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Abstract

We derive a test problem for evaluating the ability of time-stepping

methods to preserve statistical properties of systems in molecular dy-

namics. We consider a family of deterministic systems consisting of a

finite number of particles interacting on a compact interval. The parti-

cles are given random initial conditions and interact through instanta-

neous energy- and momentum-conserving collisions. As the number of

particles, the particle density, and the mean particle speed go to infin-

ity, the trajectory of a tracer particle is shown to converge to a station-

ary Gaussian stochastic process. We approximate this system by one

described by a system of ordinary differential equations and provide

numerical evidence that it converges to the same stochastic process.

We simulate the latter system with a variety of numerical integrators,

including the symplectic Euler method, a fourth-order Runge-Kutta

method, and an energy-conserving step-and-project method. We as-

sess the methods’ ability to recapture the system’s limiting statistics

and observe that symplectic Euler performs significantly better than

the others for comparable computational expense.

1 Introduction

In the field of molecular dynamics, researchers use numerical integrators to
approximate the motion of systems of particles. They integrate over long
periods of time and extract statistical information from the computed tra-
jectories. This, in turn, can be used to determine macroscopic properties of
the system. For optimal efficiency, the researchers integrate using as long a
step-length as possible while still maintaining the stability of the computed



solution. In this regime trajectories are not computed accurately. Never-
theless, it is observed that statistical features of solutions are maintained in
some circumstances. (See [1],[4].)

One possible explanation for this phenomenon is the existence of an un-
derlying stochastic process [19]. Suppose that the trajectories of the deter-
ministic process approximate some stochastic process in the sense of distri-
bution. If we use a numerical method whose trajectories also approximate
the same stochastic process, then the numerical solution will have similar
statistical features to the original system, even though there is no path-wise
agreement.

The goal of this paper is to construct a test case for this situation. We
seek a deterministic system having a component of its trajectory that ap-
proximates a well-understood stochastic process. Once given such a system,
we can use it to test numerical integrators. We integrate the system with a
numerical integrator using step-lengths that do not resolve the trajectories
correctly. Then we can investigate how accurately these computed solutions
reproduce the statistical features of the underlying stochastic process.

Our construction is inspired by a 1968 paper of Spitzer [20] that provides
an example of a sequence of deterministic systems whose trajectories con-
verge to a stochastic process. Building on the previous work of Harris [12],
he shows that Brownian motion can be obtained as the limit of a sequence
of deterministic processes on the real line with random initial conditions.
His construction consists of placing point particles on the real line accord-
ing to a Poisson distribution. Each particle is assigned a random velocity
independently of the other particles. The particles are allowed to move, so
that they interact through energy- and momentum-conserving collisions: i.e.,
whenever two particles meet, there is an instantaneous collision in which they
exchange velocities. A single particle is placed at the origin and its subse-
quent trajectory observed. Spitzer proves that with an appropriate scaling
of the variables, the path of this tracer particle converges weakly to standard
Brownian motion.

There are two difficulties with using this system for our investigations.
The first is that since it is infinite in extent, it is impossible to simulate it
completely on a computer. As a way of avoiding this difficulty, in Section 2
we introduce a finite counterpart to Spitzer’s set-up. We describe a sequence
of systems each consisting of a finite number of particles interacting on a
compact segment of the real line. In Sections 3 and 4 we prove that as the
number of particles goes to infinity, the trajectory of a tracer particle will
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converge to a stationary Gaussian process with a known correlation function.
The second difficulty is that neither Spitzer’s system nor the system we

present in Section 2 are described purely in terms of ordinary differential
equations, since the inter-particle collisions are instantaneous. Thus we can-
not use these systems as test problems for numerical integrators without
dealing with the issues of collision detection. However, we show in Section 5
how we can approximate the non-differentiable flow of these systems with the
flow of a differential equation by replacing the hard, instantaneous collisions
of the particles with collisions mediated by a soft potential. This system
approximates the non-differentiable system in the limit as the stiffness of the
inter-particle forces goes to infinity. If we allow both the number of particles
and the inter-particle stiffness to go to infinity with a particular scaling, we
conjecture that the tracer particle’s trajectory converges to the same Gaus-
sian process. We show the results of numerical experiments that support this
statement.

In Section 6 we use the family of systems introduced in Section 5 as a
test problem for a variety of time-stepping methods. We apply five different
numerical methods to the system: symplectic Euler, backward Euler, for-
ward Euler, a fourth-order Runge-Kutta method, and an energy-conserving
step-and-project method. We observe that, of these methods, only symplec-
tic Euler and the step-and-project method are able to even approximatley
reproduce statistics in the limiting case with reasonable step sizes. The latter
energy-conserving method is more costly and is not able to take longer steps
than symplectic Euler without damaging its ability to recover the stochastic
limit. We conclude that, for this test problem, the symplectic Euler method
is clearly the superior method out of those considered. This coincides with
computational practice in molecular dynamics, where use of the Verlet inte-
grator (a version of symplectic Euler) is ubiquitous [1].

Though our interest in simulation has led us to consider finite systems,
other researchers have continued with Spitzer’s ideas in [20] in different di-
rections. One possibility is to allow the mass of the tracer to differ from the
mass of the other particles. In [13] Holley proves that with such a scaling the
trajectory of the tracer particle weakly converges to the Ornstein-Uhlenbeck
process. In [16] Mürmann takes this result further by proving a similar re-
sult when the collisions between the particles do not occur instantly but are
mediated by a soft potential.

Other work has had the same motivation as this one— to create suitable
test problems for molecular dynamics simulations— but has considered a
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different class of problems. The papers [21], [11], [15] have rigorously shown
stochastic limiting behaviour for the Ford-Kac heat-bath model [8]. Like the
model in the present paper, a sequence of Hamiltonian systems with random
initial conditions and increasing numbers of particles is considered. In the
infinite particle limit the trajectory of the tracer particle is shown to converge
to the solution of a stochastic differential equation. This construction has
been used to analyse numerical integrators in [3] and more sophisticated
algorithms in [14].

2 Particle Systems on a Compact Interval

In this section we describe a sequence of particle systems on the interval
[−1, 1]. For each odd positive integer n, the system will consist of n interact-
ing particles (contrary to the convention in the interacting particle literature).
We let the tracer particle be the “median” particle in the interval, that is,
the one with an equal number of particles on either side of it. When we scale
the interval by a factor of n1/2 we will see that the trajectory of this tracer
particle will converge to a Gaussian random process.

