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Preface

During the late 1940s and the early 1950s cohomology theories had been defined
in three different areas of abstract algebra. These were the theories of Hochschild
[1945, 1946] for associative algebras, Eilenberg & Mac Lane [1947] for groups, and
Eilenberg & Chevalley [1948] for Lie algebras. In part, these theories grew out
of the fact that Eilenberg and Mac Lane had noticed, as early as 1939 or 1940,
that certain computations involving extensions of groups greatly resembled certain
computations in the cohomology theory of topological spaces.

The three definitions were similar but not identical and had a certain ad hoc
aspect. Then Cartan and Eilenberg showed in their influential book [1956] that
there was a uniform definition of homology and cohomology that united the three
examples. Here is a brief description of their approach. Let C stand for one of
the three categories groups, associative algebras, or Lie algebras and let Assoc be
the fixed category of associative algebras. Then they defined a functor env: C
// Assoc (for enveloping algebra) with the property that for any object C of C ,

a left module for the associative algebra env(C ) was the same thing as a coefficient
module for the usual cohomology of C . In the case of groups the functor assigned
to each group its group ring. For an associative algebra A, the enveloping algebra
is A⊗Aop and for a Lie algebras it was its usual enveloping algebra, which will be
described in 6.5. In each case, the crucial fact was that the cohomology vanished
when the coefficient module was injective. It became clear somewhat later, however,
that the Cartan-Eilenberg approach was limited to those cohomology theories that
vanished on injective modules, which was not generally the case.

Around 1960 my thesis supervisor, the late David K. Harrison, produced a co-
homology theory for commutative algebras [1962]. Somewhat surprisingly, I showed
by simple example that the cohomology did not necessarily vanish with injective
coefficients, so that the Cartan–Eilenberg approach could not work in that case.
The counter-example appeared as Barr [1968a]. (As an amusing sidelight, that note
was actually written, submitted, refereed, and accepted for publication by Murray
Gerstenhaber, then editor of the Bulletin of the AMS who thought, against my
judgment, that it should be published.)

In 1962 I arrived at Columbia University as a newly minted Ph.D. There I found
that Eilenberg had gathered round himself a remarkable collection of graduate stu-
dents and young researchers interested in homological algebra, algebraic topology,
and category theory. There may have been others, but the ones I recall are Harry
Appelgate, Jon Beck, Peter Freyd Joe Johnson, Bill Lawvere, Fred Linton, Barry
Mitchell, George Rinehart, and Myles Tierney. Unfortunately, Peter Freyd and Bill
Lawvere were no longer in residence, but it was still a remarkable collection.

The Cartan-Eilenberg to cohomology can be characterized as cohomology com-
puted via an injective resolution of the coefficient variable. Rinehart and I were

vii
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interested in trying to define cohomology by resolving the algebra variable instead
of the coefficient module. Our attempts Barr [1965a,b] and Barr & Rinehart [1966]
were not particularly successful, although they did point to the central role of the
derivations functor. In retrospect, one can say that the basic reason is that these
categories of algebras are not abelian and that simplicial objects replace chain com-
plexes in a non-abelian setting. I was not at that time at all aware of simplicial
objects. That I learned from Jon Beck, who came to this subject from topology.

During the time I was at Columbia, Beck was writing his thesis (it was not
presented until 1967, but there was a complete draft by 1964) defining and studying
the essential properties of cotriple cohomology using a simplicial resolution that
came from a cotriple. There were four (including the cohomology of commutative
algebras) theories to compare it to, as described above. In all cases it was clear that
the cotriple H1 was equivalent to the Cartan–Eilenberg, respectively Harrison, H2

since they both classified “singular” extensions. (There is always a dimension shift
by one, which I will cease mentioning.) Beck and I spent much of the calendar year
1964—first at Columbia, then at the University of Illinois in Urbana—attempting
to show that the cotriple cohomology was the same as the older ones in all degrees.
This task seemed, at the time, hopeless. The cochain complexes that resulted from
the theories were utterly different and we just had no handle on the question.

Then over the Christmas vacation, 1964, Beck went to New York and visited
Appelgate, who was writing a thesis on acyclic models. He suggested that we try to
use this technique on our problem. His version was based on using Kan extensions
to induce a cotriple on a functor category. When Beck returned to Urbana, he told
me about this. We quickly determined that in our case, we already had a cotriple,
the one we were using to define the cohomology, and did not need to go into a
functor category. Within a matter of days, we had worked out the simple version of
acyclic models that we needed and verified the hypotheses for the cases of groups
and associative algebras Barr & Beck [1966]. The use of acyclic models had turned
a seeming impossibility into a near triviality. Some years later, I was able to verify
the hypotheses for Harrison’s commutative cohomology, but only for algebras over
a field of characteristic 0. In the meantime, Quillen produced an example showing
that the Harrison cohomology over a field of finite characteristic was not a cotriple
cohomology. As for Lie algebras, this was not actually dealt with until Barr [1996a]
when I examined the Cartan–Eilenberg theory from an abstract point of view.

Somewhat after the Barr-Beck developments, Michel André [1967, 1974] ob-
served that there was a simple version of acyclic models based on an easy spectral
sequence argument. This was weaker than the original version in several ways,
including that its conclusion was a homology isomorphism rather than a homotopy
equivalence. An additional flaw was that it did not conclude that the homology
isomorphism was natural, but showed only that, for each object, the cohomology
groups of that object were isomorphic. Still, it was easy to apply and André made
great use of it in his study of cohomology of commutative rings (the definition he
used was equivalent to the cotriple cohomology, not to the Harrison cohomology).

Partly to summarize in one place of all this development, partly because a
powerful technique seemed in some danger of disappearing without a trace, I de-
cided, sometime around 1990, to try to write a book on acyclic models. I produced
some notes and then offered a course on the subject in the early 1990s. Among
the registered students there was one, named Rob Milson, who was writing a thesis
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on differential geometry and applied mathematics. Not only did he register for the
course, he attended all the lectures and studied the material carefully. Then he
came up with a series of questions. My attempts to answer these questions led to
a wholly different way of looking at acyclic models.

One question that Milson asked concerned the naturality of André’s homology
version of acyclic models. I thought that this could be settled by showing that
André’s isomorphism was induced by a natural transformation between the chain
complexes in the category of additive relations that turned out to be a function
and an isomorphism when you pass to homology. I am reasonably confident that
this would have worked. However, in order to explore it, I began by looking at the
following diagram (which I take from page 108)

‘ L−1G
•+1 L•G

•+1oo
βG•+1

K−1G
•+1

L−1G
•+1

f−1G
•+1

��

K−1G
•+1 K•G

•+1oo αG
•+1

K•G
•+1

L•G
•+1

K•G
•+1

L•G
•+1L•G
•+1 L•

L•ε
//

K•G
•+1

L•G
•+1

K•G
•+1

L•G
•+1

K•G
•+1 K•

K•ε // K•

L•

K•

L•

in which K and L are chain complex functors and G is the functor part of a cotriple.
The goal is to construct a natural transformation from the homology of K to that of
L. The meaning of the rest of this diagram, in particular the meaning of G•+1 will
be explained in chapter 5. Three of the five arrows are in the appropriate direction.
I was struck immediately by the fact that the standard acyclic models theorems
have two principal hypotheses. In the homology version, one of these principal
hypotheses is that Kε induces an isomorphism in homology and the other one is
that βG•+1 does. In the homotopy version, the two principal hypotheses imply im-
mediately that Kε and βG•+1 have homotopy inverses. Thus if you formally invert
the maps that are homology isomorphisms, respectively homotopy equivalences,
the required transformation K // L appears immediately. There is a well-known
theory, developed in [Gabriel & Zisman, 1967], of inversion of a class of arrows in
a category. Using this theory allows us to define the transformation, show that it
is natural, and derive some of its properties, not only for homology and homotopy,
but also for possible classes of arrows intermediate to those. The most interesting
one is that of weak homotopy: the arrow K // L is natural and has, for each
object, a homotopy inverse, which is not necessarily natural. This weak homotopy
version, which answers another question raised by Milson, applies in the following
situation. Suppose M is a Cp manifold (of some dimension n) and q is an integer
with 0 ≤ q ≤ p. Let Cqi (M) denote the subgroup of Ci(M) = C0

iM that is gen-
erated by the singular i-simplexes that are q times differentiable. Is the inclusion
Cqi (M) // Ci(M) a homotopy equivalence? The answer, as best we know it, is
that it is for each M but we know of no homotopy inverse that is natural as a
functor of M . Before the discovery of Theorem 5.3.1, I had attempted to prove
this by a direct computation, but had got nowhere. The acyclic models proof is
sufficiently constructive as to give, at least in principle, a direct computation, but
I have not tried it. The main results appeared in Barr [1996b].

This example illustrates another fact. As we will see in 5.3.1, not only does f
exist in the fraction category, but it is the unique extension of f−1. Thus, if we
already have f :K // L such that f−1 is an isomorphism, then we know that in
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the fraction category f induces the homology isomorphism or the (weak) homotopy
equivalence.

The upshot of this was that I had to throw away the preliminary notes and
redo the book from the beginning; the book you see before you is the result.

This book could be used as a text for a somewhat idiosyncratic course that
serves as an introduction to both homological algebra and algebraic topology. The
centerpiece of the book is the main theorem on acyclic models that was discovered
only in 1993, as just described. Although various forms of acyclic models have long
been known (going back at least to the Eilenberg–Zilber [1953] theorem, they were
mostly in the form of a technique, rather than an explicit theorem.

Aside from the acyclic models theorem itself, this book includes the mathemat-
ics necessary to understand and apply the basic theorem as well as some of what
is needed to understand the examples. The only prerequisite is familiarity with
basic algebra and topology. In a very few places, specific results not found in basic
courses are used. An example is the Poincaré–Witt theorem on the structure of
the enveloping algebra associated to a Lie algebra in the discussion of the Lie alge-
bra cohomology. Aside from that and one or two other places the book is almost
entirely self contained.

Chapter 1 is a general introduction to category theory. Chapter 2 is an intro-
duction to abelian categories and also to homological algebra. Chain and cochain
complexes are defined as well as Ext and Tor. Chapter 3 introduces the homology
of chain complexes and also discusses simplicial objects and the associated chain
complexes. Chapter 4 is about that part of the theory of triples (= monads) that
is needed for acyclic models. Chapter 5 proves the main acyclic models theorem
and draws some conclusions, including the older versions of the theorem. The
remaining chapters give applications of the theory. Chapter 6 discusses the homo-
logical algebra of Cartan & Eilenberg [1956] and uses acyclic models to give general
criteria for the cohomology theories described there to be equivalent to cotriple
cohomologies. Then these criteria are used to show that the various theories there
are, in fact, cotriple cohomology theories. In Chapter 7 we show that other co-
homology theories in algebra, notably the characteristic 0 cohomology theory for
commutative algebras, which does not fit the Cartan–Eilenberg pattern, is also a
cotriple cohomology theory. Finally, in Chapter 8 we give applications to topology,
including proofs of the equivalence of singular and simplicial homology on triangu-
lable spaces, a proof of the equivalence of oriented and ordered chain complexes, a
proof of the Mayer–Vietoris theorem, and a sketch of an acyclic models proof of the
de Rham theorem. Notably absent is any use of simplicial approximation (although
subdivision is used).

I would like to thank an anonymous referee for catching a number of embar-
rassing errors. I did not follow his (or her; I will adhere to the former practive of
using these pronouns androgenously) advice in all matters, however. He finds the
last chapter on applications of algebraic topology without interest. I think that it is
at least moderately interesting that one can develop the theory without simplicial
approximation and that one can go quite far without spectral sequences.

Chapter 1 consists largely of Chapter 1 of Barr & Wells [1984] and Chapter 4
is mainly part of Chapter 4 of the same book. I would like to thank Charles Wells
for permission to use this material.
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Not every part of Chapter 1 is actually required for the rest of the book. I
have kept them so that the book would also give a self-contained introduction to
categories. The following are the sections and parts of sections of Chapter 1 that
are used in the rest of the book: 1, 2.1–2.5, 3, 4.1, 5.1–5.2, 6.1–6.3 7.1–7.3, 8,
9.1–9.3, 10, 11.

This and the next paragraph added in revision 2010-08-29: I would like to thank
Artour Tomberg for having read the entire book carefully and found a large number
of errors, corrected in this version. The most embarrassing were in the last chapter
on applications in algebraic topology which he seems to have found especially in-
teresting (see preceding paragraph). In particular, the material on the equivalence
of ordered and oriented homology has been rewritten.

This is not quite based on the published version. I never got the original back
from the AMS, so it is based on what I sent them. Section 1.12 on filtered colimits
does not appear in the printed version for reasons I no longer recall eight years
later. It was in my last version and was a complete surprise when Artour pointed
out that it was missing from the printed version.





CHAPTER 1

Categories

1. Introduction

The conceptual basis for the acyclic models theorem that is the main topic of this
book is the notion of category. The language of categories is a convenience in many
areas of mathematics, but in the understanding of the role of acyclic models, it is
a necessity. The results cannot be stated, let alone proved, without reference to
categories. In this chapter, we give a brief, but fairly complete, introduction to the
subject.

2. Definition of category

2.1. A category C consists of two collections, Ob(C ), whose elements are the
objects of C , and Ar(C ), the arrows (or morphisms or maps) of C . To each
arrow is assigned a pair of objects, called the source (or domain) and the target
(or codomain) of the arrow. The notation f :A // B means that f as an arrow
with source A and target B. If f :A // B and g:B // C are two arrows, there
is an arrow g ◦ f :A // C called the composite of g and f . The composite is
not defined otherwise. We often write gf instead of g ◦ f when there is no danger
of confusion. For each object A there is an arrow idA (often written 1A or just 1,
depending on the context), called the identity of A, whose source and target are
both A. These data are subject to the following axioms:

(1) for f :A // B,
f ◦ idA = idB ◦ f = f

(2) for f :A // B, g:B // C, h:C // D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f

A category consists of two “collections”, the one of sets and the one of arrows.
These collections are not assumed to be sets and in many interesting cases they are
not, as will be seen. When the set of arrows is a set then the category is said to
be small. It follows in that case that the set of objects is also a set since there is
one-one correspondence between the objects and the identity arrows.

While we do not suppose in general that the arrows form a set, we do usually
suppose (and will, unless it is explicitly mentioned to the contrary) that when we
fix two objects A and B of C , that the set of arrows with source A and target B
is a set. This set is denoted HomC (A,B). We will omit the subscript denoting the
category whenever we can get away with it. A set of the form Hom(A,B) is called
a homset. Categories that satisfy this condition are said to be locally small.

1



2 1. CATEGORIES

Many familiar examples of categories will occur immediately to the reader,
such as the category Set of sets and set functions, the category Grp of groups and
homomorphisms, and the category Top of topological spaces and continuous maps.
In each of these cases, the composition operation on arrows is the usual composition
of functions.

A more interesting example is the category whose objects are topological spaces
and whose arrows are homotopy classes of continuous maps. Because homotopy is
compatible with composition, homotopy classes of continuous functions behave like
functions (they have sources and targets, they compose, etc.) but are not functions.
This category is usually known as the category of homotopy types.

All but the last example are of categories whose objects are sets with mathemat-
ical structure and the morphisms are functions which preserve the structure. Many
mathematical structures are themselves categories. For example, one can consider
any group G as a category with exactly one object; its arrows are the elements of
G regarded as having the single object as both source and target. Composition is
the group multiplication, and the group identity is the identity arrow. This con-
struction works for monoids as well. In fact, a monoid can be defined as a category
with exactly one object.

A poset (partially ordered set) can also be regarded as a category: its objects
are its elements, and there is exactly one arrow from an element x to an element
y if and only if x ≤ y; otherwise there are no arrows from x to y. Composition
is forced by transitivity and identity arrows by reflexivity. Thus a category can
be thought of as a generalized poset. This perception is important, since many
of the fundamental concepts of category theory specialize to nontrivial and often
well-known concepts for posets (the reader is urged to fill in the details in each
case).

In the above examples, we have described categories by specifying both their ob-
jects and their arrows. Informally, it is very common to name the objects only; the
reader is supposed to supply the arrows based on his general knowledge. If there is
any doubt, it is, of course, necessary to describe the arrows as well. Sometimes there
are two or more categories in general use with the same objects but different arrows.
For example, the following three categories all have the same objects: complete sup-
semilattices, complete inf-semilattices, complete lattices. Further variations can be
created according as the arrows are required to preserve the top (empty inf) or
bottom (empty sup) or both.

2.2. Some constructions for categories. A subcategory D of a category C
is a pair of subsets DO and DA of the objects and arrows of C respectively, with
the following properties.

(1) If f ∈ DA then the source and target of f are in DO.
(2) If C ∈ DO, then idC ∈ DA.
(3) If f , g ∈ DA are a composable pair of arrows then g ◦ f ∈ DA.

The subcategory is full if for any C,D ∈ DO, if f :C // D in C , then
f ∈ DA. For example, the category of Abelian groups is a full subcategory of the
category of groups (every homomorphism of groups between Abelian groups is a
homomorphism of Abelian groups), whereas the category of monoids (semigroups
with identity element) is a subcategory, but not a full subcategory, of the category
of semigroups (a semigroup homomorphism need not preserve 1).
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One also constructs the product C × D of two categories C and D in the
obvious way: the objects of C × D are pairs (A,B) with A an object of C and B
an object of D . An arrow

(f, g): (A,B) // (A′, B′)

has f :A // A′ in C and g:B // B′ in D . Composition is coordinatewise.
To define the next concept, we need the idea of commutative diagram. A

diagram is said to commute if any two paths between the same nodes compose
to give the same morphism. The formal definition of diagram and commutative
diagram is given in 8.1 below.

If A is any object of a category C , the slice category C /A of objects of C
over A has as objects all arrows of C with target A. An arrow of C /A from f :B
// A to g:C // A is an arrow h:B // C making the following diagram

commute.

B

A

f
��???????????B C
h // C

A

g
�������������

In this case, one sometimes writes h: f // g over A.
It is useful to think of an object of Set/A as an A-indexed family of disjoint

sets (the inverse images of the elements of A). The commutativity of the above
diagram means that the function h is consistent with the decomposition of B and
C into disjoint sets.

2.3. Definitions without using elements. The introduction of categories as a
part of the language of mathematics has made possible a fundamental, intrinsically
categorical technique: the element-free definition of mathematical properties by
means of commutative diagrams, limits and adjoints. (Limits and adjoints are de-
fined later in this chapter.) By the use of this technique, category theory has made
mathematically precise the unity of a variety of concepts in different branches of
mathematics, such as the many product constructions which occur all over mathe-
matics (described in Section 8) or the ubiquitous concept of isomorphism, discussed
below. Besides explicating the unity of concepts, categorical techniques for defining
concepts without mentioning elements have enabled mathematicians to provide a
useful axiomatic basis for algebraic topology, homological algebra and other theo-
ries.

Despite the possibility of giving element-free definitions of these constructions,
it remains intuitively helpful to think of them as being defined with elements.
Fortunately, this can be done: In Section 5, we introduce a more general notion
of element of an object in a category (more general even when the category is
Set) which in many circumstances makes categorical definitions resemble familiar
definitions involving elements of sets, and which also provides an explication of the
old notion of variable quantity.

2.4. Isomorphisms and terminal objects. The notion of isomorphism can
be given an element-free definition for any category: An arrow f :A // B in a
category is an isomorphism if it has an inverse, namely an arrow g:B // A for
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which f ◦ g = idB and g ◦ f = idA. In other words, both triangles of the following
diagram must commute:

A B
f

//

A

A

idA

��

A B
f // B

B

idB

��

B

A

g

�������������

In a group regarded as a category, every arrow is invertible, whereas in a poset
regarded as a category, the only invertible arrows are the identity arrows (which
are invertible in any category).

It is easy to check that an isomorphism in Grp is what is usually called an
isomorphism (commonly defined as a bijective homomorphism, but some newer
texts give the definition above). An isomorphism in Set is a bijective function, and
an isomorphism in Top is a homeomorphism.

Singleton sets in Set can be characterized without mentioning elements, too. A
terminal object in a category C is an object T with the property that for every
object A of C there is exactly one arrow from A to T . It is easy to see that terminal
objects in Set, Top, and Grp are all one element sets with the only possible structure
in the case of the last two categories.

2.5. Duality. If C is a category, then we define C op to be the category with the
same objects and arrows as C , but an arrow f :A // B in C is regarded as an
arrow from B to A in C op. In other words, for all objects A and B of C ,

HomC (A,B) = HomC op(B,A)

If f :A // B and g:B // C in C , then the composite f ◦g in C op is by definition
the composite g ◦ f in C . The category C op is called the opposite category of C .

If P is a property that objects or arrows in a category may have, then the dual
of P is the property of having P in the opposite category. As an example, consider
the property of being a terminal object. If an object A of a category C is a terminal
object in C op, then HomC (B,A) has exactly one arrow for every object B of C .
Thus the dual property of being a terminal object is the property: Hom(A,B) has
exactly one arrow for each object B. An object A with this property is called an
initial object. In Set and Top, the empty set is the initial object (see “Fine points”
below). In Grp, on the other hand, the one-element group is both an initial and a
terminal object.

Clearly if property P is dual to property Q then property Q is dual to property
P. Thus being an initial object and being a terminal object are dual properties.
Observe that being an isomorphism is a self-dual property.

Constructions may also have duals. For example, the dual to the category of
objects over A is the category of objects under A. An object is an arrow from A
and an arrow from the object f :A // B to the object g:A // C is an arrow h
from B to C for which h ◦ f = g.

Often a property and its dual each have their own names; when they don’t
(and sometimes when they do) the dual property is named by prefixing “co-”. For
example, one could, and some sources do, call an initial object “coterminal”, or a
terminal object “coinitial”.
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2.6. Definition of category by commutative diagrams. The notion of cat-
egory itself can be defined in an element-free way. We describe the idea behind this
alternate definition here, but some of the sets we construct are defined in terms
of elements. In Section 7, we show how to define these sets without mentioning
elements (by pullback diagrams).

Before giving the definition, we mention several notational conventions that
will recur throughout the book.

(1) If X and Y are sets, p1:X × Y // X and p2:X × Y // Y are the
coordinate projections.

(2) If X, Y and Z are sets and f :X // Y , g:X // Z are functions,

(f, g):X // Y × Z
is the function whose value at a ∈ X is (f(a), g(a)).

(3) If X, Y , Z, and W are sets and f :X // Z, g:Y // W are functions,
then

f × g:X × Y // Z ×W
is the function whose value at (a, b) is (f(a), g(b)). This notation is also
used for maps defined on subsets of product sets (as in 4 below).

A category consists of two sets A and O and four functions d0, d1:A // O,
u:O // A and m:P // A, where P is the set

{(f, g) | d0(f) = d1(g)}
of composable pairs of arrows for which the following Diagrams 1–4 commute.
For example, the left diagram of 2 below says that d0 ◦ p1 = d0 ◦ m. We will
treat diagrams more formally in Section 8. The following diagrams are required to
commute.

(1)

A O
u //A

O

d0

��??????????? O A
u //O

O

idO

��

A

O

d1

�������������

This says that the source and target of idX is X.

(2)

A O
d0

//

P

A

m

��

P A
p2 // A

O

d0

��
A O

d1
//

P

A

m

��

P A
p1 // A

O

d1

��

This says that the source of f ◦ g is that of g and its target is that of f .

(3)

A P
(u ◦ d0, 1)

//A

A

idA
$$HHHHHHHHHHHHHH P Aoo

(1, u ◦ d1)
P

A

m

��

A

A

idA
zzvvvvvvvvvvvvvv

This characterizes the left and right identity laws.
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In the next diagram, Q is the set of composable triples of arrows:

Q = {(f, g, h) | d1(h) = d0(g) and d1(g) = d0(f)}

(4)

P Am
//

Q

P

m× 1

��

Q P
1×m // P

A

m

��

This is associativity of composition.
It is straightforward to check that this definition is equivalent to the first one.
The diagrams just given actually describe geometric objects, namely the classi-

fying space of the category. Indeed, the functions between O, A, P and Q generated
by u, d0, d1, m and the coordinate maps form a simplicial set truncated in dimen-
sion three. Simplicial sets are defined in 3.3. But the reader needs no knowledge of
simplicial sets at this point.

2.7. Fine points. Note that a category may be empty, that is have no objects
and (of course) no arrows. Observe that a subcategory of a monoid regarded as
a category may be empty; if it is not empty, then it is a submonoid. This should
cause no more difficulty than the fact that a submonoid of a group may not be a
subgroup. The basic reason is that a monoid must have exactly one object, while
a subcategory need not have any.

It is important to observe that in categories such as Set, Grp and Top in which
the arrows are actually functions, the definition of category requires that the func-
tion have a uniquely specified domain and codomain, so that for example in Top the
continuous function from the set R of real numbers to the set R+ of nonnegative
real numbers which takes a number to its square is different from the function from
R to R which does the same thing, and both of these are different from the squaring
function from R+ to R+.

A definition of “function” in Set which fits this requirement is this: A function
is an ordered triple (A,G,B) where A and B are sets and G is a subset of A×B with
the property that for each x ∈ A there is exactly one y ∈ B such that (x, y) ∈ G.
This is equivalent to saying that the composite

G ⊂→ A×B // A

is an isomorphism (the second function is projection on the first coordinate). Then
the domain of the function is the set A and the codomain is B. As a consequence
of this definition, A is empty if and only if G is empty, but B may or may not be
empty. Thus there is exactly one function, namely (∅, ∅, B), from the empty set to
each set B, so that the empty set is the initial object in Set, as claimed previously.
(Note also that if (A,G,B) is a function then G uniquely determines A but not B.
This asymmetry is reversed in the next paragraph.)

An equivalent definition of function is a triple (A,G∗, B) where G∗ is the quo-
tient of the disjoint union A+B by an equivalence relation for which each element
of B is contained in exactly one equivalence class. In other words, the composite

B // A+B // // G∗
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is an isomorphism, where the first arrow is the inclusion into the sum and the second
is the quotient mapping. This notion actually corresponds to the intuitive picture
of function frequently drawn for elementary calculus students which illustrates the
squaring function from {−2,−1, 0, 1, 2} to {0, 1, 2, 3, 4} this way:

−2
2 4

−1
1 1

0 0

2

3

The set G is called the graph and G∗ the cograph of the function. We will see in
Section 1.8 that the graph and cograph are dual to each other.

2.8. Exercises

1. Show that the following definition of category which is sometimes used is equiva-
lent to the definition given in this section: A category is a set with a partially
defined binary operation denoted “◦” with the following properties:

(a) the following statements are equivalent:

(i) f ◦ g and g ◦ h are both defined;
(ii) f ◦ (g ◦ h) is defined;
(iii) (f ◦ g) ◦ h is defined;

(b) if (f ◦ g) ◦ h is defined, then (f ◦ g) ◦ h = f ◦ (g ◦ h);

(c) for any f , there are elements e and e′ for which e ◦ f is defined and equal
to f and f ◦ e′ is defined and equal to f .

2. Verify that the following constructions produce categories.

(a) For any category C , the arrow category Ar(C ) of arrows of C has as
objects the arrows of C , and an arrow from f :A // B to g:A′ // B′ is a pair
of arrows h:A // A′ and k:B // B′ making the following diagram commute:

B B′
k

//

A

B

f

��

A A′
h // A′

B′

g

��

(b) The twisted arrow category of C is defined the same way as the arrow
category except that the direction of k is reversed.
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3. (a) Show that h: f // g is an isomorphism in the category of objects of C
over A if and only if h is an isomorphism of C .

(b) Give an example of objects A, B and C in a category C and arrows f :B
// A and g:C // A such that B and C are isomorphic in C but f and g are

not isomorphic in C /A.

4. Describe the isomorphisms, initial objects, and terminal objects (if they exist)
in each of the categories in Exercise 2.

5. Describe the initial and terminal objects, if they exist, in a poset regarded as a
category.

6. Show that any two terminal objects in a category are isomorphic by a unique
isomorphism.

7. (a) Prove that for any category C and any arrows f and g of C such that
the target of g is isomorphic to the source of f , there is an arrow f ′ which (i) is
isomorphic to f in Ar(C ) and (ii) has source the same as the target of g. (Ar(C )
is defined in Exercise 2 above.)

(b) Use the fact given in (a) to describe a suitable definition of domain, codo-
main and composition for a category with one object chosen for each isomorphism
class of objects of C and one arrow from each isomorphism class of objects of Ar(C ).
Such a category is called a skeleton of C .

8. A category is connected if it is possible to go from any object to any other
object of the category along a path of “composable” forward or backward arrows.
Make this definition precise and prove that every category is a union of disjoint
connected subcategories in a unique way.

9. A preorder is a set with a reflexive, transitive relation defined on it. Explain
how to regard a preorder as a category with at most one arrow from any object A
to any object B.

10. (a) Describe the opposite of a group regarded as a category. Show that it is
isomorphic to, but not necessarily the same as, the original group.

(b) Do the same for a monoid, but show that the opposite need not be isomor-
phic to the original monoid.

(c) Do the same as (b) for posets.

11. An arrow congruence on a category C is an equivalence relation E on the
arrows for which

(i) fEf ′ implies that f and f ′ have the same domain and codomain.
(ii) If fEf ′ and gEg′ and f ◦ g is defined, then (f ◦ g)E(f ′ ◦ g′).

There are more general congruences in which objects are identified. These are
considerably more complicated since new composites are formed when the target
of one arrow gets identified with the source of another.

(a) Show that any relation R on the arrows of C generates a unique congruence
on C .
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(b) Given a congruence E on C , define the quotient category C /E in the
obvious way (same objects as C ) and show that it is a category. This notation
conflicts with the slice notation, but context should make it clear. In any case,
quotient categories are not formed very often.

(Thus any set of diagrams in C generate a congruence E on C with the property
that C /E is the largest quotient in which the diagrams commute.)

12. Show that in a category with an initial object 0 and a terminal object 1, 0 ∼= 1
if and only if there is a map 1 // 0.

3. Functors

3.1. Like every other kind of mathematical structured object, categories come
equipped with a notion of morphism. It is natural to define a morphism of categories
to be a map which takes objects to objects, arrows to arrows, and preserves source,
target, identities and composition.

If C and D are categories, a functor F : C // D is a map for which

(1) if f :A // B is an arrow of C , then Ff :FA // FB is an arrow of D ;
(2) F (idA) = idFA; and
(3) if g:B // C, then F (g ◦ f) = Fg ◦ Ff .

If F : C // D is a functor, then F op: C op // Dop is the functor which does
the same thing as F to objects and arrows.

A functor F : C op // D is called a contravariant functor from C to D .
In this case, F op goes from C to Dop. For emphasis, a functor from C to D is
occasionally called a covariant functor.

F : C // D is faithful if it is injective when restricted to each homset, and it
is full if it is surjective on each homset, i.e., if for every pair of objects A and B,
every arrow in Hom(FA,FB) is F of some arrow in Hom(A,B). Some sources use
the phrase “fully faithful” to describe a functor which is full and faithful.

F preserves a property P that an arrow may have if F (f) has property P
whenever f has. It reflects property P if f has the property whenever F (f) has.
For example, any functor must preserve isomorphisms (Exercise 1), but a functor
need not reflect them.

Here are some examples of functors:

(1) For any category C , there is an identity functor idC : C // C .
(2) The categories Grp and Top are typical of many categories considered in

mathematics in that their objects are sets with some sort of structure on
them and their arrows are functions which preserve that structure. For
any such category C , there is an underlying set functor U : C //

Set which assigns to each object its set of elements and to each arrow
the function associated to it. Such a functor is also called a forgetful
functor, the idea being that it forgets the structure on the set. Such
functors are always faithful and rarely full.

(3) Many other mathematical constructions, such as the double dual functor
on vector spaces, the commutator subgroup of a group or the fundamental
group of a path connected space, are the object maps of functors (in
the latter case the domain is the category of pointed topological spaces
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and base-point-preserving maps). There are, on the other hand, some
canonical constructions which do not extend to maps. Examples include
the center of a group or ring, and groups of automorphisms quite generally.
See Exercise 8 and Exercise 9.

(4) For any set A, let FA denote the free group generated by A. The defining
property of free groups allows you to conclude that if f :A // B is any
function, there is a unique homomorphism Ff :FA // FB with the
property that Ff ◦ i = j ◦ f , where i:A // FA and j:B // FB are
the inclusions. It is an easy exercise to see that this makes F a functor
from Set to Grp. Analogous functors can be defined for the category of
monoids, the category of Abelian groups, and the category of R-modules
for any ring R.

(5) For a category C , HomC = Hom is a functor in each variable separately, as
follows: For fixed object A, Hom(A, f): Hom(A,B) // Hom(A,C) is de-
fined for each arrow f :B // C by requiring that Hom(A, f)(g) = f ◦g for
g ∈ Hom(A,B); this makes Hom(A,−): C // Set a functor. Similarly,
for a fixed object B, Hom(−, B) is a functor from C op to Set; Hom(h,B)
is composition with h on the right instead of on the left. Hom(A,−) and
Hom(−, B) are the covariant and contravariant hom functors, re-
spectively. Hom(−,−) is also a Set-valued functor, with domain C op×C .
A familiar example of a contravariant hom functor is the functor which
takes a vector space to the underlying set of its dual.

(6) The powerset (set of subsets) of a set is the object map of an important
contravariant functor P from Set to Set which plays a central role in this
book. The map from PB to PA induced by a function f :A // B is the
inverse image map; precisely, if B0 ∈ PB, i.e. B0 ⊆ B, then

Pf(B0) = {x ∈ A | f(x) ∈ B0}
The object function P can also be made into a covariant functor, in at
least two different ways (Exercise 6).

(7) If G and H are groups considered as categories with a single object, then
a functor from G to H is exactly a group homomorphism.

(8) If P and Q are posets, a functor from P to Q is exactly a nondecreasing
map. A contravariant functor is a nonincreasing map.

3.2. Isomorphism and equivalence of categories. The composite of functors
is a functor, so the collection of categories and functors is itself a category, denoted
Cat. If C and D are categories and F : C // D is a functor which has an inverse
G: D // C , so that it is an isomorphism in the category of categories, then
naturally C and D are said to be isomorphic.

However, the notion of isomorphism does not capture the most useful sense in
which two categories can be said to be essentially the same; that is the notion of
equivalence. A functor F : C // D is said to be an equivalence if it is full and
faithful and has the property that for any object B of D there is an object A of
C for which F (A) is isomorphic to B. The definition appears asymmetrical but in
fact given the axiom of choice if there is an equivalence from C to D then there is
an equivalence from D to C (Exercise 11).

The notion of equivalence captures the perception that, for example, for most
purposes you are not changing group theory if you want to work in a category of
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groups which contains only a countable number (or finite, or whatever) of copies of
each isomorphism type of groups and all the homomorphisms between them.

Statements in Section 2 like, “A group may be regarded as a category with
one object in which all arrows are isomorphisms” can be made precise using the
notion of equivalence: The category of groups and homomorphisms is equivalent
to the category of categories with exactly one object in which each arrow is an
isomorphism, and all functors between them. Any isomorphism between these
categories would seem to require an axiom of choice for proper classes.

3.3. Comma categories. Let A , C and D be categories and F : C // A , G: D
// A be functors. From these ingredients we construct the comma category

(F,G) which is a generalization of the slice A /A of a category over an object dis-
cussed in Section 2. The objects of (F,G) are triples (C, f,D) with f :FC // GD
an arrow of A and C, D objects of C and D respectively. An arrow (h, k): (C, f,D)
// (C ′, f ′, D′) consists of h:C // C ′ and k:D // D′ making

GD GD′
Gk
//

FC

GD

f

��

FC FC ′
Fh // FC ′

GD′

f ′

��

commute. It is easy to verify that coordinatewise composition makes (F,G) a
category.

When A is an object of A , we can consider it as a functor A: 1 // A . Then
the comma category (IdA , A) is just the slice A /A defined in Section 2. The
category of arrows under an object is similarly a comma category.

Each comma category (F,G) is equipped with two projections p1: (F,G) //

C projecting objects and arrows onto their first coordinates, and p2: (F,G) // D
projecting objects onto their third coordinates and arrows onto their second.

3.4. Exercises

1. Show that functors preserve isomorphisms, but do not necessarily reflect them.

2. Use the concept of arrow category to describe a functor which takes a group
homomorphism to its kernel.

3. Show that the following define functors:

(a) the projection map from a product C ×D of categories to one of them;

(b) for C a category and an object A of C , the constant map from a category
B to C which takes every object to A and every arrow to idA;

(c) the forgetful functor from the category C /A of objects over A to C which
takes an object B // A to B and an arrow h:B // C over A to itself.

4. Show that the functor P of Example 6 is faithful but not full and reflects
isomorphisms.
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5. Give examples showing that functors need not preserve or reflect initial or
terminal objects.

6. Show that the map which takes a set to its powerset is the object map of at
least two covariant functors from Set to Set: If f :A // B, one functor takes a
subset A0 of A to its image f!(A0) = f(A0), and the other takes A0 to the set

f∗(A0) = {y ∈ B | if f(x) = y then x ∈ A0} = {y ∈ B | f−1(y) ⊆ A0}
Show that f−1(B) ⊆ A if and only if B ⊆ f∗(A) and that A ⊆ f−1(B) if and only
if f!(A) ⊆ B.

7. Show that the definition given in Example 4 makes the free group construction
F a functor.

8. Show that there is no functor from Grp to Grp which takes each group to its
center. (Hint: Consider the group G consisting of all pairs (a, b) where a is any
integer and b is 0 or 1, with multiplication

(a, b)(c, d) = (a+ (−1)bc, b+ d)

the addition in the second coordinate being (mod 2).)

9. Show that there is no functor from Grp to Grp which takes each group to its
automorphism group.

10. Show that every category is equivalent to its skeleton (see Exercise 7 of Sec-
tion 2).

11. Show that equivalence is an equivalence relation on any set of categories. (This
exercise is easier to do after you do Exercise 7 of Section 4).

12. (a) Make the statement “a preordered set can be regarded as a category
in which there is no more than one arrow between any two objects” precise by
defining a subcategory of the category of categories and functors that the category
of preordered sets and order-preserving maps is equivalent to (see Exercise 9 of
Section 2).

(b) Show that, when regarded as a category, every preordered set is equivalent
to a poset.

13. An atom in a Boolean algebra is an element greater than 0 but with no
elements between it and 0. A Boolean algebra is atomic if every element x of the
algebra is the join of all the atoms smaller than x. A Boolean algebra is complete
if every subset has an infimum and a supremum. A CABA is a complete atomic
Boolean algebra. A CABA homomorphism is a Boolean algebra homomorphism
between CABA’s which preserves all infs and sups (not just finite ones, which any
Boolean algebra homomorphism would do). Show that the opposite of the category
of sets is equivalent to the category of CABA’s and CABA homomorphisms.

14. An upper semilattice is a partially ordered set in which each finite subset
(including the empty set) of elements has a least upper bound. Show that the
category of upper semilattices and functions which preserve the least upper bound
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of any finite subset (and hence preserve the ordering) is equivalent to the cate-
gory of commutative monoids in which every element is idempotent and monoid
homomorphisms.

15. Show that the arrow and twisted arrow categories of Exercise 2 of Section 2
are comma categories.

16. Show that the category Set of sets nor the category Ab of abelian groups is
equivalent to its opposite category. (Hint: Find a property of the category for which
the dual property is not satisfied.)

4. Natural transformations

4.1. In topology, a homotopy from f :A // B to g:A // B is given by a
path in B from fx to gx for each element x ∈ A such that the paths fit together
continuously. A natural transformation is analogously a deformation of one functor
to another.

If F : C // D and G: C // D are two functors, λ:F // G is a natural
transformation from F to G if λ is a collection of arrows λC:FC // GC, one
for each object C of C , such that for each arrow g:C // C ′ of C the following
diagram commutes:

FC ′ GC ′
λC ′

//

FC

FC ′

Fg

��

FC GC
λC // GC

GC ′

Gg

��

The arrows λC are the components of λ.
The natural transformation λ is a natural equivalence if each component of

λ is an isomorphism in D .
The natural map of a vector space to its double dual is a natural transformation

from the identity functor on the category of vector spaces and linear maps to the
double dual functor. When restricted to finite dimensional vector spaces, it is a
natural equivalence. As another example, let n > 1 be a positive integer and let
GLn denote the functor from the category of commutative rings with unity to the
category of groups which takes a ring to the group of invertible n × n matrices
with entries from the ring, and let Un denote the group of units functor (which is
actually GL1). Then the determinant map is a natural transformation from GLn
to Un. The Hurewicz transformation from the fundamental group of a topological
space to its first homology group is also a natural transformation of functors.

4.2. Functor categories. Let C and D be categories with C small. The collec-
tion Func(C ,D) of functors from C to D is category with natural transformations
as arrows. If F and G are functors, a natural transformation λ requires, for each
object C of C , an element of HomD(FC,GC), subject to the naturality conditions.
If C is small, there is no more than a set of such natural transformations F // G
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and so this collection is a set. If λ:F // G and µ:G // H are natural trans-
formations, their composite µ ◦ λ is defined by requiring that its component at C
to be µC ◦ λC. Of course, Func(C ,D) is just HomCat(C ,D), and so is already a
functor in each variable to Set. It is easy to check that for any F : D // E ,

Func(C , F ): Func(C ,D) // Func(C ,E )

is actually a functor and not only a Set-function, and similarly for Func(F,C ), so
that in each variable Func is actually a Cat-valued functor.

We denote the hom functor in Func(C ,D) by Nat(F,G) for functors F,G: C
// D . A category of the form Func(C ,D) is called a functor category and is

frequently denoted DC especially in the later chapters on sheaves.

4.3. Notation for natural transformations. Suppose there are categories and
functors as shown in this diagram:

B C
H // C D

F
((

C D

G

66 D E
K //

λ��

Note that in diagrams, we often denote a natural transformation by a double arrow:
λ:F ⇒ G.

Suppose λ:F // G is a natural transformation. Then λ induces two natural
transformations Kλ:KF // KG and λH:FH // GH. The component of Kλ
at an object C of C is

K(λC):KFC // KGC

Then Kλ is a natural transformation simply because K, like any functor, takes
commutative diagrams to commutative diagrams. The component of λH at an
object B of B is the component of λ at HB. λH is a natural transformation
because H is defined on morphisms.

We should point out that although the notationsKλ and λH look formally dual,
they are quite different in meaning. The first is the result of applying a functor to a
value of a natural transformation (which is a morphism in the codomain category)
while the second is the result of taking the component of a natural transformation
at a value of a functor. Nonetheless, the formal properties of the two quite different
operations are the same. This is why we use the parallel notation when many other
writers use distinct notation. (Compare the use of 〈f, v〉 for f(v) by many analysts.)
Thus advances mathematics.

Exercise 6 below states a number of identities which hold for natural transfor-
mations. Some of them are used later in the book, particularly in triple theory.

4.4. Exercises

1. Show how to describe a natural transformation as a functor from an arrow
category to a functor category.

2. What is a natural transformation from one group homomorphism to another?

3. Let R: C // D be a functor. Show that f 7→ Rf is a natural transformation
HomC (C,−) // HomD(RC,R(−)) for any object C of C .
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4. (a) Show that the inclusion of a set A into the free group FA generated by A
determines a natural transformation from the identity functor on Set to the functor
UF where U is the underlying set functor.

(b) Find a natural transformation from FU :Grp // Grp to the identity func-
tor on Grp which takes a one letter word of FUG to itself. Show that there is only
one such.

5. In Section 3, we mentioned three ways of defining the powerset as a functor. (See
Exercise 6.) For which of these definitions do the maps which take each element
x of a set A to the set {x} (the “singleton” maps) form a natural transformation
from the identity functor to the powerset functor?

6. Let categories and functors be given as in the following diagram.

B C

F
&&

B C

G

88 C D

H
&&

C D

K

88

Suppose κ:F // G and µ:H // K are natural transformations.

(a) Show that this diagram commutes:

KF KG
Kκ

//

HF

KF

µF

��

HF HG
Hκ // HG

KG

µG

��

(b) Define µκ by requiring that its component at B be µGB◦HκB, which by (a)
is KκB ◦µFB. Show that µκ is a natural transformation from H ◦F to K ◦G. This
defines a composition operation, called application, on natural transformations.
Although it has the syntax of a composition law, as we will see below, semantically
it is the result of applying µ to κ. In many, especially older works, it is denoted
µ ∗ κ, and these books often use juxtaposition to denote composition.

