EXISTENCE AND REGULARITY FOR CRITICAL ANISOTROPIC
EQUATIONS WITH CRITICAL DIRECTIONS

JEROME VETOIS

ABSTRACT. We establish existence and regularity results for doubly critical anisotropic equa-
tions in domains of the Euclidean space. In particular, we answer a question posed by Fra-
gala—Gazzola—Kawohl [24] when the maximum of the anisotropic configuration coincides with
the critical Sobolev exponent.

1. INTRODUCTION

In this paper, we investigate existence and regularity for doubly critical anisotropic equa-
tions. In dimension n > 2, we provide ourselves with an anisotropic configuration p =
(p1,...,pn) With p; > 1 foralli =1,...,n. We let DV7 (£2) be the anisotropic Sobolev space
defined as the completion of the vector space of all smooth functions with compact support
in {2 with respect to the norm [[ul| p1.5 o) = D= [0u/0%i| 1o, (). We are concerned with the
following anisotropic problem of critical growth

—Apu=Au
uwe DYP (),

*_9 .
P™u in 02,

(1.1)

on domains {2 in the Euclidean space R", where A is a positive real number, p* is the critical
Sobolev exponent (see (1.3) below), and A is the anisotropic Laplace operator defined by

"9
Apu=>) 5 Vi, (1.2)
i=1 v

where VP2iu = |0u/0x; P72 Qu/dx; for all i = 1,...,n. As one can check, A involves di-
rectional derivatives with distinct weights. Anisotropic operators appear in several places in
the literature. Recent references can be found in physics [3,7], in biology [11], and in image
processing [46].

We consider in this paper the doubly critical situation p, = p*, where p, = max (p1, ..., pn)
is the maximum value of the anisotropic configuration and p* is the critical Sobolev exponent
for the embeddings of the anisotropic Sobolev space DV7 (£2) into Lebesgue spaces. In this
setting, not only the nonlinearity has critical growth, but the operator itself has critical growth
in particular directions of the Euclidean space. As a remark, the notion of critical direction
is a pure anisotropic notion which does not exist when dealing with the Laplace operator or
the p-Laplace operator. Given ¢ = 1,...,n, the i-th direction is said to be critical if p; = p*,
resp. subcritical if p; < p*. Critical directions induce a failure in the rescaling invariance rule
associated with (1.1).
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Given an anisotropic configuration p’ satisfying > 7, 1/p; > 1 and p; < n/( >, }% —1)
for all j = 1,...,n, the critical Sobolev exponent is equal to

n
P= e (1.3)
Zi:l pii -1

In this paper, we consider weak solutions of problem (1.1). We say that a function u in
D7 () is a weak solution of problem (1.1) if there holds

i/ ou [P ou Oy
i=1 /1

for all smooth functions ¢ with compact support in 2.

da::/ ul” % upda
0

In this paper, we prove an existence result and a regularity result for problem (1.1). The
regularity result, stated in Theorem 1.2 below, is established on arbitrary domains (bounded or
not), and is motivated in particular by a question posed by Fragala—Gazzola—Kawohl [24, Sec-
tion 8.3, Problem 1]. The existence result, stated in Theorem 1.1 below, is established on
cylindric domains. Problem (1.1) on cylindric domains is involved in the description of the as-
ymptotic behavior of Palais—Smale sequences for critical anisotropic problems (see Vétois [44]).
The rescaling phenomenon is described in Section 3. Our existence result states as follows.

Theorem 1.1. Letn >3,1<n, <n, and p = (p1,...,p,), and assume that Y+  1/p; > 1,
P+t =D, Pnonyt1 = = Pp =Py, and p; < py for alli < n—ny. Let V be a nonempty,
bounded, open subset of R™, and assume that {2 = R"™"+ x V. Then there exists a positive
real number X\ such that problem (1.1) admits at least one nonnegative, nontrivial solution.

Theorem 1.1 is concerned with cylindric domains. Theorem 1.2 below holds true for ar-
bitrary domains (2, including {2 bounded. This result, which answers the question of the
regularity associated to (1.1), is stated as follows.

Theorem 1.2. Letn >3 and p = (p1,...,ps), and assume that > ¢ 1/p; > 1 and p; = p*.
Let §2 be a nonempty, open subset of R"™, and X\ be a positive real number. Then any solution
of problem (1.1) belongs to L™ (£2).

Theorem 1.2 is established on arbitrary domains. In case of bounded domains (2, Theo-
rem 1.2 answers a question posed by Fragala-Gazzola—Kawohl [24, Section 8.3, Problem 1].
The boundedness of nonnegative weak solutions of problem (1.1) was established in case
p+ < p* by Fragala-Gazzola—Kawohl [24]. It was suggested in [24] that the result should
remain true in case p, > p* for solutions of the problem

{ — Apu = AP+ in 2

_ (1.4)
u € DVP (2)N L+ (£2).