Let qi, i = 1, . . . , n be i.i.d. random variables, each uniformly distributed
on [−1, 1]. These are the initial positions of the n particles. We give the
particles i.i.d. velocities pi according to a distribution with a probability
density f . We make the following assumptions on f .

Assumptions 2.1 The probability density f satisfies
(i) f is symmetric: f(−p) = f(p).
(ii) f is L1 and nontrivial: 0 < E|pi| < ∞.
(iii) f is compactly supported: P{|pi| > Vmax} = 0 for some Vmax.

Note that the third condition implies that f is L1. However, we leave the
assumptions in this form since some results will be proven without using
condition (iii).

Given these initial conditions, we allow the particles to move according to
the following rules. Particles move at constant velocity until they encounter
either another particle or one of the barriers at −1 or 1. If two particles
collide, they merely exchange velocities. If a particle hits a wall, it reverses
its velocity. These rules are a natural consequence of assuming that the total
energy of the system is conserved and that when two particles collide, their
total momentum is conserved. With these rules for motion we designate the

4



position at time t of the particle starting at qi by xi(t). Note that the order
of the particles is unchanged in time. By this we mean that if qi < qj then
xi(t) ≤ xj(t) for all t ≥ 0. Choose imed so that qimed

is the median of the
{qi}. It follows that ximed

(t) is the median of the {xi(t)} for all t. We choose
this particle to be our tracer particle and define xmed(t) := ximed

(t) for t ≥ 0.
If we multiply the positions of all of the particles over time by n1/2, we

obtain a system of n particles interacting over the interval [−n1/2, n1/2], with
an average particle speed of n1/2

E|pi|. We will denote the position of the
tracer particle with this scaling by Un, so that Un(t) = n1/2xmed(t) for t ≥ 0.

In order to get a more convenient representation of the motion of the
tracer particle, we now describe a different, but related, set of rules of motion.
The rules of motion are the same as before except that the particles do not
interact with each other, but only the walls. Thus when the trajectories of
two particles intersect, the particles merely pass through each other. Under
this set of rules, we designate the position of the particle starting at qi by
yi(t), for t ≥ 0. There is a simple expression for yi(t). If there were no walls,
the particle’s position at time t would be qi + tpi. The effect of the walls
is to “fold” the particle’s trajectory back into the interval [−1, 1]. This is
accomplished by a function G such that

yi(t) = G(qi + tpi). (2.1)

G is the periodic function with period 4 such that

G(x) =

{

x, −1 ≤ x ≤ 1
2 − x, 1 ≤ x ≤ 3.

(2.2)

There is a relationship between the two sets of trajectories, {xi(t)} and
{yi(t)}. At any point in time, the set of positions the particles take is the
same under the two different rules of motion. Since the position of the tracer
particle at any time is given by the median of all the xi(t), its position is also
given by the median of all the yi(t). So the trajectory of the tracer particle
is given by

Un(t) := n1/2xmed(t) = n1/2 med
i=1...n

(yi(t)) = n1/2 med
i=1...n

(G(qi + tpi)). (2.3)

This is a convenient representation, since {qi}
n
i=1 and {pi}

n
i=1 are independent

random variables with known distributions.
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Figure 2.1: The function H .

It is straightforward to check that for each i, yi is a stationary stochastic
process. As a consequence, both xmed and Un are stationary processes as
well. The distribution of yi(t) is uniform on [−1, 1] for all t.

We briefly review the concept of weak convergence in a topological space.
Let X be a topological space with random elements U , Un, n ≥ 1. We
say that Un weakly converges to U , and write Un ⇒ U , if for all bounded
continuous functions g : X → R, Eg(Un) → Eg(U) as n → ∞. We will
consider two examples of X in this paper. The first is C[0, T ], the space of
real-valued continuous functions on [0, T ] with the topology induced by the
supremum norm. The second is R

d with the standard topology. See [2] for a
thorough exposition of weak convergence.

We now present our main result. It states that as the number of particles
n goes to infinity, the scaled trajectory of the tracer particle will converge
weakly to a Gaussian process in C[0, T ]. This result is the basis for the
numerical experiments performed later in the paper. For the statement of
the main theorem, we define H to be a periodic function with period 4 such
that

H(z) =

{

1 − z, 0 ≤ z ≤ 2,
z − 3, 2 ≤ z ≤ 4

(2.4)

as shown in Figure 2.1.

Theorem 2.2 Let {qi}i≥1, {pi}i≥1, be mutually independent i.i.d. sequences
of random variables, where each qi is distributed uniformly on [−1, 1] and
each pi is distributed with density f satisfying Assumptions 2.1. For each
odd positive integer n let

Un(t) := n1/2 med
i=1...n

(G(qi + tpi)).
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Figure 2.2: Covariance functions for two choices of the velocity distribution.

Then as n → ∞,
Un(t) ⇒ U(t),

where U(t) is the stationary continuous mean-zero Gaussian process with
covariance

C(t) := E[U(0)U(t)] =

∫ ∞

−∞

H(pt)f(p)dp. (2.5)

The convergence is in the weak sense in C[0, T ] for any T > 0.

We note that we will have completely determined the limiting process
since a mean-zero continuous Gaussian process is completely specified by its
covariance function. Since our process is stationary we have

EU(s)U(t) = EU(0)U(t − s) = C(t − s).

Equation 2.5 gives the covariance C as it depends on the velocity density
function f . In Figure 2.2 we show plots of C vs t for two choices of f . The first
shows the case when velocities are chosen uniformly in [−1, 1]; the second
shows the case when they are chosen according to the standard Gaussian
distribution. Alternatively, when we choose velocities to be either −1 or
1, each with probability 1/2, then C = H defined by (2.4) and shown in
Figure 2.1.

In each case, the covariance function gives information about the be-
haviour of the limiting stochastic process. The value C(0) gives the variance
of the process, which is constant in time. Values C(t) for t > 0 indicate the
covariance between the position of the tracer particle at a given time and its
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position at t time units later. For both the uniform f and the Gaussian f ,
position at time t decorrelates with position at time 0 as t goes to infinity.
In the former case, there are alternating periods of positive and negative
correlation, whereas in the latter there is positive correlation for all times t.
In the case of the ±1 velocity distribution there is no decay of correlation.
This occurs because all the particles are moving at speed 1. Since the box
has length 2, all particles return to where they were initially after every 4
time units. Thus both the trajectory of the tracer particle and the covariance
function itself are periodic functions of period 4.

