p)

We begin with proving (7.12) in Case 1. By a generalized version of Holder’s inequality (see
for instance Grafakos [18, Exercise 1.1.11]), we obtain

) ) -1 Viq,eenig ) )
’Yzl ..... il < p* l_ﬁ ’Yzl ..... 3%
||u LYi1s ik (Aq(R)\k‘,'y,s)) - Py — 1— Yigoorin |Aq (R7 >\k,’Y7E>| p HU’ Lp*717w<Aq(R,Ak’W7E)) .
(7.14)
Direct computations give
Xn: PPy px—1
A, (R pre)| S CR=7" = CR v 7.15
q s

for some constant C' = C (n, 7). Since Virin < 3 (1 —€)ps —p) and u € LP+=1oo (R™), it
follows from (7.14) and (7.15) that

Yiqsei —1 7"
Lwl,...l,cik (Aq(R,Akma)) < Ce Rt (7'16)

i

for some constant C' = C(n, 7, ||u||L,,*_1,oo(Rn)) Moreover, since k < kI_, by (5.6), we get

Ve

1/ n \ 1

— . 7.17

7<n—p> S0 7
Then (7.12) follows from (7.16) and (7.17).
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Now, suppose that we are in case 2. By interpolation, we obtain

0
HUHL”Z& 77777 i (Ag(RAk e )) < HuHL%(“’E)”*”’)(Aq(R,Akmg)) HuHLp«He)p* p)(Aq<R7)\k,'y,5)) J (7.18)
where 0 € (0,1) is such that
0 1-46 1
. + - - . (7.19)
S(1=e)p—p)  2((1+)p—p) Vi
Similarly to (7.16), we get
lull? g 2 < CelRi* (7.20)

2((1—e)px—p) (Aq (Rv)\kﬁ/vf))

for some constant C' = C(n, 7, Ko, HuHLp*_lm(Rn) ) On the other hand, Lemma 4.1 gives

n

1+1—1 n—p
Nl ) (72D)

(].-‘rE Dx— )
pn < b *
Ju || 2 (14e)ps— p)(Aq(RAk,%e)) Ciﬂax (6 R o

for some constant C' = C'(n, 7, A, Ky). We define g := (p, — p4) / (ps + 2n — 2) so that for
any € € (0,e9) and ¢ = 1,...,n, we have

e(n—1>+pi—1<g<<1—s>p*—p>.

Similarly to (7.16), we then get

E(nfl)

n—1)+p;—1 pe=pi

|| ||L5(n 1)+p;— (Aq(R7Ak+1,'yyg)) < CR (722)

for some constant C' = C’(n,?,Ko, [ P——— ). By putting together (7.18)—(7.22), we
obtain

Vi,eori _s T
lall 25 (o)) S € R (7.23)

for some constants C' = C(n,?,A, Ky, Hu||Lp*,1,oo(Rn)) and s = s(n, 7) > 0. Then (7.12)
follows from (7.17) and (7.23).

By (7.5) and (7.12), we obtain that for any ¢ € (0,g¢), there exists a constant c. =
c(n, 7, A, K, ||u||Lp*,1,oo(Rn) ,5) such that

Felloaymra o < G | max, RTwetereo b, (7.24)

where 0y, i, p.yand 7, o . are as in (7.6) and (7.13).
From (5.2), we derive

1 1/ n \" pe— 1
ey = — [ 1+ = e = L= Yii i) — ;
iy Dary . ( + v (n _p) (p Vi, ,k) v )

and hence
1 Py — 1
Til,---,ik,p*{y — o-il,---,imp*,v == _p_*( - ) (725)
Finally, we fix € = ¢/2, and we obtain (7.4) by passing to the limit as v — oo into (7.24) and
(7.25). This ends the proof of Lemma 7.2 in case p; < p, and g = px. O

Now, we can prove Theorems 7.1 and 1.1.
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Proof of Theorem 7.1. As is easily seen, it is sufficient to prove (7.2) for ¢ € (qo, p*). Let u be
a solution of (1.1) and ¢ > ¢go. We define