Theorem 1.2 answers positively to this question in case p, = p*. On the other hand, we point
toward a negative answer when p, > p*. More precisely, we prove (by using Proposition 2.1,
see Section 2) that for particular anisotropic configurations P’ satisfying p, > p*, for instance
whenpy =+ =p,_ . =2and p,_ 41 =+ =p, =py with p, > 2% 2*=2n_/(n_ —2), and
2 < n_ < n, if we assume the existence of nonnegative, unbounded solutions of the isotropic,
supercritical problem

—Au=uP*"" in 2,
u € DY ()N LP+ (7)),
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for some domain (2" in R"~, where A = div (Vu) is the classical Laplace operator, then the
anisotropic problem (1.4) with 2 = 2 x 2" admits nonnegative, unbounded solutions for all
domains 2" in R "~ including 2" bounded. As is well-known, problems with supercritical
growth may admit unbounded solutions (see, for instance, Benguria—Dolbeault—Esteban [8],
Farina [22], and also Fragala—Gazzola—Kawohl [24]).

In case p; < p*, namely when all directions are subcritical, anisotropic equations with crit-
ical nonlinearities have been investigated by Alves-El Hamidi [2], El Hamidi-Rakotoson [19,
20], El Hamidi-Vétois [21], Fragala-Gazzola—Kawohl [24], Fragala—Gazzola—Lieberman [25],
and Vétois [43]. Other recent references on anisotropic problems like (1.1) are Antontsev—
Shmarev [4, 5], Bendahmane—Karlsen [9, 10], Bendahmane-Langlais—Saad [11], Cianchi [13],
D’Ambrosio [14], Di Castro [17], Di Castro-Montefusco [18], Garcia-Melidan-Rossi-Sabina de Lis
[27], Li [30], Lieberman [31, 32], Mihailescu-Pucci-Radulescu [35], Mihailescu-Radulescu-
Tersian [36], Namlyeyeva—Shishkov—Skrypnik [37], Skrypnik [39], Tersenov—Tersenov [40], and
Vétois [42,44, 45].

In the isotropic configuration where p; = p for all i = 1,...,n, there holds p < p* and all
directions are subcritical. In this particular situation, the operator (1.2) is comparable, though
slightly different, to the p-Laplace operator A, = div (|Vu|p -2 Vu). Possible references on
critical p-Laplace equations are Alves—Ding [1], Arioli-Gazzola [6], Demengel-Hebey [15,16],
Filippucci-Pucci-Robert [23], Gazzola [28], and Guedda—Veron [29]. Needless to say, the above
list does not pretend to exhaustivity.

We illustrate our results with examples in Section 2, we prove Theorem 1.1 in Section 3,
and we prove Theorem 1.2 in Section 4.

2. EXAMPLES OF SOLUTIONS

In this section, we are concerned with the situation where the anisotropic configuration
7 consists in two distinct exponents p_ and p,. In other words, we assume that there
exist two indices n_ > 2 and n, > 1 such that n =n_+ny, py = --- = p,_. = p_, and
Pn_+1 = -+ = pp = po. Proposition 2.1 below is the basic tool in our construction. It relies
on a direct computation.

Proposition 2.1. Letn_ >2,n, > 1, n=n_+n,, and p = (p1,...,pn), and assume that
PL=:=pn. =p_ and p,_ 11 =+ =p, = py. Let X\ be a positive real number. Let £21 be a
nonempty open subset of R"~ and 25 be a nonempty open subset of R™*. Let v be a solution
of the problem

0 (|lov "% ov i
— — in
iz:; 8:& ( 0@3 0557,) |U| v, (21)
v E Dl’p_ (Ql) N LP+ (Ql) R
and let w be a solution of the problem
4 P+—2
_Zaa gw ow = |w|p+_2w—|w|p’_2w in 2y,
i—1 YT T O; (2-2)

w e ljl’p7L (Qg) N LP- (QQ) .
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Then the function u defined on 21 X )\ﬁ 25 by

—1

-1 a1 1
w(Ty, ..., oy) = AP+ P-0 (xl, o ,xm) w()\P+ Ty 1y e ey APF xn> (2.3)
15 a solution of the problem

—1
—A—u=\Nul*Pu in 2 x AP+ (),
Al 1 (2.4)
u e Dl’p (Ql X )\HQQ) N LP+ (Ql X )\H92>7
where A is as in (1.2).