The standard method for proving weak convergence of random processes
in C[0, T ] is to first show that the finite-dimensional distributions converge
and then that the family of approximating processes is tight. In particular,
we have the following standard result, adapted from Billingsley [2, Thm. 7.5].
We define the function wδ,[0,T ] on C[0, T ] by

wδ,[0,T ](U) = sup
t1,t2∈[0,T ],|t2−t1|<δ

|U(t2) − U(t1)|. (2.6)

Theorem 2.3 Let Un, n ≥ 1, U be processes in C[0, T ] such that
(i) Finite-dimensional distributions converge: For all t1, . . . , td ∈ [0, T ] we
have that

{Un(tj)}j=1...d ⇒ {U(tj))}j=1...d

as n → ∞. (That is, weak convergence in R
d).

(ii) The processes satisfy a tightness criterion: For all ǫ > 0 and all η > 0
there is a δ > 0 such that

P{wδ,[0,T ](Un) ≥ ǫ} ≤ η,

for all n. Then Un ⇒ U in C[0, T ].

In Section 3 we establish the convergence of the finite-dimensional dis-
tributions and in Section 4 we establish the tightness criterion. We are able
to prove the former result without the assumption of the velocity distribu-
tion being compactly supported. We conjecture that the main theorem holds
without this assumption but could not obtain the tightness result without it.

Spitzer also divides his proof into proving convergence of finite-dimensional
distributions and then establishing tightness. In his case, Spitzer accom-
plishes the former task with the use of characteristic functions (Fourier trans-
forms of density functions). In our case, the fact that there is a finite number
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of particles allows us to avoid this and appeal directly to a version of the
Central Limit Theorem for medians. Proving tightness for our family of tra-
jectories cannot be done with Spitzer’s techniques, since his arguments rely
heavily on the processes having independent increments. Instead we observe
that, if velocities are bounded, over short intervals of time the tracer par-
ticle undergoes motion that approximates in distribution that of the tracer
in Spitzer’s system. We are able to control this approximation sufficiently
well to show that the trajectories in our system inherit the tightness of the
trajectories in Spitzer’s system.

3 Convergence of Finite-Dimensional

Distributions

In this section we establish the convergence of the finite-dimensional distri-
butions of the tracer particles’ trajectories to those of the limiting Gaussian
process. For any set of times t1, . . . , td ≥ 0, the random vector {Un(tj)}j=1...d

is the scaled median of the n i.i.d. random vectors {yi(tj)}j=1...d. We wish
to show that this random vector converges weakly to the Gaussian random
vector {U(tj)}j=1...d as n → ∞. This can be accomplished by a Central Limit
Theorem (CLT) for vector medians of the type discussed in the book [18].
The general theorems proved in this reference do not cover our case, but the
following proof borrows heavily from it.

In the proof we use the following characterization of weak convergence
in R

d. For a random vector Y in R
d, we define its distribution function

FY : R
d → R by

FY (x1, . . . , xd) := P{Y (1) ≤ x1, . . . , Y (d) ≤ xd},

where Y (j) is the jth component of Y . We say that x ∈ R
d is a continuity

point of the random vector Y if FY is continuous at x. Random vectors
Yn, n ≥ 1 converge weakly to Y if and only if for all continuity points x of Y ,

P{Yn(j) ≤ xj , j = 1, . . . , d} → P{Y (j) ≤ xj , j = 1, . . . , d}, (3.7)

as n → ∞ [2].

Lemma 3.1 Let the velocity density f satisfy conditions (i) and (ii) of As-
sumptions 2.1. Then the finite-dimensional distributions of Un converge
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weakly to those of U . That is, for any t1, . . . , td ∈ [0,∞),

{Un(tj)}j=1...d ⇒ {U(tj)}j=1...d,

as n → ∞.

Proof Let x ∈ R
d be a continuity point of {U(tj)}j=1...d with components

xj , j = 1, . . . , d. We use the characterization of weak convergence in R
d given

in (3.7). Consider the event of interest:

{Un(tj) ≤ xj , j = 1, . . . , d} = {n1/2xmed(tj) ≤ xj , j = 1, . . . , d}

= {xmed(tj) ≤ n−1/2xj , j = 1, . . . , d}.

Recall that xmed(t) is the median of yi(t), i = 1, . . . , n. Using a standard
identity for medians we have for each j

{xmed(tj) ≤ n−1/2xj} =

{

n
∑

i=1

1yi(tj )≤n−1/2xj
≥ n/2

}

,

where 1A is the indicator function of the event A. So

{Un(tj) ≤ xj} =

{

−
n
∑

i=1

1yi(tj )≤n−1/2xj
≤ −n/2

}

.

Let us manipulate the event on the right of the equation. We subtract the
expectation of the left-hand-side of the inequality from both sides. Since

E

(

−1yi(tj)≤n−1/2xj

)

= −

(

1 + n−1/2xj

2

)

,

we obtain

{Un(tj) ≤ xj}

=

{

n
∑

i=1

[

1 + n−1/2xj

2
− 1yi(tj)≤n−1/2xj

]

≤
n
∑

i=1

n−1/2xj

2

}

=

{

n−1/2

n
∑

i=1

[

1 + n−1/2xj − 21yi(tj )≤n−1/2xj

]

≤ xj

}

.
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Let us define
νn,i,j := 1 + n−1/2xj − 21yi(tj )≤n−1/2xj

(3.8)

and

Nn,j := n−1/2
n
∑

i=1

νn,i,j. (3.9)

Then

{Un(tj) ≤ xj , j = 1, . . . , d} = {Nn,j ≤ xj , j = 1, . . . , d}

=

{

n−1/2
n
∑

i=1

νn,i,j ≤ xj , j = 1, . . . , d

}

.