(c) Show that Hκ and µG have the same interpretation whether thought of as
instances of application of a functor to a natural transformation, resp. evaluation
of a natural transformation at a functor, or as examples of an application operation
where the name of a functor is used to stand for the identity natural transformation.
(This exercise may well take longer to understand than to do.)

(d) Show that application as defined above is associative in the sense that if
(µκ)β is defined, then so is µ(κβ) and they are equal.

(e) Show that the following rules hold, where ◦ denotes the composition of nat-
ural transformations defined earlier in this chapter. These are called Godement’s
rules. In each case, the meaning of the rule is that if one side is defined, then so
is the other and they are equal. They all refer to this diagram, and the name of
a functor is used to denote the identity natural transformation from that functor
to itself. The other natural transformations are κ:F1

// F2, λ:F2
// F3, µ:G1
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// G2, and ν:G2
// G3.

A B
E // B C

F1

  
B CF2

//B C

F3

>>C D

G1

  
C DG2

//C D

G3

>>D E
H //

κ��

λ��

µ��

ν��

(i) (The interchange law)

(ν ◦ µ)(λ ◦ κ) = (νλ) ◦ (µκ)

(ii) (H ◦G1)κ = H(G1κ).
(iii) µ(F1 ◦ E) = (µF1)E.
(iv) G1(λ ◦ κ)E = (G1λE) ◦ (G1κE).
(v) (µF2) ◦ (G1κ) = (G2κ) ◦ (µF1).

7. Show that two categories C and D are equivalent if and only if there are functors
F : C // D and G: D // C such that G ◦ F is naturally equivalent to idC and
F ◦G is naturally equivalent to idD .

5. Elements and subobjects

5.1. Elements. One of the important perceptions of category theory is that an
arrow x:T // A in a category can be regarded as an element of A defined over
T . The idea is that x is a variable element of A, meaning about the same thing as
the word “quantity” in such sentences as, “The quantity x2 is nonnegative”, found
in older calculus books.

One must not get carried away by this idea and introduce elements everywhere.
One of the main benefits of category theory is you don’t have to do things in terms
of elements unless it is advantageous to. In 4.2 is a construction that is almost
impossible to understand in terms of elements, but is very easy with the correct
conceptual framework. On the other hand, we will see many examples later in
which the use of elements leads to a substantial simplification. The point is not to
allow a tool to become a straitjacket.

When x:T // A is thought of as an element of A defined on T , we say that
T is the domain of variation of the element x. It is often useful to think of x as
an element of A defined in terms of a parameter in T . A related point of view is
that x is a set of elements of A indexed by T . By the way, this is distinct from the
idea that x is a family of disjoint subsets of T indexed by A, as mentioned in 2.2.

The notation “x ∈T A” is a useful quick way of saying that x is an element of
A defined on T . This notation will be extended when we consider subobjects later
in this section.

If x ∈T A and f :A // B, then f ◦ x ∈T B; thus morphisms can be regarded
as functions taking elements to elements. The Yoneda Lemma, Theorem 2 of the
next section, says (among other things) that any function which takes elements to
elements in a coherent way in a sense that will be defined precisely “is” a morphism
of the category. Because of this, we will write f(x) for f ◦ x when it is helpful to
think of x as a generalized element.
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Note that every object A has at least one element idA, its generic element.
If A is an object of a category C and F : C // D is a functor, then F takes

any element of A to an element of FA in such a way that (i) generic elements
are taken to generic elements, and (ii) the action of F on elements commutes with
change of the domain of variation of the element. (If you spell those two conditions
out, they are essentially the definition of functor.)

Isomorphisms can be described in terms of elements, too: An arrow f :A // B
is an isomorphism if and only if f (thought of as a function) is a bijection between
the elements of A defined on T and the elements of B defined on T for all objects
T of C . (To get the inverse, apply this fact to the element idA:A // A.) And a
terminal object is a singleton in a very strong sense—for any domain of variation
it has exactly one element.

In the rest of this section we will develop the idea of element further and use
it to define subobjects, which correspond to subsets of a set.

5.2. Monomorphisms and epimorphisms. An arrow f :A // B is a mono-
morphism (or just a “mono”, adjective “monic”), if f (i.e., Hom(T, f)) is injective
(one to one) on elements defined on each object T —in other words, for every pair
x, y of elements of A defined on T , f(x) = f(y) implies x = y.

In terms of composition, this says that f is left cancelable, i.e, if f ◦ x = f ◦ y,
then x = y. This has a dual concept: The arrow f is an epimorphism (“an epi”,
“epic”) if it is right cancelable. This is true if and only if the contravariant functor
Hom(f, T ) is injective (not surjective!) for every object T . Note that surjectivity
is not readily described in terms of generalized elements.

In Set, every monic is injective and every epic is surjective (onto). The same is
true of Grp, but the fact that epis are surjective in Grp is moderately hard to prove
(Exercise 2). On the other hand, any dense map, surjective or not, is epi in the
category of Hausdorff spaces and continuous maps.

An arrow f :A // B which is “surjective on elements”, in other words for
which Hom(T, f) is surjective for every object T , is necessarily an epimorphism
and is called a split epimorphism. An equivalent definition is that there is an
arrow g:B // A which is a right inverse to f , so that f ◦ g = idB . The Axiom of
Choice is equivalent to the statement that every epi in Set is split. In general, in
categories of sets with structure and structure preserving functions, split epis are
surjective and (as already pointed out) surjective maps are epic (see Exercise 6),
but the converses often do not hold. We have already mentioned Hausdorff spaces
as a category in which there are nonsurjective epimorphisms; another example is
the embedding of the ring of integers in the field of rational numbers in the category
of rings and ring homomorphisms. As for the other converse, in the category of
groups the (unique) surjective homomorphism from the cyclic group of order 4 to
the cyclic group of order 2 is an epimorphism which is not split.

An arrow with a left inverse is necessarily a monomorphism and is called a
split monomorphism. Split monos in Top are called retractions; in fact the word
“retraction” is sometimes used to denote a split mono in any category.

The property of being a split mono or split epi is necessarily preserved by any
functor. The property of being monic or epic is certainly not in general preserved
by any functor. Indeed, if Ff is epi for every functor F , then f is necessarily a
split epi. (Exercise 5.)
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Notation: In diagrams, we usually draw an arrow with an arrowhead at its tail:

// //

to indicate that it is a monomorphism. The usual dual notation for an epimorphism
is

// //

However in this book we reserve that latter notation for regular epimorphisms to
be defined in 8.8.

5.3. Subobjects. We now define the notion of subobject of an object in a cat-
egory; this idea partly captures and partly generalizes the concept of “subset”,
“subspace”, and so on, familiar in many branches of mathematics.

If i:A0
// A is a monomorphism and a:T // A, we say a factors through

i (or factors through A0 if it is clear which monomorphism i is meant) if there is
an arrow j for which

(5)

A0 A
i
//

T

A0

j

��

T

A

a

��???????????

commutes. In this situation we extend the element point of view and say that the
element a of A is an element of A0 (or of i if necessary). This is written “a ∈TA A0”.
The subscript A is often omitted if the context makes it clear.

5.4. Lemma. Let i:A0
// A and i′:A′0 // A be monomorphisms in a category

C . Then A0 and A′0 have the same elements of A if and only if they are isomorphic
in the category C /A of objects over A, in other words if and only if there is an
isomorphism j:A // A′ for which

(6)

A′0 A
i′

//

A0

A′0

j

��

A0

A

i

��???????????

commutes.

Proof. Suppose A0 and A′0 have the same elements of A. Since i ∈A0

A A0, it factors
through A′0, so there is an arrow j:A0

// A′0 such that (2) commutes. Inter-
changing A0 and A′0 we get k:A′0 // A0 such that i ◦ k = i′. Using the fact that
i and i′ are monic, it is easy to see that j and k must be inverses to each other, so
they are isomorphisms.

Conversely, if j is an isomorphism making (2) commute and a ∈TA A0, so that
a = i ◦ u for some u:T // A0, then a = i′ ◦ j ◦ u so that a ∈TA A′0. A similar
argument interchanging A0 and A′0 shows that A0 and A′0 have the same elements
of A.

Two monomorphisms are said to be equivalent if they have the same elements.
A subobject of A is an equivalence class of monomorphisms into A. We will
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frequently refer to a subobject by naming one of its members, as in “Let A0
// // A

be a subobject of A”.
In Set, each subobject of a set A contains exactly one inclusion of a subset into

A, and the subobject consists of those injective maps into A which has that subset
as image. Thus “subobject” captures the notion of “subset” in Set exactly.

Any map from a terminal object in a category is a monomorphism and so de-
termines a subobject of its target. Because any two terminal objects are isomorphic
by a unique isomorphism (Exercise 6 of Section 2), that subobject contains exactly
one map based on each terminal object. We will henceforth assume that in any
category we deal with, we have picked a particular terminal object (if it has one)
as the canonical one and call it “the terminal object”.

5.5. Exercises

1. Describe initial objects using the terminology of elements, and using the termi-
nology of indexed families of subsets.

(a) Show that in Set, a function if injective if and only if it is a monomorphism
and surjective if and only if it is an epimorphism.

(b) Show that every epimorphism in Set is split. (This is the Axiom of Choice).

(c) Show that in the category of Abelian groups and group homomorphisms,
a homomorphism is injective if and only if it is a monomorphism and surjective if
and only if it is an epimorphism.

(d) Show that neither monos nor epis are necessarily split in the category of
Abelian groups.

2. Show that in Grp, every homomorphism is injective if and only if it is a mon-
omorphism and surjective if and only if it is an epimorphism. (If you get stuck
trying to show that an epimorphism in Grp is surjective, see the hint on page 21 of
Mac Lane [1971].)

3. Show that all epimorphisms are surjective in Top, but not in the category of all
Hausdorff spaces and continuous maps.

4. Show that the embedding of an integral domain (assumed commutative with
unity) into its field of quotients is an epimorphism in the category of commutative
rings and ring homomorphisms. When is it a split epimorphism?

(a) Show that the following two statements about an arrow f :A // B in a
category C are equivalent:

(b) Hom(T, f) is surjective for every object T of C .

(c) There is an arrow g:B // A such that f ◦ g = idB .

(d) Show that any arrow satisfying the conditions of (a) is an epimorphism.

5. Show that if Ff is epi for every functor F , then f is a split epi.

6. Let U : C // Set be a faithful functor and f an arrow of C . (Note that the
functors we have called “forgetful”—we have not defined that word formally—are
obviously faithful.) Prove:

(a) If Uf is surjective then f is an epimorphism.
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(b) If f is a split epimorphism then Uf is surjective.

(c) If Uf is injective then f is a monomorphism.

(d) If f is a split monomorphism, then Uf is injective.

7. A subfunctor of a functor F : C // Set is a functor G with the properties

(a) GA ⊆ FA for every object A of C .

(b) If f :A // B, then Gf(GA) ⊆ GB.
Show that the subfunctors of a functor are the “same” as subobjects of the

functor in the category Func(C ,Set).

6. The Yoneda Lemma

6.1. Elements of a functor. A functor F : C // Set is an object in the functor
category Func(C ,Set): an “element” of F is therefore a natural transformation
into F . The Yoneda Lemma, Lemma 1 below, says in effect that the elements
of a Set-valued functor F defined (in the sense of Section 5) on the hom func-
tor Hom(A,−) for some object A of C are essentially the same as the (ordinary)
elements of the set FA. To state this properly requires a bit of machinery.

If f :A // B in C , then f induces a natural transformation from Hom(B,−)
to Hom(A,−) by composition: the component of this natural transformation at an
object C of C takes an arrow h:B // C to h ◦ f :A // C. This construction
defines a contravariant functor from C to Func(C ,Set) called the Yoneda map. It
is straightforward and very much worthwhile to check that this construction really
does give a natural transformation for each arrow f and that the resulting Yoneda
map really is a functor.

Because Nat(−,−) is contravariant in the first variable (it is a special case
of Hom), the map which takes an object B of C and a functor F : C // Set
to Nat(Hom(B,−), F ) is a functor from C × Func(C ,Set) to Set. Another such
functor is the evaluation functor which takes (B,F ) to FB, and (g, λ), where g:B
// A ∈ C and λ:F // G is a natural transformation, to Gg ◦ λB. Remarkably,

these two functors are naturally isomorphic; it is in this sense that the elements of
F defined on Hom(B,−) are the ordinary elements of FB.

6.2. Lemma. [Yoneda ] The map φ: Nat(Hom(B,−), F ) // FB defined by
φ(λ) = λB(idB) is a natural isomorphism of the functors defined in the preceding
paragraph.

Proof. The inverse of φ takes an element u of FB to the natural transformation
λ defined by requiring that λA(g) = Fg(u) for g ∈ Hom(B,A). The rest of proof
is a routine verification of the commutativity of various diagrams required by the
definitions.

The first of several important consequences of this lemma is the following em-
bedding theorem. This theorem is obtained by taking F in the Lemma to be
Hom(A,−), where A is an object of C ; this results in the statement that there is
a natural bijection between arrows g:A // B and natural transformations from
Hom(B,−) to Hom(A,−).



6. THE YONEDA LEMMA 21

6.3. Theorem. [Yoneda Embeddings]

(1) The map which takes f :A // B to the induced natural transformation

Hom(B,−) // Hom(A,−)

is a full and faithful contravariant functor from C to Func(C ,Set).
(2) The map taking f to the natural transformation

Hom(−, A) // Hom(−, B)

is a full and faithful functor from C to Func(C op,Set).

Proof. It is easy to verify that the maps defined in the Theorem are functors. The
fact that the first one is full and faithful follows from the Yoneda Lemma with
Hom(A,−) in place of F . The other proof is dual.

The induced maps in the Theorem deserve to be spelled out. If f :S //

T , the natural transformation corresponding to f given by (i) has component
Hom(f,A): Hom(T,A) // Hom(S,A) at an object A of C —this is composing by f
on the right. If x ∈T A, the action of Hom(f,A) “changes the parameter” in A along
f . The other natural transformation corresponding to f is Hom(T, f): Hom(T,A)
// Hom(T,B); since the Yoneda embedding is faithful, we can say that f is

essentially the same as Hom(−, f). If x is an element of A based on T , then
Hom(T, f)(x) = f ◦x. Since “f is essentially the same as Hom(−, f)”, this justifies
the notation f(x) for f ◦ x introduced in Section 5. The fact that the Yoneda em-
bedding is full means that any natural transformation Hom(−, A) // Hom(−, B)
determines a morphism f :A // B, namely the image of idA under the component
of the transformation at A. Spelled out, this says that if f is any function which
assigns to every element x:T // A an element f(x):T // B with the property
that for all T :S // T , f(x◦t) = f(x)◦t (this is the “Section 5) then f “morphism,
also called f to conform to our conventions, from A to B. One says such an arrow
exists “by Yoneda”.

In the same vein, if g: 1 // A is a morphism of C , then for any object T ,
g determines an element g( ) of A defined on T by composition with the unique
element from T to 1, which we denote ( ). This notation captures the perception
that a global element depends on no arguments. We will extend the functional
notation to more than one variable in Section 8.

6.4. Universal elements. Another special case of the Yoneda Lemma occurs
when one of the elements of F defined on Hom(A,−) is a natural isomorphism.
If β: Hom(A,−) // F is such a natural isomorphism, the (ordinary) element
u ∈ FA corresponding to it is called a universal element for F , and F is called
a representable functor, represented by A. It is not hard to see that if F is also
represented by A′, then A and A′ are isomorphic objects of C . (See Exercise 3,
which actually says more than that.)

The following lemma gives a characterization of universal elements which in
many books is given as the definition.

6.5. Lemma. Let F : C // Set be a functor. Then u ∈ FA is a universal element
for F if and only if for every object B of C and every element t ∈ FB there is
exactly one arrow g:A // B such that Fg(u) = t.
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Proof. If u is such a universal element corresponding to a natural isomorphism
β: Hom(A,−) // F , and t ∈ FB, then the required arrow g is the element
(β−1B)(t) in Hom(A,B). Conversely, if u ∈ FA satisfies the conclusion of the
Lemma, then it corresponds to some natural transformation β: Hom(A,−) // F
by the Yoneda Lemma. It is routine to verify that the map which takes t ∈ FB
to the arrow g ∈ Hom(A,B) given by the assumption constitutes an inverse in
Func(C ,Set) to βB.

In this book, the phrase “u ∈ FA is a universal element for F” carries with it
the implication that u and A have the property of the lemma. (It is possible that
u is also an element of FB for some object B but not a universal element in FB.)

As an example, let G be a free group on one generator g. Then g is the “uni-
versal group element” in the sense that it is a universal element for the underlying
set functor U :Grp // Set (more precisely, it is a universal element in UG). This
translates into the statement that for any element x in any group H there is a
unique group homomorphism F :G // H taking g to x, which is exactly the
definition of “free group on one generator g”.

Another example which will play an important role in this book concerns the
contravariant powerset functor P:Set // Set defined in Section 3. It is straight-
forward to verify that a universal element for P is the subset {1} of the set {0, 1};
the function required by the Lemma for a subset B0 of a set B is the characteristic
function of B0. (A universal element for a contravariant functor, as here—meaning
a universal element for P:Setop // Set—is often called a “couniversal element”.)

6.6. Exercises

1. Find a universal element for the functor

Hom(−, A)×Hom(−, B):Setop // Set

for any two sets A and B. (If h:U // V , this functor takes a pair (f, g) to
(h ◦ f, h ◦ g).)

(a) Show that an action of a group G on a set A is essentially the same thing
as a functor from G regarded as a category to Set.

(b) Show that such an action has a universal element if and only if for any pair
x and y of elements of A there is exactly one element g of G for which gx = y.

2. Are either of the covariant powerset functors defined in Exercise 6 of Section 3
representable?

3. Let F : C // Set be a functor and u ∈ FA, u′ ∈ FA′ be universal elements for
F . Show that there is a unique isomorphism φ:A // A′ such that Fφ(u) = u′.

4. Let U :Grp // Set be the underlying set functor, and F :Set // Grp the
functor which takes a set A to the free group on A. Show that for any set A, the
covariant functor HomSet(A,U(−)) is represented by FA, and for any group G, the
contravariant functor HomGrp(F (−), G) is represented by UG.
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7. Pullbacks

7.1. The set P of composable pairs of arrows used in Section 1.1 in the alternate
definition of category is an example of a “fibered product” or “pullback”. A pullback
is a special case of “limit”, which we treat in Section 8. In this section, we discuss
pullbacks in detail.

Let us consider the following diagram D in a category C .

(7)

A C
f

//

B

A

B

A

B

C

g

��

We would like to objectify the set {(x, y) | f(x) = g(y)} in C ; that is, find an
object of C whose elements are those pairs (x, y) with f(x) = g(y). Observe that
for a pair (x, y) to be in this set, x and y must be elements of A and B respectively
defined over the same object T .

The set of composable pairs of arrows in a category (see Section 2) are a special
case in Set of this, with A = B being the set of arrows and f = d0, g = d1.

Thus we must consider commutative diagrams like

(8)

A C
f

//

T

A

x

��

T B
y // B

C

g

��

In this situation, (T, x, y) is called a commutative cone over D based on
T . We denote by Cone(T,D) the set of commutative cones over D based on T . A
commutative cone based on T over D may usefully be regarded as an element of D
defined on T . In Section , we will see that a commutative cone is actually an arrow
in a certain category, so that this idea fits with our usage of the word “element”.

Our strategy will be to turn Cone(−, D) into a functor; then we will say that an
object represents (in an informal sense) elements of D, in other words pairs (x, y)
for which f(x) = g(y), if that object represents (in the precise technical sense) the
functor Cone(−, D).

We make will make Cone(−, D) into a contravariant functor to Set: If h:W
// T is an arrow of C and (T, x, y) is a commutative cone over (1), then

Cone(h,D)(T, x, y) = (W,x ◦ h, y ◦ h)

which it is easy to see is a commutative cone over D based on W .
An element (P, p1, p2) of D which is a universal element for Cone(−, D) (so that

Cone(−, D) is representable) is called the pullback or the fiber product of the
diagram D. The object P is often called the pullback, with p1 and p2 understood.
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As the reader can verify, this says that (P, p1, p2) is a pullback if

(9)

A C
f

//

P

A

p1

��

P B
p2 // B

C

g

��

commutes and for any element of D based on T , there is a unique element of z ∈ P
based on T which makes

(10)

A C
f

//

P

A

p1

��

P Bp2

// B

C

g

��

T

B

y

''OOOOOOOOOOOOOOOOOOOOT

A

x

��/
///////////////////T

P

z
?????

��?????

commute. Thus there is a bijection between the elements of the diagram D defined
on T and the elements of the fiber product P defined on T . When a diagram like 10
has this property it is called a pullback diagram.

The Cone functor exists for any category, but a particular diagram of the form 7
need not have a pullback.

7.2. Proposition. If Diagram 9 is a pullback diagram, then the cone in Diagram 8
is also a pullback of Diagram 7 if and only if the unique arrow from T to P making
everything in Diagram 10 commute is an isomorphism.

Proof. (This theorem actually follows from Exercise 3 of Section 6, but I believe a
direct proof is instructive.) Assume that (2) and (3) are both pullback diagrams.
Let u:T // P be the unique arrow given because 9 is a pullback diagram, and
let v:P // T be the unique arrow given because 8 is a pullback diagram. Then
both for g = u ◦ v:P // P and g = idP it is true that p1 ◦ g = p1 and p2 ◦ g = p2.
Therefore by the uniqueness part of the definition of universal element, u ◦ v = idP .
Similarly, v ◦ u = idT , so that u is an isomorphism between T and P making
everything commute. The converse is easy.

The preceding argument is typical of many arguments making use of the unique-
ness part of the definition of universal element. We will usually leave arguments
like this to the reader.

A consequence of Proposition 1 is that a pullback of a diagram in a category
is not determined uniquely but only up to a “unique isomorphism which makes
everything commute”. This is an instance of a general fact about constructions
defined as universal elements which is made precise in Proposition 1 of Section 8.

7.3. Notation for pullbacks. We have defined the pullback P of Diagram 7 so
that it objectifies the set {(x, y) | f(x) = g(y)}. This fits nicely with the situation
in Set, where one pullback of (1) is the set {(x, y) | f(x) = g(y)} together with the
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projection maps to A and B, and any other pullback is in one to one correspondence
with this one by a bijection which commutes with the projections. This suggest the
introduction of a setlike notation for pullbacks: We let [(x, y) | f(x) = g(y)] denote
a pullback of (1). In this notation, f(x) denotes f ◦ x and g(y) denotes g ◦ y as in
Section 5, and (x, y) denotes the unique element of P defined on T which exists by
definition of pullback. It follows that p1(x, y) = x and p2(x, y) = y, where we write
p1(x, y) (not p1((x, y))) for p1 ◦ (x, y).

The idea is that square brackets around a set definition denotes an object of
the category which represents the set of arrows listed in curly brackets—“repre-
sents” in the technical sense, so that the set in curly brackets has to be turned into
the object map of a set-valued functor. The square bracket notation is ambiguous.
Proposition 1 spells out the ambiguity precisely.

We could have defined a commutative cone over (1) in terms of three arrows,
namely a cone (T, x, y, z) based on T would have x:T // A, y:T // B and z:T
// C such that f ◦x = g ◦y = z. Of course, z is redundant and in consequence the

Cone functor defined this way would be naturally isomorphic to the Cone functor
defined above, and so would have the same universal elements. (The component of
the natural isomorphism at T takes (T, x, y) to (T, x, y, f ◦ x)). Thus the pullback
of (1) also represents the set {(x, y, z) | f(x) = g(y) = z}, and so could be denoted
[(x, y, z) | f(x) = g(y) = z]. Although this observation is inconsequential here, it
will become more significant when we discuss more general constructions (limits)
defined by cones.

There is another way to construct a pullback in Set when the map g is monic.
In general, when g is monic, {(x, y) | f(x) = g(y)} ∼= {x | f(x) ∈ g(B)}, which
in Set is often denoted f−1(B). In general, a pullback along a subobject can be
interpreted as an inverse image which as we will see is again a subobject.

The pullback Diagram 9 is often regarded as a sort of generalized inverse image
construction even when g is not monic. In this case, it is called the “pullback of g
along f”. Thus when P is regarded as the fiber product, the notion of pullback is
symmetrical in A and B, but when it is regarded as the generalized inverse image
of B then the diagram is thought of as asymmetrical.

A common notation for the pullback of (1) reflecting the perception of a pull-
back as fiber product is “A×C B”.

7.4. The subobject functor. In this section, we will turn the subobject con-
struction into a contravariant functor, by using the inverse image construction
described above. To do this, we need to know first that the inverse image of a
monomorphism is a monomorphism:

7.5. Lemma. In any category C , in a pullback diagram (3), if f is monic then
so is p2.

Proof. Consider the diagram below, in which the square is a pullback.

(11)

A C
f

//

P

A

p1

��

P B
p2 // B

C

g

��

T P
x //

T P
y

//
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Then P = [(a, b) | fa = gb]. Showing that p2 is monic is the same as showing that
if (x, y) ∈T P and (x′, y) ∈T P then x = x′. But if (x, y) and (x′, y) are in P , then
f(x) = g(y) = f(x′). Since f is monic it follows that x = x′.

To turn the subobject construction into a functor, we need more than that
the pullback of monics is monic. We must know that the pullback of a subobject
is a well-defined subobject. In more detail, for A in C , SubA will be the set of
subobjects of A. If f :B // A, then for a subobject represented by a monic
g:U // A, Sub(f)(g) will be the pullback of g along f . To check that Sub(f) is
well-defined, we need:

7.6. Theorem. If g:U // // A and h:V // // A determine the same subobject,
then the pullbacks of g and h along f :B // A represent the same subobjects of B.

Proof. This follows because the pullback of g is [y | f(y) ∈PA U ] and the pullback
of h is [y | f(y) ∈PA V ], which has to be the same since by definition a subobject is
entirely determined by its elements.

The verification that Sub(f) is a functor is straightforward and is omitted.

7.7. Exercises

1. Show how to describe the kernel of a group homomorphism f :G // H as the
pullback of f along the map which takes the trivial group to the identity of H.

2. Give an example of a pullback of an epimorphism which is not an epimorphism.

3. Prove that an arrow f :A // B is monic if and only if the diagram

A B
f

//

A

A

idA

��

A A
idA // A

B

f

��

is a pullback.

4. (a) Suppose that

A C
f

//AA

BBB

C

g

��

is a diagram in Set with g an inclusion. Construct a pullback of the diagram as
a fiber product and as an inverse image of A along f , and describe the canonical
isomorphism between them.

(b) Suppose that g is injective, but not necessarily an inclusion. Find two ways
of constructing the pullback in this case, and find the isomorphism between them.

(c) Suppose f and g are both injective. Construct the pullback of Diagram 8
in four different ways: (i) fiber product, (ii) inverse image of the image of g along f ,
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(iii) inverse image of the image of f along g, (iv) and the intersection of the images
of f and g. Find all the canonical isomorphisms.

(d) Investigate which of the constructions in (c) coincide when one or both of
f and g are inclusions.

5. When g is monic in diagram (1), redefine “Cone” so that

(a) Cone(T,D) = {(x, z) | z ∈ B and f(x) = z}, or equivalently

(b) Cone(T,D) = {x | f(x) ∈ B}.
Show that each definition gives a functor naturally isomorphic to the Cone

functor originally defined.

6. Identify pullbacks in a poset regarded as a category. Apply this to the powerset
of a set, ordered by inclusion.

7. For two subobjects g:U // A and h:V // A, say that U ≤ V (or g ≤ h)
if g factors through h. Show that this makes the set of subobjects of A a partially
ordered set with a maximum element.

8. In a diagram

D E//

A

D
��

A B// B

E
��
E F//

B

E
��

B C// C

F
��

(a) Show that if both small squares are pullbacks, so is the outer square.

(b) Show that if the outer square and right hand square are pullbacks, so is
the left hand square.

8. Limits and colimits

8.1. Graphs. A limit is the categorical way of defining an object by means of
equations between elements of given objects. The concept of pullback as described
in Section 7 is a special case of limit, but sufficiently complicated to be characteristic
of the general idea. To give the general definition, we need a special notion of
“graph”. What we call a graph here is what a graph theorist would probably call
a “directed multigraph with loops”.

Formally, a graph G consists of two sets, a set O of objects and a set A of
arrows, and two functions d0, d1:A // O. Thus a graph is a “category without
composition” and we will use some of the same terminology as for categories: O is
the set of objects (or sometimes nodes) and A is the set of arrows of the graph;
if f is an arrow, d0(f) is the source of f and d1(f) is the target of f .

A homomorphism F :G //H from a graph G to a graph H is a function
taking objects to objects and arrows to arrows and preserving source and target;
in other words, if f :A // B in G, then F (f):F (A) // F (B) in H .
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It is clear that every category C has an underlying graph which we denote
|C |; the objects, arrows, source and target maps of |C | are just those of C . More-
over, any functor F : C // D induces a graph homomorphism |F |: |C | // |D |.
It is easy to see that this gives an underlying graph functor from the category
of categories and functors to the category of graphs and homomorphisms. A di-
agram in a category C (or in a graph G—the definition is the same) is a graph
homomorphism D: I // |C | for some graph I . I is the index graph of the
diagram. Such a diagram is called a diagram of type I . For example, a diagram
of the form of 7 of Section 7 (which we used to define pullbacks) is a diagram of
type I where I is the graph

1 // 2 oo 3

D is called a finite diagram if the index category has only a finite number of
nodes and arrows.

We will write D: I // C instead of D: I // |C |; this conforms to standard
notation.

Observe that any object A of C is the image of a constant graph homomorphism
K: I // C and so can be regarded as a degenerate diagram of type I .

If D and E are two diagrams of type I in a category C , a natural transfor-
mation λ:D // E is defined in exactly the same way as a natural transformation
of functors (which does not involve the composition of arrows in the domain cate-
gory anyway); namely, λ is a family of arrows

λi:D(i) // E(i)

of C , one for each object i of I , for which

(12)

D(j) E(j)
λj
//

D(i)

D(j)

D(e)

��

D(i) E(i)
λi // E(i)

E(j)

E(e)

��

commutes for each arrow e: i // j of I .
A commutative cone with vertex W over a diagram D: I // C is a natural

transformation α from the constant functor with value W on I to D. We will refer
to it as the “cone α:W // D”. This amounts to giving a compatible family
{αi} of elements of the vertices D(i) based on W . This commutative cone α is an
element (in the category of diagrams of type I ) of the diagram D based on the
constant diagram W . The individual elements αi (elements in C ) are called the
components of the element α.

Thus to specify a commutative cone with vertex W , one must give for each
object i of I an element αi of D(i) based on W (that is what makes it a cone) in
such a way that if e: i // j is an arrow of I , then D(e)(αi) = αj (that makes
it commutative). This says that the following diagram must commute for all e: i
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// j.

(13)

D(i) D(j)
D(e)

//

W

D(i)

αi

�������������
W

D(j)

αj

��???????????

The definition of commutative cone for pullbacks in Section 7 does not fit our
present definition, since we give no arrow to C in Diagram 13. Of course, this is only
a technicality, since there is an implied arrow to C which makes it a commutative
cone. This is why we gave an alternative, but equivalent construction in terms of
three arrows in Section 7.

Just as in the case of pullbacks, an arrow W ′ // W defines a commutative
cone over D with vertex W ′ by composition, thus making Cone(−, D): C // Set
a contravariant functor. (Cone(W,D) is the set of commutative cones with vertex
W .) Then a limit of D, denoted limD, is a universal element for Cone(−, D).

Any two limits for D are isomorphic via a unique isomorphism which makes
everything commute. This is stated precisely by the following proposition, whose
proof is left as an exercise.

8.2. Proposition. Suppose D: I // C is a diagram in a category C and α:W
// D and β:V // D are both limits of D. Then there is a unique isomorphism

u:V //W such that for every object i of I , αi ◦ u = βi.

The limit of a diagram D objectifies the set

{x | x(i) ∈ D(i) and for all e: i // j,D(e)(x(i)) = x(j)}
and so will be denoted

[x | x(i) ∈ D(i) and for all e: i // j,D(e)(x(i)) = x(j)]

As in the case of pullbacks, implied arrows will often be omitted from the
description. In particular, when y ∈T B and g:A // B is a monomorphism we
will often write “y ∈ A” or if necessary ∃x(g(x) = y) when it is necessary to specify
g.

By taking limits of different types of diagrams one obtains many well known
constructions in various categories. We can recover subobjects, for example, by
noting that the limit of the diagram g:A // B is the commutative cone with
vertex A and edges idA and g. Thus the description of this limit when g is monic
is [(x, y) | gx = y] = [y | y ∈ A], which is essentially the same as the subobject
determined by g since a subobject is determined entirely by its elements. In other
words, the monomorphisms which could be this limit are precisely those equivalent
to (in the same subobject as) g in the sense of Section 7.

A category C is complete if every diagram in the category has a limit. It is
finitely complete if every finite diagram has a limit. Set, Grp and Top are all
complete.

8.3. Products. A discrete graph is a graph with no arrows. If the set {1, 2}
is regarded as a discrete graph I , then a diagram of type I in a category C is
simply an ordered pair of objects of C . A commutative cone over the diagram
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(A,B) based on T is simply a pair (x, y) of elements of A and B. Commutativity
in this case is a vacuous condition.

Thus a limit of this diagram represents the set {(x, y) | x ∈ A, y ∈ B} and is
called the product of A and B. It is denoted A×B = [(x, y) | x ∈ A, y ∈ B]. The
object B×A = [(y, x) | y ∈ B, x ∈ A] is differently defined, but it is straightforward
to prove that it must be isomorphic to A×B.

It follows from the definition that A × B is an object P together with two
arrows p1:P // A and p2:P // B with the property that for any elements x
of A and y of B based on T there is a unique element (x, y) of A× B based on T
such that p1(x, y) = x and p2(x, y) = y. These arrows are conventionally called the
projections, even though they need not be epimorphisms. Conversely, any element
h of A × B based on T must be of the form (x, y) for some elements of A and B
respectively based on T : namely, x = p1(h) and y = p2(h). In other words, there is
a canonical bijection between Hom(T,A×B) and Hom(T,A)×Hom(T,B) (this is
merely a rewording of the statement that A×B represents {(x, y):x ∈ A, y ∈ B}).

Note that (x, x′) and (x′, x) are distinct elements of A×A if x and x′ are distinct,
because p1(x, x′) = x, whereas p1(x′, x) = x′. In fact, (x, x′) = (p2, p1) ◦ (x, x′).

If f :A // C and g:B // D, then we define

f × g = (f ◦ p1, g ◦ p2):A×B // C ×D
Thus for elements x of A and y of B defined on the same object, (f×g)(x, y) =

(f(x), g(y)).
It should be noted that the notation A×B carries with it the information about

the arrows p1 and p2. Nevertheless, one often uses the notation A × B to denote
the object P ; the assumption then is that there is a well-understood pair of arrows
which make it the genuine product. We point out that in general there may be no
canonical choice of which object to take be X × Y , or which arrows as projections.
There is apparently such a canonical choice in Set but that requires one to choose
a canonical way of defining ordered pairs.

In a poset regarded as a category, the product of two elements is their infimum,
if it exists. In a group regarded as a category, products don’t exist unless the group
has only one element. The direct product of two groups is the product in Grp and
the product of two topological spaces with the product topology is the product
in Top. There are similar constructions in a great many categories of sets with
structure.

The product of any indexed collection of objects in a category is defined analo-
gously as the limit of the diagram D: I // C where I is the index set considered
as the objects of a graph with no arrows and D is the indexing function. This prod-
uct is denoted

∏
i∈I Di, although explicit mention of the index set is often omitted.

Also, the index is often subscripted as Di if that is more convenient. There is a
general associative law for products which holds up to isomorphism.

There is certainly no reason to expect two objects in an arbitrary category to
have a product. A category has products if any indexed set of objects in the
category has a product. It has finite products if any finite indexed set of objects
has a product. By an obvious induction, it is sufficient for finite products to assume
an empty product and that any pair of objects has a product. Similar terminology
is used for other types of limits; in particular, a category C has finite limits if
every diagram D: I // C in which I is a finite graph, has a limit.
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8.4. Equalizers. The equalizer of two arrows f, g:A // B (such arrows are
said to be parallel) is the object [x ∈ A | f(x) = g(x)]. As such this does not
describe a commutative cone, but the equivalent expression [(x, y) | x ∈ A, y ∈
B, f(x) = g(x) = y] does describe a commutative cone, so the equalizer of f and g
is the limit of the diagram

A
f //
g
// B

We will also call it Eq(f, g). In Set, the equalizer of f and g is of course the set
{x ∈ A | f(x) = g(x)}. In Grp, the kernel of a homomorphism f :G // H is the
equalizer of f and the constant map at the group identity.

8.5. Theorem. A category has finite limits if and only if it has equalizers, binary
products and a terminal object.

Proof. (Sketch) With a terminal object and binary products, we get, by induction,
all finite products. Given a diagram D: I // C , with I a non-empty finite
graph, we let A =

∏
i∈ObI Di and B =

∏
α∈ArI codα. We define two arrows

f, g:A // B by pα ◦ f = α ◦ pdomα and pα ◦ g = pcodα. This means that the
following diagrams commute.

D domα D codαα
//

∏
i∈ObI Di

D domα

pdomα

��

∏
i∈ObI Di

∏
α∈ArI codα

f // ∏
α∈ArI codα

D codα

pα

��

∏
i∈ObI Di

D codα

pcodα
��??????????

∏
i∈ObI Di

∏
α∈ArI codα

g // ∏
α∈ArI codα

D codα

pα
������������

If E
h // ∏Di is an equalizer of f and g, then f ◦ h = g ◦ h expresses the fact

that h:E // D is a cone, while the universal mapping property into the equalizer
expresses the universality of that cone. As for the empty cone, its limit is the
terminal object.

With exactly the same argument one shows that the existence of arbitrary limits
is equivalent to the existence of equalizers and arbitrary products. The theorems
of this book (as opposed to some of the constructions used) depend only on finite
limits and finite colimits (see below for the latter).

By suitable modifications of this argument, we can show that a functor preserves
finite limits if and only if it preserves binary products, the terminal object and
equalizers.

Another version of this theorem asserts that a category has finite limits if and
only if it has a terminal object and pullbacks.

8.6. Preservation of limits. Let D: I // C be a diagram and F : C // B
be a functor. Let d: limD // D be a universal element of D. We say that F
preserves limD if Fd:F (limD) // FD is a universal element of FD.

8.7. Colimits. A colimit of a diagram is a limit of the diagram in the opposite
category. Spelled out, a commutative cocone from a diagram D: I // C with
vertex W is a natural transformation from D to the constant diagram with value
W . The set of commutative cocones from D to an object A is Hom(D,A) and
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becomes a covariant functor by composition. A colimit of D is a universal element
for Hom(D,−).

For example, let us consider the dual notion to “product”. If A and B are
objects in a category, their sum (also called coproduct) is an object Q together
with two arrows i1:A // Q and i2:B // Q for which if f :A // C and g:B
// C are any arrows of the category, there is a unique arrow 〈f, g〉:Q // C for

which 〈f, g〉 ◦ i1 = f and 〈f, g〉 ◦ i = 2 = g. The arrows i1 and i2 are called the
coproduct injections although they need not be monic. Since Hom(A + B,C) ∼=
Hom(A,C) × Hom(B,C), 〈f, g〉 represents an ordered pair of maps, just as the
symbol (f, g) we defined when we treated products in Section 8.

The sum of two sets in Set is their disjoint union, as it is in Top. In Grp the
categorical sum of two groups is their free product; on the other hand the sum of
two abelian groups in the category of abelian groups is their direct sum with the
standard inclusion maps of the two groups into the direct sum. The categorical
sum in a poset regarded as a category is the supremum. The categorical sum of
two posets in the category of posets and non-decreasing maps is their disjoint with
no element of the one summand related to any element of the second.

The coequalizer of two arrows f, g:A // B is an arrow h:B // C such
that

(i) h ◦ f = h ◦ g, and
(ii) if k:B //W and k ◦f = k ◦g, then there is a unique arrow u:C //W

for which u ◦ h = k.

The coequalizer of any two functions in Set exists but is rather complicated to
construct. If K is a normal subgroup of a group G, then the coequalizer of the
inclusion of K into G and the constant map at the identity is the canonical map G
// G/K.
The dual concept to “pullback” is “pushout”, which we leave to the reader to

formulate.
The notion of a functor creating or preserving a colimit, or a class of colimits, is

defined analogously to the corresponding notion for limits. A functor that preserves
finite colimits is called right exact. In general, a categorical concept that is defined
in terms of limits and/or colimits is said to be defined by “exactness conditions”.

8.8. Regular monomorphisms and epimorphisms. A map that is the equal-
izer of two arrows is automatically a monomorphism and is called a regular
monomorphism. For let h:E // A be an equalizer of f, g:A // B and sup-
pose that k, l:C // E are two arrows with h ◦ k = h ◦ l. Call this common
composite m. Then f ◦m = f ◦ h ◦ k = g ◦ h ◦ k = g ◦m so that, by the univer-
sal mapping property of equalizers, there is a unique map n:C // E such that
h ◦ n = m. But k and l already have this property, so that k = n = l.

The dual property of being the coequalizer of two arrows is called regular
monomorphism. In many familiar categories (monoids, groups, abelian groups,
rings, . . . ) the regular epimorphisms are the surjectives mappings, but it is less
often the case that the injective functions are regular monomorphisms. Of the four
categories mentioned above, two (groups and abelian groups) have that property,
but it is far from obvious for groups.
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8.9. Regular categories. A category A will be called regular if every finite
diagram has a limit, if every parallel pair of arrows has a coequalizer and if whenever

C D
k

//

A

C

g

��

A B
f // B

D

h

��

is a pullback square, then h a regular epimorphism implies that g is a regular epi-
morphism. In Set and in many other familiar category groups, abelian groups, rings,
categories of modules, etc., the regular epics are characterized as the surjective ho-
momorphisms and these are closed in this way under pulling back. However, many
familiar categories are not regular. For example neither the category of topological
spaces and continuous maps, nor the category of posets and order preserving maps,
is regular. If you know what an equational theory is, it is useful to know that the
category of models of any equational theory is always regular (and exact, see below
for the definition).

8.10. Proposition. In a regular category, every arrow f can be written as f = m◦e
where m is a monomorphism and e is a regular epimorphism.

Proof. The obvious way to proceed is to begin with an arrow f :A // A′ and form
the kernel pair of f , which can be described symbolically as {(a, b) | fa = fb}. If

this kernel pair is K(f)
d0
//

d1
// A, then let g:A // B be the coequalizer of d0 and

d1. Since f ◦d0 = f ◦d1, the universal mapping property of coequalizers implies there
is a unique h:B // A′ such that h ◦ g = f . Now g is a regular epimorphism by
definition. If you try this construction in the category of sets or groups or, . . . , you
will discover that h is always monic and then f = h ◦g is the required factorization.
There are, however, categories in which such an h is not always monic. We will now
show that in a regular category, it is. Actually, a bit less than regularity suffices. It
is sufficient that a pullback of a regular epimorphism be an epimorphism. Call an
arrow a weakly regular epimorphism if it is gotten as a composite of arrows, each of
which is gotten by pulling back a regular epimorphism. Since a pullback stacked on
top of a pullback is a pullback, it follows that weakly regular epimorphisms are both
closed under pullback (Exercise 8) and under composition and since a pullback of
a regular epimorphism is an epimorphism, every weakly regular epimorphism is an
epimorphism. Next note that since A // // B is a regular epimorphism, f×1:A×A
// B ×A is a weakly regular epimorphism since

B ×A Bp1

//

A×A

B ×A

f × 1

��

A×A A
p1 // A

B

f

��
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is a pullback. Similarly, 1×f :B×A // B×B and hence f×f :A×A // B×B

is a weakly regular epimorphism. Let K(h)
e0
//

e1
// A be the kernel pair of g. The

fact that h ◦ g ◦d0 = f ◦d0 = f ◦d1 = h ◦ g ◦d1, together with the universal mapping
property of K(h) implies the existence of an arrow k:K(f) // K(h) such that
the left hand square in the diagram

A×A B ×B//
g × g

//

K(f)

A×A

(d0, d1)

��

K(f) K(h)
k // K(h)

B ×B

(e0, e1)

��
B ×B A′ ×A′

h× h
//

K(h)

B ×B

K(h)

B ×B

K(h) A′// A′

A′ ×A′

(1, 1)

��

commutes. The right hand square and the outer squares are pullbacks by defini-
tion—they have the universal mapping properties of the kernel pairs. By a standard
property of pullbacks, the left hand square is also a pullback. But g× g is a weakly
regular epimorphism and hence so is k. Now in the square

A Bg
//

K(f)

A

d0

��

K(f) K(h)
k // K(h)

B

e0

��
A Bg

//

K(f)

A

d1

��

K(f) K(h)
k // K(h)

B

e1

��

we have e0 ◦ k = g ◦ d0 = g ◦ d1 = e1 ◦ k and k is epic and therefore e0 = e1. But
that means that h is monic, which finishes the argument.