Proof. A direct computation provides the result. O

If p, = p*, then a solution of equation (2.1) is given by

n_—p_

1 "
Vn_,p_ (xla < 7xn_) = Cn_,p_ ( p) ) (25)
Lk 2ol

n_ —

o (n (n_ —p)”l‘1> ”
’ (p- — 1)

On the other hand, we search for solutions of equation (2.2) of the form

where

—1
" Py T
W (Tp_s1,-. 0 xy) =W(r) with r= Z | ;| P+ 1
i=n_-+1
As one can check, equation (2.2) then rewrites as
/
—plons <r"+_1 WP+ W’) = WP EW - WP W iR, (2.6)

In case n, = 1, the unique nonnegative, nontrivial C''-solution of (2.6) is given by

W(T)I{Fl(F(WO)—r) if r < F(OW,),

0 ifTZF(W@),

where

o _INFT [t /s e\ T
Wy = (]ﬁ> ' and F(t) = (p+ ) ! / (S— — S—) ’ ds .
p- P+ 0o \DP- b+

In particular, there hold W (0) = Wy, W' (0) = 0, W > 0 and W < 0 in (0, F (W,)), and
W = 0in [FFW),+00). In case ny > 2, by Franchi-Lanconelli-Serrin [26], we get that
equation (2.6) admits at least one nonnegative C''-solution which satisfies W’ (0) = 0, W > 0
and W < 01in (0, R), and W = 0 in [R, +00) for some positive real number R. Summarizing,
we can state the following corollary of Proposition 2.1.
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Corollary 2.1. Letn_ >2,n,. > 1, n=n_+ny, and P = (p1,...,pn), and assume that
PL=""=Dn =D, Pny1 = =Py =Dy, and py = p*. For any point a = (ai,...,an)
in R™ and for any positive real numbers p and X, there exists a nonnegative solution Uy, in
DY7 (R™) N CY (R™) of equation (2.4) of the form

1 —1 P_—p4 P——Py

Uy (T1, ... T) =~ )\P+—P7U<,u P~ (zy—ay), ..., p P (:L‘n_ - an_) ,

a1 N
AP+ (xn_-i-l - an_—i-l) Yty AP+ (-Tn - an) )7

where
Pyt
n Py Dy
Ui, xn) =V p (21,20 )W Z || P+t ,
i=n_—+1

where V,,_,, is as in (2.5) and where W is such that VW > 0 and W' < 0 in (0, R), and W = 0
in [R,+00) for some positive real number R.

Since the function W has compact support, Corollary 2.1 provides a class of solutions of
problem (1.1) on cylindric domains 2 = R"~ x V for all nonempty, open subsets V' of R™+.
These solutions illustrate the general existence result stated in Theorem 1.1 in the particular
case where the anisotropic configuration P’ consists in two distinct exponents p_ and p..

In the supercritical case p, > p*, suppose there exists a nonnegative, unbounded solution
of problem (2.1) for some domain {2 in R"-. Then we easily get with Proposition 2.1 that
problem (1.4) with 2 = (2; X {2, admits nonnegative, unbounded solutions for all domains
{29 in R™*, including {2, bounded. Indeed, since the above function VW has compact support,
by rescaling W, we get a nonnegative solution of the problem (2.2) on the domain (2. Then
Proposition 2.1 provides the existence of a nonnegative, unbounded solution of the form (2.3)
of the problem (1.4) with 2 = 27 x (2.

3. THE EXISTENCE RESULT

This section is devoted to the proof of Theorem 1.1. Welet n > 3 and p = (p1,...,pn). We
assume that > 1/p; > 1, py = p*, and that there exists an index ny such that p,_,, 1 =
coo=p, =Py, and p; < py for all ¢ < n —n,. Moreover, we assume that 2 = R"™"+ x V,
where V' is a nonempty, bounded, open subset of R"+. Without loss of generality, we may
assume that the point 0 belongs to V.

The proof of Theorem 1.1 is based on concentration-compactness arguments. Let us first
set some notations. For any function u in D7 (R") and any subset D of R", we let the energy
& (u, D) of uw on D be defined by

E (u, D) :/ uPtdx . (3.1)
D
For any positive real number p and any point a = (aq,...,a,) in R", we define the affine
transformation Tfa :R" — R" by
— P1—P+ pn—p4
TP (1, w,) = (,u (T —ay), .., 0 (T, —an)>. (3.2)

As is easily checked, (3.2) provides a general rescaling invariance rule associated with equation
(1.1). Moreover for any subset D of R", we get € (u, D) = &(pu o (Tfa)_l ,Tfa (D)), where
— P4 —P1 P4 —Pn

(Tuf’fa)fl(ml,...,xn):(u PUxy Q... i PR xn+an>.




CRITICAL ANISOTROPIC EQUATIONS WITH CRITICAL DIRECTIONS 6

Of importance in our critical setting is that the set D is only rescaled with respect to noncritical
directions. Therefore, we observe a concentration phenomenon on affine subspaces of R”
spanned by critical directions. Figure 1 below illustrates the rescaling in case D is a three-
dimensional ball, the first two directions being noncritical, the third one being critical. In case
of the p-Laplace operator, the ball would have been rescaled to the whole euclidean space.