The event on the right is now in a form amenable to a multivariate central
limit theorem. In the appendix we show that {Nn,j}j=1...d weakly converges to
a Gaussian random vector with covariance matrix Σij = C(ti−tj). Therefore,

P{Nn,j ≤ xj , j = 1, . . . , d} → P{U(tj) ≤ xj , j = 1, . . . , d}

since x is a continuity point of {U(tj)}j=1...d. This establishes the desired
result. 2

4 Tightness Criterion

Now that we have proven that the finite-dimensional distributions of Un con-
verge to those of U , it remains to show that the sequence of processes Un

satisfies the tightness criterion of Theorem 2.3. We will do this by describing
another construction of the processes Un. First, we will provide a construc-
tion of the process in Spitzer’s paper [20], Vn ∈ C[0,∞), n ≥ 1. Then we will
apply a random transformation to Vn to obtain another sequence of processes
Ûn, defined on the same probability space, that also satisfies the tightness
criterion. This sequence of processes will have the advantage that they are
identical with Un on a certain time interval with high probability. This will
allow us to establish the tightness criterion for Un. Our approach here is
similar to that used to prove tightness in another context in [5].

We now describe one possible construction of Spitzer’s processes. For each
odd n ≥ 1 we place particles on the real line according to a uniform Poisson
process with constant density n/2. We add a tracer particle at the origin.
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We denote the particle positions with . . . z−2 ≤ z−1 ≤ z0 = 0 ≤ z1 ≤ z2 . . ..
We give the particles i.i.d. velocities wj from the density f . The motion of
the particles is the same as for our system but without walls: instantaneous
momentum- and energy-conserving collisions with free motion otherwise. At
times t ≥ 0 we multiply the position of the tracer particles by n1/2 to get
Vn(t). A more formal definition of Vn is

Vn := n1/2 lim
p→∞

med
i=−p...p

(zi + twi),

which is shown in [12] to agree with the physical definition above. Spitzer’s
paper proves that Vn weakly converges to Brownian motion (with some non-
random constant scaling in time). The result of interest is that Vn is a tight
sequence of processes in C[0, T ] for all T > 0 and that the second condition
of Theorem 2.3 is satisfied by them [2]. Moreover, the set of velocity distri-
butions that Spitzer obtains his result for contains the set of distributions
that satisfy Assumptions 2.1.

We now make some comments about the initial inter-particle spacing in
this system. Recall that for a uniform Poisson process on the real line, the
inter-particle spacings are i.i.d. exponentially distributed random variables.
Indeed, the addition of the tracer particle at 0 does not change this fact [20].
If we define ξi = zi − zi−1 for all i, the ξi are i.i.d. exponentially distributed
random variables with mean 2/n.

Each process Vn is defined on a probability space of bi-infinite sequences
({zi}, {wi}). For each odd n we shall define a new process Ûn(t) on the same
space. Let m = (n − 1)/2. We define the random variables

ρn =
zm+1 − z−m−1

2
, µn =

zm+1 + z−m−1

2
.

Note that

ρn =
1

2

m+1
∑

i=−m

ξi, Eρn =
n + 1

n
. (4.10)

We let
ẑi = (zi − µn)/ρn (4.11)

for all i. We have performed an affine transformation to the positions of the
particles so that ẑm+1 = 1 and ẑ−m−1 = −1. Now, with probability one,
there are exactly n particles in the open interval (−1, 1). We define Ûn as we
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did Vn before, but with the initial particle positions {ẑi}. So

Ûn(t) := n1/2 lim
p→∞

med
i=−p...p

(ẑi + twi). (4.12)

Using (4.11) and (4.12) we can obtain an explicit relationship between the
two sequences of processes. For each n,

Ûn(t) = n1/2 lim
p→∞

med
i=−p...p

((zi − µn)/ρn + twi)

= ρ−1
n n1/2

[

lim
p→∞

med
i=−p...p

(zi + (ρnt)wi) − µn

]

= [Vn(ρnt) − n1/2µn]/ρn.

Using this relation we now establish that the family of processes satisfies the
tightness criterion.

Lemma 4.1 The sequence of processes Ûn(t), n ≥ 1, n odd, satisfies the
second condition of Theorem 2.3 in C[0, T ] for any T > 0.

Proof Let us fix an interval [0, T ]. Recall the definition of wδ,[0,T ] from
(2.6). First note that

wδ,[0,T ](Ûn) = sup
t1,t2∈[0,T ],|t1−t2|<δ

|Ûn(t2) − Ûn(t1)|

= sup
t1,t2∈[0,T ],|t1−t2|<δ

|Vn(ρnt2) − Vn(ρnt1)|/ρn

= sup
t̂1,t̂2∈[0,ρnT ],|t̂1−t̂2|<ρnδ

|Vn(t̂2) − Vn(t̂1)|/ρn

= ρ−1
n wρnδ,[0,ρnT ](Vn),

where we have used the substitution t̂ = ρnt. Now let us fix an ǫ > 0 and an
ν > 0. We have that

P{wδ,[0,T ](Ûn) ≥ ǫ} = P{ρ−1
n wρnδ,[0,ρnT ](Vn) ≥ ǫ}

≤ P{ρn 6∈ [1/2, 2]} + P{w2δ,[0,2T ](Vn) ≥ ǫ/2}.

By (4.10) and the law of large numbers, ρn converges almost surely to 1. So
we can choose n1 such that n ≥ n1 implies that the first probability is less
than ν/2. By the tightness of Vn we can find an n2 and a δ such that the
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second term is less than ν/2 for all n ≥ n2. Choosing N = max(n1, n2) gives
the required result. 2

Our reason for introducing Ûn is that the positions ẑ−m, . . . , ẑm are now
distributed identically to the order statistics of the positions q1, . . . , qn of our
original system described in Section 2. To see this, note that we can write
the ẑi as

ẑ−m−1+j = (z−m−1+j − µn)/ρn

=

(

z−m−1 +

(

−m−1+j
∑

i=−m

ξi

)

− (z−m−1 + zm+1)/2

)

/ρn

= −1 + 2

(

−m−1+j
∑

i=−m

ξi

)

/

(

m+1
∑

i=−m

ξi

)

.

Since the ξi are i.i.d. exponential random variables, the ratio of the sums
of the ξi in the above expression for j = 1, . . . , n are distributed as the
order statistics of n i.i.d. uniform random variables on [0, 1] [6, p. 148]. So
ẑ−m−1−j for j = 1, . . . , n are distributed as the order statistics of n i.i.d.
uniform random variables on [−1, 1].

This gives us a way of defining our original process Un on the same space as
Vn and Ûn. Before we defined Un(t) = medi=1...n G(qi +pi) where qi were i.i.d.
uniform random variables on [−1, 1]. However, since the pi are distributed
independently of the qi, this is identical in distribution to defining Un as
medi=1...n G(q[i] + pi) where q[j] is the jth order statistic of the qi. Therefore,
we can define Un by

Un(t) = med
i=−m...m

G(ẑi + wit).