8.11. Equivalence relations and exact categories. Let A be a category with
finite limits. If A is an object, a subobject (d0, d1):E // A × A is called an
equivalence relation if it is

ER–1. reflexive: there is an arrow r: a // E such that d0 ◦ r = d1 ◦ r = id;
ER–2. symmetric: there is an arrow s:E // E such that s ◦ d0 = d1 and

s ◦ d1 = d0;
ER–3. transitive: if

E Ap1

//

T

E

q2

��

T E
q1 // E

A

p2

��

is a pullback, there is an arrow t:T // E such that p1 ◦ t = p1 ◦ q1 and
p2 ◦ t = p2 ◦ q2.

The interpretation of the last point is that E ⊆ A × A, so is a set of ordered
pairs (a1, a2); T ⊆ E×E, so T is a set of ordered 4-tuples (a1, a2, a3, a4) such that
(a1, a2) ∈ E and (a3, a4) ∈ E and the condition p1 ◦ q2 = p2 ◦ q1 simply expresses
a3 = a4. Then the condition p1 ◦ t = p1 ◦ q1 means that t(a1, a2, a3, a4) has first
coordinate a1 and p2 ◦ t = p2 ◦ q2 means that the second coordinate is a4. So taken
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all together, this says that when (a1, a2) ∈ E, (a3, a4) ∈ E and a2 = a3, then
(a1, a4) ∈ E, which is just transitivity in the usual sense.

If f :A // A′ is an arrow, then the kernel pair of f is an equivalence relation.
It is internally the relation a1 ∼ a2 if and only if fa1 = fa2. We say that an
equivalence relation is effective if it is the kernel pair of some arrow. Another
term for effective equivalence relation is congruence.

A category is called exact if it is regular and if every equivalence relation is
effective.

The following will be needed for 2.2.4

8.12. Proposition. Suppose A is a regular, respectively exact, category. Then
for any object A the slice A /A is regular, respectively exact.

Proof. Let us write [b:B // A] for an object of A /A. Suppose f : [b:B // A]
// [b′:B′ // A] is an arrow such that f :B // B′ is a regular epimorphism in

A . Then there is a pair of arrows B′′
d0
//

d1
// B whose coequalizer is f . Then we

have the diagram

[b ◦ d0 = b ◦ d1:B′′ // A]
d0
//

d1
// [b:B // A]

f // [b′:B′ // A]

which is a coequalizer in A /A so that f is a regular epimorphism there. Conversely,
suppose that f : [b:B // A] // [b′:B′ // A] is a regular epimorphism in A /A.
Then we have a coequalizer

[b′′:B′′ // A]
d0
//

d1
// [b:B // A]

f // [b′:B′ // A]

Given g:B // C such that g◦d0 = g◦d1, it is easy to see that we have a morphism
(g, b): [b:B // A] // [p2, C ×A]. Moreover,

(g, b) ◦ d0 = (g ◦ d0, b ◦ d0) = (g ◦ d1, b′′) = (g ◦ d1, b ◦ d1) = (g, b) ◦ d1

so that there is a unique (h, k): [b′:B′ // A] // [p2:C ×A // A] with (h, k) ◦ f =
(g, b). This implies that h◦f = g and k◦f = b. Thus h:B′ // C satisfies h◦f = g.
If h′ were a different map for which h′ ◦ f = g, then (h′, k) would be a second map
for which (h′, k) ◦ f = (g, b), contradicting uniqueness. Thus far we have shown
that f is a regular epic in A if and only if it is so in A /A. If we have [b:B // A]

f // [b′:B′ // A] oo
g

[c′, C ′] and if

C ′ B′g
//

C

C ′

f ′

��

C B
g′ // B

B′

f

��
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is a pullback, then it is immediate that for c = c′ ◦ f ′ = b′ ◦ g ◦ f ′ = b′ ◦ f ◦ g′ = b ◦ g′

the square

[c′:C ′ // A] [b′:B′ // A]g
//

[c:C // A]

[c′:C ′ // A]

f ′

��

[c:C // A] [b:B // A]
g′ // [b:B // A]

[b′:B′ // A]

f

��

is a pullback in A . If f is regular epic in A /A it is so in A ; hence f ′ is regular
epic in A and therefore is so in A /A. This proves it for regular categories.

For exact categories, the argument is similar. The previous discussion amounts
to showing that pullbacks and coequalizers are the same in A and A /A. As a
matter of fact, the full story is that all colimits are the same. Not all limits are;
however all pullbacks are and that is all that is used in the definition of exact
category. For example, the terminal object in A /A is [id:A // A] and that is not
the terminal object of A (unless A = 1, in which case A /A is equivalent to A ).
See Exercise 2 below.

8.13. Exercises

1. Suppose that the category A has finite limits. Show that the kernel pair of any
arrow is an equivalence relation. Hint: you will have to use the universal mapping
properties of limits.

2. Call a graph connected if it is not the disjoint union of two non-empty sub-
graphs. Show that the forgetful functor A /A // A preserves the limits of
diagrams over connected graphs (which are called connected diagrams).

3. Suppose

C Dm
//

A

C

f

��

A B
e // B

D

g

��

is a commutative square in a regular category and that e is a regular epimorphism
and m is a monomorphism. Show there is a unique h:B // C making both
(actually either) triangles commute. This is called the diagonal fill-in.

9. Adjoint functors

9.1. Adjunction of group underlying function. Let A be a set and G be
a group. We have noted that for any function from A to G, in other words for
any element of HomSet(A,UG), there is a unique group homomorphism from the
free group FA with basis A to G which extends the given function. This is thus a
bijection

HomGrp(FA,G) // HomSet(A,UG)
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The inverse simply restricts a group homomorphism from FA to G to the basis A.
Essentially the same statement is true for monoids instead of groups (replace FA
by the free monoid A∗) and also for the category of abelian groups, with FA the
free abelian group with basis A.

The bijection just mentioned is a natural isomorphism β of functors of two
variables, in other words a natural isomorphism from the functor HomGrp(F (−),−)
to HomSet(−, U(−)). This means precisely that for all functions f :B // A and
all group homomorphisms g:G // H,

(14) HomGrp(FB,H) HomSet(B,UH)
β(B,H)

//

HomGrp(FA,G)

HomGrp(FB,H)

HomGrp(Ff, g)

��

HomGrp(FA,G) HomSet(A,UG)
β(A,G)

// HomSet(A,UG)

HomSet(B,UH)

HomSet(f, Ug)

��

commutes.

9.2. Unit and counit. The free group functor and the underlying set functor
are a typical pair of “adjoint functors”. Formally, if A and D are categories and
L: A // D and R: D // A are functors, then L is left adjoint to R and R is
right adjoint to L if for every objects A of A and B of D there is an isomorphism

HomA (A,RB) ∼= HomD(LA,B)

which is natural in the sense of diagram 14. Informally, elements of RB defined on
A are essentially the same as element of B defined on LA.

In particular, if L is left adjoint to R and A is an object of A , then corre-
sponding to idLA in HomA (LA,LA) there is an arrow ηA:A // RLA; the arrows
ηA form a natural transformation from the identity functor on A to R ◦ L. This
natural transformation η is the unit of the adjunction of L to R. A similar trick
also produces a natural transformation ε:L ◦ R // idD called the counit of the
adjunction. The unit and counit essentially determine the adjunction completely.

9.3. Examples. We give a number of examples that will be needed later in this
book.

1. The underlying functor Ab // Set. The adjoint takes a set S to the set
of all finite sums ∑

s∈S
nss

where for each s ∈ S, ns is an integer, but in any given sum, only finitely
many of them are non-zero. The abelian group structure is just term-wise
addition (and subtraction).

2. The underlying functor CommMon // Set. This takes a set S to the
set of all terms ∏

s∈S
sns

where for each s ∈ S, ns is a non-negative integer, but in any given
product, only finitely many of them are non-zero. Of course, this could
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be written additively, but for the purpose of the next example, we prefer
to do it multiplicatively.

3. The underlying set functor CommRing // Set. Here the left adjoint
can be described as the composite of the two previous examples. If S
is a set, then the free commutative ring, which we will call Z[S] since
it is, in fact the ring of polynomials in S is gotten by first forming the
free commutative monoid generated by S and then the free abelian group
generated by that. It is still a monoid, since the distributive law of multi-
plication tells us how to multiply sums of monomials. The general process
by which two such free functors can be composed was first studied by Jon
Beck under the name “distributive laws” [Beck, 1969].

4. The underlying set functors on the categories of monoids (not necessarily
commutative), rings (ditto) and Lie algebras all have adjoints. Lest the
reader get the idea that all underlying set functors have adjoints, we men-
tion the category of fields, whose underlying set functor does not have an
adjoint. An interesting case is that of torsion abelian groups. If we fix an
exponent d and look at all groups satisfying xd = 1, there is an adjoint
that takes a set S to the direct sum of S many copies of Z/dZ, but on the
full category, there is no adjoint.

9.4. Representability and adjointness. The statement that L is left adjoint
to R immediately implies that for each object A of A , the object LA of B rep-
resents the functor HomA (A,R(−)): B // Set. The universal element for this
representation, which must be an element of HomA (A,RLA), is the unit ηA. Du-
ally, the object RB with universal element εA represents the contravariant functor
Hom(L(−), B). The following theorem is a strong converse to these facts.

9.5. Theorem. (“Pointwise construction of adjoints”). Let A and B be cate-
gories.

(a) If R: B // A is a functor such that the functor HomA (A,R(−)) is
representable for every object A of A , then R has a left adjoint.

(b) If L: A // B is a functor such that HomB(L(−), B) is representable
for every object B of B, then L has a left adjoint.

With little more work, one can prove parametrized versions of these results.

9.6. Theorem. Let A , B, and X be categories.

(a) Suppose R: X ×B // A is a functor such that for every pair of objects
A ∈ Ob(A ) and X ∈ Ob(X ) the functor HomB(A,R(X,−)): B // Set
is representable. Then there is a unique functor L: A ×X op // B such
that

HomA (−, R(−,−)) ∼= HomB(L(−,−),−)

as functors A op ×X ×B // Set.
(b) Suppose L: A ×X op // B is a functor such that for every pair of objects

B ∈ Ob(B) and X ∈ Ob(X ) the functor HomB(L(−, X), B): A // Set
is representable. Then there is a unique functor R: X ×B // A such
that

HomA (−, R(−,−)) ∼= HomB(L(−,−),−)

as functors A op ×X ×B // Set.
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Proof. The two statements are dual, so we will prove the first. Begin by choosing,
for each A ∈ Ob(A ), X ∈ Ob(X ), and B ∈ Ob(B) an object function L: Ob(A )×
Ob(X ) // Ob(B) such that HomA (A,R(X,B)) ∼= HomB(L(A,X), B). Now we
want to make L into a functor. Choose arrows f :A // A′ and g:X ′ // X. Now
for any B ∈ Ob(B) we have a diagram

(15) HomA (A,R(X,B)) HomB(L(A,X), B)∼=
//

HomA (A′, R(X ′, B))

HomA (A,R(X,B))

HomA (f,R(g,B))

��

HomA (A′, R(X ′, B)) HomB(L(A′, X ′), B)
∼= // HomB(L(A′, X ′), B)

HomB(L(A,X), B)

HomB(L(A′, X ′), B)

HomB(L(A,X), B)

There is thus a unique arrow

φ(f, g,B): HomB(L(A′, X ′), B) // HomB(L(A,X), B)

that makes the square commute. Moreover, since both the isomorphisms and
HomA (f,R(g,B)) are natural with respect to B, we conclude that φ(f, g,B) is
as well. By the Yoneda lemma, there is a unique arrow we call L(f, g):L(A,X)
// L(A′, X ′) such that φ(f, g,B) = HomB(L(f, g), B). If now we have f ′:A′

// A′′ and g′:X ′′ // X ′ we can stack another diagram of shape 15 on top of
that one to show that L(f, g) ◦L(f ′, g′) = L(f ◦f ′, g′ ◦g). The fact that L preserves
identities is even easier.

One of the most important properties of adjoints is their limit preservation
properties.

9.7. Proposition. Let L: A // B be left adjoint to R: B // A . Then R
preserves the limit of an any diagram in B that has a limit and L preserves the
colimit of any diagram in A that has a colimit.

Proof. Suppose that D: I // B is a diagram and that B // D is a limit cone.
Given a cone A // RD, the adjunction gives a cone LA // D by applying the
adjunction to each element of the cone. The universality gives an arrow LA // C
and then the adjunction gives A // UC. We can summarize this argument as
follows:

Cone(A,RD) ∼= Cone(LA,D) ∼= Hom(LA,B) ∼= Hom(A,RB)

10. Categories of fractions

The definitions and results of this section are essentially those of [Gabriel & Zisman,
1967].

The main acyclic models theorem is stated in terms of a fundamental con-
struction in category theory, called categories of fractions. This is a relatively
straightforward generalization of the construction in monoids, to which we turn by
way of introduction.

10.1. Monoids. Let M be a monoid and Σ ⊆ M be a multiplicatively closed
(which is understood to include the identity element—the empty product) subset.
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There is a monoid denoted Σ−1M and a monoid homomorphism φ:M // Σ−1M
with the following two properties:

1. If σ ∈ Σ, then φ(σ) is invertible;
2. if f :M // N is a monoid homomorphism such that f(σ) is invertible for

all σ ∈ Σ, then there is a unique monoid homomorphism g: Σ−1M // N
such that g ◦ φ = f .

This can readily be set up as an adjoint and the general adjoint functor applied.
However, it is instructive to give a direct construction. Consider the free monoid
F generated by the elements of M and formal inverses of elements of Σ. Write
〈x〉 and 〈σ−1〉 for the two kinds of generators. Factor out the congruence relation
generated by all pairs of the forms (〈x〉〈y〉, 〈xy〉), (〈σ〉〈σ−1〉, 1), (〈σ−1〉〈σ〉, 1) and
(〈1〉, 1〉. This means that we first form the submonoid of M ×M generated by all
such pairs and then the equivalence relation generated by that. The result is an
equivalence relation that is also a submonoid. The set of equivalence classes has a
unique monoid structure for which the class map is a homomorphism and it is clear
that in the quotient monoid, the classes of the elements of Σ are invertible.

One point should be noted. This process can, depending on the nature of
Σ, distort M profoundly. For example, if we carry out this procedure on the
multiplicative monoid of integers and 0 ∈ Σ, then the fact that 0n = 0m implies,
when you invert 0, that n = m. Thus that procedure causes the monoid to collapse
to a single element.

In general, every element of Σ−1M can be written in the form

x1σ
−1
1 x2σ

−1
2 · · ·xnσ−1

n

Of course, it is possible that x1 or σn or both is 1, so it can start with an inverse
or end with an ordinary element of M . One way of seeing this is to observe that
Σ−1M must contain all the elements of M as well as inverses to all elements of Σ
and hence all such products. Next observe that the set of all such products forms a
submonoid that contains all the elements of M and the inverses of all the elements
of Σ and this submonoid clearly satisfies the universal mapping property. Since
the solution of a universal mapping problem is unique, there can be no additional
elements.

10.2. Calculuses of fractions: monoids. A multiplicatively closed subset Σ ⊆
M is said to have a calculus of right fractions if for any σ ∈ Σ and x ∈ M ,
there are y ∈M and τ ∈ Σ such that σy = xτ and if for any x, y ∈ M and σ ∈ Σ,
σx = σy implies there is a τ ∈ Σ for which xτ = yτ . Dually, we say that Σ has
a calculus of left fractions if for any σ ∈ Σ and x ∈ M , there are y ∈ M and
τ ∈ Σ such that yσ = τx.

10.3. Proposition. If the multiplicatively closed subset Σ ⊆M has a calculus of
right fractions, then every element of Σ−1M can be written as xσ−1 with σ ∈ Σ.
Moreover, xσ−1 = yτ−1 if and only if there are elements a, b ∈ M such that
σa = τb ∈ Σ and xa = yb. Dually, if Σ has a calculus of left fractions, then every
element of Σ−1M can be written as σ−1x with σ ∈ Σ. Moreover, σ−1x = τ−1y if
and only if there are elements a, b ∈M such that aσ = bτ ∈ Σ and ax = by.

We will leave the proof till the corresponding theorem for categories, of which
this is a special case. There is no real difference between the proofs. In a sense,
the one for categories is easier because there are fewer possibilities since elements
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cannot be composed unless the domain of one is the codomain of the other and
then only in one direction.

10.4. Categories. In dealing with categories, we have a problem of size. Usually,
one assumes that in a category the class of arrows between any two objects is a
set. In the case of categories of fractions, this will not necessarily be true even if it
is in the original category. One way of dealing with this is to suppose the original
category is itself small (that is, there in all only a set of arrows in the category),
in which case any fraction category is too. Another approach is to carry out the
construction in general and allow the possibility of large hom classes. It may still
happen in individual cases that these classes will be small. We adopt the latter
approach.

Let M be a category and Σ denote a class of arrows closed under composition
and including all the identity arrows. The category Σ−1M comes with a functor
Φ: M // Σ−1M such that:

1. if σ ∈ Σ, then Φ(σ) is an isomorphism;
2. if F : M // N is an functor with the property that for all σ ∈ Σ, the

arrow F (σ) is an isomorphism, then there is a unique functor G: Σ−1M
// N such that G ◦ Φ = F .

Here is how to construct Σ−1M . The category has the same objects as those
of M . If M and M ′ are objects, an arrow from M to M ′ is an equivalence class of
formal composites

fn ◦ σ
−1
n ◦ fn−1 ◦ σ

−1
n−1

◦ · · · ◦ f1 ◦ σ
−1
1

for which

1. cod(σ1) = M ;
2. cod(fn) = M ′;
3. dom(fi) = dom(σi) for i = 1, · · · , n;
4. cod(fi) = cod(σi+1) for i = 1, · · · , n− 1.

We picture an arrow as follows:

M ·M ·

·

M

σ1

��������� ·

·

f1

��???????? ·

·
σ2����������

· · ·

·

·
fn−1 ��????????

· M ′· M ′

·

·

σn

���������� ·

M ′

fn

��???????

Composition is juxtaposition so that the empty string is the identity and we
will unambiguously denote it by id. The equivalence relation ∼ is the smallest one
closed under juxtaposition such that f ◦ σ−1 ∼ τ−1 ◦ g whenever τ ◦ f = g ◦ σ
and such that for any object C of C , idC ◦ id−1

C is the empty string, that is, the

identity of C in Σ−1C . Note that τ−1 ◦ g is short for id ◦ τ−1 ◦ g ◦ id−1. This
equivalence relation implies, for example, that σ ◦ σ−1 = id−1 ◦ id = id•id

−1 = id
and σ−1 ◦ σ = id ◦ id−1 = id, so that σ is invertible in Σ−1C . Conversely, it is
clear that if each of element of Σ is invertible, then τ ◦ f = g ◦ σ implies that
f ◦ σ−1 = τ−1 ◦ g so that this is the least equivalence that suffices.

We will denote the equivalence classes by any element and ∼ by = from now
on.

The functor Φ is the identity on objects and Φ(f) = f ◦ id−1 which we will also
denote f . It is clear that Φ(σ) = σ is invertible and if F : M // N inverts every
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element of Σ, then we let

G(fn ◦ σ
−1
n ◦ fn−1 ◦ σ

−1
n−1

◦ · · · ◦ f1 ◦ σ
−1
1 )

= F (fn) ◦ F (σn)−1 ◦ F (fn−1) ◦ F (σn−1)−1 ◦ · · · ◦ F (f1) ◦ F (σ1)−1

This is clearly the unique functor that extends F .

10.5. Calculuses of fractions: categories. We say that Σ has a calculus of
left fractions if, for any σ ∈ Σ and f ∈ M with the same domain, there is a
commutative square

· ·τ
//

·

·

f

��

· ·σ // ·

·

g

��

and if, for any parallel pair f, g:M // N and σ:N // N ′ in Σ such that
σ ◦f = σ ◦ g, there is a τ :M ′ //M belonging to Σ such that f ◦ τ = g ◦ τ . Dually,
we say that Σ has a calculus of right fractions if for any σ ∈ Σ and f ∈ M ,
with the same codomain, there is a commutative square

· ·
f

//

·

·

τ

��

· ·
g // ·

·

σ

��

and if, for any parallel pair f, g:M // N and σ:M ′ // M in Σ such that
f ◦ σ = g ◦ σ, there is a τ :N // N ′ belonging to Σ such that τ ◦ f = τ ◦ g.

10.6. Proposition. If the multiplicatively closed subset Σ ⊆ C has a calculus of
right fractions, then every arrow of Σ−1C can be written as f ◦ σ−1 with σ ∈ Σ.
Moreover, if dom(f) = dom(σ) = C ′ and dom(g) = dom(τ) = C ′′, then f ◦ σ−1 =
g ◦ τ−1:C // D if and only if there is an object B and arrows a:B // C ′ and
b:B // C ′′ such that such that σ ◦ a = τ ◦ b ∈ Σ and f ◦ a = g ◦ b. Dually, if Σ
has a calculus of left fractions, then every arrow of Σ−1C can be written as f ◦σ−1

with σ ∈ Σ. Moreover, if cod(f) = cod(σ) = D′ and cod(g) = cod(τ) = D′′, then
σ−1 ◦ f = τ−1 ◦ g:C // D if and only if there is an object B and arrows a:D′

// E and b:D′′ // E such that such that a ◦ σ = b ◦ τ ∈ Σ and a ◦ f = b ◦ g.

Proof. Suppose C has a calculus of right fractions. Any map of the form f ◦ σ−1

can be written as τ−1 ◦ g by completing the square. Composites of these maps
can obviously be rewritten in this form as well. Next we consider the equivalence
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relation. Let R be the relation described in the theorem. The picture is

C BC BC

C ′′

__

τ
??????????? B DB DB

C ′′

b

��

D

C ′′

??

g
�����������

C BC BB DB D

C ′

C

σ

�������������
C ′

B

OO

a

C ′

D

f

��???????????

If σ ◦ a = τ ◦ b ∈ Σ and f ◦ a = g ◦ b then

f ◦ σ−1 = f ◦ σ−1 ◦ σ ◦ a ◦ (σ ◦ a)−1 = f ◦ a ◦ (σ ◦ a)−1

= g ◦ b ◦ (τ ◦ b)−1 = g ◦ τ−1 ◦ τ ◦ b ◦ (τ ◦ b)−1 = g ◦ τ−1

Now suppose that f ◦ σ−1 = g ◦ τ−1 in Σ−1C . The equality in that category is the
transitive closure of the relation S in which (f ◦σ−1)S(g ◦ τ−1) if there is an object
B and arrows h:B // C and ρ:B // D with ρ ∈ Σ such that the diagram

C B
h // B Doo ρ

C ′

C

σ

�������������
C ′

B

C ′

B

C ′

D

f

��???????????

C

C ′′

__

τ
???????????C DC DD

C ′′

??

g
�����������

commutes. There is an object A and arrows u:A // C ′ and v:A // C ′′ such
that σ ◦u = τ ◦ v and we may suppose that either u or v belongs to Σ, but in either
case σ ◦ u = τ ◦ v does. Then

ρ ◦ f ◦ u = h ◦ σ ◦ u = h ◦ τ ◦ v = ρ ◦ g ◦ v

so that there is an objectA′ and an arrow θ:A′ // A in Σ such that f◦u◦θ = g◦v◦θ.
Also, σ ◦ u ◦ θ = τ ◦ v ◦ θ ∈ Σ since σ ◦ u and θ do.

Next we show that R is transitive, since it is evidently reflexive and symmetric.
Suppose f ◦σ−1 = g ◦ τ−1 and g ◦ τ−1 = h ◦ρ−1 with C ′′′ = dom(h). Then there are
objects B and B′ and arrows a:B // C ′, b:B // C ′′, c:B′ // C ′′ and d:B′

// C ′′′ such that σ ◦ a = τ ◦ b ∈ Σ, τ ◦ c = ρ ◦ d ∈ Σ, f ◦ a = g ◦ b and g ◦ c = h ◦ d.
Now τ ◦ b:B // C and τ ◦ c:B′ // C belong to Σ and so there is an object A
and arrows u:A // B and v:A // B′ such that τ ◦ b ◦ u = τ ◦ c ◦ v and we can
suppose that either u or v belongs to Σ. It does not matter which one we suppose,
so suppose it is u. Then since τ ◦b ∈ Σ, it follows that τ ◦b◦u = τ ◦c◦v ∈ Σ. Since τ
coequalizes b◦u and c◦v, there is an object A′ and θ ∈ Σ such that b◦u◦θ = c◦v ◦θ.
Now we have a ◦ u ◦ θ:A′ // C ′ and d ◦ v ◦ θ:A′ // C ′′′. We see that

σ ◦ a ◦ u ◦ θ = τ ◦ b ◦ u ◦ θ = τ ◦ c ◦ v ◦ θ = ρ ◦ d ◦ v ◦ θ
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Moreover, this arrow belongs to Σ because σ ◦ a, u and θ do. Finally,

f ◦ a ◦ u ◦ θ = g ◦ b ◦ u ◦ θ = g ◦ c ◦ v ◦ θ = h ◦ d ◦ v ◦ θ

which shows that f ◦ σ−1 is related to g ◦ ρ−1 under R.

11. The category of modules

In Chapter 7 we will need the category of all left modules. An object of the category
is a pair (R,M) where R is a ring and M is a left R-module. If (R,M) and (R′,M ′)
are two such objects, a morphism (R,M) // (R′,M ′) is a pair (φ, f) where φ:R
// R′ is a ring homomorphism and f :M //M ′ is an additive homomorphism

such that f(rm) = φ(r)f(m) for r ∈ R and m ∈M . The category structure is the
obvious one. We will call this category Lmod.

Here is an interesting example. It is entirely possible that (R,M) ∼= (R,M ′)
without M ∼= M ′ as R-modules. Let R = Z[x, y] be a polynomial ring in two
variables. Let M = Z ⊕ Z ⊕ · · · , the direct sum of countable many copies of Z.
Both x and y act by translation of coordinates:

x(n1, n2, . . .) = y(n1, n2, . . .) = (0, n1, n2, . . .)

We let M ′ be the same abelian group and the action of x is the same, while y acts
as the 0 homomorphism. There can be no non-zero homomorphism between M
and M ′ since it cannot preserve the action of y. On the other hand R = Z[x, x− y]
as well and the action of x − y on M is just like that of y on M ′. Precisely, let
φ:R // R′ be the unique homomorphism for which φ(x) = x and φ(y) = x − y.
It is an isomorphism, with φ−1(x) = x and φ−1(y) = x + y. Then (φ, id) is an
isomorphism.

When we use this construction in Chapter 7, we will use this example, except
with 2n variables instead of just 2.

A trivial observation is that if φ:R // R′ is a ring homomorphism, then
(φ, φ): (R,R) // (R,R) is a homomorphism in the category of all modules, since
in that case the required identity is φ(rs) = φ(r)φ(s).

We will have need of the following proposition.

11.1. Proposition. Suppose that f :M //M ′ is a homomorphism of R modules,
(φ, g): (R,M) // (S,N) is an isomorphism and (φ, h): (R,M ′) // (S,N ′) is a
homomorphism in Lmod. Then h ◦ f ◦ g−1:N // N ′ is a homomorphism of
S-modules.

Proof. This can readily be done directly. Another way is to observe that the com-
posite (φ, h) ◦ (id, f) ◦ (φ−1, g−1) is (φ ◦ id ◦ φ−1, h ◦ f ◦ g−1) = (id, h ◦ f ◦ g−1) in
Lmod.

11.2. Corollary. Suppose that (φ, g): (R,M) // (S,N) and (φ, h): (R,M ′) //

(S,N ′) are homomorphisms in the category of all modules. Then f 7→ h ◦ f ◦ g−1

defines an isomorphism HomR(M,M ′) // HomS(N,N ′).

We note that these homsets are just abelian groups. Even when R = S is
commutative (which is the case we will actually be applying this) and the homsets
are R-modules, respectively, the isomorphisms will not be of R-modules.
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All results of this section apply, mutatis mutandi to the category Rmod of all
right modules, whose definition is obvious.

12. Filtered colimits

The results of this section are needed only at one place, namely in the surprisingly
complicated proof in 6.5.6 that for a commutative ring K, the free K-Lie algebra
generated by a free K-module is a free K-module. Thus this section can be skipped
until that point, or entirely if you are interested only in the case that K is a field.

12.1. The path category of a graph. In a graph G , a path from a node i
to a node j of length n is a sequence (α1, α2, . . . , αn) of (not necessarily distinct)
arrows for which

(i) source(α1) = i,
(ii) target(αi−1) = source(αi) for i = 2, . . . , n, and
(iii) target(αn) = j.

By convention, for each node i there is a unique path of length 0 from i to i that
is denoted (). It is called the empty path at i. We will write α = αn◦· · · ◦α1. If also
β = βm ◦· · · ◦β1 is a path from j // k, then we let β ◦α = βm ◦· · · ◦β1 ◦αn ◦· · · ◦α1.
The empty path is an identity for this operation and it is clear that the paths form
a category, called the path category of G . We will make no use of this category,
however, but we do need the notion of path in the discussion of filtered colimits
below.

12.2. Filtered colimits. Suppose D: I // C is a diagram. For a path α: i
// j of the form

i = i0
α1 // i1

α2 // · · ·
αn // in = j

and a diagram D: I // C , define Dα = Dαn ◦ · · · ◦Dα2 ◦Dα1. We also define D
on the empty path at i to be idDi. It is clear that if α: i // j and β: j // k are
paths, then D(β ◦ α) = Dβ ◦Dα.

A diagram D: I // C is called filtered if

(i) Given two objects i and j of I , there is an object k and paths α: i // k
and β: j // k;

(ii) Given two paths i
α //

β
// j there is an object k and a path γ: j // k such

that Dγ ◦Dα = Dγ ◦Dβ.

The slight awkwardness of this definition is the price we must pay for using
index graphs instead of index categories.

A colimit taken over a filtered diagram is called a filtered colimit. The main
significance is that filtered colimits commute with finite limits in Set and many
other interesting categories.

The following theorem is stated as it is in case you know what a finitary equa-
tional theory is. However, the only use we make of it is in the proof of 6.5.6 and
only for the categories of Lie algebras, associative algebras and modules.
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12.3. Theorem. For any equational theory Th, the underlying set functor on the
category of models preserves filtered colimits.

Proof. We will prove this for the special case of abelian groups. The only property
of abelian groups used is that every operation is finitary, that is a function of only
finitely many arguments. Suppose D: I // Ab is a filtered diagram. Let U :Ab
// Set be the underlying set functor. Form the disjoint union

⋃
I∈Ob(I ) UDi.

If x is an element of UDi we will denote it by 〈x, i〉 to keep track of the disjoint
union. Now make the identification 〈x, i〉 = 〈x′, i′〉 if there is an object j ∈ I
and there are paths α: i // j and α′: i′ // j such that UDαx = UDα′x′.
This is an equivalence relation. It is obviously symmetric and reflexive. If also
〈x′, i′〉 = 〈x′′, i′′〉, then there is a j′ ∈ I and β: i′ // j′ and β′: i′′ // j′ such that
Dβx′ = Dβ′x′′. There is a k ∈ I and paths γ: j // k and γ′: j′ // k′. Finally
there is an l ∈ I and a path δ: k // l such that Dδ ◦D(γ ◦ α′) = Dδ ◦D(γ′ ◦ β).
The diagram in question looks like:

Dj

Di′

??

Dα′

����������

Di

Dj

Dα
��???????????Di

Di′

Di

Di′

Dj′

Di′′

??

Dβ′
����������

Di′

Dj′

Dβ
��???????????Di′

Di′′

Di′

Di′′

Dk

Dj′

??

Dγ′
�����������

Dj

Dk

Dγ

��??????????Dj

Dj′

Dj

Dj′

Dl
Dδ //

Then

UD(δ ◦ γ ◦ α)x = (UDδ ◦ UDγ ◦ UDα)x = (UDδ ◦ UDγ ◦ UDα′)x′

= (UDδ ◦ UDγ′ ◦ UDβ)x′ = (UDδ ◦ UDγ′ ◦ UDβ′)x′′

= UD(δ ◦ γ′ ◦ β′)x′′

Now, given two elements 〈x, i〉 and 〈x′, i′〉, we add them by finding a j ∈ I and
paths α: i // j and α′: i′ // j. Then we define 〈x, i〉 + 〈x′i′〉 = 〈UDαx +
UDαx′, j〉. The proofs that this does not depend on the choice of paths and gives
an associative addition are left to the reader. The 0 element is 〈0, i〉 for any i.
Since all the Dα are group homomorphisms, all the 0 elements are identified, so
this makes sense. Similarly, we can take −〈x, i〉 = 〈−x, i〉. The associativity, the
fact that 〈0, i〉 is a 0 element and that −〈x, i〉 is the negative of 〈x, i〉 all have to be
verified. We leave these details to the reader as well. What we want to do is show
that the set C of these pairs with this notion of equality is the colimit of UD and,
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when it is given the group structure described above, it is also the colimit of D.
We actually show the latter, since the argument for the former is a proper subset.

First observe that there is a cocone u:D // A defined by ux = 〈x, i〉 when
x ∈ Di. This is a group homomorphism since to form the sum 〈x, i〉+ 〈x′, i〉 we can
take the empty path from i // i and then the sum is 〈x+x′, i〉. It is a cone since
for any α: i // j in I , ux = 〈x, i〉 = 〈Dαx, j〉 = u〈Dαx〉. If f :D // A is any
other cone, define v:C // A by v〈x, i〉 = (fi)x. Suppose 〈x, i〉 = 〈x′, i′〉. There a
j and paths α: i // j and α′: i′ // j such that Dαx = Dα′x′. Then

v〈x, i〉 = 〈fi〉x = 〈fj ◦Dα〉x = 〈fj ◦ dα′〉x′ = v〈x′, j′〉
and so v is well defined. Evidently, v ◦ u = f and v is the unique arrow with that
property. Till now, we have not used the group structure on A and this argument
shows that this is the colimit in Set. But A is an abelian group and the elements
of the cone are group homomorphisms. For 〈x, i〉, 〈x′, i′〉 ∈ C, choose j and α: i
// j and α: i′ // j. Then

v(〈x, i〉+ 〈x′, i′〉) = v(Dαx+Dα′x′) = (fj)(Dαx+Dα′x′)

= (fj)(Dαx) + (fj)(Dα′x′) = (fi)x+ (fi′)x′

This shows that v is a group homomorphism and shows that u:D // C is the
colimit in Ab. But, as remarked, a subset of this argument shows that Uu:UD
// UC is the colimit in Set and so U preserves this colimit.

The following result is actually a special case of the fact that filtered colimits
commute with all finite limits.

12.4. Proposition. Suppose f :D // E is a natural transformation between
two filtered diagrams from I to the category of models such that fi:Di // Ei is
monomorphism for each i ∈ Ob(I ). Then the induced map colimD // colimE
is also monic.

Proof. Suppose 〈x, i〉 and 〈x′, i′〉 are two elements of colimD such that 〈(fi)x, i〉 =
〈(fi′)x′, i′〉 in colimE. Then there is a j and paths α: i // j and α′: i′ // j such
that 〈Eα◦(fi)x, j〉 = 〈Eα′ ◦(fi′)x′, j〉. But naturality implies that Eα◦fi = fj◦Dα
and Eα′ ◦ fi′ = fj ◦Dα′, so this equation becomes fj ◦Dαx = fj ◦Dα′x′. Since
fj is monic, this means that Dαx = Dα′x′ so that 〈x, i〉 = 〈x′, i′〉.
12.5. Theorem. In the category of models of a finitary equational theory, every
object is a filtered colimit of finitely presented objects.

Proof. We will do this for the category of groups. We could do abelian groups,
except it is too easy because a finitely generated abelian groups is finitely presented.
So let G be a group. For each finite set of elements of i ∈ G, let Fi be the free
group generated by i. For each finite set of relations j that are satisfied by the
elements of i, let D(ij) be Fi modulo those relations. Make the set of pairs ij into
a graph in which there is a single arrow ij // i′j′ if i ⊆ i′ and j ⊆ j′. This is
obviously a poset, so write ij ≤ i′j′ when there is such a map. If there is, then
the inclusion induces an inclusion Fi // Fj and since j ⊆ j′, there is an induced
map (not injective) D(ij) // D(i′j′). Since the union of two finite sets is finite
and there is at most one path between any two nodes of the graph, D is a filtered
diagram in the category of groups. It is left to the reader to verify that G is its
colimit.



CHAPTER 2

Abelian categories and homological algebra

In order to make this book self-contained, we include a fairly brief description
of additive and abelian categories and of homological algebra. There are a number
of books that are devoted mostly or entirely to one or the other of these topics, so
we can only hit the high spots. See, for example, Cartan & Eilenberg [1956], Freyd
[1964], Mitchell [1963, 1964], and Mac Lane [1965, 1972].

1. Additive categories

1.1. Definition. A category is called preadditive if there is an abelian group
structure on the homsets in such a way that composition on each side is a homo-
morphism. More precisely, all the homsets are equipped with an abelian group
structure such that for f1, f2:A // B, g:A′ // A and h:B // B′, we have

h ◦ (f1 + f2) ◦ g = h ◦ f1 ◦ g + h ◦ f2 ◦ g

Of course, the addition on the left side takes place in Hom(A,B) while that on the
right is in Hom(A′, B′).

A preadditive category is called additive if it has finite sums and finite prod-
ucts. It actually suffices that there be either finite sums or finite products. As
pointed out next, the additive structure forces the finite sums and products to be
isomorphic.

1.2. Theorem. Let A be a preadditive category with finite products. Then for any
objects A1 and A2, there are arrows u1:A1

// A1 ×A2 and u2:A2
// A1 ×A2

that make the cocone
A1

A1 ×A2

u1

��???????????A1 A2A1 A2A2

A1 ×A2

u2

�������������

into a sum cocone.

Proof. Since Hom(A1, A2) and Hom(A2, A1) are abelian groups, there is a 0 element

for the abelian group structure. Call these elements 0A1

A2
:A1

// A2 and 0A2

A1
:A2

// A1. We just call them 0 since there is no ambiguity. In particular, the map
0: 1 // 1 has to be the identity, since that is the only map 1 // 1. There
is, for each object A the map 0: 1 // A and if f : 1 // A is any map, then
f = f ◦ 01

1 = 0 since composition is a group homomorphism. Thus, there is a
unique map 1 // A for each object A, which means that 1 is also initial and A is
pointed. Let u1 = (1, 0):A1

// A1×A2 and u2 = (0, 1):A2
// A1×A2. Suppose

48
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f1:A1
// A and f2:A2

// A are given. Let p1:A1×A2
// A1 and p2:A1×A2

// A2 denote the product projections. Define f = f1 ◦p1 +f2 ◦p2:A1×A2
// A.

Then

f ◦ u1 = (f1 ◦ p1 + f2 ◦ p2) ◦ (1, 0) = f1 ◦ p1 ◦ (1, 0) + f2 ◦ p2 ◦ (1, 0)

= f1 ◦ 1 + f2 ◦ 0 = f1

and similarly, f ◦ u2 = f2. Suppose g:A1 × A2
// A is another arrow such that

g ◦ u1 = f1 and g ◦ u2 = f2. Observe that the map u1 ◦ p1 + u2 ◦ p2:A1 × A2
// A1 +A2 has the properties that

p1 ◦ (u1 ◦ p1 + u2 ◦ p2) = p1 ◦ u1 ◦ p1 + p1 ◦ u1 ◦ p2

= p1 ◦ (1, 0) ◦ p1 + p1 ◦ (0, 1) ◦ p2

= 1 ◦ p1 + 0 ◦ p2 = p1

and similarly p2 ◦(u1 ◦p1 +u2 ◦p2) = p2 and so, by the universal mapping properties
of maps into a product, it follows that u1 ◦ p1 + u2 ◦ p2 = id. Then

f = f1 ◦ p1 + f2 ◦ u2 = g ◦ u1 ◦ p1 + g ◦ u2 ◦ p2 = g ◦ (u1 ◦ p1 + u2 ◦ p2) = g

which shows the uniqueness of f and so that u1, u2 give a sum cocone.

It is possible, given that finite sums and products exist and are isomorphic, to
introduce the additive structure making the homsets into commutative monoids,
but something more is needed to give group structure. Since the empty sum (the
initial object) is the empty product (the terminal object), it follows that the cate-
gory is pointed.

If A is a pointed category and also has finite products and finite sums, then for
any objects A1 and A2 there is a canonical arrow j:A1 +A2

// A1×A2 as follows.

Let A1
u // A1 + A2

oo v A2 be the canonical inclusions and A1
oo p A1 × A2

q // A2 the canonical projections. Then using the universal mapping properties
out of sums and into products, there is then a unique map j:A1 +A2

// A1×A2

for which
p1 ◦ j ◦ u1 = id

p2 ◦ j ◦ u1 = 0

p1 ◦ j ◦ u2 = 0

p2 ◦ j ◦ u2 = id

Assuming j is the isomorphism, then the sum of two arrows f, g:A // B is the
composite

A
∆ // A×A

f × g // B ×B ∼= B +B
∇ // B

or, equivalently,

A
∆ // A×A ∼= A+A

f + g // B +B
∇ // B

In both of these formulas, ∆:A // A × A is the diagonal map, defined by the
equations p ◦∆ = q ◦∆ = id. Dually, ∇:B × B // B is determined by ∇ ◦ u =
∇ ◦ v = id.

We don’t require this and do not prove it. It does imply that, under reasonable
assumptions on the existence of products, the abelian group structure is unique.
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It is common to introduce a new operation symbol ⊕, called the direct sum, to
denote the simultaneous binary sum/product. Another extremely useful notation
is the matrix notation for maps between sums. Since both sum and product are
naturally associative, so is direct sum and thus we can write, for example, A =
A1⊕A2⊕· · ·⊕An, simultaneously the sum and the product. Suppose we let ui:Ai
// A denote the injection into the sum and pj :B = B1 ⊕B2 ⊕ · · · ⊕Bn // Bj

denote the projection from the product. Then a map f :A // B is uniquely
determined by the composites fji = pj ◦ f ◦ ui, which we will think of as a matrix
and write f = (fji). Actually, in any category, a map from a sum to a product
could be denoted by a matrix. What is different in an additive category is that we
can also compose them. If we also have g = (gkj):B // C = C1 ⊕C2 ⊕ · · · ⊕Cp,
then it is easy to show (by composing with the projections and injections) that g ◦f
is the matrix product (gkj)(fji).

Since the addition, but not the subtraction is equivalent to the isomorphism
between sums and products, it is reasonable to ask when you get an abelian group
structure. A sufficient (but definitely not necessary) condition is that every arrow
that is both monic and epic is an isomorphism. For one can show that the arrow(

1 1
0 1

)
:A⊕A // A⊕A is both monic and epic and if it is an isomorphism, its

inverse is

(
1 −1
0 1

)
and −1 is an additive inverse of the identity and, once all the

identity arrows have additive inverses, all arrows do by composing (on either side!)
with −1.