FIGURE 1. Rescaling of a ball (n = 3, p; = po = 1.5, p3 = 6). The first line

describes the scale in the rescaling. The second line describes the deformation
of the domain.

We begin the proof of Theorem 1.1. We let (ug), be a sequence of functions in D7 (£2)

such that
ou,
U P*dr =1 and lim / = inf / dr. (3.3
/e HOOZPZ G| dr= it sz o (3.3)
fﬂ|u|p+da: 1

Taking the absolute value, we may assume that for any «, the function u, is nonnegative.
Clearly, the sequence (u,), is bounded in D7 (£2).

Step 3.1 below is the first step in the proof of Theorem 1.1. We say that a sequence (v,),,
in D7 (£2) is Palais-Smale for the functional Iy defined in (3.4) if there hold |Iy (v4)] < C
for some positive constant C' independent of a, and |[DI) (va)l| p17 gy — 0 as a — +oo0.

Step 3.1. Up to a subsequence, (uoé)cy 1s a Palais—Smale sequence for the functional

da — —/ Pt da (3.4)

Iy(u)=)>» —
i:l

- QEIEOOZ /

Proof. 1t easily follows from (3.3) that there holds |I) (us)| < C for some positive contant C'
independent of a. We then prove that for any bounded sequence (p,), in D¥? (£2), there

&U,

where
Oug |**
ox;

(3.5)
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holds DI (uq) .pa — 0 as o — +o00. By (3.3), we get that there exists a sequence (g,), of
positive real numbers converging to 0 such that for any real number ¢, there holds

Pi

Z / au e < Z _/ 0 Ug + (2 du
pi = Pi Jo | O (fo) lta + tpa |p+dx)
n 1 pi
- Z - </ [Ua + tpa | d:c) / Ot + tawa dr. (3.6)
i1 Pi [?) 0 8@ 8%

As is easily checked, there exists a positive real number C' such that for any ¢ = 1,...,n and
for any real numbers x and y, there holds

‘ pi—2 ‘ < C ' lf Di S 2 (3 7)
T )
= yl? (|72 + |y " 7%) if ps > 2.

Since (uq), and (¢4), are bounded in DL7P (£2), by (3.7) and Hoélder’s inequality, we get

pz_|l.p

e

Oug  Opy|” Oug [P O, |72 Oug O

t dx — dx — pit d

pi
i [ |9l o if p; < 2
a$i
a o pi p%, a o pi pi’%f a N pi
t? (/ Y d:v) ( Ld da:) +tp"/ Pol gy if pi > 2.
tPi if p; < 2
/ b= (3.9)
- C(1+t77?) ifp > 2.
foralli=1,...,n, and
\ua + ta|’t doe — / ubtdr — p+t/ ult o, dr
2
/ |pal™t dx if pp <2
2 py—2
2 (/ [t [P d:c) " (/ |0al” dw) ' —|—tp+/ || dz if pp > 2.
2 I7; 2
P+ ifp, <2
! (3.9)

B 2 (1+t772) ifpy > 2.

for some positive constants C' and C” independent of a and t. By (3.6), (3.8), (3.9), we get

S S (ST ) o) e
<t (D[A(ua Do+ <A Z/ Oa | )/Qui+1<,0adx>+o(t)

ox;

0ua auoz

ox;
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as t — 0 uniformly with respect to a;, where A is as in (3.5). Passing to the limit as o« — 400,
we get

0 < limsup (DI, (uq) -0a) + 0 (t)

a——+00

as t — 0. Since the real number t takes either positive or negative values, it follows that
DI, (uq) .pa — 0 as o — +o0. Since this holds true for all bounded sequences (¢,), in
DY7 (), we get || DI, (wa)ll pr.7 gy — 0 as @ — 4o0. This ends the proof of Step 3.1. [

Now, for any «a, we define the concentration function @), : Ry — R, by

Qu (s) = max & (ua, P (5))

yen

where the energy functional £ is as in (3.1) and

P4 —P;

Pf(s):{(xl,...,xn)eg; 2 — yi < s 7 Vie{l,...,n—n+}} (3.10)

for all positive real number s and for all point y = (y1,...,¥,) in £2. By the continuity of the
functions @, and by (3.3), given a real number Jy in (0, 1), we get the existence of a sequence
(fa),, of positive real numbers such that there holds @, (¢ta) = do for all a. We let z, be a
point in 2 for which Qq (1) is reached, so that there holds

max € (ua, Py (tta) ) = € (e, P, (a) ) = &y (3.11)

yen

for all . By definition of PJZ (14a), see (3.10), we may assume that the n, last coordinates of
the point z,, are equal to 0. For any «, we then define the function wu, by

aa = Maua © (T/'L_pozzxa)_l ’
where Tﬁg% is as in (3.2). Since 2 =R"™™ XV, pp_p, 41 =+ = p, = p4, and p; = p*, we
get 7.7 . (£2) = 2 for all a. As well as (u,),, we get that (u,), is a Palais-Smale sequence
for the functional I defined in (3.4). Moreover, there holds |[uallp17 (o) = ltallpr7 o) for

all a. In particular, the sequence (u,), is bounded in DLP (£2). Passing if necessary to a
subsequence, we may assume that (u,), converges weakly to a nonnegative function us in
DV7 (2) and that (,), converges to s, almost everywhere in 2. The second step in the
proof of Theorem 1.1 is as follows.