Physically, this has the following interpretation. To generate the random
trajectory Un we set up the particles as we did for Ûn. But now we remove
all but the n particles with positions ẑ−m, . . . , ẑm (which are all in [−1, 1])
and add walls at −1 and 1. We then let the particles move and interact
with each other and with the walls as before. The trajectory of the tracer
particle multiplied by n1/2 gives us Un. The trajectory of the particles will
be different for Un and Ûn. However, since particle speed is bounded by Vmax

according to Assumption 2.1(iii), there will be a period of time during which,
with high probability, the trajectory of the tracer will not be affected. This
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is the content of the following theorem.

Lemma 4.2 The probability that Ûn and Un are identical on the time-interval
[0, 1/4Vmax] goes to 1 as n → ∞.

Proof Because the maximum particle speed is less than Vmax and the max-
imum relative particle speed is less than 2Vmax, the tracer particle cannot be
affected on the time interval [0, 1/4Vmax] by anything that is further than dis-
tance 1/2 away from it. In particular, if the particle is further than distance
1/2 from the walls at time 0 it will not be able to distinguish the difference
between the set-ups for Ûn and Un for that interval of time, and the two
processes will be identical. Now,

P{ẑ0 > 1/2} = P{med
i=1...n

qi > 1/2}

= P{
∑

i=1...n

1qi>1/2 > n/2}

= P{n−1
∑

i=1...n

1qi>1/2 > 1/2}.

Since the E{1qi>1/2} = P{qi > 1/2} = 1/4 the probability in question con-
verges to 0 as n → ∞ by the law of large numbers. 2

With these two lemmas we can establish the tightness result.

Theorem 4.3 The family of processes Un(t), n ≥ 1 satisfies the second cri-
terion of Theorem 2.3 in C[0, T ] for any T > 0.

Proof Fix a T > 0. Let ǫ, ν > 0 be given. Let M be an integer such that
M/4Vmax ≥ T . For any δ > 0

wδ,[0,T ](Un) ≤ wδ,[0,M/4Vmax](Un)

≤ 2 max
i=1...M

wδ,[(i−1)/4Vmax,i/4Vmax](Un).

Since Un is a stationary process, wδ,[(i−1)/4Vmax,iVmax/2](Un) has the same dis-
tribution regardless of i. So

P{wδ,[0,T ](Un) ≥ ǫ} ≤
∑

i=1...M

P{wδ,[(i−1)/4Vmax,iVmax/2](Un) ≥ ǫ/2M}

= MP{wδ,[0,1/4Vmax](Un) ≥ ǫ/2M}.
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This last probability is less than or equal to

P{Un 6≡ Ûn on [0, 1/4Vmax]} + P{wδ,[0,1/4Vmax](Ûn) ≥ ǫ/2M}.

The first term can be made less than ν/2 by choosing n ≥ n1 for some n1,
by the previous lemma. Since Ûn is tight, we can choose a δ > 0 and an
n2 such that the second term is less than ν/2 for n ≥ n2. Using this δ and
N = max(n1, n2) gives us the result we need for Un. 2

5 Approximation with Soft Collisions

We have now shown that a particular sequence of deterministic processes
with random initial conditions has a component Un, defined by (2.3), that
converges to a mean-zero Gaussian process U specified by (2.5). As men-
tioned earlier, since these deterministic processes are not described purely
by ODEs we cannot test ODE solvers on them in a straightforward fashion.
So we shall now describe an approximation of these systems by systems of
ODEs. We will then provide numerical evidence that the trajectories of the
tracer particles of these ODE systems also converges to the stochastic process
U in a particular limit.

As before, for each odd positive integer n, we place n particles indepen-
dently on the interval [−n1/2, n1/2] according to a uniform distribution. Each
particle is independently given a velocity n1/2p where p is selected from the
distribution with density f , as before. The two choices of f we will consider
are (i) standard normal distribution, (ii) uniform on [−1, 1]. Though our
main convergence theorem does not apply in case (i), the convergence of the
finite-dimensional distributions does and that is what we shall consider in our
experiments. We denote the position and velocity of particle i at time t by
qi(t) and pi(t) respectively, with qi+1(0) > qi(0). In contrast to the previous
case, we describe the motion of the particles through a set of ODEs. The
differential equations describing the positions qi and the momenta pi are

q̇i(t) = pi(t), i = 1, . . . , n,
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and

ṗ1(t) = −k2(q1(t) − q2(t))+ + k2(−n1/2 − q1(t))+,

ṗi(t) = −k2(qi(t) − qi+1(t))+ + k2(qi−1(t) − qi(t))+, i = 2, . . . , n − 1,

ṗn(t) = −k2(qn(t) − n1/2)+ + k2(qn−1(t) − qn(t))+,

where (x)+ = max(0, x) for x ∈ R. This system can be viewed as a Hamilto-
nian system with Hamiltonian

H(q, p) = V (q) +
1

2

n
∑

i=1

p2
i , (5.13)

where

V (q) =
1

2
k2(−n1/2 − q1)

2
+ +

1

2

n−1
∑

i=2

k2(qi−1 − qi)
2
+ +

1

2
k2(qn − n1/2)2

+. (5.14)

The tracer is chosen as the particle with the median position at time zero.
The flow of this system of ODEs is very similar to that of the original

process. However, when two particles meet each other, rather than instan-
taneously exchanging velocities, they are allowed to overlap. While overlap-
ping, they apply a repelling force to each other that is proportional to the
amount that they have overlapped. Thus, while the particles are in contact,
they go through simple harmonic motion. After half a period of this motion,
they cease to overlap and have velocities pointing away from each other.
Since momentum and energy are conserved, the net effect is that their ve-
locities are exchanged, as in the hard collision case. However, their positions
are displaced relative to where they would be after a hard collision. This
only describes a two-particle collision: collisions with three or more particles
occur with non-zero probability and are more complicated.

In the ODEs above, k is a constant denoting the stiffness of the repulsion
between the particles, and between the particles and the walls. For k = 0
the particles do not interact at all; as k → ∞ we expect the trajectories of
the system to converge to those of the original system with the same initial
data. (See, for example, [17] or [22].)