1.3. Additive functors. If A and B are preadditive categories, a functor F : A
// B is called an additive functor if for any f, g:A // A′ in A , we have

F (f+g) = Ff+Fg. If A has finite products, that is direct sums, then a necessary
and sufficient condition that F be additive is that it preserve those products.

1.4. Abelian group objects. Let A be a category with finite limits. An
abelian group object of A is an object A together with an arrow m:A × A
// A, an arrow i:A // A and an arrow z: 1 // A that satisfy the equations

of abelian groups. These are that the following diagrams commute:

A×A Am
//

A×A×A

A×A

A×m
��

A×A×A A×A
m×A // A×A

A

m

��

(associativity of multiplication);

A× 1 A×A
1× z //A× 1

A

∼=
$$HHHHHHHHHHHHHH A×A 1×Aoo z × 1

A×A

A

m

��

1×A

A

∼=
zzvvvvvvvvvvvvvv
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(right and left units);

1 Az
// A 1z

//

A A×A
(1, i)

//A

1
��

A×A 1×A
(i, 1)

//A×A

A

m

��

1×A

1
��

(right and left inverses);

A×A

A

m
""DDDDDDDDDDDDA×A A×A

(p2, p1)
// A×A

A

m
||zzzzzzzzzzzz

(commutativity).
If A,m, i, z and A′,m′, i′, z′ are abelian group objects of A , then an arrow f :A
// A′ is called a morphism of abelian group objects if f commutes with the

structure maps in the obvious way. Just as for ordinary groups, it is sufficient that
the diagram

A′ ×A′ A′
m′

//

A×A

A′ ×A′

f × f
��

A×A A
m // A

A′

f

��

commute.
If A has the structure of an abelian group object, then for any object B of A

we can give the set Hom(B,A) the structure of an abelian group by defining f + g
as the composite

B
∇ // B ×B

f × g // A×A m // A

with zero map being B // 1
z // A and the inverse to f :B // A being B

f // A
i // A. Moreover, if f, g:A′ // A is a morphism of abelian group

objects, so is f + g. One way of dealing with the last claim is to show that an
abelian group morphism A′ // A can be characterized by the fact that it induces
a group homomorphism Hom(B,A′) // Hom(B,A) for every B and then use
the fact that the sum of two homomorphisms between any two abelian groups
is a homomorphism, as are the negative and the 0. The product of two abelian
group objects can be given the structure of an abelian group in such a way that
the projections are group homomorphisms. The details can be found in virtually
any book on category theory, for example Mac Lane [1971], Freyd [1964], Mitchell
[1965].

The category of abelian group objects and abelian group morphisms in A will
be denoted Ab(A ).

We summarize the above statements by,
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1.5. Theorem. For any category A with finite products, the category Ab(A ) is
an additive category.

1.6. Exercises

1. Assume that the category A has a terminal object 1 and either has equalizers
or has an initial object. Show that 1 is also initial if and only if it has at least one
morphism to any other object. A category with a simultaneous initial and terminal
object is called pointed.

2. Show that in a pointed category, there is a unique arrow 0AB :A // B for each
pair of objects A and B that factors through the initial/terminal object and that
these arrows form a 2-sided ideal in the sense that whenever f :A′ // A and g:B
// B′, then g ◦ 0AB ◦ f = 0A

′

B′ . The super and subscripts are generally omitted and
we write 0:A // B.

3. Show that in a category that has a terminal object and an ideal 0AB :A // B as
above, then that terminal object is also initial and the arrows are just the arrows
that factor through the initial/terminal object. Of course, this shows that there is
at most one such ideal if there is a terminal (or, dually, initial) object.

4. Show that in a pointed category with products and sums, given a finite number
A1, A2, . . . , An of objects, there is a unique arrow s:A1 + A + 2 · · · + An //

A1 × A2 × · · ·An such that pi ◦ s ◦ uj = δij , where pi is the projection on the ith
factor, uj is the injection of the jth summand, and δij is the Kronecker delta, equal
to the identity when i = j and the 0 map otherwise.

5. Show that if s is an isomorphism, then there is a canonical structure of commu-
tative monoids on each homset in A such that arrow composition distributes over
the monoid structure, which is usually written as addition.

6. Conversely, show that if a category has products and a distributive commutative
monoidal structure on its homsets, then those products as sums. As a consequence,
there is at most one such distributive monoidal structure on the homsets.

7. Show that the category of torsion-free abelian groups is additive, but that there
is a map that is both monic and epic, but not an isomorphism.

2. Abelian categories

An additive category is said to be abelian if it is additive and if every arrow factors
as a regular epimorphism, followed by a regular monomorphism. It is convenient
to use a slightly different characterization of regular monics and epics in additive
(or even pointed) categories.

In any pointed category, we can define special limits that are called kernels and,
dually, special colimits that are called cokernels. The arrow f :A // B is a kernel
of g:B // C if f is an equalizer of g and 0:B // C. Dually, g is a cokernel of
f if it is the coequalizer of f and 0.
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2.1. Proposition. In any additive category, the diagram

E
h // A

f //
g
// B

is an equalizer if and only if

E
h // A

f − g // B

is a kernel. Dually, A
f //
g
// B

h // C is a coequalizer if and only if

A
f − g // B h // C

is a cokernel.

Proof. We will prove only the first. The point is that for an arrow k:C // A the
condition f ◦k = g◦k is equivalent, in an additive category, to (f−g)◦k = 0◦k. Thus
the universal mapping properties for the equalizer and the kernel are the same.

2.2. Proposition. In any abelian category,

1. Every monic is regular;
2. every epic is regular;
3. every monic is a kernel of its own cokernel;
4. every epic is a cokernel of its own kernel;
5. if f :A // B is arbitrary with k:K // A the kernel of f and q:B

// Q the cokernel of f , then there is a natural arrow from the cokernel
of k to the kernel of q and that is an isomorphism.

Proof. Let f be monic and suppose we write f = m ◦ e where m is regular monic
and e is regular epic. Then there are two maps g, h whose codomain is the domain
of e of which e is the coequalizer. Then from e ◦ g = e ◦ h we have that f ◦ g =
m ◦ e ◦ g = m ◦ e ◦ h = f ◦ h. Since f is monic, we conclude that g = h. But
the coequalizer of a map with itself is necessarily an isomorphism and so f is an
equalizer of the same pair of arrows as e. This takes care of the first assertion. The
second is dual. For the third, suppose f :A // B is the kernel of g:B // C.
Let h:B // D be a cokernel of f . From g ◦ f = 0 and the universal mapping
property of a cokernel, there is a unique arrow k:D // C such that k ◦ h = g.
Now suppose l:E // B is an arrow with h ◦ l = 0. Then g ◦ l = k ◦h ◦ l = k ◦ 0 = 0
and so there is a unique arrow m:E // A such that f ◦m = l. Thus f has the
universal mapping property of a kernel of h. The fourth assertion is dual. Finally,

let f :A // B be arbitrary. Factor it as A
e // D

m // B with e regular epic
and m regular monic. Let k:K // A be the kernel of f and c:B // C be the
cokernel. I claim that k is also the kernel of e. In fact, with m monic, the condition
f ◦g = 0 is equivalent to the condition e ◦g = 0 so that f and e must have the same
kernel. But then by the previous part, e:A // D is the cokernel of k. Dually,
m:D // B is the kernel of c.
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2.3. Theorem. Suppose that A is an exact category. Then Ab(A ) is an abelian
category.

One of the consequences of this is that a category that is both additive and
exact is abelian.

Proof. This argument makes heavy use of the idea of elements discussed in 1.5.
Since A is regular, it follows from 1.8.10 that every arrow factors as a regular
epimorphism followed by a monomorphism. Therefore we must show that in an
additive exact category, every regular epic is a cokernel and every monic is a kernel.
Actually, we will first show that in every additive category, every regular epic is a
cokernel. In fact, if f :A′ // A is the coequalizer of g, h:A′′ // A′, then for an
arrow k:A′ // B, the condition k ◦ g = k ◦h is equivalent to k ◦ (g−h) = 0. Thus
f is also the cokernel of g − h. Now suppose u:A′ // A is monic. Here we will
use elements. Map f :A × A′ // A × A by f(a, a′) = (a, a + ua′). First I claim
that f is injective. For if f(a, a′) = f(b, b′), then (a, a+ ua′) = (b, b+ ub′) so that
a = b and then ua′ = ub′, which implies that a′ = b′. Thus f defines a subobject
of A × A and I claim it is an equivalence relation. In fact the subobject is simply
{(a, b) | a− b ∈ imu}. Clearly a− a ∈ imu, a− b ∈ imu implies b− a ∈ imu and if
a− b and b− c ∈ imu, then a− c ∈ imu. But then there is an arrow g:A // A′′

of which f is the kernel pair. This means that ga = gb if and only if a− b ∈ imu,
which implies that ga = 0 if and only if a ∈ imu so that u is the kernel of g.

Taken together with 1.8.12 this implies:

2.4. Theorem. Let A be an exact category. Then for any object A of A , the
category Ab(A /A) is abelian.

2.5. Exercise

1. Show that any product of abelian categories is abelian.

3. Exactness

3.1. Exact sequences. If f :A // B is an arrow of an abelian category A , the
isomorphic ker coker f ∼= coker ker f is called the image of f , denoted im f . It is a
subobject of B and a quotient object of A. Suppose

A
f // B

g // C (∗)
is a composable pair of arrows. Then the image of f is a subobject of B as is the
kernel of g. When these two subobjects are the same, the sequence (∗) is said to be
exact. This can be separated into the two inclusions. The meaning of im f ⊆ ker g
is easy to understand: simply that g ◦ f = 0. There is no such easy description of
the opposite inclusion.

A finite or infinite sequence

· · · // An+1

dn+1 // An
dn // An−1

// · · ·
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is said to be exact if every three term subsequence An+1

dn+1 // An
dn // An−1

is exact. An important special case is a sequence of the form

0 // A′
f // A

g // A′′ // 0

(the two unlabeled arrows are, of course, 0), which is exact if and only if, up to
isomorphism, f is the inclusion of a subobject and g is the projection on A/A′.
Such a sequence is called a short exact sequence.

3.2. The full exact embedding theorem. Suppose that A and B are abelian
categories. A functor T : A // B is called exact if for any exact sequence A′

// A // A′′ in A , the image TA′ // TA // TA′′ in B is also exact. It
follows that an exact functor preserves the exactness of all exact sequences. The
following theorem allows us to reduce all kinds of arguments involving exactness in
abelian categories to categories of modules.

3.3. Theorem. Let A be a small abelian category. Then there is a ring R and
a full exact embedding T : A // R−Mod.

This is proved in various places. See, for example, Freyd [1964], Mitchell [1964,
1965], or Popescu [1973].

The restriction to small abelian categories is not important since any small
diagram we might want to know commutes or is exact or show the existence of some
arrow in is in a small abelian subcategory gotten by closing the set of objects in the
diagram under finite sums and then kernels and cokernels of arrows between them.
If you do this countably many times you will have a small full abelian subcategory
of the original category which can be embedded into a module category. Thus an
exactness property of module categories is valid in any abelian category.

One of the most useful applications of this principle arises from the fact that
the dual of an abelian category is an abelian category. It follows that the dual of
any exactness property that is true in any abelian category is also true. This will
cut in half the work needed to prove the snake lemma below.

3.4. Right and left exact functors. There are two useful variants on exact
functors. A functor F : A // B between abelian categories is called left exact
if given any exact sequence 0 // A′ // A // A′′ // 0 in A , the sequence
0 // F (A′) // F (A) // F (A′′) is exact. Similarly, it is right exact if for any
such short exact sequence in A the sequence F (A′) // F (A) // F (A′′) // 0
is exact.

It is evident that a left exact functor is exact if and only if it preserves epimor-
phisms and a right exact functor is exact if and only if it preserves monomorphisms.

3.5. Proposition. A functor between abelian categories is left exact if and only
if it preserves the limits of finite diagrams; dually it is right exact if and only if it
preserves the colimits of finite diagrams.

Proof. Suppose that F is left exact. We first show that it is additive. Given that
A = A1 ⊕ A2, there is an exact sequence 0 // A1

// A // A2
// 0. Since

F is left exact, the sequence 0 // TA1
// TA // TA2 is exact. On the other

hand, A // A2 is a split epimorphism (that is, it has a left inverse) and hence so
is TA // TA2. Hence 0 // TA2

// TA // TA2
// 0 is exact and split.
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But this characterizes TA as the sum of the two end terms. Hence T preserves
finite products and is thus additive. Next we show it preserves equalizers. From 2.1

we know that the equalizer of two arrows A
f //
g
// A′′ is the kernel of f − g. Now

factor f − g as A
h // // A1

// k // A′′ with h epic and k monic. Finally, let l:A′′

// A′1 be the cokernel of k. Then both sequences

0 // A′
e // A

h // A1
// 0

0 // A1
k // A′′

l // A′1 // 0

are exact, whence so are

0 // FA′
Fe // FA

Fh // FA1

0 // FA1
Fk // FA′′

Fl // FA′1
Putting these together, we conclude that

0 // FA′
Fe // FA

F (f − g)
// FA′′

is also exact. Since F is additive, F (f − g) = Ff − Fg and then it follows that
Fe is the equalizer of Ff and Fg. Conversely, if F preserves finite limits, then
it preserves finite products and is therefore additive. Since kernels are limits, it
preserves kernels, which means that it takes any exact sequence of the form 0
// A′ // A // A′′ to an exact sequence and is evidently left exact.
The proof for right exact functors and finite colimits is strictly dual.

3.6. Theorem. [The snake lemma] Suppose that in the following diagram in an
abelian category the rows are exact and the squares commute:

0 B′//

A′′ 0//

B′ Bg
//

A′

B′

h′

��

A′ A
f // A

B

h

��
B B′′

g′
//

A

B

A

B

A A′′
f ′ // A′′

B′′

h′′

��

Then there is an arrow γ: kerh′′ // cokerh′ such that the sequence

kerh′ // kerh // kerh′′
γ // cokerh′ // cokerh // cokerh′′

is exact.

Proof. The remaining arrows in the snake are induced by f , f ′, g, and g′. The
arrow γ can be described as being induced by the relation g−1 ◦ h ◦ (f ′)−1. As
mentioned, we can suppose without loss of generality that we are in a category of
modules. Given an element a′′ ∈ kerh′′, since f ′ is surjective, there is an a ∈ A with
f ′a = a′′. Since g′ha = h′′f ′a = h′′a′′ = 0, there is an element b′ ∈ B′ with gb′ = ha
and we define γa′′ as the class of b′ modulo imh′. We wish to show that this is
independent, modulo imh′, of the choice of a. If a1 is another choice for a, then
a−a1 ∈ ker f ′ = im f so that there is an a′ ∈ A′ with a−a1 = fa′. If b′1 ∈ B′ is such
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that gb′1 = ha1, then gh′a′ = hfa′ = h(a− a1) = ha− ha1 = gb′ − gb′1 = g(b′ − b′1).
But g is injective, so we can infer that h′a′ = b′ − b′1 which means that b′ and b′1
are in the same class modulo imh′. Thus γ is well defined. If a′′1 and a′′2 ∈ A′′ and
we choose preimages a1 and a2 ∈ A, then we can choose a1 + a2 as a preimage of
a′′1 + a′′2 . This shows that γ(a′′1 + a′′2) = γa′′1 + γa′′2 and a similar argument shows
that γ is a module homomorphism.

To show exactness it is sufficient to show it at the first two places; duality
gives the remaining two. So suppose that a ∈ kerh is such that f ′a = 0. Then
exactness of the original sequence implies the existence of a′ ∈ A′ such that fa′ = a.
Moreover gh′a′ = hfa′ = 0. Since g is injective, this shows that a′ ∈ kerh′ and
shows exactness at the first step. If a ∈ kerh, then we can take a as the preimage of
f ′a and then ha = 0, whence γf ′a = 0 so that the image of the map induced by f ′

is in the kernel of γ. If a′′ ∈ kerh′′ is such that γa′′ = 0, let a ∈ A be a preimage of
a′′. Then let b′ ∈ B′ be such that ha = gb′. Since γa′′ = 0, we must have b′ ∈ imh′

so that there is an a′ ∈ A′ with h′a′ = b′ or hfa′ = gh′a′ = gb′ = ha. But then
h(a− fa′) = 0. Since f ′(a− fa′) = f ′a = a′′, we see that a′′ is in the image under
f ′ of an element of kerh.

Since it is evident that if f is monic so is the induced map kerh′ // kerh and
that if g′ is epic, so is the induced map cokerh // cokerh′′ we have three more
forms of the snake lemma that we state for completeness

3.7. Corollary. Suppose that in the following diagram in an abelian category the
rows are exact and the squares commute:

0 A′//

0 B′//

A′′ 0//

B′ Bg
//

A′

B′

h′

��

A′ A
f // A

B

h

��
B B′′

g′
//

A

B

A

B

A A′′
f ′ // A′′

B′′

h′′

��

Then there is an arrow γ: kerh′′ // cokerh′ such that the sequence

0 // kerh′ // kerh // kerh′′
γ // cokerh′ // cokerh // cokerh′′

is exact.

3.8. Corollary. Suppose that in the following diagram in an abelian category the
rows are exact and the squares commute:

0 B′//

A′′ 0//

B′′ 0//B′ Bg
//

A′

B′

h′

��

A′ A
f // A

B

h

��
B B′′

g′
//

A

B

A

B

A A′′
f ′ // A′′

B′′

h′′

��

Then there is an arrow γ: kerh′′ // cokerh′ such that the sequence

kerh′ // kerh // kerh′′
γ // cokerh′ // cokerh // cokerh′′ // 0

is exact.
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3.9. Corollary. Suppose that in the following diagram in an abelian category the
rows are exact and the squares commute:

0 A′//

0 B′//

A′′ 0//

B′′ 0//B′ Bg
//

A′

B′

h′

��

A′ A
f // A

B

h

��
B B′′

g′
//

A

B

A

B

A A′′
f ′ // A′′

B′′

h′′

��

Then there is an arrow γ: kerh′′ // cokerh′ such that the sequence

0 // kerh′ // kerh // kerh′′
γ // cokerh′ // cokerh // cokerh′′ // 0

is exact.

3.10. Proposition. Suppose

B1 B2g1

//

A1

B1

h1

��

A1 A2

f1 // A2

B2

��
B2 B3g2

//

A2

B2

h2

��

A2 A3

f2 // A3

B3

h3

��
B3 B4g3

//

A3

B3

��

A3 A4

f3 // A4

B4

h4

��

is a commutative diagram with exact rows in an abelian category. If h1 is an
epimorphism and h2 and h4 are monomorphisms, then h3 is a monomorphism. If
h4 is a monomorphism and h1 and h3 are epimorphisms, then h2 is an epimorphism.

Proof. The two statements are dual to each other, so we need prove only the first.
We can replace B1 by B1/ ker g1 and suppose that g1 is monic. Similarly we can
replace A4 by the image of f3 and suppose that f3 is epic. Let A = im f2 = ker f3

and B = im g2 = ker g3. Then we have two commutative diagrams with exact rows:

0 B1
// B1 B2g1

//

A1

B1

h1

��

A1 A2

f1 // A2

B2

h2

��
B2 B//

A2

B2

A2

B2

A2 A// A

B

h

��
B 0//

A

B

A

B

A 0// 0

0

0

0

0 A//

0 B//

A4 0//

B B3
//

A

B

h

��

A A3
// A3

B3

h3

��
B3 B4g3

//

A3

B3

A3

B3

A3 A4

f3 // A4

B4

h4

��

Applying the snake lemma to the first gives, in part, the exact sequence

kerh2
// kerh // cokerh1
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which, together with h2 monic and h1 epic, implies that h is monic. Applying the
snake lemma to the second gives, in part, the exact sequence

kerh // kerh3
// kerh4

which, together with h and h4 monic, implies that h3 is monic.

3.11. Corollary. [“5 lemma”] Suppose that

B1 B2
f2

//

A1

B1

h1

��

A1 A2

f1 // A2

B2

��
B2 B3

f3

//

A2

B2

h2

��

A2 A3

f2 // A3

B3

h3

��
B3 B4

f4

//

A3

B3

A3

B3

A3 A4

f3 // A4

B4

h4

��
B4 B5

f5

//

A4

B4

��

A4 A5

f4 // A5

B5

h5

��

is a commutative diagram with exact rows. If h1 is epic, h5 monic, and h2 and h4

isomorphisms, then h3 is an isomorphism.

Here is another immediate application of the snake lemma.

3.12. Corollary. [“3× 3 lemma”] Suppose the columns, the middle row and either
the top or bottom row of the diagram

A′′ B′′//A′′0 // A′′

0
��

B′′ C ′′//B′′

0
��

C ′′

0
��

C ′′ 0//

C 0//B C//A B//A0 //

A′ B′//A′0 // A′

0

��
B′ C ′//B′

0

��
C ′

0

��
C ′ 0//C ′

C
��

B′

B
��

A′

A
��
A

A′′
��

B

B′′
��

C

C ′′
��

are exact. Then the remaining row is also exact.

3.13. Exercise

1. Show that if f :A // B and g:B // C are arrows in an abelian category,
then there is an exact sequence

0 // ker f // ker(g ◦ f) // ker g

// coker f // coker(g ◦ f) // coker g // 0
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Hint: Show that there is a commutative square with exact rows

0 B//

0

0

0

0

0 A// A

B
��
B B ⊕ C//

A

B

f

��

A A⊕B// A⊕B

B ⊕ C

(
f 1
0 g

)
��

B ⊕ C C//

A⊕B

B ⊕ C

A⊕B

B ⊕ C

A⊕B B// B

C

g

��
C 0//

B

C
��

B 0// 0

0

0

0

4. Homology

4.1. Differential objects. Let A be an object of the abelian category A . A
differential on A is an endomorphism d:A // A such that d ◦ d = 0. This is
equivalent to im d ⊆ ker d. If, in fact, im d = ker d, we say that d is an exact
differential.

A morphism f : (A′, d ′) // (A, d) of differential objects is a morphism
f :A′ // A in A such that f ◦ d ′ = d ◦ f .

4.2. Homology. Given a differential object (A, d), we say that B(A, d) = im d,
called the object of boundaries and Z(A, d) = ker d is called the object of cycles.
Since Z(A, d) ⊆ B(A, d), we can form the quotient H(A, d) = Z(A, d)/B(A, d),
which is called the homology object of (A, d).

When there is no danger of confusion, we write B(A), Z(A), and H(A) for
these objects.

4.3. Proposition. Suppose f : (A′, d ′) // (A, d) is a morphism of differential
objects over the abelian category A . Then f induces an arrow

H(f):H(A′, d ′) // H(A, d)

Proof. The equation f ◦ d ′ = d ◦ f evidently implies that f(Z(A′, d ′)) ⊆ Z(A, d)
and that f(B(A′, d ′)) ⊆ B(A, d), from which the conclusion readily follows.

4.4. Another view on homology. The homology of a differential object is
defined to be a quotient of a subobject. But it is always possible to take a subobject
of a quotient instead. If A is a group with subgroups A′ ⊆ A′′ then A′/A′′ is
isomorphic to a subgroup of A/A′′, namely to the subgroup consisting of those cosets
a + A′′ for which a ∈ A′. Thus if (A, d) is a differential object, the homology can
be described as the subgroup of A/(B(A, d)) consisting of those cosets a+B(A, d)
for which da = 0.

Now write B = B(A, d) and Z = Z(A, d). Define d̂:A/B // Z by d̂a = da.

This makes sense since dB = 0. The kernel of d̂ is exactly those cosets modulo B

that are in the kernel of d and thus H(A, d) ∼= ker d̂. But also the image of d̂ is the

same as the image of d so that H(A, d) = coker d̂. Using the exact embedding, we
draw the same conclusions for any abelian category.

4.5. Theorem. If (A, d) is a differential object in an abelian category and

d̂:A/B(A, d) // Z(A, d)
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is as described above, then H(A, d) is both the kernel and the cokernel of d̂.

4.6. The homology sequence. A sequence of differential objects is called exact
if the underlying sequence of objects is exact. Thus a short exact sequence

0 // (A′, d ′) // (A, d) // (A′′, d ′′) // 0

is a map of differential objects for which 0 // A′ // A // A′′ // 0 is a
short exact sequence.

4.7. Theorem. Let

0 // (A′, d ′) // (A, d) // (A′′, d ′′) // 0

be exact. Then there is an arrow we denote d:H(A′′, d ′′) // H(A,′ , d ′) such that
the sequence

· · · H(A′, d ′)
d // H(A′, d ′) H(A, d)

H(f)
// H(A, d) H(A′′, d ′′)

H(g)
// H(A′′, d ′′)

H(A′, d ′)

d

ttiiiiiiiiiiiiiiiiiiiiiiii

H(A′, d ′) H(A, d)
H(f)

// H(A, d) H(A′′, d ′′)
H(g)

// H(A′′, d ′′) · · ·
d
//

is exact.

Notational note: The use of “d” for the so-called connecting homomorphism is
hallowed by long usage. It is based on the fact that the connecting homomorphism
is induced by the differential in the middle term. In the original examples, A′ was
simply a subgroup of A, with dA ⊆ A and A′′ the quotient. Both d′ and d′′ were
determined uniquely by d and the inclusion and projection were ignored.

Proof. From the exactness of

0 A′//

0

0

0

0

0 A′// A′

A′
��
A′ A

f
//

A′

A′

d ′

��

A′ A
f // A

A

d

��
A A′′

f ′′
//

A

A

A

A

A A′′
f ′ // A′′

A′′

d ′′

��
A′′ 0//

A′′

A′′

A′′

A′′

A′′ 0// 0

0

0

0

we conclude from 3.9 that both sequences

0 // ker d ′ // ker d // ker d ′′

and
coker d ′ // coker d // coker d ′′ // 0

are exact and we can put them together to get the commutative diagram with exact
rows.

0 ker d′//00

coker d′coker d′coker d′

ker d′
��

ker d′ ker d//

coker d′

ker d′

d̂ ′

��

coker d′ coker d// coker d

ker d

d̂

��
ker d ker d′′//

coker d

ker d

coker d

ker d

coker d coker d′′// coker d′′

ker d′′

d̂ ′′

��
ker d′′ker d′′

coker d′′

ker d′′

coker d′′

ker d′′

coker d′′ 0// 00
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to conclude that the sequence

ker d̂ ′ // ker d̂ // ker d̂ ′′ // coker d̂ ′ // coker d̂ // coker d̂ ′′

is exact. But in light of 4.5, this is equivalent to the exactness of

H(A′, d ′) // H(A, d) // H(A′′, d ′′) // H(A′, d ′) // H(A, d) // H(A′′, d ′′)

which is the homology exact sequence.

This exact homology sequence is often called the homology triangle and
drawn as

HA′

HA′′

__

d ???????????HA′ HA
Hf // HA

HA′′

Hg
�������������

4.8. Graded objects. A graded object A• of A is a Z-indexed sequence

· · · , An+1, An, An−1, ···

of objects of A .
There are two kinds of morphisms of graded objects. If A′• and A• are graded

objects, a morphism f•:A
′
•

// A• is a Z-indexed sequence of arrows of A , fn:A′n
// An. This is the category we call Gr(A ). For k ∈ Z, a morphism of degree k

is a Z-indexed sequence fn:A′n // An+k. We will not give this category a name
and, in fact, will be interested only in the cases k = −1, 0, 1.

Incidentally, what we have called a graded object is sometimes called a Z-graded
object, since other groups, monoids, or posets are also used.

4.9. Chain and cochain complexes. A chain complex over A is a differential
graded object (A•, d) in which the differential has degree −1 and for which there
is an m ∈ Z such that An = 0 for n < m. We generally ignore the terms below the
bottom degree and write the chain complex as

· · ·
dn+1 // An

dn // An−1

dn−1 // · · ·
dm+1 // Am

Most of the time, the lower bound on a chain complex will be 0 or −1, but for
technical reasons (largely so that the suspension operator described below can be
an isomorphism), we allow any lower bound.

A cochain complex is a over A is a differential graded object (A•, d) in which
the differential has degree −1 and for which there is an m ∈ Z such that Ak = 0
for k > m. So a cochain complex looks like

Am
dm // Am−1

dm−1 // · · ·
dn+1 // An

dn // · · ·
However, the more usual notation negates the indices and puts them as superscripts,
so the cochain complex above is called (A•, d) and looks like

A−m
d−m // A−(m−1) d−(m−1)

// · · · d−(n+1)
// A−n

d−n // · · ·
with the differential having degree +1. Also in this case, the bound m is likely to
be 0 or −1.
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The differential of a chain complex is usually called a boundary operator and is
often denoted d. The differential of a cochain complex is usually called a coboundary
operator and is often denoted δ.

4.10. Homology and cohomology. The homology and cohomology are as de-
fined for differential objects. But there are some additional notational conventions
that are standard. We deal first with chain complexes. If (A•, d) is a chain com-
plex, then d:An // An−1 for each n. Then we denote by Zn the kernel of d:An
// An−1 and by Bn the image of d:An+1

// An. They are called the objects
of n-cycles and n-boundaries, respectively. Then Bn ⊆ Zn ⊆ An and we denote
the quotient Zn/Bn by Hn(A, d) or simply Hn(A) if d is understood. This is called
the nth homology object. The sequence Hn is simply a graded object of A and
the sequence will usually be denoted H•. Analogous definitions of objects of n-
cocycles, n-coboundaries and nth cohomology are made for the cohomology of a
cochain complex.

An arrow f : (A′, d ′) // (A, d) is a map of degree 0 between the graded objects
that also commutes with the differentials. We will denote the category of chain
complexes over the additive category A by CC(A ). It is immediate that a morphism
of chain complexes induces a morphism of degree 0 on the graded homology objects.

4.11. Proposition. A morphism f :A′ // A of chain complexes induces a mor-
phism H•(f):H•(A

′) // H•(A).

A chain complex is evidently exact if and only if its homology groups are 0. In
that case, we often say that the complex is acyclic.

4.12. Exact sequences of chain complexes. A sequence (A′, d ′)
f // (A, d)

g // (A′′, d ′′) is exact if it is exact as a sequence of graded objects, which is
equivalent to its being exact in each degree. A finite or infinite sequence

· · · // (An+1, dn+1) // (An, dn) // (An−1, dn−1) // · · ·
is exact if it is exact at each place. In particular, a short exact sequence is an
exact sequence of chain complexes that looks like

0 // (A′, d ′)
f // (A, d)

g // (A′′, d ′′) // 0

where 0 here stands for the chain complex that is 0 in every degree.

4.13. Theorem. Suppose 0 // A′ // A // A′′ // 0 is a short exact
sequence of chain complexes. The there are arrows dn:Hn(A′′) // Hn−1(A′)
such that the sequence

· · · Hn(A′)// Hn(A′) Hn(A)
Hn(f)

// Hn(A) Hn(A′′)
Hn(g)

// Hn(A′′)

Hn−1(A′)

dn

ttiiiiiiiiiiiiiiiiiiiiiiiii

Hn−1(A′) Hn−1(A)
Hn−1(f)

// Hn−1(A) Hn−1(A′′)
Hn−1(g)

// Hn−1(A′′) · · ·//

is exact.
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Proof. This is, in effect, an instance of 4.7. The only thing to note is that since
the connecting morphism is induced by a composite of three relations, one of which
has degree −1 and the other two have degree 0, the connecting morphism also has
degree −1. Thus the homology triangle turns into the long exact sequence shown
here.

4.14. Exercises

1. Show that if 0 // A′ // A // A′′ // 0 is an exact sequence of differ-
ential objects, then A′ is exact if and only if the induced H(A) // H(A′′) is an
isomorphism; that A is exact if and only if the connecting homomorphism d:H(A′′)
// H(A′) is an isomorphism; and that A′′ is exact if and only the induced H(A′)
// H(A) is an isomorphism.

2. Show that if

0 B′//

0

0

0

0

0 A′// A′

B′
��
B′ B//

A′

B′
��

A′ A// A

B
��
B B′′//

A

B
��

A A′′// A′′

B′′
��

B′′ 0//

A′′

B′′
��

A′′ 0// 0

0

0

0

is a commutative diagram of differential objects with exact rows, then the diagram

HB′′ HB′//

HA′′

HB′′
��

HA′′ HA′// HA′

HB′
��

HB′ HB//

HA′

HB′
��

HA′ HA// HA

HB
��

HB HB′′//

HA

HB
��

HA HA′′// HA′′

HB′′
��

HB′′ HB′//

HA′′

HB′′
��

HA′′ HA′// HA′

HB′
��

commutes.

3. Show that if
0 // A′ // A // A′′ // 0

is an exact sequence of differential objects and any two are acyclic, so is the third.

5. Module categories

This section is a very short primer on Ext and Tor, two very important homology
functors in module categories. There are many better sources, going back to [Cartan
& Eilenberg, 1956], or [Mac Lane, 1963], any of which will give a more leisurely
exposition.

5.1. Projectives. Let R be a ring. An R-module P is said to be projective if
the homfunctor HomR(P,−) is an exact functor. This definition makes sense in any
abelian category, although there is no guarantee that an arbitrary abelian category
has any non-zero projective objects.

Any free module is projective, since if F is free on basis X, then for any R-
module M , Hom(F,M) ∼= MX . Thus if 0 // M ′ // M // M ′′ // 0
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is an exact sequence of R-modules, the hom sequence is 0 // M ′X // MX

//M ′′X // 0, which is readily seen to be exact.
If M is an arbitrary module, there is certainly a free module mapping surjec-

tively on M . For example, the free module generated by M itself will do. The
identify map on M extends to a unique homomorphism on the free module and
that is clearly surjective, since the original arrow is. If P is projective, then for any
surjection f :M // // P , the sequence M // P // 0 is exact, so that Hom(P,M)
// Hom(P, P ) // 0 is exact, meaning that Hom(P,M) // // Hom(P, P ) is sur-

jective. In particular, this implies there is a g ∈ Hom(P,M) such that f ◦ g = id.
In other words, every surjective homomorphism splits. The converse is also true.
If every surjective homomorphism to P splits, then P is projective. In particular,
projectives can be characterized as those modules that are retracts of free modules.

5.2. Projective resolutions. Suppose M is an R-module. By a projective
resolution of M is meant a complex P• = {Pn, d | n ≥ 0} consisting of projective
R-modules, together with an arrow P0

// M such that the augmented complex
P• //M // 0 is exact.

5.3. Proposition. Every module has a projective resolution.

Proof. Let M be a module. As observed above, there is a free module, say F0 with
a surjective homomorphism p0:F0

// //M . Let q1:M1
// F0 be the kernel of p0.

Suppose p1:F1
// M1 is a surjective homomorphism with F1 free. Continue to

build the sequence qi:Mi
// Fi−1 as the kernel of pi−1 and pi:Fi // // Mi with

Fi free. Then if we let di = qi ◦ p1, the sequence {Fi, di} is a projective resolution
of M .

5.4. Ext. Let M and N be left R-modules. Suppose P• // M is a projective
resolution of M . Then from the exactness of P1

// P0
// M // 0, we

conclude that 0 // HomR(M,N) // HomR(P0, N) // HomR(P1, N) is exact
(see the proof of Proposition 3.5). Since each composite Pi+1

// Pi // Pi−1

is 0, the same is true for each composite HomR(Pi−1, N) // HomR(Pi, N) //

HomR(Pi+1, N). The result is that

HomR(P0, N) // HomR(P1, N) // · · · // HomR(Pn, N) // · · ·
is a cochain complex whose zeroth cohomology group is HomR(M,N). The nth
cohomology group of this complex is denoted ExtnR(M,N).

5.5. Theorem. ExtnR(−,−) does not depend on the choice of the projective res-
olution. It is a contravariant functor in the first argument and a covariant functor
in the second. Moreover, Ext0

R = HomR.

The last sentence has already been done and the second one is trivial. We defer
the proof of the first to the next chapter, 3.6.5.

5.6. Injectives and injective resolutions. A left R-module is said to be in-
jective if it is projective in the dual of the module category. Thus Q is injective
if and only if for whenever M ′ // M is monomorphism of left R-modules, the
induced HomR(M,Q) // HomR(M ′, Q) is surjective. It follows that the functor
HomR(−, Q) is an exact functor and thus ExtnR(M,Q) = 0 for all n > 0.
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The proof of the following theorem will be given after the discussion of tensor
products, see 5.18. It can be proved without tensors, but the proofs are more
complicated.

5.7. Theorem. Every left R-module can be embedded into an injective left R-
module.

By an injective resolution of the module M we mean an exact cochain com-
plex

Q0
δ // Q1

δ // Q2
δ // · · ·

for which the kernel of δ:Q0
// Q1 is M . The preceding theorem, together with

the dual of Theorem 5.3 allows us to see that,

5.8. Corollary. Every module has an injective resolution.

5.9. Theorem. Suppose

Q0
δ // Q1

δ // Q2
δ // · · ·

is an injective resolution of the left R-module M . Then for any left R-module N ,
the cohomology of the cochain complex

0 // Hom(N,Q0) // Hom(N,Q1) // Hom(N,Q2) // · · ·
is Ext•R(N,M).

The proof will be carried out in the next chapter, 3.6.5.

5.10. Bilinear maps and tensor products. Let R be a ring, M a left R-
module and N a right R-module. For any abelian group A, an R-bilinear map
N ×M // A is a function (not a homomorphism) f :N ×M // A that satisfies,
for all n, n1, n2 ∈ N , m,m1,m2 ∈M and r ∈ R,

Bilin–1. f(n1 + n2,m) = f(n1,m) + f(n2,m);
Bilin–2. f(n,m1 +m2) = f(n,m1) + f(n,m2);
Bilin–3. f(nr,m) = f(n, rm).

5.11. Theorem. Let R be a ring, M a left R-module and N a right R-module.
Then there is an abelian group N⊗RM and a bilinear map f :N×M // N⊗RM
such that for any abelian group A and bilinear map g:N ×M // A there is a
unique group homomorphism h:N ⊗RM // A such that h ◦ f = g.

Proof. Let F be the free abelian group generated by the underlying set of N ×M .
Let E be the subgroup generated by all elements of F of the form

1. (n1 + n2,m)− (n1,m)− (n2,m);
2. (n,m1 +m2)− (n,m1)− (n,m2);
3. (nr,m)− (n, rm).

for all n, n1, n2 ∈ N , m,m1,m2 ∈ M and r ∈ R. Denote by N ⊗RM the quotient
F/E and n ⊗m the coset containing (n,m). Define f :N ×M // N ⊗R M by
f(m,n) = m ⊗ n. It is a triviality to see that f is a bilinear map. A bilinear
map g:N ×M // A extends, since F is freely generated by N ×M , to a unique
homomorphism F // A. Bilinearity obviously implies that the extension vanishes
on E and hence induces a unique h:F/E // A with h(n ⊗ m) = f(n,m), as
required.
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The abelian group N ⊗R M is called the tensor product of N with M over
R.

If N is a right R-module and A an abelian group, the group Hom(N,A) of
additive homomorphisms N // A has the structure of a left R-module via the
formula (rf)n = f(nr). Basically, it is the contravariance of the Hom functor that
turns the right module structure into a left module structure. Similarly, when M
is a left R-module, Hom(M,A) becomes a right R-module by (fr)m = f(rm).
Then we have the following result. Note that HomRop(−,−) denotes the right R
homomorphisms between two right modules.

5.12. Proposition. For any right R-module N , left R-module M and abelian
group A, there are natural isomorphisms

Hom(N ⊗RM,A) ∼= HomR(M,Hom(N,A)) ∼= HomRop(N,Hom(M,A))

Proof. We define φ: Hom(N⊗RM,A) // HomR(M,Hom(N,A)) by (φf)(m)(n) =
f(n ⊗ m). It is evident how Bilin–1 and 2 make φf additive in N and, for each
n ∈ N , make (φf)n additive in M . The only thing missing is showing that φf is
left R-linear. We have

((φf)(rm))n = f(n, rm) = f(nr,m) = ((φf)m)(nr) = (r(φf)m)n

so that (φf)(rm) = r((φf)m), as required. In the other direction, we will define
ψ: HomR(M,Hom(N,A)) // Hom(N ⊗ M,A). Given an R-linear g:M //

Hom(N,A), let (ψg)(n⊗m) = (gm)n. Bilin–1 and 2 follow from the fact that g is
additive in M and, for each m ∈ M , gm is additive in N . As for Bilin–3, we have
that

(ψg)(n⊗ rm) = (g(rm))n = (r(gm))n = (gm)(nr) = (ψg)(nr ⊗m)

It is evident that φ and ψ are inverse to each other, so the first isomorphism follows.
The second isomorphism is similar.

5.13. Corollary. For a fixed right R-module N , the functor N ⊗R − preserves
colimits. In particular, it is right exact.

Proof. The functor N ⊗−:R-Mod // Ab is left adjoint to Hom(N,−).

5.14. Existence of injectives. We begin the proof of the existence of an injec-
tive container of each module with the case of abelian groups. An abelian group A
is said to be divisible if for all a ∈ A and n ∈ N there is an a′ ∈ A with na′ = a.

5.15. Proposition. An abelian group is injective as a Z-module if and only if it
is divisible.

Proof. The easy way is gotten by looking at the injective homomorphism of multi-
plication by n. Assuming that Q is an injective Z-module, the induced Hom(Z, Q)
// Hom(Z, Q) is just multiplication by n, while Hom(Z, Q) ∼= Q and so multipli-

cation by n is a surjective endomorphism of Q and so Q is divisible.
For the converse, suppose that Q is divisible. Suppose that A0 is a subgroup

of A. We will show that any homomorphism f0:A0
// Q has an extension to

a homomorphism f :A // Q. Since any monomorphism is, up to isomorphism,
the inclusion of a subgroup, the conclusion will follow. Consider the poset of pairs
(Ai, fi) where Ai is a subgroup of A that contains A0 and fi:Ai // Q is a
homomorphism that extends f0. This poset is closed under increasing sup and so
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there is a maximal element. Suppose (A1, f1) is a maximal element. If A1 6= A,
suppose a ∈ A − A1. If na /∈ A1 for all n > 0, we can extend f1 to the subgroup
A′ generated by A1 and a by letting f ′a = 0. Otherwise, let n be the least positive
integer for which na ∈ A1 and choose q ∈ Q such that nq = f1(na) and then we
can extend f1 by letting f ′a = q. In either case, this contradicts the maximality of
A1, so that we must have A1 = A and then f1 is the required extension.

5.16. Proposition. Every abelian group can be embedded into a divisible abelian
group.

Proof. Let A be an abelian group and let A ∼= F/K where F is free. Then Q⊗ F
is divisible and K is isomorphic to a subgroup of it via the composite K // F
// Q⊗F and then A is isomorphic to a subgroup of (Q⊗F )/K. Since a quotient

of a divisible abelian group is easily seen to be divisible, we conclude that (Q⊗F )/K
is divisible.

5.17. Proposition. Suppose that P is a flat right R-module and Q is an injective
abelian group. Then Hom(P,Q) with the induced left R-module structure is an
injective left R-module.

Proof. Suppose f :M ′ // M is a monomorphism of left R-modules. Since P is
flat, the induced f ⊗ P :M ′ ⊗R P //M ′ ⊗R P is still monic. The diagram

HomR(M ′,Hom(P,Q)) Hom(M ⊗R P,Q)∼=
//

HomR(M,Hom(P,Q))

HomR(M ′,Hom(P,Q))

Hom(f,Hom(P,Q))

��

HomR(M,Hom(P,Q)) Hom(M ⊗R P,Q)
∼= // Hom(M ⊗R P,Q)

Hom(M ⊗R P,Q)

��

Hom(f ⊗ P,Q)

��

commutes and the right hand arrow is surjective since Q is injective and hence so
is the left hand arrow.

5.18. Corollary. Every left R-module can be embedded into an injective.

Proof. If M is an R-module, then treat is as an abelian group. Embed it into an
injective abelian group Q. Then

R ∼= HomR(R,M) ⊆ Hom(R,M) ⊆ Hom(R,Q)

embeds M into the injective module Hom(R,Q).

5.19. Tor. We begin the discussion of Tor with a definition. A left R-module
F is called flat if − ⊗ F is an exact functor. As already observed, this will be so
if and only if − ⊗ F preserves monics. That is, if and only if for N ′ // N a
monomorphism of right R-modules, the induced N ′ ⊗R M // N ⊗R M is also
monic.