Step 3.2. If the constant 0y is small enough, then (u,), converges, up to a subsequence, to
Uoo tn L5 (R™).

loc

Proof. We fix a positive real number R, and we let By (R) be the (n — n,)-dimensional ball
of center 0 and radius R. We show that the sequence (u,), converges to us in LP* (B, (R)).
For any a, we let v, = U, — us. By Banach-Alaoglu theorem, since the sequence (v,), is
bounded in DVP (£2) and since 2 = R"™™+ x V, where V is bounded, passing if necessary to
a subsequence, we may assume that there exist nonnegative, finite measures p and vy, ..., v,
on By (2R) x R™ such that |v,|"t — p and |0v,/0x;|"" — v; as @ — +oo in the sense of
measures on By (2R) x R™+, for all i = 1,...,n. Moreover, the supports of the measures p
and vy, ..., 1, are included in By (2R) x V. Now, we borrow some ideas in Lions [33,34] with
the tricky difference here that the concentration holds on n,-dimensional affine subspaces of
R™. Since p, = p*, by the anisotropic Sobolev inequality in Troisi [41], there exists a positive
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constant A = A (') such that for any a and any smooth function ¢ with compact support in
By (2R) x R™*, there holds

n y23 ::Z
/ ool do < AT] (/ 9 (vap) dx)
2 i1 \J 2 Ox;
1 1 P+
n Di Py v Di Pi n
d - d . 3.12
<aT[(([Jge] o) (ff5ed o)) o
Fori=1,...,n—ny, by the compact embeddings in Rakosnik [38], we get that (v,),, converges

to 0 in LP (Supp ¢). Passing to the limit as & — 400 into (3.12) gives

n—ny P+

o[ dp < A
/Bo(R)XV ZH

(/ |%0’pi de‘) "
1 Bo(R)xV

n

! ((/B(R)v

i=n—n4+1

a1 N
P+ Pt - pr
du + lo|P* dv; :
Bo(R)xV

By an easy density argument, it follows that for any bounded measurable function ¢ on
By (R) x V which does not depend on the variables @, 41, ..., %y, there holds

[P dp < A (/ |
\/BO(R)X H Bo(R)xV

In particular, for any Borelian set A in B, (R), taking ¢ = 1,5y, we get

i
8ZEZ'

Pt

i dui) " (3.13)

w(Ax V) < AT v (Ax V)% (3.14)

i=1
Letting v = > | v, since Y, i = %, it follows that

n+p4

p(AxV)<Av(AxV) ™ . (3.15)

We let i and o1, . . ., U, be the measures defined on By (R) by i (A) = p (Ax V) and v (A) =
Vi (A X V) for all i=1,....,n. Welet v =>" 1;. By the Lebesgue decomposition of v
with respect to [i, there exist a nonnegative function f in L! (Bo (R), dﬁ) and a nonnegative

bounded measure ¢ on By (R) such that there holds 7 = f + o and such that o is singular
with respect to . We may assume in addition that the function f is identically zero on the
support of the measure o. By (3.15), we get fi({z € By (R); f (z) =0}) = 0. For any natural

number (3, any real number ¢ > 1, and any Borelian set A in By (R), by (3.13) with ¢ = f91 4,
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where Ag ={x € A; f(x) <[}, we get

P4 nt
n

n—nm4 np;
<A H FPtdn 3 fP+dp
A A
i=1 8 ]

Choosing ¢ large enough so that ¢ > 1/(py —p;) for all ¢ = 1,...,n — n,, by Holder’s
inequality, it follows that

1 Zn_n+ i-i—l

/ fP+dp < 7 Av <Bo (R) x V> T / frdp
Ag Ap

We then get that either fA@ f®+dp = 0 or ng f®+dp > Cg, for some positive constant Cg
independent of A. It follows that for any 3, the measure A — [ 4 f®+dp is a finite linear

combination of Dirac masses. Since fi({z € By (R); f (z) = 0}) = 0, it follows that for any
B, the measure A — [i(Ap) is a finite linear combination of Dirac masses. Passing to the
limit as # — +o00, we get that there exists an at most countable index set J of distinct points
Y = (y{, . ,yi_m) in By (R), j € J, such that Suppp ={y;; j € J}. It follows that