4—Pn

1 9—p1
ug(y) := Ra-u(tr(y)), where 7g(y):= (R Ly, ..., R aen yn)
for all R > 1 and y € R”. By Lemma 7.2, we obtain

||uRHL°° (Ag(1,1/4)) = Cq - (7.26)

provided that A, (R,1/2)N B3 (0, max (r 1)) = 0, where r be as in Lemma 3.3. One easily gets
the existence of a constant R, = R (n, P,r) > 1 such that A, (R, 1/2)N Bz (0, max (r,1)) = 0
for all R > R,. Moreover, by (1.1), we obtain

—Apup = R'T . f(mr (y) ,Rﬁ -ug) inR", (7.27)
and (1.2) gives

R - f(rn(y) R77-ug)| S A-RT - Jugl” ™" (7.28)

Since ¢ — p* <0, by (7.26)—(7.28) and Lieberman’s gradient estimates [22], we get that there
exists a constant ¢, = c(n .7, A, ¢,) such that

VRl oo a,1,18)) < - (7.29)
For any = € R™, it follows from (7.26) and (7.29) that

|q+2\8 u

for some constant ¢ = c(n,?,A,cq), provided that R(x) > R,. This ends the proof of
Theorem 7.1. 0

D) < dR(2) where R(x):=Y |a]in

i€Tg

Proof of Theorem 1.1. We fix ¢ = p* in this case and we follow the same arguments as in the
above proof of Theorem 7.1. O

Remark 7.3. As one can see from the above proofs, the constants Cy and C, that we obtain in
(1.5) and (7.2) depend onn, T, q, A, &, 7, 7 (u), ||Ju|| b —1oo(gny; ONd ||u||le°°(R”\Q,. , where

Q ={zeR": Y, \xi|q—ppi > R} for some constant R, = R(n,7,r).

APPENDIX A. KATO-TYPE INEQUALITY

In this section, we prove a weak version of Kato’s inequality [21] for the operator A. This
result is used in Sections 3 and 4. A similar result has been proven by Cuesta Leon [9] in the
context of the p—Laplace operator.

For any f € L{ . (R"), we say that a function u € DYP (R™) is a solution of the inequality
—Apu < f inR"
if we have

P (0z,10) (O, 0) dr < fodx

R’I’L

n
E |01
i=1 YR"

for all nonnegative, smooth function ¢ with compact support in R".

We state our result as follows.
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Proposition A.1. Let f1, fo € L} (R") and uy, uy € DY7 (R™) be solutions of the inequalities

—Apu; < f; inR" (A1)
for j =1,2. Then the function u := max (u1,us) is a solution of the inequality
—Apu < f inR", (A.2)

where f(z) = fi1(z) if uy () > us (z), f(2) = fo () if us (x) < wug (z) for all z € R™.

Proof of Proposition A.1. We essentially follow the lines of Cuesta Leon [9, Proposition 3.2].
For any € > 0 and =z € R", we define

Me (@) =1 (u1 (x) —uz () and oo () :=1—mc(2),
where 7. € C* (R) is such that 7. =0 in (—00,0], n. =1 in [1,00), 0 <n. <1 and 7. > 0 in
(0,1). In particular, for j = 1,2, we have n;. € DLP (R"),0<mn,;. <1in R" and

e (1) — {0 if v € R™\Q,

as ¢ — 0 for all z € R", where Q; := {x € R": u; (z) > ug (2)} and Qs := R"\Q;. For any
nonnegative, smooth function ¢ with compact support in R”, testing (A.1) with ¢n;. gives

> / 90372 (Do 1;) (9o 0) ot

glz/

—
By (A.3) and since f; € L. (R") and u; € D7 (R™), we obtain

ijOTIj,edI—>/ fipdx, (A.5)
Rn Qj

/ |al’1uj

R?’L

as e — 0 forall i =1,...,n. Moreover, since . > 0 and ¢ > 0, we get

>

It follows from (A.4)-(A.7) that

(A.3)

T

" (00,u5) (Omun — Opyuz) 0l (wr — uz) pdr < | fyomjedr . (Ad)
Rn

P (Onyuy) (Onyp) d (A.6)

P2 (9, ;) (Ourp) myed — / 10nst;

pi=2 8xiu2) (Op,ur — Opyu) e (ug —ug) odz > 0. (A7)

x; Wl

2
ZZ/ 10,057 (1) (Oa,0) d < Z/ fipdx (A.8)
j=1 i=1 j=1 "%
and hence (A.2) holds true since u = u; and f = f; on Q; for j =1,2. OJ
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