5.20. Proposition. Projective modules are flat.

Proof. We begin with the obvious fact that HomR(R,M) ∼= M for any left R-
module M , since a homomorphism is determined uniquely by its value at 1. For
any abelian group A,

HomR(R,Hom(N,A)) ∼= Hom(N ⊗R R,A)
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and the Yoneda Lemma (see 1.6.2), we conclude that − ⊗R R is equivalent to the
identity functor, which certainly preserves monics. The ring R is the free module
on one generator. The free module F generated by the set X is the direct sum of X
many copies of R. Since direct sum is a colimit and tensor commutes with colimit,
it follows that N ⊗R F is the direct sum of X many copies of N . Since in module
categories a direct sum of an arbitrary set of monics is monic (this is not true, in
general, even in abelian categories), it follows that free modules are flat. Finally,

let P be projective. Then there is a free module F and maps P
f // F

g // P
with g ◦ f = id. Then for m:N ′ // // N , we have

N ⊗ P N ⊗ F
N ⊗ f

//

N ′ ⊗ P

N ⊗ P

m⊗ P
��

N ′ ⊗ P N ′ ⊗ F// N
′ ⊗ f // N ′ ⊗ F

N ⊗ F

��

m⊗ F
��

N ⊗ P
N ⊗ g

//

N ′ ⊗ P
N ′ ⊗ g // N ′ ⊗ P

N ⊗ P

m⊗ P
��

The arrow N ′ ⊗ f is monic, being split by N ′ ⊗ g and m ⊗ F is monic because F
is flat. Hence the composite N ⊗ f ◦m⊗ P is monic and therefore the first factor
m⊗ P is monic and so P is flat.

Suppose M is an R-module. By a flat resolution of M is meant a complex
P• = {(Pn, d) | n ≥ 0} consisting of flat R-modules, together with an arrow P0
//M such that the augmented complex P• //M // 0 is exact. Since every

module has a projective resolution and projectives are flat, every module has a flat
resolution.

Now suppose that F• // M is a flat resolution of M . Then for a right R-
module N , we can form the chain complex N ⊗R F•. Using the right exactness of
tensor, it is easy to show that the zeroth homology of this complex is just N ⊗RM .
We denote by TorRn (N,M) the nth homology group of this complex. It is sometimes
called the nth torsion product of N with M over R.

5.21. Theorem. TorRn (−,−) does not depend on the choice of the flat resolution.

It is a covariant functor in each argument Moreover, TorR0 (N,M) = N ⊗RM .

The proof will be given in the next chapter, 3.6.5

5.22. Exercises

Note: For solutions of the first three, see Barr [forthcoming].

1. Show that if is a commutative diagram with exact rows in a module category,
then f ′ is monic, respectively epic, if and only if the induced map A // A′′×B′′B
is monic, resp. epic.

2. Suppose that 0 // A′ // A // A′′ // 0 is an exact sequence of modules.
Show that there is an exact sequence of projective resolutions 0 // P ′• // P•
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// P ′′• // 0 of A′, A, and A′′, respectively so that

A′ A// A A′′//

P ′• P•//P ′•

A′
��

P• P ′′•
//P•

A
��

P ′′•

A′′
��

commutes with exact rows. (Hint: The kernel of a surjection between two projec-
tives is projective.)

3. Suppose that

B′ B// B B′′//

A′ A//A′

B′
��

A A′′//A

B
��

A′′

B′′
��

is commutative with exact rows Show that there are exact sequences of projective
resolutions

0 // P ′• // P• // P ′′• // 0

of A′, A, and A′′, respectively and

0 // Q′• // Q• // Q′′• // 0

of B′, B, and B′′, respectively, together with arrows P ′• // Q′•, P• // Q•, and
P ′′• // Q′′• such that

0 B′//

0

0

0

0

0 A′// A′

B′
��
B′ B//

A′

B′
��

A′ A// A

B
��
B B′′//

A

B
��

A A′′// A′′

B′′
��

B′′ 0//

A′′

B′′
��

A′′ 0// 0

0

0

0

0 Q′•
//

0

0

0

0

0 P ′•
// P ′•

Q′•

P ′•

Q′•Q
′
• Q•//

P ′•

Q′•

��

P ′• P•// P•

Q•
��
Q• Q′′•

//

P•

Q•
��

P• P ′′•
// P ′′•

Q′′•

��
Q′′• 0//

P ′′•

Q′′•

P ′′•

Q′′•

P ′′• 0// 0

0

0

0Q′•

B′
��????

Q•

B
��????? Q′′•

B′′
��????

P ′•

A′
��?????

P•

A
��????? P ′′•

A′′
��????

commutes with exact rows.

4. Show that any quotient of an injective abelian group is injective. Use this to
show that any subgroup of a projective abelian group is projective. (Neither of
these facts is true for more modules in general. Also, I should point out that every
projective abelian group is actually free, again a special property of Z-modules.)

5. Show that if 0 // F ′ // F // F ′′ // 0 is exact and both F and F ′′ are
flat, then so is F ′.
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6. The Z construction

Reading of this section can be deferred till needed for Chapter 8. We put it here
because it is just a construction in elementary theory of additive categories.

This construction gives the free pre-additive category associated to any cate-
gory. It is not really necessary, but it really simplifies life in a few crucial places
and is not at all difficult. Recall from 1.1 that a category is pre-additive if the hom
sets are abelian groups in such a way that composition is distributive on the left
and right.

Given a category C , we denote by ZC the category with the same objects
as C and whose hom sets are the free abelian group generated by those of C .
Composition is uniquely determined by the distributive law. This means that
for any finite set of arrows {fi:A // B | i = 1, . . . n}, any finite set of arrows
{gj :B // C | j = 1, . . . ,m}, and any finite sets of integers {ri | i = 1, . . . n} and
{sj | j = 1, . . . ,m}, we have m∑

j=1

sjgj

 ◦( n∑
i=1

rifi

)
=

n,m∑
i,j=1,1

risj(gj ◦ fi)

That’s all there is to it. The identities are obvious and so is associativity, so that
we have a category. For any (pre-)additive category A , any functor T : C // A ,
has a unique extension to an additive functor we will still call T :ZC // A .

6.1. Exercise

1. Show that for any category C , the category ZC is preadditive.



CHAPTER 3

Chain complexes and simplicial objects

In this chapter, we will develop properties of the category of differential objects
and of the category of chain complexes over an abelian category A . Since the
opposite of an abelian category is also abelian, this also includes the theory of
cochain complexes. For the most part, the theory is the same in the graded and
ungraded case and the latter is easier to discuss. When there is a difference, we
will make it clear. We let C denote either the category of differential objects of A
or of chain complexes.

1. Mapping cones

1.1. Suspension. The suspension is one construction in which the grading
matters. We take the ungraded case first. For a differential object (A, d), the
suspension is simply S(A, d) = (A,−d). For a chain complex (A•, d) the suspen-
sion is S(A•, d) = (A•−1,−d), meaning that an element that has degree n− 1 in A
has degree n in SA.

It is clear that in the ungraded case, H(A) = H(SA). This is also true in the
graded case, with a shift in dimension, so that Hn−1(A) = Hn(SA).

Another construction that is fundamental to the theory is that of the mapping
cone of a morphism. Suppose that f :K // L is a map in C . We define a chain
complex C = Cf by letting C = L ⊕ SK with boundary operator given by the

matrix

(
d f
0 −d

)
.

1.2. Proposition. For any f :K // L of C , the mapping cone Cf is an object
of C ; moreover there is an exact sequence

0 // L // Cf // SK // 0

Proof. The requisite commutation of the boundary operators is easy. Matrix mul-
tiplication shows that (

d f
0 −d

)(
d f
0 −d

)
=

(
0 0
0 0

)
The homology exact triangle of this sequence is

H(L)

H(SK)

bb

d DDDDDDDDDDD
H(L) H(Cf )// H(Cf )

H(SK)
||zzzzzzzzzzz

72
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Taking account that H(SK) = H(K), this triangle is

H(L)

H(K)

bb

d DDDDDDDDDDD
H(L) H(Cf )// H(Cf )

H(K)
||zzzzzzzzzzz

1.3. Proposition. The connecting homomorphism d:H(K) // H(L) is just
H(f).

Proof. We do this in the case that A is a category of modules over some ring,
using 2.3.3 to infer it for an arbitrary abelian category. The recipe for d in the
proof of 2.4.7 is to represent an element of H(K) by a cycle k ∈ K. Choose a

preimage in Cf , which we can clearly choose as

(
0
k

)
. Apply the boundary to

give

(
fk
0

)
and choose a cycle in L mapping to that, for which choice fk clearly

suffices.

Of course, in the case of a chain complex, the homology triangle unwinds to a
long exact sequence

· · · Hn(L)// Hn(L) Hn(Cf )// Hn(Cf ) Hn−1(K)// Hn−1(K)

Hn−1(L)

dn

ttiiiiiiiiiiiiiiiiiiiiiiii

Hn−1(L) Hn−1(Cf )// Hn−1(Cf ) Hn−2(K)// Hn−2(K) · · ·//

We will show later that when f is monic (in each degree), then Cf has homology
isomorphic to that of L/K. Similarly, when f is epic, then the kernel of f has
homology isomorphic to that of SCf .

Let U : C // Gr(A ) denote the functor that forgets the boundary operator.
The sequence 0 // L // Cf // SK // 0 is said to be U -split which means
that 0 // UL // UCf // USK // 0 is split exact. This property turns out
to characterize mapping cone sequences.

1.4. Proposition. A U -split exact sequence

0 // L // C // K // 0

is isomorphic to the mapping cone of a unique map S−1K // L.

Proof. Since the sequence is split, we can suppose that as graded objects, C = L⊕K
and that in degree n, the sequence is

0 // Ln

(
1
0

)
// Ln ⊕Kn

( 0 1 )
// Kn

// 0

Now let dK and dL denote the differentials in K and L, respectively and suppose,
using the decomposition of C = L ⊕ K, that the differential on C has matrix
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d11 d12

d21 d22

)
. The commutativity of the diagram

0 L// L L⊕K(
1
0

) // L⊕K K
( 0 1 )

// K 0//

0 L// L L⊕K

(
1
0

)
//L

L

dL

��

L⊕K K
( 0 1 )

//L⊕K

L⊕K

(
d11 d12

d21 d22

)
��

K

K

dK

��

K 0//

gives the equations d11 = dL, d22 = dK and d21 = 0. If we write f = d12, then
the fact that (

dL f
0 dK

)(
dL f
0 dK

)
= 0

gives the equation f ◦ dK + dL ◦ f = 0 or equivalently, f ◦ (−dK) = dL ◦ f ,
which implies that f : (S−1K) = K // L is an arrow of chain complexes f :S−1K
// L.

1.5. Corollary. Suppose f :K // L is a morphism of differential objects and
Cf its mapping cone. Then for any object Z of A , the differential abelian group
Hom(Z,Cf ) is the mapping cone of Hom(Z, f): Hom(Z,K) // Hom(Z,L) and
Hom(Cf , Z) is the mapping cone of Hom(f, Z): Hom(L,Z) // Hom(K,Z).

Proof. If 0 // UL // UCf // USK // 0 is split as a sequence in A , so is

0 // Hom(Z,UL) // Hom(Z,UCf ) // Hom(Z,USK) // 0

which is equivalent to

0 // U Hom(Z,L) // U Hom(Z,Cf ) // U Hom(Z, SK) // 0

where we use U to denote the functor that forgets the differential for chain com-
plexes in A and in Ab. Also, Hom(Z, SK) has the negative of the boundary of
Hom(Z,K) and in the graded case, has the shift in degrees and is therefore the
suspension of Hom(Z,K). From the proposition, we see therefore that Hom(Z,Cf )
is the mapping cone of Hom(Z, f).

1.6. Exercise

1. Suppose that

· · · // An // An−1
// · · · // A1

// A0
// 0

is a chain complex and B is an object considered as a chain complex whose only non-
zero term is in degree 0. Show that if f•:A• // B is a map of chain complexes,
then the mapping cone is the suspension of

· · · // An // An−1
// · · · // A1

// A0

−f // B // 0
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2. Show that if

0 B′// B′ B// B B′′// B′′ 0//

0 A′// A′ A//A′

B′

f ′

��

A A′′//A

B

f

��

A′′

B′′

f ′′

��

A′′ 0//

is a commutative diagram of differential objects with exact rows and if any two of
f ′, f, f ′′ are homology isomorphisms, then so is the third.

2. Contractible complexes

Definition. We say that a differential object C is contractible if there is an arrow
s:C // C with the property that d ◦ s + s ◦ d = 1. A contractible differential
object is also acyclic since dc = 0 implies c = d(s(c)) + s(d(c)) = d(s(c)) so that
every cycle in a contractible differential object is a boundary.

2.1. Cycle operators. Consider now a differentiable abelian group (A, d) with
Z = ker d. Write |A| and |Z| for the underlying sets of A and Z, respectively. A
necessary and sufficient condition that A be acyclic is that there be a function, not
necessarily a group homomorphism, z: |Z| // |A| such that d ◦ z is the inclusion
|Z| // |A|. That is, for each cycle, there must be an element of which it is the
boundary. Not surprisingly, something special happens when z can be chosen as
an additive function. More generally, if C is a differential object in any abelian
category, we say that z:Z(C) // C is a cycle operator if d ◦ z is the inclusion
Z(C) // C.

One way a cycle operator might arise is if there is a contraction s. For if s:C
// C is a contraction and we let z = s|Z(C), then on Z(C), d ◦ z = d ◦ s =

d ◦ s + s ◦ d = id since s ◦ d = 0 on Z(C). Thus the restriction of s to Z(C) is a
cycle operator. It turns out that every cycle operator arises in this way.

2.2. Proposition. Let C be a differential object in any abelian category. Then
C is contractible if and only if there is a cycle operator on C.

Proof. One direction has just been shown. For the other, suppose z:Z(C) // C
is a cycle operator. Since the image of d is included in the domain Z(C) of z, it
makes sense to form the composite z ◦ d and we have that d ◦ z ◦ d = d. Thus
d ◦ (1 − z ◦ d) = 0 so that the image of 1 − z ◦ d is also included in the domain of
z and we can form the composite s = z ◦ (1 − z ◦ d). Note that we cannot write
s = z − z ◦ z ◦ d since the individual terms on the right are not defined. Then we
have that

s ◦ d+ d ◦ s = z ◦ (1− z ◦ d) ◦ d+ d ◦ z ◦ (1− z ◦ d)

= z ◦ (d− z ◦ d ◦ d) + 1− z ◦ d = z ◦ d+ 1− z ◦ d = 1

In a chain complex, both cycle operators and contractions have degree +1 and
in a cochain complex they have degree −1. But the same results are true.
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2.3. Remark. One important observation is that being contractible is an addi-
tively absolute property: if C is contractible and F is any additive functor defined
on complexes, then F (C) is also contractible, since the condition is defined entirely
in terms of addition, composites of arrows, and identities arrows.

Using this, we can show the following.

2.4. Theorem. Suppose C is a differential object in the abelian category A . Then
the following are equivalent:

1. C is contractible;
2. for each object Z of A , the differential abelian group Hom(Z,C) is con-

tractible;
3. for each object Z of A , the differential abelian group Hom(Z,C) is acyclic;
4. for each object Z of A , the differential abelian group Hom(C,Z) is con-

tractible;
5. for each object Z of A , the differential abelian group Hom(C,Z) is acyclic.

Proof. We will begin by proving the equivalence of the first three. If C is con-
tractible, then there is an arrow s:C // C such that s ◦ d + d ◦ s = 1 in which
case Hom(Z, s) is a contracting homotopy for Hom(Z,C). Contractible differen-
tiable groups are acyclic so the second condition implies the third. Assuming the
third, let Z = Z(C), the kernel of d:C // C, the object of cycles, and let i:Z
// C be the inclusion map. Since d ◦ i = 0, i is a cycle in the differential group

Hom(Z,C). Since that differential group is exact, i is also a boundary, so that
there is an element z ∈ Hom(Z,C) such that d ◦ z = i. But z:Z // C is just a
cycle operator and its existence implies that there is a contracting homotopy. This
proves the equivalence of the first three parts.

As for the last two, the same argument in the dual category shows that 1, 4
and 5 are equivalent.

2.5. Homotopy and homology equivalence. Suppose f, g:C ′ // C are
morphisms of differential objects. A homotopy h: f // g is a map h:C ′ // C
such that f−g = d◦h+h◦d. We will say that f is homotopic to g and write f ∼ g if
there is a homotopy h: f // g. It is easily shown that ∼ is an equivalence relation
on morphisms. A morphism f :C ′ // C is called a homotopy equivalence if
there is a morphism g:C // C ′ such that both g ◦ f ∼ idC′ and f ◦ g ∼ idC . It is
an easy exercise to show that C is contractible if and only if either of the arrows 0
// C or C // 0 is a homotopy equivalence.

2.6. Proposition. Let f, g:C ′ // C be homotopic morphisms. Then H(f) =
H(g).

Proof. Assume that h: f ∼ g. Then restricted to Z(C ′), Z(f)−Z(g) = d ◦h, which
means that modulo im d, H(f) = H(g).

A morphism of differential objects that induces an isomorphism in homology
is called a homology equivalence. As an immediate corollary of the preceding,
we have:

2.7. Corollary. A homotopy equivalence is a homology equivalence.
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2.8. Proposition. Suppose that f :K // L is a morphism of differential objects
in the abelian category A . Then the following are equivalent:

1. f is a homotopy equivalence;
2. for any object Z of A , the induced Hom(Z, f) is a homotopy equivalence

in the category of abelian groups;
3. for any object Z of A , the induced Hom(Z, f) is a homology equivalence

in the category of abelian groups;
4. the mapping cone of f is contractible;
5. for any object Z of A , the induced Hom(f, Z) is a homotopy equivalence

in the category of abelian groups;
6. for any object Z of A , the induced Hom(f, Z) is a homology equivalence

in the category of abelian groups.

Proof. If g:L // K is a morphism of differential objects, s:K // K is a ho-
motopy g ◦ f // idK , and t:L // L is a homotopy t: f ◦ g // idL, then
for any object Z, Hom(Z, g): Hom(Z,L) // Hom(Z,K) is a morphism of dif-
ferential abelian groups, Hom(Z, s): Hom(Z,K) // Hom(Z,K) is a homotopy
Hom(Z, g)◦Hom(Z, f) // id, and Hom(Z, t) is a homotopy Hom(Z, f)◦Hom(Z, g)
// id. Thus 1 implies 2. That 2 implies 3 is the previous corollary. To see that

3 implies 4, suppose that for any object Z of A , the induced Hom(Z, f) is a ho-
mology equivalence. It follows from the exactness of the homology triangle and
the fact that Hom(Z, f) is an isomorphism that Hom(Z,Cf ) is acyclic. Then from
Corollary 2.4, we see that Cf is contractible. Next we show that 4 implies 1. Let

the contracting homotopy u have matrix

(
t r
g −s

)
. Then the matrix of du + ud

is calculated to be (
dt+ fg + td dr − fs+ tf − rd
−dg + gd ds+ gf + sd

)
If we set this equal to the identity, we conclude that dt+ fg+ td = 1, −dg+ gd = 0
and ds+gf+sd = 1 from which we see that g is a chain map and homotopy inverse
to f .

A dual argument shows the equivalence of 1, 4, 5, and 6.

This proof actually gives a method for constructing a contraction in the map-
ping cone out of a homotopy inverse, but the formula looks complicated and
verifying directly that it is a contraction would be rather unpleasant.

2.9. Corollary. Suppose f :K // L is a mapping of acyclic (resp. contractible)
differential objects. Then the mapping cone of f is acyclic (resp. contractible) and
f is a homology (resp. homotopy) equivalence.

Proof. If K and L are both acyclic then the acyclicity of the mapping cone follows
from the exactness of the homology triangle. Evidently, the only map between the
null homology groups is an isomorphism. If K and L are both contractible, then
for any object Z, Hom(Z, f): Hom(Z,K) // Hom(Z,L) is a map between objects
with null homology and hence is a homology isomorphism. It follows that the
mapping cone of Hom(Z, f) is contractible and that f is a homotopy equivalence.

Probably the single most important property of the mapping cone is expressed
in the following theorem.
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2.10. Theorem. A map of differential objects is a homology equivalence if and
only if its mapping cone is acyclic and it is a homotopy equivalence if and only if
its mapping cone is contractible.

Proof. For homology, both directions are immediate consequences of the exactness
of the homology triangle and the fact that an object in a homology sequence is 0
if and only if the preceding arrow is epic and the succeeding one is monic. The
homotopy was dealt with in the previous theorem.

2.11. Proposition. If 0 // L
f // C

g // K // 0 is a U -split exact
sequence of differential objects, then K is homotopic to the mapping cone Cf and
L is homotopic to SCg.

Proof. Except for an unavoidable arbitrariness whether to suspend one or desus-
pend the other term in a mapping cone, the two parts are dual; we need prove
only one. Let u:UC // UL and v:UK // UC be such that uf = 1, gv = 1,
fu+ vg = 1 and uv = 0. The last equation actually follows from the first three. I

claim that

(
v
−udv

)
:K // Cf is a chain map. In fact,(

d f
0 −d

)(
v
−udv

)
=

(
dv − fudv
dudv

)
=

(
dv − (1− vg)dv

ufdudv

)
=

(
vgdv
udfudv

)

=

(
vdgv

ud(1− vg)dv

)
=

(
vd

−udvgdv

)
=

(
vd

−udvdgv

)

=

(
vd
−udvd

)
=

(
v
−udv

)
d

It is clear that ( g 0 )

(
v
−udv

)
= 1. The other composite is(

v
−udv

)
( g 0 ) =

(
vg 0
−udvg 0

)
Thus if we let G = ( g 0 ), F =

(
v
−udv

)
, U =

(
0 0
u 0

)
, and D =

(
d f
0 −d

)
, we

have GF = 1 and

DU + UD =

(
d f
0 −d

)(
0 0
u 0

)
+

(
0 0
u 0

)(
d f
0 −d

)

=

(
fu 0
−du 0

)
+

(
0 0
ud uf

)
=

(
fu 0

−du+ ud uf

)

=

(
1− vg 0

ud− ufdu 1

)
=

(
1− vg 0

ud− udfu 1

)

=

(
1− vg 0
udvg 1

)
=

(
1 0
0 1

)
−
(

vg 0
−udvg 0

)
= 1− FG
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2.12. Theorem. Suppose f :K // L is a morphism of differential objects with
mapping cone C = Cf . If f is monic, there is a map C // L/K that induces an
isomorphism on homology. Dually, if f is epic, there is a map ker(f) // C that
induces an isomorphism on homology.

Proof. By duality, we need prove only one of these, say the first. Let p:L // L/K
be the projection. Then ( p 0 ) :L ⊕ K // L/K is a chain map by a simple
computation and thus induces a map H(C) // H(L/K). It would be sufficient
to show that we have commutative squares in the homology sequence

H(K) H(L)// H(L) H(L/K)//

H(K) H(L)//H(K)

H(K)
��

H(L) H(C)//H(L)

H(L)
��

H(C)

H(L/K)
��

H(L/K) H(K)// H(K) H(L)//

H(C) H(K)//H(C)

H(L/K)
��

H(K) H(L)//H(K)

H(K)
��

H(L)

H(L)
��

· · · H(K)//

· · · H(K)//

H(L) · · ·//

H(L) · · ·//

The first and last squares obviously commute and one easily checks that the second
one does since in each direction the homology class of an element of L goes to
the class of pl. The third square does not commute, however; it anticommutes
instead. This does not really matter since it will commute if we negate the arrow
H(C) // H(K) in the upper sequence, which does not affect exactness. There is
perhaps some explanation as to why this step is necessary in terms of suspension,

but it is not evident. To show it anticommutes, take a cycle

(
l
k

)
∈ C. To be

a cycle means that dl + fk = 0 and dk = 0. Going clockwise around the square
gives us the homology class of k. In going the other way, we first take the class
of l mod K and then apply the connecting homomorphism. The recipe for doing
this is to apply the boundary to get dl and then choose an element of k mapping
to it. We can choose −k since dl+ fk = 0. Thus we get the homology class of −k,
which shows that the square anticommutes. The upshot is that the arrows H(C)
// H(L/K) are trapped between isomorphisms and must be isomorphisms by

the five lemma, see 2.3.11.

3. Simplicial objects

There are two equivalent definitions of a simplicial object in a category. One,
as a functor category, is useful for deriving certain formal properties. The other
definition, the one we will use, is much easier for seeing what a simplicial object in
a category actually is.
Definition. A simplicial object in a category X is given by a sequence of
objects X0, X1, . . ., Xn, . . . together with two doubly indexed family of arrows of
X . The first, called the face operators, are arrows d in:Xn

// Xn−1, 0 ≤ i ≤ n,
1 ≤ n < ∞; the second kind, called degeneracy operators, are arrows sin:Xn
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// Xn+1, 0 ≤ i ≤ n, 0 ≤ n <∞. These are subject to the following rules.

d in ◦ d
j
n+1 = d j−1

n ◦ d in+1 if 0 ≤ i < j ≤ n+ 1

sjn ◦ s
i
n−1 = sin ◦ s

j−1
n−1 if 0 ≤ i < j ≤ n

sj−1
n−1

◦ d in if 0 ≤ i < j ≤ n
d in+1 ◦ s

j
n =

1 if 0 ≤ i = j ≤ n or 0 ≤ i− 1 = j < n

sjn−1
◦ d i−1

n if 0 < j < i− 1 ≤ n
From now on, we will usually omit the lower indices. Thus the first rule above

is written d i ◦ d j = d j−1 ◦ d i for all values of the indices i < j that make sense.
Incidentally, this rule implies that d i ◦ d j = d j ◦ d i+1 when i ≥ j.

We often denote by X• the simplicial object consisting of objects Xn, n ≥ 0
and the attendant faces and degeneracies. If X• and Y• are simplicial objects, a
morphism f•:X• // Y• consists of a family fn:Xn

// Yn for all n ≥ 0 such
that d i ◦ fn = fn−1 ◦ d

i and fn ◦ s
i = si ◦ fn−1 whenever the indices make sense.

We will sometimes use the following symbolic notation for a simplicial set,
suppressing the degeneracies:

· · ·
//

... //Xn

//
... //Xn−1

//
... // · · ·

////// X1
//// X0

Definition. The alternate definition is as follows. Let ∆ denote the category
whose objects are non-zero ordinals and arrows are the order preserving functions.
A simplicial object in X can be described as a contravariant functor ∆op //X .

Here is how to connect the two definitions. We will use the usual implemen-
tation of the ordinals as n = {0, 1, . . . , n− 1}. Let ∂ni :n− 1 // n be defined for
i ≤ n by

∂ni (j) =

{
j for j < i
j + 1 for j ≥ i

Thus ∂nn is the inclusion of n− 1 into n while ∂n0 adds 1 to each ordinal. Similarly,
for 0 ≤ i ≤ n, we define σni :n // n− 1 by

σni (j) =

{
j for j < i
j − 1 for j ≥ i

Then the arrows ∂ni and σni generate the category ∆. In fact, arrows in ∆ factor
as surjections followed by injections and every injection is a composite of ∂’s and
every surjection is a composite of σ’s. If X: ∆op //X is a functor, the simplicial
set that corresponds has Xn = X(n + 1), d in = X(∂n+1

i ) and sin = X(σn+1
i ). It

is left as an exercise to show that this correspondence determines an equivalence
between the category of simplicial objects and that of contravariant functors on
∆op. The latter is often taken as the definition of simplicial object, but it is the
former definition that is used in practice.

We denote the category of simplicial objects over X by Simp(X ).

3.1. Littler fleas. Not only do we have simplicial sets as functors, with natural
transformations as morphisms, but we also have arrows, called homotopies, between
morphisms. These homotopies are rather complicated and used mostly in just one
special case. If X• and Y• are simplicial objects and f•, g•:X• // Y• are simplicial
arrows, a homotopy h•: f• // g• is given by families of arrows hi = hin:Xn
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// Yn+1 for all n ≥ 0 and all 0 ≤ i ≤ n that satisfy

d i ◦ hj =


fn if i = j = 0

hj−1 ◦ d i if i < j

d i ◦ hj+1 if 0 ≤ i− 1 = j < n

hj ◦ d i−1 if o ≤ j < i− 1 ≤ n
gn if i− 1 = j = n

sj ◦ hi = hi ◦ sj−1 if0 ≤ i < j ≤ n+ 1

We will write h•: f•
∼ // g• to show that h• is a homotopy from f• to g• and

f•
∼ // g• to indicate there is a homotopy. We choose this notation because homo-

topy is not symmetric. Even this notation is misleading for
∼ // is not transitive

either. It is, however, always reflexive. In fact, if f•:X• // Y• is a simplicial
map, it is not hard to show that h given by hi = si ◦ fn = fn+1 ◦ s

i:Xn
// Yn+1

defines a homotopy f•
∼ // f•.

3.2. Augmented simplicial objects. An augmented simplicial object in
the category X is a simplicial object X• together with an object X−1 together
with an arrow d:X0

// X−1 such that d ◦ d0 = d ◦ d1.
An augmented simplicial object X• // X−1 is said to be contractible if

for each n ≥ −1 there is a map sn:Xn
// Xn+1 such that d0 ◦ s = 1 and

d i ◦ s = s ◦ d i−1, 0 < i ≤ n and s0 ◦ s = s ◦ s and si ◦ s = s ◦ si−1, 0 < i ≤ n+ 1.
A simplicial object is called constant if Xn is the same object for each n and

every face and degeneracy map is the identity of that object. There is a constant
simplicial object for each object of the category. For an object X of X we will
denote the corresponding simplicial object also by X.

3.3. Proposition. Suppose X• // X−1 is a contractible augmented simplicial
object in X . Then there are simplicial maps f•:X• // X−1 and g•:X−1

// X•,

treating X−1 as a constant, such that f ◦g = 1 and 1
∼ // g ◦f . Conversely, a pair of

arrows involving a constant simplicial object satisfying such a condition corresponds
to a contractible augmented simplicial object.

Proof. Let us begin with a contractible augmented simplicial object X• // X−1

with contracting homotopy s•. At this point, we require some notational con-
ventions. Upper indices are used on face and degeneracies and this is usually
satisfactory because we cannot usually form powers. Here we will be using sym-
bolic powers. They are not really powers, because , for example, d0 ◦ d0 is really
d0
n+1 ◦ d

0
n for some n, but it will be convenient to write it as a power. In order to

avoid confusion, we will write it as (d0)2. In other words a true exponent will always
be marked with parentheses. It will be convenient to write d0 = d:X0

// X−1

and s−1 = s:Xn−1
// Xn for n ≥ 0. In each case it because the equations

satisfied are those appropriate to d0, respectively s−1. Now let fn = (d0)n+1:Xn
// X−1 and gn = (s−1)n+1:X−1

// Xn. Before continuing, we need a lemma.



82 3. CHAIN COMPLEXES AND SIMPLICIAL OBJECTS

3.4. Lemma.

(d0)j ◦ d i =

{
(d0)j+1 if i ≤ j
d i−j ◦ (d0)j if i > j

(d0)j ◦ si =

{
(d0)j−1 if i > j

si−j ◦ (d0)j if i ≤ j

d i ◦ (s−1)j =

{
(s−1)j−1 if i < j

(s−1)j ◦ d i−j if i ≥ j

si ◦ (s−1)j =

{
(s−1)j+1 if i < j

(s−1)j ◦ si−j if i ≥ j
Proof. We will prove the first of these. The remaining ones are similar. When
j = 0, there is nothing to prove. We begin with the case that i > j. When j = 0,
there is nothing to prove. Assuming the conclusion true for j − 1, then

(d0)j ◦ d i = d0 ◦ (d0)j−1 ◦ d i = d0 ◦ d i−j+1 ◦ (d0)j−1

= d i−j ◦ d0 ◦ (d0)j−1 = d i−j ◦ (d0)j

The case that i ≤ j is immediate for j = 0. Assuming it holds for j − 1, let us first
consider the case that i < j. Then

(d0)j ◦ d i = d0 ◦ (d0)j−1 ◦ d i = d0 ◦ (d0)j = (d0)j+1

If i = j, then

(d0)j ◦ d j = d0 ◦ (d0)j−1 ◦ d j = d0 ◦ d1 ◦ (d0)j−1 = d0 ◦ d0 ◦ (d0)j−1 = (d0)j+1

In particular, taking j = n in the first one, we see that (d0)n ◦ d i = (d0)n+1

for 0 < i < n so that f commutes with the face operators. Taking j = n + 2
in the second, we have that (d0)n+2 ◦ si = (d0)n+1 so that f commutes with the
degeneracies. Similarly, the third and fourth equations of the lemma have as special
case formulas that say that g is a simplicial map.

No we return to the proof of the proposition. We have that

fn ◦ gn = (d0)n+1 ◦ (s−1)n+1 = (d0)n ◦ (s−1)n = · · · = 1

To see the homotopy in the other direction, we let hi:Xn
// Xn+1 by the formula

hi = (s−1)i+1 ◦ (d0)i. We see that d0 ◦ h0 = d0 ◦ s−1 = 1 by assumption, while

dn+1 ◦ hn = dn+1 ◦ (s−1)n+1 ◦ (d0)n = (s−1)n+1 ◦ d0 ◦ (d0)n = gn ◦ fn

We claim that the hi constitute a homotopy 1
∼ // g ◦ f . For i < j, we have

d i ◦ hj = d i ◦ (s−1)j+1 ◦ (d0)j = (s−1)j ◦ (d0)j

while
hj−1 ◦ d i = (s−1)j ◦ (d0)j−1 ◦ d i = (s−1)j ◦ (d0)j

If i > j + 1, we have

d i ◦ hj = d i ◦ (s−1)j+1 ◦ (d0)j = (s−1)j+1 ◦ d i−j−1 ◦ (d0)j

while
hj ◦ d i−1 = (s−1)j+1 ◦ (d0)j ◦ d i−1 = (s−1)j+1 ◦ d i−1−j ◦ (d0)j

Finally,

d i+1 ◦ hi = d i+1 ◦ (s−1)i+1 ◦ (d0)i = (s−1)i+1 ◦ d0 ◦ (d0)i = (s−1)i+1 ◦ (d0)i+1
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while
d i+1 ◦ hi+1 = d i+1 ◦ (s−1)i+2 ◦ (d0)i+1 = (s−1)i+1 ◦ (d0)i+1

which establishes the homotopy.

There is another possible definition of contractible augmented simplicial object.
One can instead suppose the existence of sn:Xn−1

// Xn for all n ≥ 0 that satisfy
dn ◦ sn = 1, d i ◦ sn = sn ◦ d

i for i < n and sn ◦ s
i = si ◦ sn−1. In fact, instead

of looking like degeneracies labeled −1, these look like ones labeled sn+1 in degree

n. Not surprisingly, this kind of homotopy gives rise to a homotopy g ◦ f
∼ // 1.

The two are not in general equivalent, an example of the fact that the homotopy
relation is not symmetric.

The following theorem gives a useful sufficient condition for a special kind
of augmented simplicial set to be contractible. First we need a definition. If f :X
// Y is a function, the nth fiber power Xn

Y of f consists of all n-tuples 〈x0, . . . , xn〉
of elements of X on which f is constant, that is fx0 = · · · = fxn. This becomes
a simplicial set with Xn+1

Y in degree n and the ith face operator d i〈x0, . . . , xn〉 =
〈x0, . . . , xi−1, xi+1, . . . , xn〉 for i = 0, . . . , n. The degeneracy operators are given by
si〈x0, . . . , xn〉 = 〈x0, . . . , xi, xi, . . . , xn〉.
3.5. Proposition. The above simplicial set, augmented by f :X // Y , is con-
tractible if and only if f is surjective.

Proof. The augmentation term of a contractible simplicial set is always a split
surjection, so that is a necessary condition. If f is surjective, then there is a section
s:Y // X such that f ◦ s = id. Define s:Xn+1

Y
// Xn+2

Y by s〈x0, . . . , xn〉 =
〈x0, . . . , xn, s ◦ fxn〉. Then

dn+1 ◦ s〈x0, . . . , xn〉 = dn+1〈x0, . . . , xn, s ◦ fxn〉 = 〈x0, . . . , xn〉
while for 0 ≤ i ≤ n,

d i ◦ s〈x0, . . . , xn〉 = d i〈x0, . . . , xn, s ◦ fxn〉

= 〈x0, . . . , xi−1, xi+1 . . . , xn, s ◦ fxn〉

= s〈x0, . . . , xi−1, xi+1 . . . , xn〉 = s ◦ d i〈x0, . . . , xn〉
which shows that this is contraction.

4. Associated chain complex

Suppose A• is a simplicial object in an additive category A . Then the associated
chain complex is the complex

· · · d // An+1
d // An

d // An−1
d // · · · d // A0

// 0

where d =
∑n
i=0(−1)id i:An // An−1. The first thing that has to be verified is

that it is a chain complex.
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4.1. Proposition. d ◦ d = 0.

Proof. Starting at An, we have

d ◦ d =

n−1∑
i=0

(−1)id i ◦
n∑
j=0

(−1)jd j =

n−1∑
i=0

n∑
j=0

(−1)i+jd i ◦ d j

=

n−1∑
i=0

i∑
j=0

(−1)i+jd i ◦ d j +

n−1∑
i=0

n∑
j=i+1

(−1)i+jd i ◦ d j

=

n−1∑
i=0

i∑
j=0

(−1)i+jd i ◦ d j +

n−1∑
i=0

n∑
j=i+1

(−1)i+jd j−1 ◦ d i

=

n−1∑
i=0

i∑
j=0

(−1)i+jd i ◦ d j +

n∑
j=1

j−1∑
i=0

(−1)i+jd j−1 ◦ d i

=

n−1∑
i=0

i∑
j=0

(−1)i+jd i ◦ d j −
n−1∑
j=0

j∑
i=0

(−1)i+jd j ◦ d i

= 0

It is evident that a simplicial map induces a chain map on the associated chain
complexes. Let us write C(A•) and C(f•) for the associated chain complex and
chain map.

4.2. Proposition. Let A be an additive category and f•, g•:A• // B• be

simplicial maps between simplicial objects in A . If h•: f•
∼ // g• is a simplicial

homotopy, then C(h•) defined in degree n as
∑n
i=1 h

i is a chain homotopy from
C(f•) // C(g•).
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Proof. The proof is the computation:

d ◦ h =

n+1∑
i=0

(−1)id i ◦
n∑
j=0

(−1)jhj =

n+1∑
i=0

n∑
j=0

(−1)i+jd i ◦ hj

=

n+1∑
i=2

i−2∑
j=0

(−1)i+jd i ◦ hj +

n+1∑
i=1

(−1)2i−1d i ◦ hi−1 +

n∑
i=0

(−1)2id i ◦ hi

+

n+1∑
i=0

n∑
j=i+1

(−1)i+jd i ◦ hj

=

n+1∑
i=2

i−2∑
j=0

(−1)i+jhj ◦ d i−1 +

n−1∑
i=0

n∑
j=i+1

(−1)i+jhj−1 ◦ d i

−
n∑
i=1

d i ◦ hi−1 − dn+1 ◦ hn + d0 ◦ ho +

n∑
i=1

(−1)2id i ◦ hi

= fn − gn +

n∑
i=1

i−1∑
j=0

(−1)i+j+1hj ◦ d i +

n−1∑
i=0

n−1∑
j=i

(−1)i+j+1hj ◦ d i

= fn − gn −
n∑
i=0

n−1∑
j=0

(−1)i+jhj ◦ d i

= fn − gn − h ◦ d

4.3. Corollary. If A = A• is a contractible augmented simplicial object in an
abelian category, then CA is a contractible simplicial set.

Proof. For it is then homotopic to a constant simplicial set and it is obvious that
the chain complex associated to a constant simplicial set is contractible.

4.4. Exercise

1. A simplicial object is called constant if every object is the same and all faces
and degeneracies are the identity arrow. Calculate the associated chain complex of
a constant simplicial object in an abelian category.

5. The Dold-Puppe theorem

In [1961], A. Dold and D. Puppe published a theorem that states that if A is an abelian
category, then the category of chain complexes in A is equivalent to that of simplicial
objects of A . In fact, their hypotheses are even too strong. All that is needed is an
additive category with split idempotents. Although we will not prove their theorem (it is
really not relevant to the subject at hand), the basic construction is interesting and the
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reader who wants the full proof can refer to the original paper. The functor used is not C,
but either of two isomorphic, but quite distinct functors that we will call C and C, either
of which we will call the normalized chain complex associated with a simplicial object.
If A• is a simplicial object, define Cn(A•) =

⋂n
i=1 ker(d in) ⊆ An. This is made into a

chain complex using the restriction of d0. It turns out to be a subcomplex of C(A•) since
the remaining terms in the sum defining the boundary vanish on this subobject. We let
Cn(A) be the quotient of An/

∨n−1
i=0 im(sin−1) (the sum—non-direct—of the images of the

degeneracies). The boundary is induced by that of C(A•). Then the Dold-Puppe theorem

asserts that the composite C(A•) // C(A•) // C(A•) is an isomorphism and the

isomorphic functors C and C induce an equivalence of categories.
The way to see you need only split idempotents is as follows. The kernel of d i is

easily seen to be the kernel of si−1 ◦ d i and that is idempotent. (It is also the kernel of
the idempotent si ◦ d i, but we cannot use that one because a choice was made to use⋂n
i=1 ker(d i) in the definition of C. We could equally well have used

⋂n−1
i=0 ker(d i) with

boundary (−1)ndn.) But the kernel of an idempotent e in an additive category is the
image of the idempotent 1 − e so that in an additive category with split idempotents,
idempotents have kernels.

We have to work a bit harder to get the intersection of the kernels, since these idem-
potents do not commute. The relevant facts are these. Let ei = si−1 ◦ d i. Then ei

commutes with ej provided |i− j| ≥ 2. While ei does not commute with ei+1, they satisfy
the identities ei ◦ ei+1 ◦ ei = ei+1 ◦ ei ◦ ei+1 = ei+1 ◦ ei. Let ci = 1− ei. Again ci commutes
with cj when |i− j| ≥ 2, while ci ◦ ci+1 ◦ ci = ci+1 ◦ ci ◦ ci+1 = ci ◦ ci+1. Note the left/right
reversal here. It then follows that c1 ◦ c2 ◦ · · · ◦ cn is idempotent and the image of that
idempotent is exactly Cn.

The story of C is similar; the image is si is the same as the image of the idempotent

ei and the braided commutation identities allow the sum of the images to be realized as

the image of a single idempotent.

6. Double complexes

By a bigraded object of A , we mean a Z × Z indexed family Anm of objects.
This will often be denoted A••. A family of morphisms fnm:Anm // An+km+l is
said to have bidegree (k, l). A differential bigraded object we mean a bigraded
object with two differentials dI and dII of bidegrees (k, 0) and (0, l), respectively,
that satisfy, in addition to dI◦dI = 0 and dII◦dII = 0 the equation dI◦dII = −dII◦dI.
Although d = dI +dII does not preserve the grading, it is trivial to see that d◦d = 0,
a fact we will need later.

A morphism of differential bigraded objects

f : (A′••, d
′ I, d′ II) // (A••, d

I, d′ II)

is a morphism of bidegree (0, 0) of the bigraded objects that commutes with both
boundary operators.

A sequence of morphisms of (differential) bigraded objects

(A′••, d
′ I, d′ II)

f // (A••, d
I, dII)

g // (A′′••, d
′′ I, d′′ II)

is exact if for each n, m the sequence A′nm
fnm // Anm

gnm // A′′nm is exact. We
similarly define a short exact sequence of (differential) graded objects.
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Now suppose that A = (A••, d
I, dII) is a differential bigraded object in which

k = l. In that case there is associated a differential graded object called the
total differential graded object. This object T (A) has in degree n the direct sum
Tn(A) =

∑
i+j=nAij . For the differential, let a = (. . . , ai−1 j+1, aij , ai+1 j−1, . . .)

be an element of Tn(A). Then da = aI + aII where

aI = (. . . , dIai−1 j+1, d
Iaij , d

Iai+1 j−1, . . .)

and
aII = (. . . , dIIai−1 j+1, d

IIaij , d
IIai+1 j−1, . . .)