Supp N By (R) x V | JV,, (3.16)
jed
where
V,, = {(y{,...,yﬁ_n+)} x V. (3.17)

We end the proof of Theorem 1.1 by using Palais-Smale properties of the sequence (u,),. For
any smooth function ¢ with compact support in {2, we get

i / Ol |72 Oy O
i=1 7%

as a@ — +oo. The functions u2+~! keep bounded in LP+/+=1Y (§2) and converge, up to a
subsequence, almost everywhere to u’+~! in 2 as @ — +o00. By standard integration theory,
it follows that the functions @2+~ converge weakly to w2+~ in LP+/®+=1 (). On the other
hand, for any i = 1,...,n, the functions |0ty /dz;|”' > 0tia/dx; keep bounded in LPi/®Pi=1) (02),
and thus converge, up to a subsequence, weakly to a function 1; in LP#/Pi=Y (£2) as a — +o0.
Passing to the limit into (3.18) as o — 400, we get

Z/Qwi%daz:)\/guﬁglqﬁdx. (3.19)
i=1 ¢

By an easy density argument, (3.19) holds true for all functions ¢ in DV7 (£2). Now, we let ¢
be a nonnegative, smooth function with support in By (2R) x R™+. Since the sequence (u,),,

dr = )\/ Pt pdr + o (1) (3.18)
2
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is Palais—Smale for the functional I, we get

u Oy, |7 Oty |7~ 8ua~ ) _ IO
d d = A Prodr 4+ DIy () - (U
< )\/ ubrodr 4o (1) (3.20)
2
as o« — +oo. Forany i = 1,...,n — n,, by the compact embeddings in Rékosnik [38], we get
that the sequence (u,), converges to us in LP* (Supp ¢), and thus that
Ol [P7% Ot~ O D
Sy .| Uoo——d. 3.21
as a — +o0o. For any o and any 1 =n —n, +1,...,n, we get
Ol [P772 Oty Op Oty [P+ Ay
) a_uoza_dx =g HuaHLP+(Q) B (3.22)
I?) €T; €T; €T; €T; LP+ () X Lo (R™)

Since the sequence (U, ), is bounded in LP+ (£2) and converges to u almost everywhere in (2,
by Brezis-Lieb [12], we get

/ ultpdr — / ulrpdz +/ wdji . (3.23)
Bo(2R)xV
Since there holds |0, /0x;|"" > |0v4 /02" — |0 /04|, Where v, = Uy — Uy for all @ and
1=1,...,n, we get
a’*’a pi 8 ~ pi
lim inf/ Y odr > / ody; — / ¢ wdx (3.24)
a—too Jo | O Bo(2R)XV ol 0z

as a — +00. By (3.21), (3.22), (3.23), and (3.24), passing to the limit into (3.20) as a — +o0,

we get
i/ wdy; — Z/ Oucs | godx + "Z"Jr/ ViU
Bo(2R)xV ' Ox; "0
- ~ | o
<A ult pdx + edp | +C Z 5 (3.25)
2 Bo(2R)xV i=n—ny+1 11 OTi Il Loo (mn)

for some positive constant C' independent of . Increasing if necessary the constant C| it
follows from (3.19) and (3.25) that

n auoo Di n auoo
edn=Y [ oo =3 [ 0=
Z/BOQR)XV Z I ; o 0
"o
< A/ pdp+C Y |[2F . (3.26)
Bo(2R)xV i=n—n4+1 Oz; Leo(R™)

We let 7 be a smooth cutoff function on R" "+ such that n = 1 in By (1), 0 < n < 1 in
By (2)\Bo (1), and n = 0 in R"™"+\ B, (2). For any point y = (y1,...,Yn—n,) in By (R) and
for any positive real number ¢, we let ¢, , be the function defined on R" by

1 1
ooy (1, >—n( (=),

c (xnfn+ - ynn+)) .
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Plugging ¢ = ¢., into (3.26), and passing to the limit as ¢ — 0, we get

n

> (V) < (V). (3.27)

=1

where V,, is as in (3.17). By (3.14) and (3.27), we get that there holds either

u(V,) =0 or Au(V,)7% > A7r (3.28)

for all points y in R"~"+. On the other hand, by (3.11) and by an easy change of variable, for
any «, we get

E(ta, PP (1)) < do, (3.29)
where the energy functional £ is as in (3.1) and Pf (1) is as in (3.10). By (3.23) and since
there holds V,, C Pf (1), passing to the limit into (3.29) as @ — 400, it follows that

& (oo, PP (1)) < 0. (3.30)

n+pg

Choosing dy small enough so that d§y < AN m | it follows from (3.28) and (3.30) that
there holds 1(V,) = 0 for all points y in By (R). By (3.16), we then get that the measure p

is identically zero on By (R). It follows that |v,|"" — 0 as a — 400, where v, = Uy — Uno,
and thus that the sequence (u,), converges to ue in L) (By(R)). This ends the proof of
Step 3.2. O

The next step in the proof of Theorem 1.1 is as follows.