In order to have a sequence of systems of ODEs that converges to the
same stochastic process as the system we considered previously, we allow k
to go to infinity as n does. Here, we make the choice k = γn2, for some
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positive γ. In this case the duration of a collision between two particles is on
the order of n−2. The average length of time between collisions for a single
particle is on the order of n−1. So, as we increase n, the collision durations
become shorter with respect to the length of time between collisions, and in
the limit of n → ∞ we expect the system to be a close approximation to the
system with instantaneous collisions. We conjecture that the ODE system,
with this choice of k, has the same limiting properties as those we proved
for the instantaneous collision system: the trajectory of the tracer particles
weakly converges to U . We believe this holds true for all positive γ, though
in the following we fix γ = 1. We now provide some numerical evidence to
support this conjecture in this case.

As before, C is the covariance of the limiting process U which depends on
f . Define Cn to be the covariance of our original hard particle process with n
particles described in Section 2. Our main theorem in Section 3 shows that
Cn(t) converges to C(t) for all t for both choices of f above. We denote by
Cn,k the covariance function for the process described by the ODEs with n
particles and a stiffness parameter k. A consequence of the softened system
converging weakly to U as n → ∞ with k = n2 would be the convergence of
Cn,k to C. For a given n, k the natural way to obtain an accurate approxi-
mation to Cn,k would be to numerically simulate the system with a time step
so small that trajectories are accurately computed over the time interval of
interest. We would expect that steps of size ∆t = o(1/k) = o(1/n2) would
be required for this. Unfortunately, this is impractical for larger values of
n. Instead, let us define Cn,k,∆t to be the autocovariance function for the
numerical approximation to the system with n particles, stiffness parameter
k, and integration steplength ∆t. We will compute Cn,k,∆t for diminishing
values of ∆t until we observe convergence. This converged value we will take
as our estimate to Cn,k. In this section we will use exclusively the symplectic
Euler method, given by the formulae:

qn+1 = qn + ∂H/∂p(qn, pn),
pn+1 = pn − ∂H/∂q(qn+1, pn+1),

(5.15)

where H is given by (5.13) and (5.14). This is explicit in our case since
∂H/∂q does not depend on p.

We demonstrate this procedure for the Gaussian velocity distribution in
Figure 5.1. For n = 3, 15, 75 with k = n2, we show Cn,k,∆t − Cn for a range
of ∆t. We subtract the function Cn so that it is easier to see the differences
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Figure 5.1: Cn,k,∆t − Cn for three choices of n, k for a range of ∆t with
the Gaussian initial velocity distribution. On the first graph the standard
deviation of the error is approximately the thickness of the lines; on the
second and third representative error bars are shown.19



between Cn,k,∆t for different ∆t on one graph. (Note that the scale on the y-
axis differs in each plot.) For each n, Cn,k,∆t appears to converge as ∆t → 0
within the accuracy provided by our statistics. Moreover, convergence is
attained with a stepsize of ∆t > 1/2k. Similar results were found for the
uniform velocity distribution as we show in Figure 5.2. Accordingly, we take
results computed with symplectic Euler with the stepsize ∆t = 1/2k to be
accurate estimates of Cn,k for both velocity distributions.

To show that Cn,k converges to C with k = n2, we take these estimated
values and plot the difference C − Cn,k,∆t, ∆t = 1/2k, for varying n. Fig-
ure 5.3 shows that the difference appears to converge to zero for both veloc-
ity distributions, though this is less clear in the case of the uniform velocity
distribution. Of course, convergence of the covariance function does not
guarantee convergence of the process, but the evidence partly confirms our
hypothesis.

These calculations suggest two conclusions for the velocity distributions
considered. Firstly, the system of ODEs above, with scaling k = n2, has
the same limiting statistical property for its tracer particle as the system
with instantaneous collisions. Secondly, when the solution of the system
of ODEs is numerically approximated by the symplectic Euler method with
stepsize ∆t = 1/2k, this stochastic limit is also recovered. Of course, another
possible interpretation of the data would be that the system of ODEs does
not capture the same stochastic limit, though it does when approximated by
the symplectic Euler method over a range of stepsizes. We believe this latter
possibility is quite unlikely.

6 Numerical Approximation

In the previous section we presented a sequence of particle systems described
by ODEs and parametrized by n, the number of particles, and k the stiffness
of the collisions. If we let k = n2, it appears that the trajectory of the
tracer particle weakly converges to that of the stochastic process U as n goes
to infinity. Moreover, when the system was integrated with the symplectic
Euler method with a large stepsize (∆t = 1/2k), the same stochastic limit
was obtained. In this section we will examine how other methods perform in
comparison.

For any given numerical integrator, as we increase n (and thus k), it
is necessary for ∆t to be reduced in order to capture any features of the
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system. Since the duration of time two particles spend colliding is of order
1/k, to have an integrator take at least some steps during each collision as
n → ∞ it is necessary that ∆t = O(1/k) or smaller. We have already seen
that symplectic Euler captures the limiting statistics with this scaling. For
a method to be competitive with symplectic Euler near the stochastic limit,
it must have ∆t = O(1/k) as well. (Indeed, we expect that if ∆t goes like
1/kd for d > 1 then all convergent methods will capture statistics well on
finite time intervals in the limit.) Accordingly, we shall test all methods with
steplength ∆t = γ/k for some γ > 0.

In Subsection 6.1 we will describe the five numerical methods we will
consider. In Subsection 6.2 we will examine how each method performs
computing individual tracjectories of the system for three values of n. We
conclude in Subsection 6.3 by examining how the symplectic Euler method
and its projected version fare at capturing the limiting statistical behaviour
of the system.

6.1 Numerical Methods

We consider five numerical methods all used with a constant stepsize. The
first is the symplectic Euler method as given in (5.15). The second and third
are the standard methods backward Euler and forward Euler. The fourth is
a fourth-order Runge-Kutta method [10], with Butcher tableau

0
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0 1
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1 0 0 1
1
6
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6
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1
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which we denote by RK4. Lastly, we consider a step-and-project method
which we shall call projected symplectic Euler. This energy-conserving method
requires some explanation.

One property of the symplectic Euler method which may be viewed as
a drawback for molecular dynamics simulations is that it does not conserve
the energy of the system exactly. One way to remedy this is to use a step-
and-project method; see [9, IV.4]. A step-and-project method is a modified
version of a standard time-stepping algorithm wherein the solution is forced
to have the correct energy after each step. This is done by first taking a step
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with a standard method— which will lead to a value with possibly incorrect
energy— and then projecting this value onto the manifold of states with the
correct energy.