Of course, in the element dIaij lives in bidegree (i+k, j), while dIIaij is in bidegree
(i, j + k), but they are both in Tn+k(A).

The cases we are interested in will be those for which k = l = ±1. A double
chain complex is a differential bigraded object whose differentials have bidegrees
(−1, 0) and (0,−1) and, moreover, there are integers n0 and m0 for which Anm = 0
unless n ≥ n0 and m ≥ m0. In this case, the total complex will have Tn(A) = 0
for n < n0 + m0, so it will be a chain complex. Similarly, a double cochain
complex is a differential bigraded object whose differentials have bidegrees (+1, 0)
and (0,+1) and, moreover, there are integers n0 and m0 for which Anm = 0 unless
n < n0 and m ≤ m0. In this case, the total complex will have Tn(A) = 0 for
n > n0 +m0, so it will be a cochain complex.

In the case that k = l = −1, we will usually denote the two boundary operators
by dI and dII and if k = l = 1, we will usually denote them by δ I and δ II.

The way to picture a double chain complex is to imagine m0 = n0 = 0 (which
is often the case) and the non-zero objects are situated at the lattice points in the
first quadrant. The first boundary operator maps Anm to An−1m and so can be
thought of as arrows going to the left in each row and the second boundary operator
can similarly be thought of as arrows going down. When n or m is non-zero, then
the picture is similar, it just does not exactly fit into or fill out the quadrant.

If A is a double chain complex, we write H•(A) for the homology of the total
complex T•(A).

6.1. Homology of double complexes. Let us say that a double differential
object is an object A with two anticommuting differentials dI and dII so that D =
dI + dII is a differential. It would not be utterly astonishing (although it would
be false, see the examples below) if it turned out that a double differential object
was exact if both differentials were. It is rather a surprise, however, that the total
complex of a double complex is already exact if just dI (or dII) is.

We begin with,

6.2. Proposition. Suppose

0 // A′
f // A

g // A′′ // 0
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is a short exact sequence of double chain complexes. Then there is an exact homol-
ogy sequence

· · · Hn(A′)// Hn(A′) Hn(A)
Hn(f)

// Hn(A) Hn(A′′)
Hn(g)

// Hn(A′′)

Hn−1(A′)

Dn

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Hn−1(A′) Hn−1(A)
Hn−1(f)

// Hn−1(A) Hn−1(A′′)
Hn−1(g)

// Hn−1(A′′) · · ·//

is exact.

Proof. There is just one subtlety here. The object Tn(A) is the sum of all the Aij
for which i + j = n. There are only finitely many such because there are integers
m0 and n0 with Aij = 0 unless i ≥ m0 and j ≥ n0. The same is true of A′ and A′′.
Thus the sequence

0 // Tn(A′) // Tn(A) // Tn(A′′) // 0

is the sum of only finitely many exact sequences and it is a standard property of
abelian categories that a finite sum of exact sequences is exact.

6.3. Theorem. Suppose that A = (A••, d
I, dII) is a double complex and that dI

is exact. Then the total complex is also exact.

Proof. We will suppose for simplicity that the lower bounds m0 = n0 = 0. Thus we
will think of the double complex as living in the first quadrant. Let Fn(A) denote
the double complex truncated above the nth row. That is, Fn(A) is the double
complex whose (i, j)th term is Aij for j ≤ n and is 0 when j > n. Since both dI

and dII go down to lower indices, Fn(A) is a subcomplex of A. Also for m < n,
Fm(A) is a subcomplex of Fn(A). Let Rn(A) be the nth row of A. That is, Rn(A)
is the double complex that has Ain in bidegree (i, n) and all other terms are 0. The
boundary operator is the restriction of dI. Except for n = 0, it is not a subcomplex
of A. However, there is an exact sequence

0 // Fn−1(A) // Fn(A) // Rn(A) // 0

Our hypothesis that dI is exact implies that Rn(A) is exact for all n. The exact
homology triangle then implies that the induced

H•(Fn−1(A)) // H•(Fn(A))

is an isomorphism. Since F0(A) = R0(A), this implies that H•(Fn(A)) is identically
0 for all n. But the computation of Hn(A) uses only terms of total degree n− 1, n,
and n+ 1, which are all in Fn+1(A) so that the inclusion Fn+1(A) // A induces
an isomorphism Hn(Fn+1(A)) // Hn(A). Since the left hand side is 0, so is the
right hand side.

6.4. Corollary. Suppose A = (A••, d
I, dII) is a double chain complex with Amn =

0 for n < −1 or m < −1. Suppose for each n ≥ 0 the single complex (A•n, d
I)

is acyclic and for each m ≥ 0, the single complex (Am•, d
II) is acyclic. Then the

chain complexes (A•−1, d
I) and (A−1 •, d

II) are homology equivalent.

Proof. Let B denote the double complex in which all the terms Amn with m = −1
or n = −1 are replaced by 0 and otherwise nothing is changed. Although B is not a
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subcomplex of A it is a quotient complex. Let B1 denote the complex in which all
the terms Amn with n = −1 have been replaced by 0 and B2 denote the complex
in which all the Amn with m = −1 have been replaced by 0. Let C1 = (A•−1, d

I)
and C2 = (A−1 •, d

II). These are single complexes, but we treat them as double
complexes with all other terms 0 for the purposes of this proof. There are exact
sequences

0 // C1
// A // B1

// 0

0 // C2
// A // B2

// 0

Moreover, the hypotheses state that B1 is acyclic with dI as boundary and that B2

is acyclic with dII as boundary and therefore B1 and B2 are acyclic and therefore
that both C1

// A and C2
// A are homology equivalences and therefore C1 is

homology equivalent to C2.

6.5. Proof of 2.5.9. We are now ready to prove that the definitions of Ext and
Tor are independent of resolutions and also that Ext can be defined by an injective
resolution of the second argument. We deal first with Ext. Given left modules N
and M , let P• // N // 0 be an exact sequence such that P• is a projective
resolution of N and let 0 // M // Q• be an exact sequence such that Q• is
an injective resolution of M . Form the double cochain complex A = (Amn, d

I, dII)
defined by

Amn =


HomR(Pm, Qn), if m ≥ 0 and n ≥ 0
HomR(Pm,M), if m ≥ 0 and n = −1
HomR(N,Qn), if m = −1 and n ≥ 0
0, otherwise

The complex for n ≥ 0 is

0 // HomR(N,Qn) // HomR(P0, Qn) // HomR(P1, Qn) // · · ·
and is acyclic since hom into an injective is an exact functor. Similarly, the complex
for m ≥ 0 is

0 // HomR(Pm,M) // HomR(Pm, Q0) // HomR(Pm, Q1) // · · ·
which is acyclic since hom out of a projective is an exact functor. The complexes
on the edges are

0 // HomR(P0,M) // HomR(P1,M) // · · ·
0 // HomR(N,Q0) // HomR(N,Q1) // · · ·

whose homology groups correspond to the two definitions of Ext given in the pre-
ceding chapter.

But we can also conclude that the Ext defined by using any projective resolution
of M is the same as that using Q and so any projective resolution of M gives the
same value of Ext. A similar argument implies that any injective resolution of N
also gives the same value to Ext.

The argument for Tor is similar. Now suppose that M is a right module and
N a left module. Let P• // M // 0 and Q• // N // 0 be flat resolutions
of M and N , resp. Form the double complex that has Pn ⊗ Qm in bidegree n,m,
for n,m ≥ −1. The flatness of the Pn and Qm for n,m ≥ 0 implies that all the
rows except the (−1)st and all the columns except the (−1)st are exact and so the
−1st row and column are homologous. As above, this shows that you can resolve
either variable and the value of Tor is independent of the resolution.
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6.6. Two examples. The first example shows that a double differential object
in which both differentials are exact need not be exact. Let (A, d) be any exact
complex with A 6= 0. Then (A,−d) is also exact and d(−d) = −(−d)d = 0, while
(A, d− d) is not exact.

The second example is due to Rob Milson. It is a double differential graded
group in which each row and column is exact and has only finitely many non-zero
terms, but it does not fit in one quadrant and the total complex is not exact. Define
Aij for all i, j ∈ N as follows.

Aij =
{
Z if i = −j or i = −j + 1
0 otherwise

In one direction, the only non-zero boundary operator is dI = id:Ai+1,−i // Ai,−i
while in the other direction we use dII = −id:Ai+1,−i // Ai+1,−i−1. This is
acyclic in both directions, since each such complex looks like

· · · // 0 // Z // Z // 0 // · · ·
with either id or −id for the arrow. The total complex is

· · · // 0 // A1
// A0

// 0 // · · ·
where both A0 and A1 are the direct sum of a Z-indexed family of copies of Z.
The boundary is D = dI + dII. Then if we let (a)1

i denote the element a ∈ Ai,−i+1

and (a)0
i denote the element a ∈ Aii, we have dI((a)1

i+1) = (a)0
i and dII((a)1

i+1) =

−(a)0
i+1 so that

D((a)1
i+1) = (a)0

i − (a)0
i+1

We claim that D:A1
// A0 is not surjective while D:A0

// 0 is 0, so that
the total complex is not exact. To see this, let s:A0

// Z be the sum of the
coordinates function. Clearly s ◦ D = 0 so it is sufficient to observe that s 6= 0,
which is obvious.

6.7. Exercise

1. A chain complex in the category of chain complexes is almost a double chain
complex object except that the squares commute instead of anticommute. Show
that given such a chain complex of chain complexes, there is at least one way
of negating some of the boundary maps so that you get instead a double chain
complex.

7. Double simplicial objects

7.1. definition. If X is a category, then an object of Simp(Simp(X )) is called
a double simplicial object of X . It consists of a doubly indexed family Xnm,
n ≥ 0, m ≥ 0, arrows d i:Xnm

// Xn−1m and si:Xnm
// Xn+1m for 0 ≤ i ≤ n

and arrows ∂ j :Xnm
// Xnm−1 and σj :Xnm

// Xnm+1 for 0 ≤ j ≤ m. In
addition both directions must satisfy the simplicial identities separately and all the
horizontal arrows commute with all vertical arrows, which is to say that all such
commutation identities as d i ◦ ∂ j = ∂ j ◦ d i, as well as three similar kinds, must
hold.
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7.2. The diagonal object. If X = X•• together with all the requisite faces
and degeneracies is a double simplicial object, the diagonal simplicial object
is simply the simplicial object that has Xnn in degree n. The ith face operator is
∂ i ◦d i = d i ◦∂ i and the ith degeneracy is similarly σi ◦si = si ◦σ. The commutation
laws imply that this gives a simplicial set, called the diagonal simplicial set,
which we will denote by ∆X. There is an associated chain complex that has Xnn

in degree n and whose boundary operator is given by
∑

(−1)id i∂ i. Let us call the
functor so defined K•.

7.3. The double complex. On the other hand, there is a double complex as-
sociated to each double simplicial set in an abelian category. Or rather, there are
many, as we will see. If we take a double simplicial set A = A••, then form the
doubly graded object that has Anm in bidegree nm with two boundary operators
dI =

∑
(−1)id i and dII =

∑
(−1)i∂ i. There is a slight problem with this since if we

take this definition, the squares will commute rather than anticommute as is neces-
sary for a double simplicial object. There are many—uncountably many—ways of
assigning minus signs to some of the arrows so that every square gets either one or
three of them and winds up anti-commuting (see Exercise 1). One way is to define
dII
n =

∑
(−1)n+i∂ in so that all boundary operators in the odd numbered columns

are negated. To be perfectly definite, let us make that change and call the resultant
double complex LA, which is clearly functorial in A. Then we can form the single
complex TLA (previous section). Thus we have two functors, K and TL that turn
a double simplicial object into a chain complex. Remarkably, they are homotopic
(see 7.4). This is even more surprising for the fact that, for example, an element
in Ann appears in KA with degree n and in TLA with degree 2n. Nonetheless,
simplicial sets are so tightly bound that the two constructions are homotopic.

8. Homology and cohomology of a morphism

Suppose X is a category with a chain complex functor C•. If f :X // Y is
an arrow in X we let C•(f :X // Y ) denote the mapping cone of C•f :C•X
// C•(Y ). This means that Cn(f :X // Y ) = Cn(Y )⊕ Cn−1(X). The bound-

ary operator has the matrix

(
d f
0 −d

)
. If f is understood, we will write C•(Y,X),

by analogy with the notation used in algebraic topology, of which this is a gen-
eralization. Now suppose that g:Y // Z is another map in X . Consider the
sequence

0 // CnY ⊕ Cn−1X


−g 0
0 1
1 0
0 f


// CnZ ⊕ Cn−1X ⊕ CnY ⊕ Cn−1Y(

1 0 g 0
0 −f 0 1

)
// CnZ ⊕ Cn−1Y // 0
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in which the boundary of the middle object is
d −gf 0 0
0 −d 0 0
0 0 d 1
0 0 0 −d


Then one can check by a direct computation that the horizontal arrows are maps
of chain complexes. Exactness of the sequence is readily proved using the arrows(

0 0 1 0
0 1 0 0

)
:CnZ ⊕ Cn−1X ⊕ CnY ⊕ Cn−1Y // CnY ⊕ Cn−1X

and 
1 0
0 0
0 0
0 1

 :CnZ ⊕ Cn−1Y // CnZ ⊕ Cn−1X ⊕ CnY ⊕ Cn−1Y

The end terms are the nth terms of C•(Y,X) and C•(Z, Y ), respectively, while
the middle term is the direct sum of the mapping cone of C•(Z,X) (with a change
of sign, which is irrelevant) and that of C•(Y, Y ). Since the latter is the mapping
cone of the identity functor and is therefore contractible, the result is the exact
sequence of pairs

· · · // Hn+1(Z, Y ) // Hn(Y,X) // Hn(Z,X) // Hn(Z, Y ) // Hn−1(Y,X) // · · ·



CHAPTER 4

Triples à la mode de Kan

1. Triples and cotriples

1.1. Definition of triple. Let C be a category. A triple T = (T, η, µ) on C
consists of an endofunctor T : C // C and natural transformations η: Id // T
and µ:T 2 // T for which the following diagrams commute.

T T 2
Tη //T

T

=

""DDDDDDDDDDDDD T 2 Too ηT
T 2

T

µ

��

T

T

=

||zzzzzzzzzzzzz

T 2 Tµ
//

T 3

T 2

µT

��

T 3 T 2
Tµ // T 2

T

µ

��

The two natural transformations are called the unit and the multiplication of
the triple, respectively. The three diagrams that commute are called the left and
right unit and associativity laws. The reason for these names comes from examples
such as the following.

1.2. An example. Let R be a ring (associative with unit). There is a triple
T = (T, η, µ) on the category Ab of abelian groups for which T (A) = R⊗A, ηA:A
// R⊗A is defined by ηA(a) = 1⊗ a and µA(r1 ⊗ r2 ⊗ a) = r1r2 ⊗ a.

1.3. Another example. Here is a simple example of a rather different nature.
Let T be a functor on the category of sets that adds one element to each set. We
can write T (S) = S ∪ {S}. If f :S // S′, then define T (f):T (S) // T (S′) by

Tf(s) =

{
f(s) if s ∈ S
S′ if s = S

Then T is readily seen to be a functor. Let ηS:S // T (S) be the inclusion and
define µS:T 2(S) = S ∪ {S} ∪ {T (S)} // T (S) by

µS(s) =

{
s if s ∈ S
S if s = S or s = T (S)

Many of the triples that arise in nature are shown to be triples by using the
following result.

1.4. Theorem. Suppose that F : C // B is left adjoint to U : B // C . Suppose
η: Id // UF and ε:FU // Id are the unit and counit, respectively, of the
adjunction. Then (UF, η, UεF ) is a triple on C .

93
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Proof. We have

µ ◦ Tη = UεF ◦ UFη = U(εF ◦ Fη) = U(id) = id

and
µ ◦ ηT = UεF ◦ ηUF = id

Finally, we have,

µ ◦ Tµ = UεF ◦ UFUεF = U(εF ◦ FUεF )

= U(εF ◦ εFUF ) = UεF ◦ UεFUF = µ ◦ µT

The interesting step here is the fourth, which is an instance of the naturality law

A B
f

//

FUA

A

εA

��

FUA FUB
FUf // FUB

B

εB

��

with B = F (really an instance of F ), A = TF , and f = εF .

1.5. Yet another example. Armed with this theorem, we can now write down
as many triples as we like. For example, the free group triple on sets comes from
the adjunction between the underlying set functor on groups and its left adjoint the
free group functor. The endofunctor on Set assigns to each set S the underlying
set of the free group generated by S, which is to say the set of all words (including
the empty word) in the elements of S and their inverses, reduced by the equations
wss−1w′ = ws−1sw′ = ww′, for arbitrary words w and w′. The unit of the triple
takes an element of the set to the singleton word. The multiplication takes a word
made up of words and reinterprets it as a word. For example, let us write 〈a〉 for
the element ηS(a) corresponding to a ∈ S. Then a typical word in T (S) might look
like 〈a〉〈b〉−1〈c〉. And µS applied to 〈〈a〉〈b〉−1〈c〉〉〈〈c〉−1〈d〉−1〈e〉〉〈〈f〉〉 produces the
word 〈a〉〈b〉−1〈c〉〈c〉−1〈d〉−1〈e〉〈f〉 = 〈a〉〈b〉−1〈d〉−1〈e〉〈f〉. One point to note is that
the associativity law does not merely correspond to the associativity law of group
multiplication, but to the entire set of equations that groups satisfy. Indeed, there
are similar triples involving free non-associative structures.

1.6. Cotriples. A cotriple in a category B is a triple in Bop. Thus G = (G, ε, δ)
(this is standard notation) is a cotriple in B if G is an endofunctor of B, and
ε:G // Id, δ:G // G2 are natural transformations satisfying the duals to the
diagrams of 1.1 above. (Thus a cotriple is the opposite of a triple, not the dual of
a triple. The dual of a triple—in other words, a triple in Catop—is a triple.)

1.7. Proposition. Let U : B // C have a left adjoint F : C // B with ad-
junction morphisms η: Id // UF and ε:FU // Id. Then G = (FU, ε, FηU) is
a cotriple on C .

Proof. This follows from Theorem 1 and the observation that U is left adjoint to
F as functors between Bop and C op with unit ε and counit η.
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1.8. Exercises

1. Show that the example of 1.2 satisfies the equations to be a triple.

2. Show that the example of 1.3 satisfies the equations to be a triple.

3. Verify the associative law in the case of the example of 1.5. (Hint: Prove and
make use of the fact that instances of µ are “really” group homomorphisms.)

4. Consider the category N whose objects are the natural numbers and there is a
unique morphism n // m if and only if n ≤ m. Let T :N // N be the functor
defined by

T (n) =
{
n if n is even
n+ 1 if n is odd

so that T (n) is least even number ≥ n. Show that there is a unique η and µ that
makes (T, η, µ) into a triple.

5. Dually, there is a cotriple (G, ε, δ) on N in which G(n) is the greatest odd
number ≤ n. Show that G is left adjoint to T .

6. Let P denote the functor from Set to Set which takes a set to its powerset and
a function to its direct image function (Section 1.2). For a set X, let ηX take an
element of X to the singleton containing x, and let µX take a set of subsets of X
(an element of PX) to its union. Show that (P, η, µ) is a triple in Set.

7. Let R be any commutative ring. For each set X, let TX be the set of polynomials
in a finite number of variables with the variables in X and coefficients from R. Show
that T is the functor part of a triple (µ is defined to “collect terms”).

8. An ordered binary rooted tree (OBRT) is a binary rooted tree (assume trees
are finite in this problem) which has an additional linear order structure (referred
to as left/right) on each set of siblings. An X-labeled OBRT (LOBRT/X) is one
together with a function from the set of terminal nodes to X. Show that the
following construction produces a triple in Set: For any set X, TX is the set of all
isomorphism classes of LOBRT/X. If f :X // Y , then Tf is relabelling along f
(take a tree in TX and change the label of each node labeled x to f(x)). ηX takes
x ∈ X to the one-node tree labeled x, and µX takes a tree whose labels are trees
in TX to the tree obtained by attaching to each node the tree whose name labels
that node.

9. Let B be the category of sets with one binary operation (subject to no conditions)
and functions which preserve the binary operation.

(a) Show that the triple of Exercise 8 arises from the underlying set functor B
// Set and its left adjoint.

(b) Give an explicit description of the cotriple in B induced by the adjoint
functors in (a).
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10. (a) Give an explicit description of the cotriple in Grp induced by the underlying
set functor and the free group functor.

(b) Give an explicit description of the model induced cotriple in Grp when M
consists of the free group on one generator. (Recall that the sum in the category
of groups is the free product.)

(c) Show that these cotriples are naturally equivalent.

11. Let M be a monoid and G = Hom(M,−):Set // Set. If X is a set and f :M
// X, let εX(f) = f(1) and [δX(f)](m)(n) = f(mn) for m,n ∈M . Show that δ

and ε are natural transformations making (G, ε, δ) a cotriple in Set.

12. Show that if T is any triple on C and A is an object of C, and there is at least
one mono A // TA, then ηA is monic. (Hint: If m is the monic, put Tm into a
commutative square with η and use a unitary identity.)

2. Model induced triples

2.1. Other sources of triples. Not all triples arise from adjunctions. More
precisely (since there is a theorem due to Kleisli [1965] and to Eilenberg and Moore
[1965] that states that all triples do arise from adjunctions), there are other ways of
getting triples besides using adjoints. Here is a very important example of a class
of triples that do not naturally arise from an adjunction.

Let C be a category with arbitrary products and suppose that M is a set of
objects of C . Define T (C) =

∏
M∈M

∏
C //M M . This means that T (C) consists

of the product of one copy of M corresponding to each M ∈M and to each arrow
C // M . Another way of writing this is T (C) =

∏
M∈M MHom(C,M). For u:C

//M , let 〈u〉:T (C) //M denote the projection on the product corresponding
to u. The universal mapping property of products implies that an arrow into T (C)
is determined and uniquely by specifying its composite with each 〈u〉. We use
this observation first off to say how T is a functor. For f :C ′ // C, we define
T (f):T (C ′) // T (C) by 〈u〉 ◦ T (f) = 〈u ◦ f〉 for u:C // M , M ∈ M . If also
g:C ′′ // C ′ is an arrow, then

〈u〉 ◦ T (f ◦ g) = 〈u ◦ f ◦ g〉 = 〈u ◦ f〉 ◦ T (g) = 〈u〉 ◦ T (f) ◦ T (g)

for any u:C // M and M ∈ M , whence by the universal mapping property of
products, we conclude that T (f ◦ g) = T (f) ◦ T (g). We can now define η by the
formula 〈u〉◦ηC = u and µ by 〈u〉◦µC = 〈〈u〉〉. To interpret the latter, we note that
the projection 〈u〉:T (C) //M is an arrow and corresponding to it is 〈〈u〉〉:T 2(C)
// M . Of course, there are usually other arrows from T (C) to objects in M in

general.
Now we prove the various laws. For u:C //M , we have that

〈u〉 ◦ µC ◦ ηTC = 〈〈u〉〉 ◦ ηTC = 〈u〉
since the effect of η is to remove the (outermost) brackets. It follows that µC◦ηTC =
id. We also have

〈u〉 ◦ µC ◦ TηC = 〈〈u〉〉 ◦ TηC = 〈〈u〉 ◦ ηC〉 = 〈u〉
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from which it follows that µC ◦ TηC = id. Finally, the associativity is shown by

〈u〉 ◦ µC ◦ µTC = 〈〈u〉〉 ◦ µTC = 〈〈〈u〉〉〉
while

〈u〉 ◦ µC ◦ TµC = 〈〈u〉〉 ◦ TµC = 〈〈u〉 ◦ µC〉 = 〈〈〈u〉〉〉
This triple is called a model induced triple and M is the set of models. This

construction can be generalized to allow M to be an arbitrary small subcategory
of C or indeed replaced by an arbitrary functor into C with small domain, see
Exercise 1. In this book, we require only this version of the construction.

2.2. Model induced cotriples. There are also, of course, model induced
cotriples. If M is a set of objects in a category with sums, then there is a cotriple
G = (G, ε, δ) as follows:

GC =
∑
M∈M

∑
M //C

C

If [u]:M // GC is the element of the sum corresponding to u:M // C, then
εC:GC // C is the unique arrow such that εC ◦ [u] = u and δC:GC // G2C is
the unique arrow such that δC ◦ [u] = [[u]].

2.3. Exercises

1. Generalize the results of 2 as follows. Let M be a small category and I: M
// C a functor. Define, for C an object of C ,

TC = lim
C //IM

IM

That is, TC is the limit of the diagram whose nodes are arrows u:C // IM and
for which an arrow from u:C // IM to u′:C // IM ′ is an arrow α:M //M ′

such that Iα ◦ u = u′. Extend T to a functor and define η and µ so that (T, η, µ)
is a triple that reduces to the construction of 2 when M is the discrete category
consisting of a set of objects of C and I is the inclusion.

3. Triples on the simplicial category

A very simple triple can be described as follows. It is convenient to work in the
category of augmented simplicial sets. So suppose X // X−1 is an augmented
simplicial set. Let GX // (GX)−1 be the simplicial set described by (GX)n =
Xn+1, (GX)−1 = X0, face operators (Gd)in = d i+1

n+1 and degeneracies (Gs)in = si+1
n+1.

Then d0
n+1: (GX)n = Xn+1

// Xn defines a simplicial map. In fact, the simplicial

identities d0 ◦ d i+1 = d i ◦ d0 for all i ≥ 0 and d0 ◦ si+1 = si ◦ d0 say exactly that.
This is the map we call εX:GX // X. We also note that s0

n+1: (GX)n = Xn+1
// Xn+2 = (G2X)n is the nth component of a simplicial map. This comes down

to the simplicial identities s0 ◦ d i = d i+1 ◦ s0 and s0 ◦ si+1 = si+2 ◦ s0 for i > 0.
This is the map δX:GX // G2X.
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3.1. Theorem. The maps εX and δX are components of natural transformations
and G = (G, ε, δ) is a cotriple on Simp(X ).

Proof. The naturality is easy and is left to the reader. The identities d0 ◦ s0 =
d1 ◦ s0 = id imply, respectively, that Gε ◦ δ = id and εG ◦ δ = id. The reason is
that applying G to ε changes only the lower index, not the upper, while εGX is
the 0th face of GX, which is d1. The identity s0 ◦ s0 = s1 ◦ s0 similarly implies
Gδ ◦ δ = δG ◦ δ.

Finally, we observe the most important property of GX.

3.2. Theorem. The augmented simplicial object GX is contractible.

Proof. Let s = s0: (GX)n = Xn+1
// Xn+2 = (GX)n+1. The equations d1 ◦s0 =

id, d i+1 ◦ s0 = s0 ◦ d i for i > 0 and si+1 ◦ s0 = s0 ◦ si for i ≥ 0 give the result.

We will call this the path cotriple since it is the simplicial version of the fol-
lowing cotriple on the category of locally connected locally pointed spaces. These
are locally connected spaces for which a base point has been chosen in each com-
ponent. This is analogous to augmented simplicial objects since the augmentation
corresponds to fixing a point in each component (in the contractible case). Now
consider the subset, we will call it I −−◦X, of the continuous maps of the unit
interval I to the space X consisting of those maps f for which f(0) is the base
point. This is topologized by the compact/open topology. The map H: I× I −−◦X
// I −−◦X, defined by H(s, f)(t) = f(st) is a homotopy between the identity

and the discrete set of base points, thus a contraction to the set of components.

3.3. Double simplicial objects. On the category of double augmented simpli-
cial objects over X , we could apply the path cotriple to either the rows or columns
of a double complex. Let us define cotriples GI and GII by GI(X••)mn = Xm+1n

and GII(X••)mn = Xmn+1. Of course, the appropriate definitions have to be given
for the face and degeneracy operators, but these are obvious from the definition
of G. It is also obvious that GI commutes with GII to give a total cotriple GT
whose functor is GI ◦GII = GII ◦GI. The image of GT includes double augmented
simplicial objects that are contractible in both rows and columns.

4. Historical Notes

Adjoints were originated by Daniel Kan in [1958]. Triples were discovered by Claude
Chevalley in [1959]. He called his “The standard construction” and it seems likely
that this term was meant only to be descriptive. But various people used the term
substantively, including, for example, Peter Huber who used “standard construc-
tions” in his Ph. D. dissertation in [1960] and proved that every adjoint pair gives
rise to a triple. He once told me that the reason he proved this theorem was that
they (this presumably referred to him and his advisor, Beno Eckmann) had had a
lot of trouble proving the associative rule for various triples and it occurred to them
that they always did seem to come from adjoint pairs. They wondered if this was a
general phenomenon and Huber proved that it was and that the associativity was
then automatic. Heinrich Kleisli later showed [1965] that, conversely, every triple
came from an adjoint pair. Samuel Eilenberg and John Moore also proved that con-
verse using a construction that almost always gives a category different from that
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of Kleisli in [1965]. Eilenberg and Moore also invented the name “triple” by which
they are known today, at least to some of us. At lunch one day in Oberwohlfach
in the summer of 1966, Jean Bénabou suggested calling them “monads” and this
term is in wide use today.



CHAPTER 5

The main acyclic models theorem

In this chapter, we develop the machinery necessary to state the main acyclic
models theorem of which the various versions we use are special cases. The first
thing we do is introduce the idea of an abstract class of acyclicity. This definition, as
currently formulated, requires that we are dealing with a class of chain complexes.
Cochain complexes also make sense, being chain complexes in the dual category.
But ungraded complexes (or doubly infinite complexes) do not seem to work.

A word about notation should be inserted here. Till now, it has not mattered if
the differential objects was graded. In this chapter, it definitely matters. We often
denote by K• the chain complex

· · · // Kn
// Kn−1

// · · · // K1
// K0

// 0

and by f•:K• // L• a chain map between such complexes.

1. Acyclic classes

In this definition, C = CC(A ) is the category of chain complexes of an abelian
category A .

1.1. Acyclic classes. A class Γ of objects of C will be called an acyclic class
provided:

AC–1. The 0 complex is in Γ.
AC–2. The complex C• belongs to Γ if and only if SC• does.
AC–3. If the complexes K• and L• are homotopic and K• ∈ Γ, then L• ∈ Γ.
AC–4. Every complex in Γ is acyclic.
AC–5. If K•• is a double complex, all of whose rows are in Γ, then the total

complex of C• belongs to Γ.

Of these conditions, the first two are routine, the third says the class is closed
under homotopy, which implies, among other things that every contractible complex
belongs to Γ. The fourth says that every complex in Γ is acyclic. But the real heart
of the definition is the fifth condition. This is the one that does not seem to
have an obvious generalization to the ungraded case. One cannot strengthen this
condition to one involoving arbitrary (or even countable) filtered colimits since all
the cohomology examples would fail; filtered colimits are not exact in the category
Abop.

Before studying the properties of acyclic classes, we give some examples.

1.2. Acyclic complexes. Let Γ consist of the acyclic complexes. AC–1, 2, 3
and 4 are obvious, while 5 is an immediate consequence of 2.6.3.

100
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1.3. Contractible complexes. Let Γ consist of the contractible complexes.
AC–1, 2 and 4 are obvious. To see AC–3, suppose that f :K• // L• and g:L•
// K• are chain maps and s:K• // K• and t:L• // L• are maps such that

1 = ds + sd and 1 − fg = dt + td. The first of these equations says that K• is
contractible and the second that fg is homotopic to the identity. We could also
suppose that gf is homotopic to the identity, but that turns out to be unnecessary.
For already we have:

d(t+ fsg) + (t+ fsg)d = dt+ td+ f(ds+ sd)g = 1− fg + fg = 1

so that t+ fsg is a contracting homotopy for L•.
To prove AC–5, suppose that we are given a double complex Kmn, with Kmn =

0 for m < 0 or n < 0. The actual lower bounds make no real difference, but is
just a convenience. In order to avoid ugly superscripts that make things harder
to read, we will denote one boundary operator by d:Kmn

// Kmn−1 and the
other by ∂:Kmn

// Km−1n and assume that d∂ = −∂d. Suppose that for each
m and n, there is a map s:Kmn

// Kmn+1 that satisfies ds+ sd = 1. The total
complex has, in degree n, the direct sum Ln =

∑n
i=0Ki n−i and is 0 when n < 0.

The boundary operator D:Ln // Ln−1 has the matrix
d ∂ 0 · · · 0 0
0 d ∂ · · · 0 0
0 0 d · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · d ∂


For the rest of this proof, we will use S not for suspension, but for a contracting
homotopy in the double complex, which we now define in degree n as a map S:Ln
// Ln+1 with the matrix

s −s∂s s∂s∂s · · · (−1)ns(∂s)n

0 s −s∂s · · · (−1)n−1s(∂s)n−1

...
...

...
. . .

...
0 0 0 · · · s
0 0 0 · · · 0


Direct matrix multiplication shows that SD + DS is upper triangular and has
sd+ ds = 1 in each diagonal entry (including the last, since in that case the sd = 0
so that ds = 1). In carrying that out, it is helpful to block D into an upper
triangular matrix and a single column and S into an upper triangular matrix and a
single row of zeros. In order to see that SD+DS = 1, we must show that the above
diagonal entries vanish. First we claim that for i > 0, ds(∂s)i = (∂s)i + (s∂)ids. In
fact, for i = 1,

ds∂s = (1− sd)∂s = ∂s− sd∂s = ∂s+ s∂ds

Assuming that the conclusion is true for i− 1,

ds(∂s)i = ((∂s)i−1 + (s∂)i−1ds)∂s = (∂s)i + (s∂)i−1(1− sd)∂s

= (∂s)i + (s∂)i−1∂s− (s∂)i−1sd∂s = (∂s)i + (s∂)i−1s∂ds

= (∂s)i + (s∂)ids
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Now suppose we choose indices i < j. The (i, j)th entry of SD is

( 0 · · · 0 s · · · (−1)j−i−1s(∂s)j−i−1 (−1)j−is(∂s)j−i · · · )



0
...
∂
d
0
...


= (−1)j−i−1s(∂s)j−i−1∂ + (−1)j−is(∂s)j−id

= (−1)j−i−1((s∂)j−i − (s∂)j−isd)

= (−1)j−i−1((s∂)j−i − (s∂)j−i(1− ds))

= (−1)j−i−1(s∂)j−ids

and the (i, j)th entry of DS is

( 0 · · · 0 d ∂ 0 · · · )


(−1)js(∂s)j

...
(−1)j−is(∂s)j−i

(−1)j−i−1s(∂s)j−i−1

...


= (−1)j−ids(∂s)j−i + (−1)j−i−1∂s(∂s)j−i−1

= (−1)j−i(ds(∂s)j−i − (∂s)j−i)

= (−1)j−i((∂s)j−i + (s∂)j−ids− (∂s)j−i)

= (−1)j−i(s∂)j−ids

so that the terms cancel and SD +DS = 1.

1.4. Quasi-contractible complexes. For this example, we suppose that A0 is
an abelian category and that A = Func(X ,A0) is a category of functors into A0.
Say that a chain complex functor C•: X // A0 is quasi-contractible if for each
object X of X , the complex C•X is contractible. Each of the previous results on
contractible complexes carries over to these quasi-contractible ones, except that in
each case the conclusion is object by object. Similarly we say that a map f of
chain complexes is a quasi-homotopy equivalence if at each object X, fX is a is
a homotopy equivalence. It is clear that f is a quasi-homotopy equivalence if and
only if its mapping cone is quasi-contractible. The earlier material on contractible
complexes implies that the quasi-contractible complexes constitute an acyclic class.

1.5. A general condition. Here is one way of generating acyclic classes. As
we will explain, each of the three examples above is an instance. Suppose A is a
given abelian category and Φ is a class of additive Ab-valued functors on A . Let
Γ denote the class of all acyclic chain complexes over A such that φ(C•) is acyclic
for all φ ∈ Φ. Then I claim that Γ is automatically an acyclic class. Conditions
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AC–1 and 2 are obvious. AC–3 follows since additive functors preserve homotopies.
AC–4 is clear. And AC–5 follows from the argument in 1.2 above applied to the
category of abelian groups. The way this works in the three examples follows. To
derive the first example, let Φ = ∅. You get precisely the acyclic complexes. For
the second, take all the covariant homfunctors Hom(Z,−) for all objects Z of A .
We have seen in 3.2.4 that C• is contractible if and only if Hom(Z,C•) is exact for
all objects Z. For the third example, we are supposing that A = Func(X ,A0)
with A0 abelian. Each object X of X gives an evaluation functor evX : A // A0

given by evX(F ) = F (X). Then C• ∈ Γ in the third example if and only if evX(C•)
is contractible for every object X of X , which is true if and only if for each object
Z of A0, the complex Hom(Z, evX(C•)) is acyclic in Ab.

1.6. Exercises

1. Show that if

· · · ∂ // (Cn, dn)
∂ // (Cn−1, dn−1)

∂ // · · · ∂ // (C0, d0) // 0

is a chain complex of exact differential abelian groups with dn−1 ◦ ∂ = −∂ ◦ dn and
you let C• =

∑
Cn with boundary given by

d =


d0 ∂ 0 . . .
0 d1 ∂ . . .
0 0 d2 . . .
...

...
...

. . .


then (C•, d) is exact. Conclude that if you have a bigraded double differential object

(Cnm, d:Cnm // Cn−1m, ∂:Cn,m // Cnm−1)

with ∂ ◦ d = −d ◦ ∂ such that Cnm = 0 for all m < 0 and if for each m ≥ 0, the
complex (Cnm, d) is exact, the double complex is exact.

2. Show that if

0 // (C0, d0)
δ // · · · δ // (Cn−1, dn−1)

δ // (Cn, dn)
δ // · · ·

is a cochain complex of exact differential abelian groups with dn+1 ◦ δ = −δ ◦ dn
and you let C =

∏
Cn with boundary given by

d =


d0 0 0 . . .
δ d1 . . .
0 δ d2 . . .
...

...
...

. . .


then (C, d) is exact. Conclude that if you have a bigraded double differential object

(Cnm, d:Cnm // Cn+1m, δ:Cn,m // Cnm+1)

with δ ◦ d = −d ◦ δ such that Cnm = 0 for all m < 0 and if for each m ≥ 0, the
complex (Cnm, d) is exact, the double complex is exact. Using the fact that the dual
of Ab is the category of compact abelian groups (and continuous homomorphisms),
show that the preceding exercise is also valid in the category of compact abelian
groups.
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2. Properties of acyclic classes

2.1. Proposition. If 0 // L• // C• // K• // 0 is a U -split exact
sequence of objects of C and if any two belong to Γ, then so does the third.

Proof. Suppose that L• and K•, and hence S−1K• belong to Γ. We know from 1.4
that C• is the mapping cone of a map f•:S

−1K• // L•. We can think of this
as a double complex as in the following diagram. In this diagram, we use d for
the boundary operator in K• so that −d is the boundary operator in SK• and the
squares commute as shown.

Ln Ln−1
d
// Ln−1 · · ·

d
//

Kn+1 Kn
−d //Kn+1

Ln

fn+1

��

Kn · · ·
−d //Kn

Ln−1

fn

��

· · ·

· · ·

· · ·

· · ·· · · L0
d
// L0 0//

· · · K1
−d //· · ·

· · ·

· · ·

· · ·

K1 K0
−d //K1

L0

f1

��

K0

0
��

· · · Ln
d
//

· · · Kn+1
−d //

If we replace the −d in the upper row by d, the squares will anticommute and the
resultant diagram can be considered as a double complex in which all rows belong
to Γ. From AC–5 the total complex also belongs to Γ, but that is just the mapping
cone of f which is isomorphic to C• and hence belongs to Γ.

Now suppose that L• and C• belong to Γ. We have just seen that the mapping
cone of L• // C• is in Γ. It then follows from Proposition 2.11 and AC–3 that
K• ∈ Γ. Dually, if C• and K• are in Γ, so is L•.

2.2. Arrows determined by an acyclic class. Given an acyclic class Γ, let Σ
denote the class of arrows f whose mapping cone is in Γ. It follows from AC–3 and 4
and the preceding proposition that this class lies between the class of homotopy
equivalences and that of homology equivalences.

2.3. Proposition. Σ is closed under composition.

Proof. Suppose that f = f•:K• // L• and g = g•:L• // M• are each in Σ.
Then Cf• and Cg• are in Γ. The nth term of S−1Cf• is Mn+1 ⊕ Ln and that of
Cf• is Ln ⊕Kn−1. The boundary operators are(

−d −g
0 d

)
and

(
d f
0 −d

)
respectively, from which one calculates that h =

(
0 −1
0 0

)
is a chain map from

S−1Cg• // Cf•:(
0 −1
0 0

)(
−d −g
0 d

)
=

(
0 −d
0 0

)
=

(
d f
0 −d

)(
0 −1
0 0

)
Thus there is an exact sequence 0 // Cf• // Ch• // Cg• // 0 and it follows
from Proposition 2.1 that Ch• ∈ Γ. The nth term of Ch• is Ln⊕Kn−1⊕Mn⊕Ln−1
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and the matrix of the boundary operator is
d f 0 −1
0 −d 0 0
0 0 d g
0 0 0 −d


Let C−id• be the mapping cone of the negative of the identity of L. Thus (C−id)n =

Ln ⊕ Ln−1 and the boundary operator is

(
d −1
0 −d

)
. The mapping cone of gf has

Mn ⊕ Kn−1 in degree n and boundary operator

(
d gf
0 −d

)
. I claim there is an

exact sequence

0 // Cgf•
i // Ch•

j // C−id• // 0

In fact, let i and j be the maps given by the matrixes

i =


0 0
0 1
1 0
0 f

 , j =

(
1 0 0 0
0 −f 0 1

)

Matrix multiplication shows that these are chain maps. The sequences are U -split

exact; for example,

(
0 0 1 0
0 1 0 0

)
splits i and it follows from Proposition 2.1 that

Cgf• ∈ Γ and hence gf ∈ Σ.

The following theorem extends the main results of 3.6.1 to arbitrary acyclic
classes.

2.4. Theorem. Suppose C•• = {Cmn | m ≥ 0, n ≥ 0} is a double complex that is
augmented over the single complex C−1 • and such that for each n ≥ 0, the complex

· · · // Cmn // Cm−1n
// · · · // C0n

// C−1n
// 0

belongs to Γ. Then the induced map Tot(C) // C−1 • is in Σ.

Proof. The mapping cone of the induced map is just the double complex including
the augmentation term. From AC–5 it follows that that total double complex is in
Γ since each row is. Thus the induced map is in Σ.

2.5. Corollary. Suppose C•• = {Cmn | m ≥ 0, n ≥ 0} is a double complex that
is augmented in each direction over the single complexes C−1 • and C•−1. Suppose
that for each n ≥ 0, both complexes

· · · // Cmn // Cm−1n
// · · · // C0n

// C−1n
// 0

and
· · · // Cmn // Cmn−1

// · · · // Cn0
// Cm−1

// 0

belong to Γ. Then in Σ−1C , the two chain complexes C−1 • and C•−1 are isomor-
phic.



106 5. THE MAIN ACYCLIC MODELS THEOREM

2.6. Corollary. Suppose

· · · // K•n // K•n−1
// · · · // K•0 // K•−1

// 0

is a sequence of chain complexes such that for each n ≥ 0, the complex Kn• ∈ Γ
and for each m ≥ 0, the complex K•m ∈ Γ. Then K•−1 ∈ Γ.

Proof. We may treat this as a double complex of the form treated in the theorem
and the conclusion is that the arrow from the total complex made up from

· · · // K•n // K•n−1
// · · · // K•0

is in Σ. But if for each n ≥ 0, the complex K•n ∈ Γ, then this total complex also
belongs to Γ and then so does K•−1.

2.7. Corollary. Suppose we have a commutative diagram of double complexes

0 L•n// L•n L•n−1
// L•n−1 · · ·//

0 K•n// K•n K•n−1
//K•n

L•n

fn

��

K•n−1 · · ·//K•n−1

L•n−1

fn−1

��

· · ·

· · ·

· · ·

· · ·· · · L•0// L•0 L•−1
// L•−1 0//

· · · K•0//· · ·

· · ·

· · ·

· · ·

K•0 K•−1
//K•0

L•0

f0

��

K•−1

L•−1

f−1

��

K•−1 0//

such that for all n ≥ 0, the arrow fn ∈ Σ. Then f−1 ∈ Σ.