Step 3.3. If the constant &g is small enough, then Vu, converges, up to a subsequence, to
Vs, almost everywhere in (2.

Proof. We let ¢ be a smooth function with compact support in R”. Since the sequence (u,),,
is Palais—Smale for the functional I, there holds DI, (ts) . (e — uso) @) — 0 as & — 400,

and thus
b 8ua Oty  Ous
Z/ <a$z‘_ $z> dx+2/
- )\/ P (T — Uoo) pdz — 0 (3.31)
Q

as a — +o0o. By Holder’s inequality and by Step 3.2, we get

Ol
ox;

Ol
ox;

P 8ua - %)
; (ua ) 3:L‘Zd

gy —] fo ~ 1
/Q“? (e — o) pda| < (|9l oo (o) 1TallTis () 1Ta = Uooll Lo+ supp ) — O (3.32)
and
Ol |72 Oty - ago
— (ug — dx
P4 —p; 890 O, pi—1 _

<|S PP o — Uso 0 3.33
|Supp @] P+7i 21 F v [tta — ool 14 (Supp ) — (3.33)

as @ — +oo foralli=1,...,n. By (3. 31) (3.32), and (3.33), we get

Z/ Ot [P~ 8ua (8ﬂa Moo

s oz, or. ) wdr — 0 (3.34)
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as a — +00. On the other hand, since the sequence (u,), converges weakly to the function

Uso in DVP (£2), we get
/ Mg |77 Oto Dl / Al
pdr —

as o« — +oo forall i =1,...,n. By (3.34) and (3.35), we get

2 9, 2 Ouy \ (O, Ous
Z/ (‘ 7. (9xi> < - ><pd:1: —0 (3.36)

B c%z 8@
as @ — +o0o. Since (3.36) holds true for all smooth functions ¢ with compact support in R,
we then get that for any ¢ = 1,...,n and any bounded domain (2’ of R", there holds

/ ot P72 o, P2 Ous \ [ Otl,  Ouw
- dx — 0
o ox; ox; ox;

8962- 81‘1 B
as o — +oo. In particular, up to a subsequence, there holds
Ot |72 D, P72 Qg \ (O Oun ,
- — 0 a.e. in {2

as o — +o00. It easily follows that the functions Ou,/Jx; converge, up to a subsequence,
almost everywhere to Ous,/0z; in 2 as o« — +oo. This ends the proof of Step 3.3. O

pi

edx (3.35)

Ouss |?

(9xi

oz;

Olso

8%

OUo
&xi

The final step in the proof of Theorem 1.1 is as follows.
Step 3.4. The function uy, is a nontrivial, nonnegative solution of the problem (1.1).

Proof. We let ¢ be a smooth function with compact support in (2. Since the sequence (u,),,
is Palais—Smale for the functional I, we get

i/ Dy |17 Oy O
=1

ox; ox; 0x;
as a — +00. By Step 3.3 (resp. Step 3.2), the functions 0u,/0z; (resp. U,) converge almost
everywhere to Qo /0z; (Tesp. teo) in 2 as a — +00. Moreover, |0t /dx; P> Oy /0x; (resp.
uP+~1) keep bounded in LP/®=Y (§2) (vesp. LP+/P+=Y (§2)). By standard integration theory,
it follows that

dx — )\/ ultpdr — 0 (3.37)
7

/ﬂff‘lgodx — / ult L pdx (3.38)
Q 0
and

i |72 O, O Oig |7 Qs O

o | 0z Ox; Ox; dv — / ox; 0x; 8xld (3.39)

as o — +oo for all i = 1,...,n. By (3.37), (3.38), and (3.39), we get that u., is a solution of
problem (1.1). Moreover, u,, is nonnegative since the functions , are nonnegative. We finally
claim that us, is not identically zero. Indeed, by (3.11) and by an easy change of variable, for
any o, we get .