Typically, step-and-project methods for Hamiltonian systems are imple-
mented as follows. Suppose we are numerically integrating a Hamiltonian
system of ODEs on the space of points x = (q, p) ∈ R

2n with fixed energy
H(x) = H0. From a state xn = (qn, pn) with the correct energy a standard
time-stepper is used to obtain the state x∗

n+1. The gradient of the Hamilto-
nian is computed at this state: s = ∇H(x∗

n+1). Then an α ∈ R is computed
so that H(x∗

n+1 + αs) = H0. Then we set xn+1 = x∗
n+1 + αs. (In our case an

α was determined so that |H(xn+1) − H0| < 10−5.)
In our implementation there are two aspects of this scheme that we mod-

ify. Firstly, the we use a different projection direction s. The usual choice,

s = ∇H(q, p) = [∇V (q) p]T ,

does not scale well with increasing k. Instead we use

s =
[

∇V (q) k2p
]T

.

Secondly, for our system it is not always possible to find an α that solves the
above nonlinear equation accurately enough. In these rare cases we find an
α that locally minimizes the residual of the equation, and then proceed with
the projection to H(x) = H0 as usual on subsequent steps. In the following
experiments, this occurs only for the n = 3 case, and in less than 0.25% of
the trials.

6.2 Single Trajectories

Before we consider these methods’ ability to reproduce the stochastic limit,
we will first examine the performance of each method on a single trajectory
of the model system with n = 3, 15, 75 and k = n2, as in the previous section.
In each case we plot the position of each particle versus time on the time
interval [0, 4]. The tracer particle is indicated by the darker, thicker line.
Initial velocities were generated from the Gaussian distribution.

In Figure 6.1 we show trajectories computed with the symplectic Euler
method with a step size of ∆t = 1/k. This steplength is close to the largest
that can be used without producing trajectories that quickly blow up due to
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Figure 6.1: Trajectories computed with the symplectic Euler method with
∆t = 1/k. Plots are of particle position versus time for n = 3, 15, 75, k = n2.

an increase in energy. This produces reasonable trajectories. In particular,
we can see by looking where two particles collide that momentum is conserved
(a property of all partitioned Runge-Kutta methods) and the energy of the
two particles does not stray too far from what is expected.

Figure 6.2 shows trajectories computed with the backward Euler method
with the same step length ∆t = 1/k. This method has the shortcoming that
particles tend to lose energy when they collide. This can already be observed
for n = 3 (by comparison with the figure above) but worsens as n increases.
For n = 75 the particles quickly have very little energy and stick to the
walls when they collide there. This could be improved by decreasing the step
length, but backward Euler is already much more expensive than symplectic
Euler, and could only be practical if a much longer timestep were possible.
Moreover, we believe that with the scaling ∆t = γk, trajectories will become
progressively worse with increasing n for any γ > 0.

In Figure 6.3 we show trajectories computed with forward Euler with
∆t = 0.0039/k. Forward Euler has a strong tendency to add energy to the
system at every collision. To obtain comparable performance with symplectic
Euler for small n it is necessary to take a vastly smaller step. Even with this
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Figure 6.2: Trajectories computed with the backward Euler method with
∆t = 1/k. Plots are of particle position versus time for n = 3, 15, 75, k = n2.

smaller step, for large n the energy of the solution computed with forward
Euler grows rapidly in time. We conjecture that if ∆t = γ/∆t, for some
γ > 0, then the trajectory of the tracer particle will diverge as a stochastic
process as n → ∞.

Figure 6.4 shows trajectories computed with RK4. This method is, of
course, more accurate than forward Euler for sufficiently small ∆t. However,
as n increases the method also shows increasing instability in energy, and
performs even worse than forward Euler if run with the same steplength.
With a steplength of ∆t = 0.00028/k, when n = 75, overflow occurs near
t = 3.5 due to increasing energy.

Figure 6.5 shows trajectories computed with the projected symplectic
Euler method with ∆t = 1/k. In this case it is difficult to see any major
difference between the this computation and that with the regular symplectic
Euler method. However, since the projected symplectic Euler method is more
costly, the method would not be practical unless a longer step-length could
be used than with symplectic Euler.

Accordingly, Figure 6.6 shows trajectories computed with the same method
with ∆t = 1.25/k. However, this slight increase in ∆t has drastic effects.
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Figure 6.3: Trajectories computed with the forward Euler method with ∆t =
0.0039/k. Plots are of particle position versus time for n = 3, 15, 75, k = n2.
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Figure 6.4: Trajectories computed with RK4 with ∆t = 0.00028/k. Plots
are of particle position versus time for n = 3, 15, 75, k = n2.
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Figure 6.5: Trajectories computed with the projected symplectic Euler
method with ∆t = 1/k. Plots are of particle position versus time for
n = 3, 15, 75, k = n2.

Even with n = 3 we can see that the top particle’s trajectory is being af-
fected by the collisions of the other two particles at the other end of the
interval. This unphysical behaviour is due to the energy projection. As n
increases, this becomes worse: when n = 75 the net results of this non-local
behaviour is that only a few particles have the vast majority of the energy
in the system at any time.

6.3 Limiting Statistics

Clearly, neither the forward Euler, backward Euler, nor RK4 methods will
capture long term statistics properly. Accordingly, for the our experimental
investigation of the preservation of statistical limits, we only consider the
symplectic Euler method and its projected version. In the following we will
use the Gaussian distribution for the initial velocities.

Figure 6.7 shows C − Cn,k,∆t, with Cn,k,∆t computed by the symplectic
Euler method with ∆t = 1/k, where k = n2 and n = 3, 15, 75. The covariance
function appears to converge to the limiting covariance function C with this
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Figure 6.6: Trajectories computed with the projected symplectic Euler
method with ∆t = 1.25/k. Plots are of particle position versus time for
n = 3, 15, 75, k = n2.

scaling. This provides an example of the phenomenon which we hoped to
explore. Since with the ∆t ∼ 1/k scaling we are not resolving fine details of
the collisions, we are not computing trajectories accurately in this limit.

We perform the same numerical experiment with the projected symplectic
Euler method. Figure 6.8 shows C − Cn,k,∆t computed by this method. As
before ∆t = 1/k, k = n2, and n = 3, 15, 75. Comparison with Figure 6.7
shows that for n = 3, 15 the method computes similar covariance functions
to those of the non-projected method. However, for n = 75 the covariance
function appears different. It is difficult to ascertain from this plot whether
convergence will occur as n → ∞ with this step length ∆t = 1/k. In either
case, the covariance function is not converging to C as rapidly as the regular
symplectic Euler method converges, thus we know that the projection has
some effect on statistics.