Proof. This follows from the preceding corollary, by using mapping cones.

Another useful property of Σ is the following.

2.8. Proposition. Suppose that

K ′• L′•u′
// L′• M ′•v′

//

K• L•
u //K•

K ′•

f•

��

L• M•
v //L•

L′•

g•

��

M•

M ′•

h•

��

is a commutative diagram with U -split exact rows. If two of the three vertical arrows
belong to Σ, so does the third.

Proof. The mapping cone sequence

0 // Cf•

(
u 0
0 u′

)
// Cg•

(
v 0
0 v′

)
// Ch• // 0

is readily seen to be exact. The claim now follows immediately from 2.1.

3. The main theorem

Now let us suppose we are given an acyclic class Γ on C and that Σ is the associated
class of maps. Then Σ−1C is the category of fractions gotten by inverting all the
arrows in Σ. From AC–4 and Theorem 3.2.10 it follows that the homology inverts
all arrows of Σ and hence that homology factors through Σ−1C as described. In
particular, any map in Σ−1C induces a map in homology. We will see in Theo-
rem 4.1 that although Σ does not generally have either a right or left calculus of
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fractions (see 1.10), it does have the weaker properties of homotopy right and left
classes of fractions.

Suppose that G: X // X is an endofunctor and that ε:G // Id is a
natural transformation. If F : X // A is a functor, we define an augmented chain
complex functor we will denote FG•+1 // F as the functor that has FGn+1 in
degree n, for n ≥ −1. Let ∂ i = FGiεGn−i:FGn+1 // FGn. Then the boundary
operator is ∂ =

∑n
i=0(−1)i∂ i. If, as usually happens in practice, G and ε are 2/3 of

a cotriple, then this chain complex is the chain complex associated to a simplicial
set built using the comultiplication δ to define the degeneracies. Next suppose that
K• // K−1 is an augmented chain complex functor. Then there is a double chain
complex functor that has in bidegree (n,m) the term KnG

m+1. This will actually
commute since

KnG
m Kn−1G

m

dGm
//

KnG
m+1

KnG
m

KnG
iεGm−i

��

KnG
m+1 Kn−1G

m+1dGm+1
// Kn−1G

m+1

Kn−1G
m

Kn−1G
iεGm−i

��

commutes by naturality for 0 ≤ i ≤ m and continues to commute with the sums∑m
i=0KnG

iεGm−i on the left and
∑m
i=0Kn−1G

iεGm−i on the right. However, the
usual trick of negating every second column produces an anticommuting double
complex.

This is augmented in both directions. The first is ε:K•G
•+1:K•G // K•; the

second is K0G
•+1 // K−1G

•+1. We say that K• is ε-presentable with respect to
Γ if for each n ≥ 0, the augmented chain complex KnG

•+1 // Kn
// 0 belongs

to Γ. We say that K• is G-acyclic with respect to Γ if the augmented complex K•G
// K−1G // 0 belongs to Γ.
The main theorem of this chapter, and in fact, of this book, follows:

3.1. Theorem. Let Γ be an acyclic class and Σ be the associated class of arrows.
Suppose α:K• // K−1 and β:L• // L−1 are augmented chain complex func-
tors. Suppose G is an endofunctor on X and ε:G // Id a natural transformation
for which K• is ε-presentable and L• // L−1

// 0 is G-acyclic, both with re-
spect to Γ. Then given any natural transformation f−1:K−1

// L−1 there is, in
Σ−1C , a unique arrow f•:K• // L• that extends f−1.

Proof. For all m ≥ 0, the augmented complex KmG
•+1 // Km

// 0 belongs
to Γ and hence, by AC–5, the total augmented complex K•G

•+1 // K• // 0
belongs to Γ whence, by Theorem 3.2.10 the arrow K•ε:K•G

•+1 // K• belongs
to Σ. The same reasoning implies that βG•+1:L•G

•+1 // L−1G
•+1 is also in Σ.

We can summarize the situation in the diagram

L−1G
•+1 L•G

•+1oo
βG•+1

K−1G
•+1

L−1G
•+1

f−1G
•+1

��

K−1G
•+1 K•G

•+1oo αG
•+1

K•G
•+1

L•G
•+1

K•G
•+1

L•G
•+1L•G
•+1 L•

L•ε
//

K•G
•+1

L•G
•+1

K•G
•+1

L•G
•+1

K•G
•+1 K•

K•ε // K•

L•

K•

L•
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with K•ε and βG•+1 in Σ. We now invert Σ to get the map

f• = L•ε ◦ (βG•+1)−1 ◦ f−1G
•+1 ◦ αG•+1 ◦ (K•ε)

−1:K• // L•

I claim that this map extends f−1 in the sense that f−1 ◦ α = β ◦ f0 and that f•
is unique with this property. Begin by observing that naturality of α and β imply
that α ◦ K•ε = K−1ε ◦ αG

•+1 and β ◦ L•ε = L−1ε ◦ βG
•+1. Then the first claim

follows from the diagram

K• K•G
•+1

(K•ε)
−1

//K•

K•

=
��??????????? K•G
•+1

K•

K•ε

��
K• K−1α

// K−1 L−1
f−1

//

K•G
•+1 K−1G

•+1αG•+1
//K•G

•+1

K•
��

K−1G
•+1 L−1G

•+1
f−1G

•+1

//K−1G
•+1

K−1

K−1ε

��

L−1G
•+1

L−1

L−1ε

��
L−1 L•oo

β

L−1G
•+1

L−1

L−1G
•+1

L−1

L−1G
•+1 L•G

•+1L−1G
•+1 L•G

•+1L•G
•+1

L•

L•ε

��

L−1G
•+1 L•G

•+1
(βG•+1)−1

//
L−1G

•+1 L•G
•+1oo

βG•+1

Now suppose that g•:K• // L• is another arrow in Σ−1C for which f−1 ◦α =
β ◦ g0. Then

f−1G
•+1 ◦ αG•+1 = βG•+1 ◦ g•G

•+1

which implies that

(βG•+1)−1 ◦ f−1G
•+1 ◦ αG•+1 = g•G

•+1

and then

L•ε ◦ (βG•+1)−1 ◦ f−1G
•+1 ◦ αG•+1 = L•ε ◦ gG

•+1 = g• ◦K•ε

from which we conclude that

g• = L•ε ◦ (βG•+1)−1 ◦ f−1G
•+1 ◦ αG•+1 ◦ (K•ε)

−1 = f•

3.2. Corollary. Suppose that K• and L• are each ε-presentable and G-acyclic
on models with respect to Γ. Then any natural isomorphism f−1:K−1

// L−1

extends to a unique isomorphism f•:K• // L• in Σ−1C . Moreover if g•:K•
// L• is a natural transformation for which β ◦ g0 = f−1 ◦ α, then g• = f• in

Σ−1C .

Proof. If f−1 is an isomorphism with inverse g−1, then there is a map f•:K• // L•
that extends f−1 and g•:L• // K• that extends g−1. Then g• ◦ f• extends
g−1 ◦ f−1 = id, as does the identity so that by the uniqueness of the preceding, we
see that in Σ−1C , g• ◦ f• = id. Similarly, f• ◦ g• = id in the fraction category. This
shows that K• ∼= L•. The second claim is obvious.

3.3. Other conditions. Sometimes, other conditions that are easy to verify can
replace the stated ones. Here is one that is required to recover the form of the
acyclic models theorem from [Barr & Beck, 1966].

3.4. Theorem. Suppose G: X //X is a functor and ε:G // Id is a natural
transformation. Then for any functor C: X // A , CG•+1 // C // 0 is
contractible if and only if Cε splits.

Proof. The necessity of the condition is obvious. If Cε splits, let θ:C // CG be
an arrow such that Cε ◦ θ = id. Let s = θGn:CGn // CGn+1. Then ∂0 ◦ s =
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CεGn ◦ θGn = id and for i > 0,

∂ i ◦ s = CGiε ◦Gn−i ◦ θGn = (CGiε ◦ θGi)Gn−i

= (θGi−1 ◦ CGi−1ε)Gn−i = θGn−1 ◦ CGi−1εGn−i = s ◦ ∂ i−1

using naturality of θ. Then

∂ ◦ s+ s ◦ ∂ =

n∑
i=0

(−1)i∂ i ◦ s+

n−1∑
i=0

s ◦ ∂ i

= id +

n∑
i=1

(−1)is ◦ ∂ i−1 +

n−1∑
i=0

(−1)is ◦ ∂ i = 1

3.5. Corollary. Let K• // K−1
// 0 and L• // L−1

// 0 be augmented
chain complex functors such that GKn

// Kn is split epic for all n ≥ 0 and
L• // L−1

// 0 is G-contractible. Then any natural transformation f−1:K−1
// L−1 extends to a natural chain transformation f•:K• // L• and any two

extensions of f−1 are naturally homotopic.

If G = (G, ε, δ) is actually a cotriple, then it can be used to build a resolu-
tion that is automatically both acyclic on models and presentable with respect to
homotopy.

3.6. Theorem. Let E: X // A be any functor and G = (G, ε, δ) be cotriple
on X . Then the chain complex EG•+1 that has EGn+1 in degree n and boundary∑n
i=0(−1)iE∂ i:EGn+1 // EGn is G-acyclic on models and G-presentable with

respect to homotopy.

Proof. To verify the presentability, it is sufficient, by Theorem 3.4 above, to give
a map θn:EGn+1 // EGn+2 for each n such that EGn+1ε ◦ θn = id. Evidently,
EGnδ is such a map. As for the acyclicity, again the arrows θn:EGn+1 // EGn+2

give a contracting homotopy in the complex EG•+1G // EG // 0. See the
proof of 3.4 for details.

4. Homotopy calculuses of fractions

We saw in Section 10 of Chapter 1 what a calculus of fractions is. In the cases
considered here there is no calculus of fractions (left or right), but there is the next
best thing, homotopy left and right calculuses of fractions. We will write f ∼ g
when f and g are homotopic and C ' D to mean that there are chain maps f :C
// D and g:D // C such that g ◦ f ∼ idC and f ◦ g ∼ idD. Of course, C is

contractible if and only if C ' 0.
We will say that Σ has a homotopy left calculus of fractions if

1. Σ is closed under composition;
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2. whenever σ ∈ Σ and f are arrows with the same domain, there is a not
necessarily commutative square

· ·τ
//

·

·

f

��

· ·σ // ·

·

g

��

with τ ∈ Σ and for which τ ∈ Σ and g ◦ σ ∼ τ ◦ f ;

3. for any diagram · σ // ·
f //
g
// · with σ ∈ Σ such that f ◦ σ ∼ g ◦ σ, there

is a diagram ·
f //
g
// · τ // with τ ∈ Σ such that τ ◦ f ∼ τ ◦ g.

Dually, we will say that the composition closed class Σ has a homotopy right
calculus of fractions if, whenever σ ∈ Σ and f are arrows with the same codo-
main, there is a square

· ·
f

//

·

·

τ

��

· ·
g // ·

·

σ

��

with τ ∈ Σ for which f ◦τ ∼ σ◦g and if, for any ·
f //
g
// · σ // · with σ ∈ Σ such that

σ ◦ f ∼ σ ◦ g, there is a diagram · τ // ·
f //
g
// · with τ ∈ Σ such that f ◦ τ ∼ g ◦ τ .

4.1. Theorem. Every acyclic class has homotopy left and right calculuses of
fractions.

The presence of the homotopy left calculus of fractions will be demonstrated
by a series of propositions. The homotopy right calculus of fractions is dual.

4.2. Proposition. Suppose L• oo
σ

N•
f // M• are maps of chain complexes

with σ ∈ Σ. Then there is a homotopy commutative square

L• K•g
//

N•

L•

σ

��

N• M•
f // M•

K•

τ

��

with τ ∈ Σ.
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Proof. Let K• be the mapping cone of

(
f
σ

)
:N• // M• ⊕ L•. Then K• is

the chain complex whose nth term is Kn = Mn ⊕ Ln ⊕ Nn−1, with boundary

operator given by the matrix D =

 d 0 f
0 d σ
0 0 −d

. Let τ =

 1
0
0

 :M• // K•,

g =

 0
−1
0

 :L• // K•, and H =

 0
0
1

 :UN• // UK•. Then it is immediate

that D is a boundary operator and that g and τ are chain maps. We compute that

D ◦H +H ◦ d =

 d 0 f
0 d σ
0 0 −d

 0
0
1

+

 0
0
1

 d

=

 0
0
d

+

 f
σ
−d

 =

 f
σ
0

 =

 f
0
0

−
 0
−σ
0


= τ ◦ f − g ◦ σ

We still have to show that τ ∈ Σ. But there is obviously a U -split exact sequence

0 //M•
τ // K•

(
0 1 0
0 0 1

)
// Cσ• // 0

which can readily be calculated to consist of chain morphisms. It follows from
Proposition 3.2.11 that Cτ• is homotopic to Cσ•, so that AC–3 implies that Cτ• ∈
Γ.

We note, for future reference, that since f and σ enter this proof symmetrically,
if f ∈ Σ, then also g ∈ Σ.

4.3. Proposition. Given any diagram

N•
σ // L•

f //
g
//M•

with σ ∈ Σ and f ◦ σ homotopic to g ◦ σ, there is a diagram

L•
f //
g
//M•

τ // K•

with τ ∈ Σ and τ ◦ f homotopic to τ ◦ g.

Proof. We can use the additivity of the category to replace f by f − g and reduce
the assertion to the case that g = 0. Then our hypotheses are that σ ∈ Σ and f ◦ σ
is null homotopic. We show that there is a τ :L• // K• in Σ such that τ ◦ f is
null homotopic. Since f ◦ σ is null homotopic, there is an h:USN• // UM• such
that f ◦σ = h ◦ d+ d ◦h. Since σ ∈ Σ, the mapping cone Cσ• ∈ Γ by Theorem 2.10.
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One easily sees by direct computation that the square

L• ⊕ SN• M•
( f h )

//

L• ⊕ SN•

L• ⊕ SN•

(
d σ
0 −d

)
��

L• ⊕ SN• M•
( f h )

// M•

M•

d

��

commutes. Thus u = ( f h ) :Cσ• // M• is a map of chain complexes. Let K•
be the mapping cone of u. This gives us a U -split exact sequence

0 //M•
τ // K• // SCσ• // 0

Since Cσ• ∈ Γ so is SCσ• and it follows from the converse part of Theorem 3.2.10
that τ ∈ Σ. In order to see that τ ◦ f is null homotopic, we actually calculate

K• and τ . In fact, UK• = UM• ⊕ USCσ• and has boundary operator

(
d u
0 −d

)
.

When we replace Cσ• by its components, we have UK• = UM• ⊕ USL• ⊕ US2N•
and the boundary is

D =

 d f h
0 −d −σ
0 0 d


with τ =

 1
0
0

. Then τ ◦ f =

 f
0
0

. Let H =

 0
1
0

. Then

H ◦D + d ◦H =

 0
1
0

 d+

 d f h
0 −d −σ
0 0 d

 0
1
0

 =

 f
−d
0

+

 0
d
0

 =

 f
0
0


which shows that τ ◦ f is null homotopic.

This finishes the proof of 4.1, but there is a bit more to be learned from the
developments in this section.

4.4. Proposition. Homotopic maps become equal in Σ−1C .

Proof. We apply the construction used in the proof of 4.2 to L• oo
1

L•
1 // L•

to give the homotopy commutative square

L• K•τ
//

L•

L•

1

��

L• L•
1 // L•

K•

σ

��
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with both σ =

 1
0
0

 and τ =

 0
−1
0

 ∈ Σ. Moreover, the map f = ( 1 −1 0 ) :K•

// L• is a chain map such that f ◦ σ = f ◦ τ = id. In Σ−1C , σ and τ are invert-
ible, whence f = σ−1 = τ−1 so that σ = τ . Now suppose that we are given two
homotopic chain maps g, h:L• //M•. Then there is a map s:UK• // US−1L•
such that g − h = s ◦ d+ d ◦ s. Define the map k = ( g −h s ) :K• //M•. We
have that

k ◦D = ( g −h s )

 d 0 1
0 d 1
0 0 −d

 = ( gd −hd f − g − sd )

= ( dg −dh ds ) = d ◦ k

so that k is a chain map. Evidently, k ◦ σ = g and k ◦ τ = h so that when we invert
homotopy equivalences and σ = τ , then also g = h.

4.5. Proposition. Suppose that f ∼ g and g ∼ h. Then f ∼ h.

Proof. Assume that f − g = sd+ ds and g − h = td+ dt. Then

(s+ t)d+ d(s+ t) = sd+ ds+ td+ dt = f − g + g − h = f − h

4.6. Proposition. Suppose K ′•
h // K•

f //
g
// L•

k // L′• are chain maps such

that f ∼ g. Then k ◦ f ◦ h ∼ k ◦ g ◦ h.

Proof. Assuming that f − g = sd+ ds, we have

kfh− kgh = k(f − g)h = k(sd+ ds)h = ksdh+ ksdh = kshd+ kshd

since h and k commute with d. Thus ksh is the required homotopy.

It follows that we can form the quotient category C /∼ with the same objects
as C and homotopy classes of maps as arrows.

4.7. Theorem. Suppose Σ ⊆ C is the class of homotopy equivalences. Then C /∼
is equivalent to Σ−1C . In particular, a parallel pair of maps are homotopic in C if
and only if they become equal in Σ−1C .

Proof. Let Γ denote the class of contractible complexes. We have just seen that
homotopic maps become equal in Σ−1C so that the canonical functor C // Σ−1C
factors through C /∼. Conversely, if σ ∈ Σ, it has a homotopy inverse τ , so that
σ ◦ τ and τ ◦ σ are homotopic to identity arrows and hence those composites are
identity arrows in C /∼. Thus the maps in Σ become invertible in C /∼, which
means that the canonical functor C // C /∼ factors through Σ−1

0 C . Thus the
categories C // C /∼ and Σ−1C are homotopic.

4.8. Theorem. For any acyclic class Σ on C , we have that Σ−1C is equivalent to
Σ−1(C /∼) and, in the latter category, Σ has calculuses of right and left fractions.
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4.9. Corollary. Every map in Σ−1C has the form f ◦ σ−1 where f ∈ C and
σ ∈ Σ. Moreover, f ◦ σ−1 = f ′ ◦ σ′−1 in σ−1C if and only if there is a homotopy
commutative diagram in C :

C BC BB DB D

E

C

σ

�������������
E

B

OO

a

E

D

f

��???????????

C BC BC

E′

__

σ′ ??????????? B DB DB

E′

a′

��

D

E′

??

f ′
�����������

for which a ◦ σ (and therefore a′ ◦ σ′) belongs to Σ.

4.10. Corollary. Every map in Σ−1C has the form τ−1 ◦ g where f ∈ C and
σ ∈ Σ. Moreover, τ−1 ◦ g = τ ′−1 ◦ g′ in σ−1C if and only if there is a homotopy
commutative diagram

C BC BB DB D

E

C

g

�������������
E

B

OO

a

E

D

τ

��???????????

C BC BC

E′

__

g′ ??????????? B DB DB

E′

a′

��

D

E′

??

τ ′
�����������

for which a ◦ τ (and therefore a′ ◦ τ ′) belongs to Σ.

These facts hold despite the fact that there is no calculus of left—or dually
of right—fractions in this case. For example, in the proof of Proposition 4.4, the
homotopy equivalence f coequalizes σ and τ , but only the 0 map equalizes them
and that is a homotopy equivalence if and only if K• is contractible.

5. Exactness conditions

In this section, we consider conditions that simplify the verification of the main
hypotheses of the acyclic models theorem. If G is a cotriple on an additive category
A , by the standard G-resolution of an object A of A , we mean the chain complex

· · · // Gn+1A // GnA // · · · // GA

with boundary operator

d =

n∑
i=0

(−1)iGiεGn−iA:Gn+1A // GnA

This is augmented over A by εA:GA // A and by the augmented standard G-
resolution, we mean that augmented complex.
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5.1. Homology. We do the case of homology first, since the argument for quasi-
homotopy depends on it.

5.2. Theorem. Suppose that A is an abelian category and G is a cotriple on
A . A necessary and sufficient condition that the augmented standard complex be
acyclic for each A is that εA be an epimorphism for each A.

Proof. We begin by showing that for any object A, there is an exact sequence

· · · // GAn // GAn−1
// · · · // GA0

// A // 0

We begin with A0 = A and εA:GA // A. If we have d:GAn−1
// GAn−2

already constructed, let An = ker d and then the next term is the composite GAn
εAn // An // GAn−1. Since εAn is an epimorphism, it follows that GAn //

GAn−1
// GAn−2 is exact.

The remainder of the argument will follow from a sequence of propositions.

5.3. Proposition. For any object B, the chain complex of abelian groups

· · · // Hom(GB,GAn) // Hom(GB,GAn−1) // · · ·

// Hom(GB,GA) // Hom(GB,A) // 0

is contractible.

Proof. The splitting of Hom(GB,GA) // Hom(GB,A) has already been done.
Suppose we have maps si: Hom(GB,GAi) // Hom(GB,GAi+1) for i = 1, . . . , n−
1 given such that dsi + si−1d = id for i = 0, · · · , n − 1. For f :GB // GAn, we
define snf :GB // GAn+1 as follows. Let un+1:An+1

// GAn be the inclusion
of the kernel of d. Since

d ◦ (f − sn−1df) = d ◦ f − dsn−1d ◦ f = d ◦ f − (d ◦ f − sn−2d ◦ d ◦ f) = 0

there is a unique g:GB // An+1 such that un+1 ◦ g = f − sn−1d ◦ f . Finally, let
snf = Gg ◦ δB. Note that un+1 ◦ εAn+1 = d. Then

d ◦ snf = un+1 ◦ εAn+1 ◦Gg ◦ δB = un+1 ◦ g ◦ εGB ◦ δB = f − sn−1d ◦ f

so that d ◦ s+ s ◦ d = id as required.

5.4. Proposition. For any object B, the chain complex of abelian groups

· · · // Hom(GB,Gn+1A) // Hom(GB,GnA) // · · ·

// Hom(GB,GA) // Hom(GB,A) // 0

is contractible.

Proof. In fact, for f :GB // GnA, let snf = Gf ◦ δB:GB // Gn+1A. Then

εGnA ◦ snf = εGnA ◦Gf ◦ δB = f ◦ εGB ◦ δB = f

while

Gi+1εGn−i ◦ snf = Gi+1εGn−i ◦Gf ◦ δB = G(GiεGn−i ◦ f) ◦ δB

= sn−1(GiεGn−i ◦ f)

from which it is immediate that d ◦ snf = f − sn−1d ◦ f so that s• is a contracting
homotopy.
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The following proposition can be considered as an early version of acyclic mod-
els.

5.5. Proposition. Suppose A• // A−1
// 0 and B• // B−1

// 0 are
chain complexes in an abelian category. Suppose for all n ≥ 0, the complex of
abelian groups Hom(An, B•) // Hom(An, B−1) // 0 is exact. Then any map
f−1:A−1

// B−1 can be extended to a chain map f•:A• // B• and any two
extensions are homotopic.

Proof. Since Hom(A0, B0) // Hom(A0, B−1) // 0 is exact, there is an element
f0 ∈ Hom(A0, B0) such that d ◦ f0 = f−1 ◦ d. Suppose fi:Ai // Bi has been con-
structed for i < n. Since Hom(An, Bn) // Hom(An, Bn−1) // Hom(An, Bn−2)
is exact and fn−1◦d ∈ Hom(An, Bn−1) is a map such that d◦fn−1◦d = fn−2◦d◦d = 0,
there is an arrow fn:An // Bn such that d ◦ fn = fn−1 ◦ d. This proves the ex-
istence. Now suppose that g• is another extension. Let h−1 = 0:A−1

// B0.
Suppose that hi:Ai // Bi+1 for i < n such that d ◦ hi + hi−1 ◦ d = fi − gi for
i < n. Since Hom(An, Bn+1) // Hom(An, Bn) // Hom(An, Bn−1) is exact and

d ◦ (fn − gn − hn−1 ◦ d) = d ◦ fn − d ◦ gn − d ◦ hn−1 ◦ d

= fn−1 ◦ d− gn−1 ◦ g − (hn−2 ◦ d− fn−1 − gn−1) ◦ d

= 0

there is an arrow hn:An // Bn+1 such that d ◦ hn−1 = fn − gn − hn−1 ◦ d as
required.

5.6. Corollary. Let G be a cotriple on the abelian category A such that εA is
epic for every object A of A . Then the standard resolution G•+1A // A // 0
is exact for each object A of A .

Proof. Since there is an exact sequence GA• // A // 0, the identity map of A
// A extends to maps G•+1A // GA•, as well as in the other direction. Each

composite extends the identity map of A and is thus homotopic to the identity.
Thus the two complexes are homotopic. But the second is exact by construction
and hence so is the first.

We can now complete the argument. If X is not small, replace it by any small
full subcategory that is closed under G and contains the object X. For example,
the objects of the form GnX will do. Thus we can suppose that X is small. Now

let Â be the functor category Fun(X ,A ), which is easily seen to be abelian when

A is. Let Ĝ = (Ĝ, ε̂, δ̂) be the cotriple on Â defined by ĜK• = K•G with the

obvious ε̂ and δ̂. Since homotopic complexes have isomorphic homology, it follows

that the first is also exact. Thus the chain complex Ĝ•+1K• // ĜK• // 0 is
exact; but this is exactly K•G

•+1 // K• // 0.



CHAPTER 6

Cartan–Eilenberg cohomology

During a four year period more than fifty years ago, a series of papers appeared
describing cohomology theories for associative algebras [Hochschild, 1945, 1946],
groups [Eilenberg & Mac Lane, 1947], and Lie algebras [Chevalley & Eilenberg,
1948]. Each one described an n-cochain as a function of n variables taking values
in a module. There were some differences in that in the case of associative algebra,
the cochains were n-linear and in case of Lie algebras they were both n-linear
and skew symmetric. But the real differences were in the coboundary operators.
Those for associative algebras and groups were essentially the same but the one for
Lie algebras was entirely different. The skew symmetric cochains are not closed
under any coboundary operator similar to the one used for associative algebras and
groups. On the other hand, showing that the square of the Lie coboundary operator
is 0 requires not only the skew symmetry of the multiplication, but also the Jacobi
identity. In a similar way, when Harrison [1962] created his cohomology theory for
commutative algebras, to be discussed in the next chapter, he could not simply
take symmetric cochains; there is no obvious coboundary operator that preserves
symmetry and also has square 0.

By the time of their 1956 book, Cartan and Eilenberg had found a uniform
treatment of the cohomology that included the three examples described above.
Suppose X denotes one of the categories of groups, associative algebras, or Lie
algebras. Then for each object X of X , they describe an associative algebra Xe

and a canonical Xe-projective resolution

· · · // An // An−1
// · · · // A1

// A0
// A // 0

of a canonical Xe module A. These had two properties. First, that a left Xe

module is the same thing as a coefficient module for the cohomology and second,
that for any such module M , the sequence

0 // HomXe(A0,M) // HomXe(A1,M) // · · · // HomXe(An,M) // · · ·
is isomorphic to one of the resolutions used to define the original cohomology.
(In the cases of groups and associative algebras, you have to cochains that have
been normalized in the sense of the Dold-Puppe theorem as described in the pre-
vious chapter.) It follows that in each case the cohomology can be described as
ExtXe(A,M).

There are two ad hoc elements to this description of cohomology. One is the
associated algebra Xe. It is always the case that the category of coefficient modules
is equivalent to the category of left Xe-modules. This determines Xe, at least up to
Morita equivalence. (Two rings are Morita equivalent if and only if one—and hence
each—is the ring of endomorphisms of a finitely generated projective generator of

117
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the other; essentially, a generalized matrix algebra.) This does not matter much
since Ext will not change if a ring is replaced by a Morita equivalent ring.

The second arbitrary element is the choice of the module A. There does not
seem to be any such easy characterization of A. However, there is a very interesting
observation, due essentially to Jon Beck. In each case, as it happens, A0 = Xe

and the kernel of the map A0
// A is a module we will call DiffX , which has

the property that HomXe(DiffX ,M) is isomorphic to the group of derivations of
X to M . Derivations are defined slightly differently in each of the categories,
but we will leave the details to the individual examples. The conclusion is that
ExtnXe(DiffX ,M) ∼= Hn+1(X,M) for all n ≥ 1. For n = 0, there is some difference,
which we will describe later.

Therefore it was of great interest that Jon Beck discovered, in his 1967 thesis,
a notion of module over an object in an arbitrary category that also provides an
abstract definition of derivation. This would have enabled him to define cohomology
theories in a wide class of categories as Ext(DiffX ,−). The reason this was not done
is that by 1967 other cohomology theories had been defined, none of which followed
the Cartan-Eilenberg pattern. One of them, the cohomology theory of commutative
algebras, will be discussed in great detail in the next chapter. Our first task here
is to describe Beck’s notion of module.

1. Beck modules

1.1. The definition of Beck modules. We begin Beck’s theory by looking at
examples.

If K is a commutative ring, A is an associative K-algebra, and M is a two
sided A-module, then the split singular extension of A with kernel M is the
ring B that is, as an abelian group, just A×M , and whose multiplication is given
by (a,m)(a′,m′) = (aa′, am′ + ma′). If we identify M with 0 ×M , then M is a
2-sided ideal of B with M2 = 0. Since M is an ideal of B, it is a B-module. Since
M annihilates this module, it is a B/M ∼= A-module. The module structure is
evidently the original structure. Beck discovered that the B that arise in this way
can be characterized as the abelian group objects in the slice category AlgK/A,
where AlgK is the category of associative K-algebras.

If p:C // A is an algebra over A, by a p-derivation, or simply derivation of C
into aM , we mean a linear map τ :C //M such that τ(cc′) = p(c)τ(c′)+τ(c)p(c′).
If p is understood, we often write τ(cc′) = cτ(c′) + τ(c)c′ with the understanding
that p induces a C-module structure on any A-module. A particular case is that of
a derivation of A into M .

If p:C // A is an algebra homomorphism and τ :C //M is a function into
the A-module M , let B be the split singular extension as described above. Let q:C
// B be the function defined by q(c) = (p(c), τ(c)). Then one sees immediately

that q is a K-linear function if and only if τ is and from

q(c)q(c′) = (p(c)p(c′), p(c)τ(c′) + τ(c)p(c′))

that q is an algebra homomorphism if and only if τ is a derivation. Thus we see that
Hom(C // A,B // A) is just the abelian group Der(C,M) of p-derivations of
C to M .
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For the second example, suppose that π is a group and M is a left π-module.
Let Π denote the group whose underlying set is π ×M and whose multiplication
is given by (x,m)(x′,m′) = (xx′, x′−1m + m′). The identity element is (1, 0) and
one can calculate that (x,m)−1 = (x−1,−xm). Then M , identified as 1×M , is a
commutative normal subgroup of Π. The group Π acts on M by conjugation. Since
the action of M on itself is trivial, this action gives an action of Π/M ∼= π on M .
This action can be calculated to be the original action. Beck discovered that the
algebras that arise in this way are the abelian group objects in the category Grp/π.

For p: Φ // π, a function τ : Φ // M is a p-derivation or simply derivation
if τ(xy) = p(x)τ(y) + τ(x). Notice that this reduces to the same formula for the
associative algebra case if we take the right action on a module to be the identity.
An older name for a derivation of a group into a module is a crossed homomorphism.
Again it is easy to show that if M is a π-module, then the abelian group Hom(Φ
// π,Π // π) is isomorphic to the group of p-derivations of Φ //M .
For the third example, let g be a K-Lie algebra and M be a g-module. This is an

abelian group that has an action of g on M that satisfies [a, b]m = a(bm)− b(am).
Given such an action, let h be the abelian group g × M with bracket given by
[(a,m), (a′,m′)] = ([a, a′], am′− a′m). This is a Lie algebra and M is an ideal with
[M,M ] = 0 so that M is an h-module that M acts trivially on and hence is an
h/M = g-module. Again, this action can be calculated to be the original. And
again, the algebras that arise in this way are just the abelian group objects in the
category LieK/g.

If p: f // g is Lie algebra homomorphism, then a p-derivation or derivation of
f into M is a linear map τ : h //M such that τ [c, c′] = p(c)τ(c′)− p(c′)τ(c). This
reduces to the same formula as the associative algebra case if we define the right
action to be the negative of the left action. As in the other case, the abelian group
Hom(f // g, h // g) is isomorphic to the group of p-derivations of f to M .

Following these examples, Beck defined an X-module in any category X to
be an abelian group object in the category X /X. Moreover, he defined, for an
object p:Y // X and an abelian group object Z // X of X /X, the abelian
group Hom(Y // X,Z // X) to be Der(Y,Z), called the group of p-derivations.
Amazingly, in all three examples (as well as others, such as commutative algebras),
this turned to give exactly the kind of coefficient modules that are used in defining
cohomology and the group Der turned out to be exactly the group of derivations.
Thus Beck removed all the adhockery from the definition of cohomology.

Of course, although module can be defined in any category, it does not follow
that the category of modules is automatically an abelian category. It is not hard to
show that when X is an exact category (in the sense of [Barr, 1971]), so is X /X,
as well as the category of abelian group objects in it, which is thereby abelian,
see 1.8.12 and 2.2.3.

1.2. Associative algebras: an example. Here is how that works in detail for
associative K-algebras. Let A be an associative algebra, M be an A-module, and
B // A be the split extension as described above. An abelian group object of a
category is determined by certain arrows, namely a zero map 1 // B, an inverse
map B // B and a group multiplication B × B // B. The terminal object of
A /A is id:A // A and the product is the fibered product (pullback) over A, in
this case B ×A B. The zero map takes the element a to (a, 0), the inverse map is
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given by (a,m) 7→ (a,−m) and the multiplication takes the pair ((a,m), (a,m′)) in
the fiber over a to the element (a,m+m′). Observe that each of these operations
preserves the first coordinate, as they must, to be arrows in the slice category. This
makes B into an abelian group object in AlgK/A and defines a full and faithful
functor IA:ModA // AlgK/A whose image is precisely the abelian group objects.

To get a module from an abelian group object, suppose p:B // A is an
abelian group object in AlgK/A. The first thing to note is that there has to be
a zero section, that is a map z:A // B in the category AlgK/A. This means
that z is an algebra homomorphism and that p ◦ z = id. Then p is split as a
homomorphism of K-algebras. This implies, in particular, that as K-modules, we
can write B = A × M , where M = ker(p). In terms of this splitting, p is the
projection on the first coordinate and z is the injection into the first coordinate.
Since z is a ring homomorphism, it follows that (a, 0)(a′, 0) = (aa′, 0). The additive
structure takes the form of a commutative multiplication B ×A B // B. Since
B ∼= A × M , B ×A B ∼= A × M × M so that an operation over A takes the
form (a,m) ∗ (a,m′) = (a, f(a,m,m′)). The fact that ∗ is additive implies that
f(a,m,m′) = f1(a) + f2(m) + f3(m′) and the commutativity implies that f2 = f3.
The fact that z is the zero map implies that (a,m) ∗ (a, 0) = (a,m), which says,
for m = 0, that f1(a) = 0 and then for arbitrary m that f2(m) = m. Thus
(a,m) ∗ (a,m′) = (a,m + m′). Now the fact that z(1) = (1, 0) is the identity and
that ∗ is a ring homomorphism gives

(1,m)(1,m′) = ((1,m) ∗ (1, 0))((1, 0) ∗ (1,m′))

= ((1,m)(1, 0)) ∗ ((1, 0)(1,m′))

= (1,m) ∗ (1,m′) = (1,m+m′)

Then

(1,m+m′) = (1,m)(1,m′) = ((1, 0) + (0,m))((1, 0) + (0,m′))

= (1, 0)(1, 0) + (0,m)(1, 0) + (1, 0)(0,m′) + (0,m)(0,m′)

= (1, 0) + (0,m) + (0,m′) + (0,m)(0,m′)

= (1,m+m′) + (0,m)(0,m′)

which implies that (0,m)(0,m′) = (0, 0). Since M is the kernel of a homomorphism,
it is an ideal so that (a, 0)(0,m) ∈M and we will denote it by (0, am) and similarly
for (0,m)(a, 0), which we denote (0,ma). The equations of rings imply readily that
M is a two-sided A-module.

(a,m)(a′,m′) = ((a, 0) + (0,m))((a′, 0) + (0,m′))

= (a, 0)(a′, 0) + (0,m)(a′, 0) + (a, 0)(0,m′) + (0,m)(0,m′)

= (aa′, 0) + (0,ma′) + (0, am′) = (aa′,ma′ + am′)

The remaining details are found in [Beck, 1967].

1.3. Differentials. Suppose that X is one of our categories and X is an object
of X . Then the category ModX is the category of X-modules and for an object p:Y
// X, there is a functor Der(Y,−):ModX // Ab. This functor is the composite
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of the inclusion IX :ModX // X /X with the homfunctor Hom(Y // X,−),
each of which preserves limits. Thus Der(Y,−) preserves limits and it is reasonable

to suppose that it is represented by an X-module, we call DiffXY or simply DiffY ,
the module of differentials of Y .

The remarkable fact was that in the standard Cartan-Eilenberg cohomology
resolution

· · · // An // An−1
// · · · // A1

// A0
// A // 0

as described above, in every case, A0 = Xe and the kernel of A0
// A was exactly

DiffX . Thus

· · · // An // An−1
// · · · // A1

// DiffX // 0

is a projective resolution of DiffX . Thus if we define a cohomology theory, say

H̃ by H̃n(X,M) = ExtnXe(DiffX ,M) it will be related to the Cartan-Eilenberg
cohomology theory by

H̃n(X,M) =

{
Der(X,M) if n = 0

Hn+1(X,M) if n > 0

For simplicity, we will call this the dimension-shifted Cartan-Eilenberg cohomology
theory.

This would allow us to define the Cartan-Eilenberg cohomology in wide gener-
ality, if we wanted. Unfortunately, the reality is that while Cartan and Eilenberg
believed that they had found a uniform approach to algebraic cohomology theories,
the three cases they considered turned out to be the only three for which their
approach was “right”. (Right means that it coincides with the cotriple cohomology
theory, which is really the natural one. When it can be described by the Cartan-
Eilenberg approach, that is interesting and useful, but that is not the typical case.)

To summarize, here is the Cartan-Eilenberg cohomology. We assume that the
category X has the property that for each X there is given an algebra Xe (which,
in fact would have to be determined only up to Morita equivalence) such that the
category of X-modules in the sense of Beck is equivalent to that of left Xe-modules.
In addition, we suppose that the inclusion IX :ModX ' ModXe // X /X has
a left adjoint DiffX , often denoted Diff. Then the dimension-shifted Eilenberg
cohomology is Ext•xe(Diff(X),−)

1.4. Cotriple cohomology. Given a category X and a cotriple G = (G, ε, δ)
on X , there is a natural definition of cohomology of an object A with coefficients
in an X-module. This definition is due to [Beck, 1967] and, in fact, was the reason
for his introduction of Beck modules. There will also be a homology theory in some
cases, but that has been less studied.

Given an object X, there is a simplicial object augmented over X:

· · ·
//

... //G
nX

//
... //G

n−1X
//

... // · · ·
//// GX // X

For an X-module M we apply the functor Der(−,M) and take the alternating sum
of the induced homomorphisms to get the cochain complex

0 // Der(GX,M) // Der(G2X,M) // · · · // Der(Gn+1X,M) // · · ·
whose cohomology is defined to be H•(X,M). The group H0(X,M) can be identi-
fied as Der(X,M) and Beck showed that H1(X,M) can be identified as the group
of equivalence classes of “singular” extensions Y // X with kernel M .
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Just for the record, we describe briefly what a singular extension is. If p:M
// X is an X-module, that is an abelian group object of X /X, and q:Y // X

is an arbitrary object of X /X, then one can show that Y ×X M // Y by the
projection on the first factor, makes Y ×X M into a Y -module, assuming that
pullback exists. If the pullback Y ×X Y also exists the first projection Y ×X Y
// Y is an object of X /Y . If Y ×X M ∼= Y ×X Y as objects of X /Y , then

we say that q is a singular extension with kernel M . This turns out to coincide
with the usual definitions in the three cases: for associative algebras, a singular
extension is a surjection whose kernel has square 0; for groups a singular extension
has abelian kernel; and for Lie algebras, where abelian means square 0, it is the
same as the other two.

Since it was known (one of the first results shown in the early papers) that the
group of singular extensions was classified by H2 (recall the dimension shift), it was
a reasonable conjecture that the dimension-shifted Cartan-Eilenberg cohomology
was equivalent to the cotriple cohomology. The early papers on cohomology also
had an interpretation of H3 as certain kinds of obstructions. G. Orzech showed
[1972a,b] that this interpretation of the corresponding cotriple H2 had a similar
interpretation as obstructions under certain conditions. Essentially, the objects
had to have an underlying group structure and it was required that the annihilator
of an ideal be an ideal (in the case of groups, that the centralizer of a normal
subgroup be a normal subgroup). This holds for associative and Lie algebras, but
not, for example, for Jordan algebras.

1.5. Exercises

1. Suppose that S is a set. What is an S-module?

2. Show that the category of 2-modules is equivalent to the category of modules
over the ring Z× Z.

3. This exercise is for people who know about locally presentable categories, which
are complete categories that are accessible in the sense of [Makkai & Paré, 1990].

(a) Show that for any category X , the underlying functor IA:Ab(X ) //X
preserves limits.

(b) Show that if X is accessible, so is IA.

(c) Conclude that if X is locally presentable, then IA has a left adjoint JA.

1.6. The standard setting. In order to understand these things in some detail,
we describe what we call a standard Cartan–Eilenberg or CE setting.

We begin with an exact category X . For each object X of X , we denote by
Mod(X) the category Ab(X /X) of abelian group objects of X /X. We assume that

the inclusion IX :Mod(X) // X /X has a left adjoint we denote DiffX . When
f :Y // X is an arrow of X , the direct image (or composite with f) determines
a functor f!: X /Y // X /X that has a right adjoint f∗ = Y ×X − of pulling
back along Y // X. The right adjoint f∗ (but not the direct image f!) restricts
to a functor that we will also denote by f∗:Mod(X) // Mod(Y ) and that we will
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assume has a left adjoint we denote f#. The diagram is

X /Y Mod(Y )
DiffY //

X /X

X /Y

OO

f!

X /X Mod(X)
DiffX //

Mod(X)

Mod(Y )

OO

f#

X /Y Mod(Y )oo
IY

X /X

X /Y

f∗

��

X /X Mod(X)oo
IX

Mod(X)

Mod(Y )

f∗

��

The upper and left arrows are left adjoint, respectively to the lower and right
arrows and the diagram of the right adjoints commutes, and so, therefore, does the
diagram of left adjoints. (In principle, the diagram of left adjoints commute only
up to natural equivalence. However the left adjoints are defined only up to natural
equivlance and therefore we are free to modify them so that the diagram actually
commutes on the nose.) In the familiar cases involving an enveloping algebra Xe,
the left adjoint f# turns out to be the functor Xe ⊗Y e (−). That is, Xe becomes
a right Y e-module via f (actually, just the right hand version of f∗) and then that
tensor product is an Xe-module.

1.7. Proposition. If X is an object of the regular category X , the forgetful functor
IX :Mod(X) //X /X preserves regular epis.

Proof. What we have to show is that if f :M ′ //M is a regular epimorphism in
the category Mod(X), then it is also a regular epi in X /X. Actually, we will show
that if f is strict epic in Mod(X), then it is regular in X and hence in X /X.