E(Ua, Py’ (1)) = o, (3.40)
where the energy functional £ is as in (3.1) and 730? (1) is as in (3.10). By Step 3.2, passing
to the limit into (3.40) as a — +o0, we get

& (too, PF (1)) = 6.
In particular, u., is not identically zero. This ends the proof of Step 3.4. U



CRITICAL ANISOTROPIC EQUATIONS WITH CRITICAL DIRECTIONS 14

Step 3.4 ends the proof of Theorem 1.1

4. THE REGULARITY RESULT
In this section, we prove Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality, we may assume that there exists an index
ny such that p,_,, 11 =---=p, =p; and p; < p; for all t <n —n,. We let u be a solution
of problem (1.1). We begin with proving that u belongs to L4 (£2) for all real numbers ¢ > p, .
We let

q—py
Yo = min ( lu| =+ ,a)

for all positive real numbers a. For any j = 1,...,n, multiplying equation (1.1) by ugl’ and
integrating by parts on 2, since u = 0 on 92, we get

Y p'dx<)\/ lu|"* pPid
o dr < e d. (4.1)
0|0z Q

Moreover, for any positive real number (3, we get
(a=p4)p;
/ P Gride < 5 / P da +/ uP gide, (4.2)
I7; W

where
Ws={xe€2; |u(zx)>p}. (4.3)
By Holder’s inequality, we get

P4 —Pj

o 2i
/ |ul"* pPide < / |u|"* dx (/ || goﬁ*dx) o (4.4)
W W Q

Since p; = p*, by the anisotropic Sobolev inequality in Troisi [41], we get

/ |ulP+ P+ da < AH (/

for some positive constant A independent of «a and u. By Young’s inequality, it follows that
for any £ > 0, there holds
Pi %?
gogjdx)

I
/’u|p+ Py <= ( = Z (
g*d:v) (4.6)

pi

pi
P dx) " (4.5)

ox;

ou
ox;

(%Z

i=n—ny+1

By (4.1)-(4.6), we get

] P+—p;
ou |P (a=p4)p; 73 p‘*‘J
/— Pide < NG 7+ /|u|p+d:t—|—)\( ) / |ul"* dx
2|0z, Wps
n—m4 —n au p‘ %
= Pi ] Prd .47
X (7 [ || )" |2 o ) |

=1 i=n—nm4+1
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Choosing € small enough so that ¢ < n/ (AA), it follows that

q—P+
Z / ehrdr < ﬁ / |u|"* dx

n— e
i=n—ny+1

MO o
* n— Ae Z (8 +/Q

=1

ox;

gpﬁidx) " (4.8)

pi

ou
8xi

It follows from (4.7) with € = 1 and (4.8) with ¢ < n/ (AA) that

n—ny

> (f,

=1

n—m4

pi ﬁ; q—p 5;
@ﬁidx) gC(ﬁpf S (/ JulP* dx) (4.9)
i=1 2
pi o
w%dw)

for some positive constant C' independent of «, 3, and u. Since the function u belongs to
LP+ (£2), increasing if necessary the constant C, it follows from (4.8) and (4.9) that for

large, there holds
>/,

=1

ou
8xi

n—m4

¥ (Z</W |UIp+dx)p:+ )(ﬂ = (/ |u|p+da:) i 2 (/

=1

1
Py 9—P4

@Zidl) < CB (4.10)

pi

ou
8xi

where C'is independent of «, 3, and u. Passing to the limit into (4.10) as o — +o0, we get

aii ('“’i) p

By the continuity of the embedding of D7 (£2) into LP*+ (£2), it follows that |u]i belongs to
LP+ (£2), and thus that u belongs to L (§2) for all real numbers ¢ > p,. Now, we prove that
u belongs to L ({2). For any positive real number ¢, we define the function ¢, : R — R by

n

>(f,

=1

1
AN
dw) < +00.

s+t if s < —t,
gpt(s): 0 if —t<s<t,
s—t ifs>t.

Multiplying equation (1.1) by ¢; (u) and integrating by parts on {2, since u = 0 on 92, we get

u ou P
N

where W, is as in (4.3). For any real number ¢ > p,, by Hélder’s inequality, it follows that

(/W o0 (w) [P+ dx) & . (411

dr = /\/ |2 gy (u) da
Wi

—1
n P4

u [P (p4=1)(a—r+)
de < MWy 7+e / |ul? dx
Wi

0
; /Wt ox;
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Since py = p*, by the anisotropic Sobolev inequality in Troisi [41], and by Young’s inequality,

we get
i CEEN =y
P+
o (u dx> <A </ dac)
([ e H |

3:62
A K1 ou [P
< b= - ) (4.12)
n+pr = pi Jw, dx;

for some positive constant A independent of ¢ and u. Since the function u belongs to L7 ({2),
it follows from (4.11) and (4.12) that

hr (24 (o ~1)(a=p)
(/ | (u)|”* dfl/’) <O Wy| (wg=n=pi)ria
Wi

for some positive constant C' independent of ¢t and uw. By Fubini’s theorem and Holder’s
inequality, we then get

+oo +oo (p4—1)(na—n—»y)
/‘wm@:/ /1m@¢5/mmm@gmm|wwww.
t t Wi Wi

Choosing ¢ large enough so that
(p+ —1) (ng —n —py)
(npy —n—pi)q
it easily follows that there holds |W;| = 0 for ¢ large, and thus that u belongs to L™ (£2). O

> 1,
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