We repeat the experiment with the projected method with a slightly larger
timestep: ∆t = 1.251/k. The results shown are significantly worse than for
the previous steplength. The computed covariance function is clearly not
converging to C as n → ∞. These observations correspond with what we
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Figure 6.7: Symplectic Euler method. C(t) − Cn,k,∆t(t) for t ∈ [0, 2], with
∆t = 1/k, and k = n2. The standard deviation of the error on the curves
never exceeds 0.002.
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Figure 6.8: Projected symplectic Euler method. C(t)−Cn,k,∆t(t) for t ∈ [0, 2]
with k = n2 and ∆t = 1/k. The standard deviation of the error on the curves
never exceeds 0.005.
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Figure 6.9: Projected symplectic Euler method. C(t)−Cn,k,∆t(t) for t ∈ [0, 2]
with k = n2 and ∆t = 1.251/k. The standard deviation of the error on the
curves never exceeds 0.005.

observed in individual trajectories previously.
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A Appendix

Recall the definition of Nn from (3.9). We need to establish the following
result: For any t1, t2, . . . , td ∈ [0, T ] the random vector

[Nn(t1), Nn(t2), . . . , Nn(td)]

converges in distribution to a Gaussian random vector with covariance matrix
Σij = C(ti − tj). Here, C(t) is as defined in (2.5).
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For our later convenience we define

Ft(x1, x2) := P{yj(0) ≤ x1, yj(t) ≤ x2}. (A.16)

Since for each j the process yj is stationary, this implies

P{yj(t1) ≤ x1, yj(t2) ≤ x2} = Ft2−t1(x1, x2)

for any t1, t2 ∈ [0, T ].
We apply a Central Limit Theorem of Dvoretzky ([7], Theorem 1). The

result holds for certain dependent random vector arrays, but we will only
need it for the independent case.

Theorem A.1 (From [7]). For each n, let Xn,i, 1 ≤ i ≤ n be independent
random column vectors in R

d with EXn,i = 0. Let Σ be a d × d matrix. For
a vector X, denote its norm by |X| and its transpose by XT . For an event
A, let

E(X; A) := E(X1A).

Suppose

1. limn→∞

∑n
i=1 EXn,iX

T
n,i = Σ,

2. for all ǫ > 0, limn→∞

∑n
i=1 E(|Xn,i|2; |Xn,i| > ǫ) = 0.

Then Sn = Xn,1 + · · · + Xn,n ⇒ N (0, Σ) as n → ∞. 2

In our case, Sn and Xn,i are vectors of length d with Sn,j = Nn,j and
Xn,i,j = n−1/2νn,i,j, where Nn,j and νn,i,j are defined in (3.9) and (3.8) re-
spectively. We proceed to check the hypotheses of the CLT.

First note that En−1/2νn,i,j = 0 for each n, i, j. Furthermore, with some
algebra and the fact that

E[1yi(tj)≤n−1/2xj
] = (1 + n−1/2xj)/2,
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we obtain

n
∑

i=1

E
[

(n−1/2νn,i,j)(n
−1/2νn,i,k)

]

= n−1
n
∑

i=1

[−(1 + n−1/2xj)(1 + n−1/2xk)

+4P{yi(tj) ≤ n−1/2xj , yj(tk) ≤ n−1/2xk}]

= 4Ftk−tj (n
−1/2xj , n

−1/2xk) − (1 + n−1/2xj)(1 + n−1/2xk)

where Ft is defined in (A.16). It can be shown that Ft is continuous at
(0, 0) for all t ∈ [0, T ], (for example, by showing that Ft is Lipschitz in each
variable there.) Hence the above quantity converges to 4Ftk−tj (0, 0) − 1 as
n → ∞. Lemma A.2 shows that 4Ft(0, 0) − 1 = C(t) for t ≥ 0 so this is the
appropriate covariance as stated in the theorem.

In order to verify the final condition of the CLT theorem, observe that
|νn,i,j| ≤ 2 for all n, i, j, so

n
∑

i=1

E

[

|(n−1/2νn,i,j)(n
−1/2νn,i,k)|;

d
∑

l=1

|n−1/2νn,i,l| > ǫ

]

=
n
∑

i=1

n−1
E

[

|νn,i,j||νn,i,k|;
d
∑

l=1

|νn,i,l| > n1/2ǫ

]

≤ E
[

4; 2d > n1/2ǫ
]

= 4P{2d > n1/2ǫ}

which converges to zero as required. 2

Lemma A.2 We have

4Ft(0, 0) − 1 = C(t).

Proof We can rewrite Ft as

Ft(z1, z2) = E[1q≤z1
1G(q+tp)≤z2

]

= 1
2

∫∞

−∞

∫ 1

−1
1q≤z1

1G(q+pt)≤z2
dqf(p) dp.
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So

4Ft(0, 0) − 1 = 2

∫ ∞

−∞

∫ 1

−1

1q≤01G(q+pt)≤0dqf(p) dp − 1

= 4

∫ ∞

−∞

H̃(pt)f(p) dp − 1

where we have defined

H̃(z) :=
1

2

∫ 1

−1

1q≤01G(q+z)≤0dq.

In order to obtain a more explicit expression for H̃ , we first observe that
it will be periodic with a period of 4. Then some lengthy but straightforward
calculations will show that

H̃(z) =















(1 − z)/2, 0 ≤ z ≤ 1,
0, 1 ≤ z ≤ 2,

(z − 2)/2, 2 ≤ z ≤ 3,
1/2, 3 ≤ z ≤ 4.

We can take advantage of the fact that f is symmetric about 0:

4Ft(0, 0) − 1 = 4

∫ ∞

−∞

H̃(pt)(f(p) + f(−p))/2 dp − 1

= 2

∫ ∞

−∞

(H̃(pt) + H̃(−pt))f(p) dp − 1

=

∫ ∞

−∞

[2(H̃(pt) + H̃(−pt)) − 1]f(p) dp

The expression in the square brackets happens to equal H of equation (2.4).
So

4Ft(0, 0) − 1 =

∫ ∞

−∞

H(pt)f(p) dp = C(t)

as required. 2
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