An object of Mod(X) is an object Y // X equipped with certain arrows of
which the most important is the arrow m:Y ×X Y // Y that defines the addition.
There are also some equations to be satisfied. The argument we give actually works
in the generality of the models of a finitary equational theory. So suppose f :M ′

// //M is a strict epimorphism in Mod(X). If the map IXf is not strict epi, it can
be factored as Y ′ = IXM

′ // // Y ′′ // // Y = IXM in X /X. Since X , and hence
X /X, is regular, the arrow Y ′ ×X Y ′ // Y ′′ ×X Y ′′ is also regular epic and we
have the commutative diagram

Y ′ Y ′′// // Y ′′ Y// //

Y ′ ×X Y ′ Y ′′ ×X Y ′′// //Y ′ ×X Y ′

Y ′

m′

��

Y ′′ ×X Y ′′ Y ×X Y// //Y ′′ ×X Y ′′

Y ′′

Y ′′ ×X Y ′′

Y ′′

Y ×X Y

Y

m

��

The “diagonal fill-in” (here vertical) provides the required arrow m′′:Y ′′×XY ′′ //

Y ′′ at the same time showing that both of the arrows Y ′ // Y ′′ // Y preserve
the new operation. A similar argument works for any other finitary operation. As
for the equations that have to be satisfied, this follows from the usual argument
that shows that subcategories defined by equations are closed under the formation
of subobjects. For example, we show that m′′ is associative. This requires showing
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that two arrows Y ′′×X Y ′′×X Y ′′ // Y ′′ are the same. But we have the diagram

Y ′′ Y// //

Y ′′ ×X Y ′′ ×X Y ′′

Y ′′
��

Y ′′ ×X Y ′′ ×X Y ′′ Y ×X Y ×X Y// // Y ×X Y ×X Y

Y
��

Y ′′ ×X Y ′′ ×X Y ′′

Y ′′
��

that commutes with either of the two left hand arrows. With the bottom arrow
monic, this means those two arrows are equal.

2. The main theorem

In this section we prove the main result of this chapter. We start with a “base
category” S and a functor U : X // S that preserves regular epics and has a
left adjoint F . For group cohomology, S is the category of sets, while for associative
or Lie algebras over the commutative ring K it will be the category of K-modules.
In any case, the cohomology will be a K-relative cohomology. Let G = (G, ε, δ)
denote the cotriple on X that results from the adjunction F U .

We suppose there is given, for each object X of X , a chain complex functor
CX• : X /X // C CMod(X), the category of chain complexes in Mod(X). Such a
functor assigns to each Y // X a chain complex

· · · // CXn (Y ) // · · · // CX0 (Y ) // 0

of X-modules. We further suppose that for f :Y // X the diagram

X /X C CMod(X)
CX•

//

X /Y

X /X

f!

��

X /Y C CMod(Y )
CY• // C CMod(Y )

C CMod(X)

C C f#

��

commutes.
Note that all these categories have initial objects. If we take Y to be the initial

object, then we get a standard complex for that case and the complex in all the
other cases is gotten by applying i#, where i is the initial morphism. In light of a
previous remark, this is just tensoring with Xe.

For the purposes of this theorem, define an object X of X to be U -projective if
UX is projective in S with respect to the class of regular epis. The third hypothesis
of this theorem looks a bit mysterious and I will try to explain it. If you look at the
complexes {Cn} in the Cartan-Eilenberg theory, you will observe that for a fixed
n and an object X, Cn(X) does not depend on the group, respectively algebra,
structure of X, but only on the underlying set, respectively K-module UX. The
full structure of X is used only to define the boundary operator. We formalize
this property, which turns out to be important for the analysis here, in the third
hypothesis.
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2.1. Theorem. Suppose that, in the context of a CE setting, when X is U -
projective,

(i) GX is U -projective;

(ii) CX• (X) is a projective resolution of DiffX(X);

(iii) For each n ≥ 0, there is a functor C̃Xn : X /UX // Mod(X) such that
the diagram

X /X

S /UX

U/X
��??????????

X /X Mod(X)
CXn // Mod(X)

S /UX

??

C̃Xn����������

commutes.

Then there is a natural chain transformation DiffX(G•+1−) // CX• (−) which is
a weak homotopy equivalence.

Proof. We apply the acyclic models theoren with Γ the class of contractible com-
plexes. We have to show that both of the functors are weakly contractible on models
and presentable with respect to Γ. However, for DiffX(G•+1−), both of these are
automatic (Theorem 5.3.6). We turn to these properties for the Cartan–Eilenberg
complex.

Presentability: For n ≥ 0, the complex

· · · // CnG
m+1 // · · · // CnG // Cn // 0 (∗)

is equivalent to

· · · // C̃nUG
m+1 // · · · // C̃nUG // C̃nU // 0

At this point we require,

2.2. Lemma. Let the functor U : X // S have left adjoint F and let G be the
resultant cotriple on X . Then the simplicial functor

· · ·
//

... //UG
m+1

//
... // · · ·

////// UG
2 // // UG // U

has a natural contraction.

Proof. We let s = ηUGn:UGm // UGm+1. Then

Ud0 ◦ s = UεGm ◦ ηUGm = id

while, for 0 < i ≤ m,

Ud i ◦ ηUGm = UGiεGm−i ◦ ηUGm

and the last term equals, by naturality of η,

ηUGm−1 ◦ UGi−1εGm−i = ηUGm−1 ◦ Ud i−1

This shows that s is a contracting homotopy in the simplicial functor.

If we apply the additive functor C̃n to this contractible complex, we still get a
contractible complex, which is (∗).
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Acyclicity on models: We will show that for each Y // X, the complex

· · · // CnGY // · · · // C1GY // C0GY // Diff GY // 0 (∗∗)
is contractible.

2.3. Lemma. Let P be a regular projective object of X . Then, for any P // UX,
DiffFP is projective.

Proof. When P is projective in X , any P // X is a projective object of X /X.
It is immediate that when L: X // Y is left adjoint to R: Y // X , then L
takes a projective in X to a projective in Y provided R preserves the epimorphic
class that defines the projectives. In this case, the right adjoint is the composite
UIX and the class is that of regular epimorphisms. We have assumed that U , and
hence U/X, preserves regular epis and Proposition 1.7 says that IX does.

Since the two complexes reduce to Diff in degree −1, Diff G•+1 is contractible
with respect to homotopy and Cn is presentable with respect to homotopy, the
existence of a natural transformation Diff G•+1 // C• that extends the identity
on Diff follows. Since Diff G•+1 is presentable with respect to homotopy, hence
weak homotopy and C• is acyclic with respect to weak homotopy, it follows that
for each Y // X, there is a chain map C•(Y ) // Diff G•+1Y , the conclusion
follows.

With almost the same argument as the proof of 2.1, we can also prove the
following.

2.4. Theorem. Suppose that, in the context of a CE setting, when X is U -
projective,

(i) C•GX has a natural contracting homotopy;

(ii) CX• (X) is a projective resolution of DiffX(X);

(iii) For each n ≥ 0, there is a functor C̃Xn : X /UX // Mod(X) such that
the diagram

X /X

S /UX

U/X
��??????????

X /X Mod(X)
CXn // Mod(X)

S /UX

??

C̃Xn����������

commutes.

Then there are natural chain transformations DiffX(G•+1−) // CX• (−) and

CX• (−) // DiffX(G•+1−) which are homotopy inverse to each other.

3. Groups

Let Grp be the category of groups and π be a group. The underlying functor
U :Grp // Set evidently satisfies our conditions and the fact that epimorphisms
in Set split implies that every group is U -projective. If we fix a group π, the

functor C̃πn :Set/Uπ // Mod(π) takes the set g:S // Uπ to the free π-module
generated by the (n + 1)st cartesian power Sn+1. Now suppose that g = Up for
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a group homomorphism p: Π // π. The value of the boundary operator ∂ on a

generator 〈x0, x1, · · · , xn〉 ∈ C̃πn (Up:UΠ // Uπ) is

p(x0)〈x1, · · · , xn〉+

n−1∑
i=1

(−1)i〈x0, · · · , xi−1xi, · · · , xn〉+ (−1)n〈x0, · · · , xn−1〉

which depends on the group structure in Π. This defines the functor Cπ• on Grp/π.
The standard Cartan–Eilenberg resolution is the special case of this one in which p
is the identity π // π. We may denote Cπ• (id:Uπ // Uπ) as simply C•(π) (U
applied to the identity of π is the identity of Uπ).

For any group Π and any Π-module M a derivation τ : Π //M is a function
that satisfies τ(xy) = xτy+τx. This is sometimes called a crossed homomorphism,
since in the case the action is trivial it is just a homomorphism. On the other hand,
one can also interpret it as τ(xy) = x(τy) + (τx)y with trivial right action.

From this we have that τ1 = τ(1 · 1) = 1τ1 + τ1 = 2τ1, which implies that
τ1 = 0. Also, τy = τ(xx−1y) = xτ(x−1y) + τx so that τ(x−1y) = x−1τy − x−1τx.
In particular, τ(x−1) = −x−1τx.

3.1. Proposition. Suppose that Π is free on basis S and M is a Π-module. Then
any function τ :S //M extends to a unique derivation Π //M .

Proof. We will extend τ to a function we also call τ : Π //M defined recursively
on the word length as follows. First τ1 = 0 as is required for any derivation from
τ1 = τ(1·1) = 1τ1+1τ1 = 2τ1. Assume that τ is defined on all words whose length
is less than the length of w. Then either w = xv for some x ∈ X or w = x−1v
for some x ∈ X. In either case, v is a shorter word than w. In the first case,
define τw = xτv + τx and in the second, define τw = x−1τv − x−1τx. If these
give derivations, they are clearly unique, since these definitions are forced, by the
remarks above. So suppose that whenever v = tu is shorter than w, it satisfies
τ(v) = tτu+ τt. Then for w = xv = xtu, we have

τw = xτv + τx = xtτu+ xτt+ τx = xtτu+ τ(xt)

If, on the other hand, w = x−1v = x−1tu, then

τw = x−1τv − x−1τx = x−1tτu+ x−1τt− x−1τx = x−1tτu+ τ(x−1t)

This implies that Diffπ(Π) is the free π-module generated by X.
It is not hard to show that Cπ• is an exact chain complex and hence for any

Π // π, Cπ• (Π) is a free resolution of Diffπ(Π). In the case that Π is free, this
is then a free resolution of a free module and hence necessarily split. However, we
would rather get the extra information available if we know that the splitting is
natural, namely that we then get a homotopy equivalence between the two chain
complex functors.

Let us simplify notation by dropping the upper index π. We will start by defin-
ing a homomorphism ∂:C0(Π) // Diff(Π). There is a function τ :X // Diff(Π)
which is the inclusion of the basis. This extends to a derivation τ : Π // Diff(Π)
as above. Since C0(Π) is freely generated by the elements of Π, this derivation τ
extends to a π-linear function ∂:C0(Π) // Diff(Π). In accordance with the recipe
above, ∂ is defined on elements of Π recursively as follows. We will denote by 〈w〉
the basis element of C0(Π) corresponding to w ∈ Π. As above, either w = 1 or
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w = xv or w = x−1v for some x ∈ X and some v ∈ Π shorter than w. Then

∂〈w〉 =

{
p(x)∂〈v〉+ x if w = xv

p(x−1)∂〈v〉 − p(x−1)x if w = x−1v
0 if w = 1

Now define s: Diff(Π) // C0(Π) to be the unique π-linear map such that s(dx) =
〈x〉 for x ∈ X. Since Diff(Π) is freely generated by all dx for x ∈ X, this does
define a unique homomorphism. For x ∈ X, we have that ∂ ◦ s(dx) = ∂〈x〉 = dx
and so ∂ ◦ s = id.

For each n ≥ 0 we define a homomorphism s:Cn // Cn+1 as follows. We
know that Cn is the free π-module generated by Πn+1. We will denote a generator
by 〈w0, · · · , wn〉 where w0, . . . , wn are words in elements of X and their inverses.
Then we define s:Cn // Cn+1 by induction on the length of the first word:

s〈w0, . . . , wn〉

=


p(x)s〈w,w1, . . . , wn〉 − 〈x,w,w1, . . .〉 if w0 = xw

p(x−1)s〈w,w1, . . . , wn〉+ p(x−1)〈x,w0, w1, . . .〉 if w0 = x−1w
〈1, 1, w1, . . . , wn〉 if w0 = 1

3.2. Proposition. For any word w and any x ∈ X
s〈xw,w1, . . . , wn〉 = p(x)s〈w,w1, . . . , wn〉 − 〈x,w,w1, . . . , wn〉

s〈x−1w,w1, . . . , wn〉 = p(x−1)s〈w,w1, . . . , wn〉+ 〈x−1, w0, w1, . . . , wn〉
Proof. These are just the recursive definitions unless w begins with x−1 for the first
equation or with x for the second. Suppose w = x−1v. Then from the definition of
s,

s〈w,w1 . . . , wn〉 = x−1s〈v, w1, . . . , wn〉+ x−1〈x,w,w1, . . . , wn〉
so that

s〈xw,w1, . . . , wn〉 = s〈v, w1, . . . , wn〉

= xs〈w,w1, . . . , wn〉 − 〈x,w,w1, . . . , wn〉
The second one is proved similarly.

Now we can prove that s is a contraction. First we will do this in dimension
0, then, by way of example, in dimension 2; nothing significant changes in any
higher dimension. In dimension 0, suppose w is a word and we suppose that for
any shorter word v, we have that s ◦ ∂〈v〉+ ∂ ◦ s〈v〉 = 〈v〉. If x = 1, then

s ◦ ∂〈1〉+ ∂ ◦ s〈1〉 = d ◦ el〈1, 1〉 = 1〈1〉 − 〈1〉+ 〈1〉 = 〈1〉
If w = xv, with x ∈ X, then

∂ ◦ s〈w〉+ s ◦ ∂〈w〉 = ∂(p(x)s〈v〉 − ∂〈x, v〉) + s(dw)

= p(x)∂ ◦ s〈v〉 − p(x)〈v〉+ 〈xv〉 − 〈x〉+ s(p(x)∂(v) + dx)

= 〈w〉+ p(x)(∂ ◦ s+ s ◦ ∂ − 1)〈v〉 − 〈x〉+ 〈x〉 = 〈w〉
A similar argument takes care of the case that w = x−1v. In dimension 2, the chain
group C2(Π) is freely generated by Π3. If we denote a generator by 〈w0, w1, w2〉,
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we argue by induction on the length of w0. If w0 = 1, then

s ◦ ∂〈1, w1, w2〉 = s(〈w1, w2〉 − 〈w1, w2〉+ 〈1, w1w2〉 − 〈1, w1〉)

= 〈1, 1, w1w2〉 − 〈1, 1, w1〉
while

∂◦s〈1, w1, w2〉 = ∂(〈1, 1, w1, w2〉)

= 〈1, w1, w2〉 − 〈1, w1, w2〉+ 〈1, w1, w2〉 − 〈1, 1, w1w2〉+ 〈1, 1, w1〉
and these add up to 〈1, w1, w2〉. Assume that (∂ ◦ s + s ◦ ∂)〈w〉 = 〈w〉 when w is
shorter than w0. Then for w0 = xw,

∂ ◦ s〈xw,w1, w2〉 = p(x)∂ ◦ s〈w,w1, w2〉 − ∂〈x,w,w1, w2〉

= p(x)∂ ◦ s〈w,w1, w2〉 − p(x)〈w,w1, w2〉+ 〈xw,w1, w2〉

− 〈x,ww1, w2〉+ 〈x,w,w1w2〉 − 〈x,w,w1〉
while

s ◦ ∂〈x,w,w1, w2〉

= p(xw)s〈w1, w2〉 − s〈xww1, w2〉+ s〈xw,w1w2〉 − s〈xw,w1〉

= p(xw)s〈w1, w2〉 − p(x)s〈ww1, w2〉+ 〈x,ww1, w2〉

+ p(x)s〈w,w1w2〉 − 〈x,w,w1w2〉 − p(x)s〈w,w1〉+ 〈x,w,w1〉

= p(x)s ◦ ∂〈w,w1, w2〉+ 〈x,ww1, w2〉 − 〈x,w,w1w2〉+ 〈x,w,w1〉
Then,

(∂ ◦ s+ s ◦ ∂)〈xw,w1, w2〉 = p(x)(∂ ◦ s+ s ◦ ∂)〈w,w1, w2〉 − p(x)〈w,w1, w2〉

+ 〈xw,w1, w2〉 − 〈x,ww1, w2〉+ 〈x,w,w1w2〉 − 〈x,w,w1〉

+ 〈x,ww1, w2〉 − 〈x,w,w1w2〉+ 〈x,w,w1〉
Using the inductive assumption, the first two terms cancel and all the rest cancel
in pairs, except for 〈xw,w1, w2〉, which shows that s ◦∂+∂ ◦s = 1 in this case. The
second case, that w0 begins with the inverse of a letter is similar.

This completes the proof of the homotopy equivalence.

4. Associative algebras

The situation with associative algebras is quite similar to that of groups. We begin
with a commutative (unitary) ring K. The category X is the category of K-
modules and A is the category of K-algebras. If A is a K-algebra, the category
Mod(A) is the category of two sided A-modules. The enveloping algebra of A is
Ae = A⊗K Aop and it is easy to see that two-sided A-modules are the same thing
as left Ae-modules. The free algebra generated by a K-module V is the tensor
algebra

F (V ) = K ⊕ V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V ) ⊕ · · · ⊕ V (n) ⊕ · · ·
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and it is evident that F (V ) is K-projective when V is. Note that we use V (n) to
denote the nth tensor power of V . If A is a K-algebra, the functor CAn is defined
by the formula

CAn (V // UA) = A⊗ V (n+1) ⊗Aop ∼= Ae ⊗ V (n+1)

for g:V // UA. The boundary formula is similar to the one for groups. If g has
the form Uf :UB // UA, then

∂(a⊗ b0 ⊗ · · ·⊗bn ⊗ a′) = af(b0)⊗ b1 ⊗ · · · ⊗ bn ⊗ a′

+

n−1∑
i=1

(−1)ia⊗ b0 ⊗ · · · ⊗ bi−1bi ⊗ · · · ⊗ bn ⊗ a′

+ (−1)na⊗ b0 ⊗ · · · ⊗ bn−1 ⊗ f(bn)a′

(16)

differing only in the fact that we have operation on the right as well as on the left.
The remaining details are essentially similar to those of the group case.

If A is an algebra and M is a two-sided A-module, then a derivation τ :A
//M is a linear function such that τ(ab) = a(τb) + (τa)b.
If A = F (V ) is a tensor algebra, then for an A-module M , every linear map

τ :V // M extends to a unique derivation defined recursively by the formulas
τ1 = 0 and

τ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = v1τ(v2 ⊗ · · · ⊗ vn) + τv1

If p:A // B is an algebra homomorphism, the formula for the contracting
homotopy in the Cartan–Eilenberg complex of a tensor algebra is

s(a0 ⊗ a1 ⊗ · · · ⊗ an) = p(v)s(a⊗ a1 ⊗ · · · ⊗ an) + (v ⊗ a⊗ a1 ⊗ · · · ⊗ vn)

where a0 = v ⊗ a in the tensor algebra.

5. Lie Algebras

This examples differs from the preceding ones more than just in some details. For
one thing, Cartan and Eilenberg limited their treatment to K-Lie algebras that
were K-free (instead of K-projective, as they did for associative algebras) and we
would like to extend the theory to the projective case. For another, it requires some
work to see that the free Lie algebra generated by a projective K-module is still a
projective K-module. When the given K-module is free, this fact is buried in an
exercise in [Cartan & Eilenberg] (Exercise 8 on page 286), with a long hint that
still requires some effort to complete. We give the details, since this argument (nor
the fact itself) is certainly not well known.

It is instructive to see why Cartan and Eilenberg limited themselves to K-free
Lie algebras. Eilenberg explained it once. They made crucial use of the fact of
the Poincaré–Witt theorem that implies that the enveloping algebra of a K-free
Lie algebra is K-free. The enveloping algebra functor is not additive and therefore
they did not see how to show that the enveloping algebra of a K-projective Lie
algebra was K-projective. The problem was that they defined projective as being
a direct summand of a free module. In the interim, we have learned, from dealing
with non-additive categories, that a more useful definition of projective is as retract
of a free. Since the property of being a retract is preserved by all functors, any
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functor that takes a free object to a free (or even projective) object will also take
a projective to a projective. It is interesting to note that at different places in the
proof we actually use both definitions of projective.

5.1. The enveloping algebra. There is a functor K-Assoc // K-Lie that
assigns to each associative algebra the Lie algebra with the same underlying K-
module and operation

[x, y] = xy − yx
This functor has a left adjoint given by g 7→ ge, which is a quotient of the tensor
algebra

T (g) = K ⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ · · · ⊕ g(n) ⊕ · · ·
The multiplication is given by

(x1 ⊗ · · · ⊗ xn)(y1 ⊗ · · · ⊗ ym) = x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym
and the quotient is by the 2-sided ideal generated by all terms of the form
x⊗ y − y ⊗ x− [x, y]. Then the Poincaré–Witt theorem says:

5.2. Theorem. Suppose that g is a K-Lie algebra that is free on the basis
{xi | i ∈ I} where I is a totally ordered index set. Then ge is K-free on the ba-
sis

{xi1 ⊗ · · · ⊗ xin | i1, . . . , in ∈ I, i1 < · · · < in}
Since every set can be totally ordered, this implies,

5.3. Corollary. If the K-Lie algebra g is K-free, then so is ge.

Now we can extend this to K-projectives.

5.4. Proposition. Let g be a K-Lie algebra that is projective as a K-module.
Then the enveloping algebra ge is projective as a K-module.

Proof. Since g is K-projective, we can find a K-module g0 such that g ⊕ g0 is a
K-free K-module. We can make g ⊕ g0 into a Lie algebra by making g0 a central
ideal (that is, [(x, x0), (y, y0)] = ([x, y], 0) for x, y ∈ g and x0, y0 ∈ g0). Then g is,
as a Lie algebra, a retract of g ⊕ g0. All functors preserve retracts so that ge is a
retract of (g⊕ g0)e. By the Poincaré–Witt theorem, the latter is K-free, and so ge

is K-projective.

Cartan–Eilenberg made another use of freeness in their development. It was
used in the process of showing that if h is a Lie subalgebra of the Lie algebra g, and
if g, h and g/h are K-free, then ge is a free he-module. We will prove this with “free”
replaced everywhere by “projective”. Of course, if g and g/h are K-projective, so
is h.

5.5. Proposition. Let 0 // h // g // g/h // 0 be an exact sequence of
K-projective K-Lie algebras. Then ge is projective as an he-module.

Proof. The conclusion is valid when all three of g, h and g/h are K-free ([Cartan
& Eilenberg ], Proposition XIII.4.1). For the general case, let f = g/h. Since h is
K-projective, there is a K-module h0 such that h⊕ h0 is K-free. If we give h0 the
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structure of a central ideal, then h⊕h0 is a K-free K-Lie algebra. Similarly, choose
f0 so that f⊕ f0 is K-free and let g0 = f0 ⊕ h0. We have a commutative diagram

h⊕ h0 g⊕ h0 ⊕ f0

 f 0
0 1
0 0


// g⊕ h0 ⊕ f0 f⊕ f0

(
g 0 0
0 0 1

)
//

h g
f //h

h⊕ h0

(
1
0

)
��

g f
g //g

g⊕ h0 ⊕ f0

 1
0
0


��

f

f⊕ f0

(
1
0

)
��

Since, as K-modules, g ⊕ g0
∼= h ⊕ h0 ⊕ f ⊕ f0 is a direct sum of free modules, it

follows that g⊕ g0 is free as well. Apply the enveloping algebra functor to the left
hand square to get the diagram,

(h⊕ h0)e (g⊕ g0)e//

he

(h⊕ h0)e
��

he ge// ge

(g⊕ g0)e
��

According to Proposition XIII.2.1 of [Cartan & Eilenberg ], for any two Lie algebras
g1 and g2, there is an isomorphism (g1 ⊕ g2)e ∼= ge1 ⊗ ge2. This can be proved
directly, as Cartan & Eilenberg do, but the easy way is to observe that both sides
represent the functor that assigns to an associative algebra A the set of pointwise
commuting pairs of homomorphisms in Hom(ge1, A)×Hom(ge2, A) (see Exercise 1).
Moreover, he0 is K-projective since h0 is. If he0 is K-free, say he0

∼=
∑
K, then

he ⊗ he0
∼= he ⊗

∑
K ∼=

∑
he is a free he-module. If he0 is K-projective, then it is a

retract of a free K-module and it follows that he⊗he0 is a retract of a free he-module.
But (g⊕ g0)e is, as an (h⊕ h0)e-module, a fortiori as an he-module, isomorphic to
a direct sum of copies of (h ⊕ h0)e and hence is also he-projective. Finally, ge is a
retract as a ring, therefore as a ge-module and hence as an he-module, of (g⊕ g0)e

and is therefore also he-projective.

With these two results, the entire chapter XIII of [Cartan & Eilenberg ] becomes
valid with free replaced by projective.

Now we describe the standard theory from [Cartan & Eilenberg] (with the usual
dimension shift). For a K-module M , let

∧n
(M) denote the nth exterior power of

M . If g:M // Ug is a module homomorphism, Cg
n(M // Ug) = ge⊗

∧n+1
(M).

If g = Uf for a Lie algebra homomorphism f : h // g, the boundary is described
on generators as follows. We adopt here a convention common in algebraic topology
in which we denote the omission of a term by putting a ̂ on it. So, for example, a
sequence x1, . . . , x̂i, . . . , xn is shorthand for x1, . . . , xi−1, xi+1, . . . , xn.

∂(x0 ∧ x1∧ · · · ∧ xn) =

n∑
i=0

(−1)if(xi)⊗ (x0 ∧ · · · ∧ x̂i ∧ · · · ∧ xn)

+
∑

1≤i<j≤n

(−1)i+j [xi, xj ] ∧ x0 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn
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In order to apply Theorem 2.1, we must show the following: (See [Cartan & Eilen-
berg ], Exercise 8 on page 286, where this is given as an exercise for the case of a
free K-module. The proof for that case follows the long hint given there.)

5.6. Proposition. Let M be a projective K-module. Then the free Lie algebra
FM is also K-projective.

Proof. Consider first the case that M is a free K-module. There is a diagram of
categories and adjoints, in which ⊗ = ⊗Z:

Mod(K) Mod(Z)//

Lie(K)

Mod(K)

OO
Lie(K) Lie(Z)// Lie(Z)

Mod(Z)

OO

Mod(K) Mod(Z)
oo K ⊗−

Lie(K)

Mod(K)
��

Lie(K) Lie(Z)
oo K ⊗−

Lie(Z)

Mod(Z)
��

Mod(K)

Set
��??????????Mod(K) Mod(Z)Mod(K) Mod(Z)Mod(Z)

Set
������������

Mod(K)

Set

__

??????????
Mod(K) Mod(Z)Mod(K) Mod(Z)Mod(Z)

Set

??

����������

It is clear from this diagram that if we show that the free Z-Lie algebra gen-
erated by a free Z-module (that is, abelian group) is a free abelian group, then
by applying the functor K ⊗ −, it follows that the free K-Lie algebra by a free
K-module will be K-free.

So let M be a free abelian group generated by the set X and let F (M) be the
free Lie algebra generated by M . By the commutation of adjoints in the diagram

Alg(Z)

Mod(Z)

aa

F (−)e
DDDDDDDDDDDDDD

Alg(Z) Lie(Z)oo
V

Lie(Z)

Mod(Z)

==

F

zzzzzzzzzzzzzz
Alg(Z)

Mod(Z)

UV

!!DDDDDDDDDDDDDDAlg(Z) Lie(Z)
(−)e

//
Lie(Z)

Mod(Z)

U
}}zzzzzzzzzzzzzz

Since F U and (−)e, it follows that (F−)e UV . But since UV is just the
underlying module functor, it follows that (F−)e is its left adjoint, which is the
tensor algebra functor T (M) = Z ⊕ M ⊕ (M ⊗M) ⊕ M (3) ⊕ · · · which is Z-free.
Then (FM)e and hence V (FM)e are free abelian groups. The inner adjunction is a
map e:F (M) // V (F (M)e). If this map can be shown to be injective, then FM
is a subgroup of a free abelian group and is therefore free. The map e is certainly
injective when K is a field; the Poincaré–Witt theorem gives an explicit linear basis
for ge, assuming one for g and it includes, among other things, the explicit basis of
g.

For a set X, let FabX denote the free abelian group generated by X. In
particular, we can suppose there is an X with M = FabX. If e is not injective,
then there is a non-zero element a ∈ FM with e(a) = 0. Now, a is made of up a
finite sum of a finite number of finitely iterated brackets applied to a finite number
of free generators. For each finite integer n let Fn(M) denote the abelian subgroup
of FM consisting of the elements that are finite sums of brackets of generators with
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no more than n brackets. Then there is a finite subset Y ⊆ X and a finite integer
n, such that a ∈ Fn(FabY ). Now for any Y 6= ∅, the inclusion Y // X is a split
monic and hence so is V (F (FabY )e) // V (FMe). Thus you can see from the
diagram

V (F (FabY )e) V (FMe)// //

F (FabY )

V (F (FabY )e)
��

F (FabY ) FM// FM

V (FMe)
��

that if a is in the kernel of the arrow FM // V (FM)e, it also in the kernel of
F (FabY ) // V (F (FabY )e). Now Fn(FabY ) is a finitely generated abelian group.
At this point we need a lemma.

5.7. Lemma. Suppose f :A // B is a homomorphism of abelian groups such
that f is not injective, A is finitely generated and B is torsion free. Then there
is an integer prime p such that the induced map Z/pZ ⊗ A // Z/pZ ⊗ B is not
injective.

Proof. We begin by showing that Z/pZ ⊗ A ∼= A/pA. In fact, let g:Z/pZ × A
// A/pA be defined by g(n, a) = na+ pA. It is easily seen that this is a bilinear

map. If h:Z/pZ × A // C is a bilinear map, let h̃:A/pA // C be defined by

h̃(a+ pA) = h(1, a). Since h(1, pa) = h(p, a) = 0 this is well defined and evidently

a homomorphism such that h̃ ◦ g = g. If l:A/pA // C is a homomorphism such

that l ◦ g = h, then l(a + pA) = l ◦ g(1, a) = h(1, a) = h̃(a + pA) so that h̃ is
unique. Now A is a finitely generated abelian group, hence a direct sum of cyclic
groups. Suppose there is an a ∈ ker f that is not torsion. Write a =

∑
nxx, the

sum taken over a chosen set of generators of the cyclic group. There is some x for
which nx 6= 0 and x is not torsion. Let p be any prime that does not divide nx.
Then a /∈ pA and is in the kernel of the induced map A/pA // B/pB. If not,
then the kernel of f is the torsion subgroup of At ⊆ A. Since At is a direct sum of
cyclic groups, choose a prime that divides one of the orders and then At/pAt 6= 0
and the class of any element a /∈ pAt will do.

This implies that

Zp ⊗ Fn(M) // Zp ⊗ Vn // Zp ⊗ U(F (M)e)

is not monic. But Zp is a field and both ()e and U commute with Zp ⊗−, so that
reduces the question to the case of a field for which e is monic.

This finishes the case of a free module; projectives are readily handled as re-
tracts of free modules.

With this, Theorem 2.1 applies and shows that the cotriple resolution is homo-
topic to the one developed in [Cartan & Eilenberg ].

5.8. Exercise

1. (a) Show that if g1, g2 and g are Lie algebras, there is a one-one correspondence
between Lie algebra homomorphisms f : g1⊕g2

// g and pairs of homomorphisms
(f1, f2) where f1: g1

// g and f2: g2
// g such that for all x1 ∈ g1 and x2 ∈ g2,

[f1x1, f2x2] = 0.
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(b) Show that if A1, A2 and A are associative algebras, there is a one-one
correspondence between algebra homomorphisms f :A1 ⊗ A2

// A and pairs of
homomorphisms (f1, f2) where f1:A1

// A and f2:A2
// A such that for all

x1 ∈ A1 and x2 ∈ A2, f1x1f2x2 = f2x2f2x1.

(c) Conclude that (g1 ⊕ g2)e ∼= ge1 ⊗ ge2 since both represent the same functor.

2. (a) Say that Lie algebra homomorphisms f1: g1
// h and f2: g2

// h
pointwise commute if for any x1 ∈ g1 and x2 ∈ g2, we have [f1(x1), f2(x2)] = 0.
Fix h and define a functor K-Lie×K-Lie // Set that assigns to each pair (g1, g2)
the set of pointwise commuting pairs of homomorphisms to h. Show that this
functor is represented by g1 ⊕ g2, the commuting sum.

(b) Say that associative algebra homomorphisms f :A1
// B and f2:A2

// B pointwise commute if for any x1 ∈ A1 and x2 ∈ A2, we have f(x1)f(x2) =
f(x2)f(x1). Fix B and define a functor K−Assoc×K−Assoc // Set that assigns
to each pair (A1, A2) the set of pointwise commuting homomorphisms to B. Show
that this functor is represented by the algebra A1 ⊗A2.

(c) Use these two facts to show that (g1 ⊕ g2)e ∼= ge1 ⊗ ge2.
All these functors commute with filtered colimits. The left adjoints commute

with all colimits, 1.9.7, and the right adjoints with filtered colimits, 1.12.3. Since the
free Lie algebra is the filtered colimit of Lie algebras that are free on a finite base,
1.12.5, and since a filtered colimit of monics is monic, 1.12.4, it is sufficient M is
free on a finite base. Also, F (M) is the free nonassociative algebra generated by M
modulo the identities of a Lie algebra. The free nonassociative algebra is a graded
algebra whose nth gradation is the sum of as many copies of the nth tensor power

M (n) as there are associations of n elements, which happens to be
1

n+ 1

(
2n
n

)
,

but is, in any case, finite. The identities are the two sided ideal generated by the
homogeneous elements x⊗x and x⊗ (y⊗ z) + z⊗ (x⊗y) +y⊗ (z⊗x). Thus F (M)
is a graded algebra and when M is finitely generated, so is the nth homogeneous
component. Let Fn(M) denote the sum of all the homogeneous components of
F (M) up to the nth. Let N be the kernel of F (M) // U(F (M)e) and Nn =
N ∩ Fn(M). Then Nn is finitely generated. If N 6= 0, then for some n, Nn 6= 0
since N is the union of them. Thus Nn is a non-zero finitely generated abelian
group. Let Vn be the image of Fn(M) // F (M) // U(F (M)e). Then we have
an exact sequence

0 // Nn // Fn(M) // Vn // 0

and the sequence is split since Vn is a subgroup of a free abelian group and is thus
free. It is a standard result that there is some prime p for which Zp ⊗Nn 6= 0.



CHAPTER 7

Other applications in algebra

The previous chapter applied the acyclic models theorems to the homology
and cohomology theories from the book of Cartan and Eilenberg. In order that
a homology theory fit their patter, it must be a Tor, and therefore the higher
homology groups must vanish when the coefficient module is projective (or even
flat). Similarly, the higher cohomology groups must vanish when the coefficient
module is injective. The theories described in this chapter either do not satisfy
that criterion (the Harrison and Shukla theories) or are not (co)homology theories
at all (the Eilenberg–Zilber theorem).

We describe the Harrison theory in detail. It has been heavily applied to the
theory of commutative algebras. See [André, 1967, 1974] and other references found
there. We give only a pointer to the Shukla theory and to the proof that it is a
cotriple cohomology. It is extremely complicated and has not, to my knowledge, had
any applications. The Eilenberg–Zilber theorem has had important applications.
It was also the first occasion, as far as I know, for a proof that uses a method called
acyclic models. The connection between that method and the one used here is long
and tenuous, but real.

1. Commutative Algebras

In 1962, D. K. Harrison defined a cohomology theory for commutative algebras. It
turns out that for an algebra over a field of characteristic 0, Harrison’s groups are
isomorphic to those given by cotriple cohomology. In the process of demonstrating
that, we show that the Hochschild cohomology groups of a commutative ring split
into a direct sum of the commutative cohomology and a natural complement. This
splitting is effected by a series of idempotents in the rational group ring of the
symmetric groups, one in each degree. The nth symmetric group acts on the nth
chain group by permuting its terms and this allows the idempotents to act as
well. Since the series of idempotents commute with the boundary, they also induce
splittings on the homology groups and the commutative cohomology turns out to
be one of the two summands. M. Gerstenhaber and D. Schack showed that this
splitting is just the first step in a splitting of the nth Hochschild cohomology groups
into the direct sum of n pieces, one of which is the commutative cohomology. This
“Hodge decomposition” has been the subject of intensive study by Gerstenhaber
and Schack and others. The “shuffle idempotents” in the rational group ring of
the symmetric groups have found other uses, including even in the study of card
shuffling (see [Bayer and Diaconis, 1992]).

136
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1.1. The Hochschild cohomology of a commutative algebra. In this chap-
ter, we will, for the time being adhere to the original numbering that shifts the
cohomology one dimension from the cotriple cohomology. The reason we do this is
that a number of formulas are considerably more natural in that numbering. The
shuffle product, described below, is much easier to define and show compatible with
the boundary operator.

With the ring K fixed, we write ⊗ for ⊗K and B⊗n for the nth tensor power of a
K-module B. The Hochschild (co)homology groups of a K-algebra homomorphism
p:B // A are calculated from a resolution that has CAn (B) = Ae ⊗ B⊗n in
degree n and the boundary operator described in 6, Equation (16). For a right
Ae-module N the homology H•(B,N) is computed as the homology of the chain
complex CA• (B) ⊗Ae N and for a left Ae-module M the cohomology H•(B,M) is
the cohomology of the cochain complex HomAe(CA• (B),M). Note that

CA• (B)⊗Ae M = Ae ⊗B⊗n ⊗Ae M ∼= B⊗n ⊗M
and

HomAe(CA• (B),M) = HomAe(Ae ⊗B⊗n,M) ∼= Hom(B⊗n,M)

The module structure is needed only for defining the boundary and coboundary
operators. The Harrison (co)homology is defined in the case that A and B are
commutative and the coefficient module M has the same action on the left and
right. In that case we can replace the Hochschild complex by the complex defined
by CAn (B) = A⊗Bn and then compute the homology of CAn (B)⊗AM and the co-
homology of HomA(CAn (B),M). The boundary operator will be somewhat different
too, being given by

∂(a⊗ b1 ⊗ · · · ⊗ bn) = ap(b1)⊗ b2 ⊗ · · · ⊗ bn

+

n−1∑
i=1

(−1)ia⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn

+ (−1)np(bn)a⊗ b1 ⊗ · · · ⊗ bn−1

taking advantage of the same action on the right and left.

1.2. Some notation. With p:B // A fixed, we will write Cn for CAn (B). We
will denote the element a⊗ b1⊗ · · · ⊗ bn ∈ Cn by a[b1, . . . , bn] or simply [b1, . . . , bn]
when a = 1. The element a ∈ A in degree 0 will also be written as a[ ] or simply
[ ] when a = 1. This notation also makes use of the usual practice of ignoring
associations of tensors by making the identification

[b1, . . . , bi−1, [bi, . . . , bj ], bj+1, . . . , bn] = [b1, . . . , bi−1, bi, . . . , bj , bj+1, . . . , bn]

If we write b for [b1, . . . , bn], as we often do, we will let b@, b@@, denote [b2, · · · , bn],
[b3, · · · , bn], etc., including [b1]@ = [ ].

The boundary operator can then be described as the as the A-linear map for
which

∂[b1, . . . , bn] = p(b1)[b2, . . . , bn] +

n−1∑
i=1

(−1)i[b1, . . . , bibi+1, . . . , bn]

+ (−1)np(bn)[b0, . . . , bn−1]
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1.3. Shuffle products. The shuffle product ∗ is a graded product defined on
Cn as the A-bilinear map defined recursively by [ ] ∗b = b = b ∗ [ ] and for all n ≥ 1
and for all b ∈ Cn and c ∈ Cm,

b ∗ c = [b1,b
@ ∗ c] + (−1)n[c1,b ∗ c@]

Except for the sign, this is just all the permutations of the terms in b and in c that
leave those of b and those of c in their original relative order, just like the riffle (or
dovetail) shuffle. The inductive definition can be understood as follows. In order
to shuffle a pack of n cards with one of m, you do nothing if n = 0 or m = 0. If
they are both non-zero, take a card off one of the two piles, shuffle the remaining
piles and then replace the missing card on top. The sign is just the ordinary sign
of the permutation.

1.4. Theorem. For any b = [b1, · · · , bn] ∈ Cn and c = [c1, · · · , cm] ∈ Cm,
∂(b ∗ c) = (∂b) ∗ c + (−1)nb ∗ (∂c).

The proof is fairly complicated and uses several lemmas. We introduce some
auxiliary operators. We will say that an operator that satisfies this equation is a
derivation with respect to ∗ or a ∗-derivation. We define recursively

b ∗̃ c =

{
0 if n = 0 or m = 0
[b1c1,b@ ∗ c@] otherwise

(♠)

We let ∂0 denotes the first face operator given by

∂0b = p(b1)b@

and we define ∂̃ by

∂̃b =

n−1∑
i=1

(−1)i−1[b1, · · · , bibi+1, · · · , bn]− (−1)np(bn)[b1, · · · , bn−1]

so that ∂ = ∂0 − ∂̃.

1.5. Lemma. ∂0(b ∗ c) = (∂0b) ∗ c + (−1)nb ∗ (∂0c).

Proof. We have

∂0(b ∗ c) = ∂0
(
[b1,b

@ ∗ c]
)

+ (−1)n∂0([c1,b ∗ c@])

= p(b1)(b@ ∗ c) + (−1)np(c1)(b ∗ c@) = (∂0b) ∗ c + (−1)nb ∗ (∂0c)

1.6. Lemma. Suppose for some n ≥ 0 and m ≥ 0, we know that for all b ∈ Cn and

all c ∈ Cm, ∂(b∗c) = (∂b)∗c+(−1)nb∗(∂c). Then ∂̃(b∗c) = (∂̃b)∗c+(−1)nb∗(∂̃c)

Proof. This is immediate since ∂0 is a ∗-derivation and if ∂ is, so is ∂̃ = ∂0 − ∂.

1.7. Lemma. Suppose for some n ≥ 0 and m ≥ 0, we know that for all b ∈ Cn
and all c ∈ Cm, ∂(b ∗ c) = (∂b) ∗ c + (−1)nb ∗ (∂c). Then for all b ∈ Cn+1 and

c ∈ Cm+1, we have ∂̃(b ∗̃ c) = (∂̃b) ∗̃ c + (−1)nb ∗̃ (∂̃c).

Proof. Write ∂1 for the first face operator, namely

∂1[b1, . . . , bn+1] = [b1b2, . . . , bn+1]
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A computation shows that ∂̃b = ∂1b − [b1, ∂̃b@], where the ∂̃ on the right hand
side is that of one lower dimension. Then

∂̃(b ∗̃ c) = ∂̃[b1c1,b
@ ∗ c@]

= ∂1[b1c1,b
@ ∗ c@]− [b1c1, ∂̃(b@ ∗ c@)]

= ∂1
(
[b1c1, b2,b

@@ ∗ c@] + (−1)n[b1c1, c2,b
@ ∗ c@@]

)
−
(

[b1c1, (∂̃b
@) ∗ c@] + (−1)n[b1c1,b

@ ∗ (∂̃c@)]
)

= [b1b2c1,b
@@ ∗ c@]− [b1c1, (∂̃b

@) ∗ c@]

+ (−1)n
(

[b1c1c2,b
@ ∗ c@@]− [b1c1,b

@ ∗ (∂̃c@)]
)

On the other hand,

(∂̃b) ∗̃ c = (∂1b− [b1, ∂̃b
@]) ∗̃ c = ∂1b ∗̃ c− [b1, ∂̃b

@] ∗̃ c

= [b1b2,b
@@] ∗̃ [c1, c

@]− [b1, ∂̃b
@] ∗̃ [c1, c

@]

= [b1b2c1,b
@@ ∗ c@]− [b1c1, (∂̃b

@) ∗ c@]

and similarly,

b ∗̃ (∂̃c) = [b1c1c2,b
@ ∗ c@@]− [b1c1,b

@ ∗ (∂̃c@)]

1.8. Lemma. For b ∈ Cn, we have b ∗ c = b ∗̃ [1, c] + (−1)n[1,b] ∗̃ c.

Proof. For b = [b1, . . . , bn] ∈ Cn] and c = [c1, . . . , cm] ∈ Cm,

b ∗̃ [1, c] + (−1)n[1,b] ∗̃ c = [b1,b
@] ∗̃ [1,b] + (−1)n[1,b] ∗̃ [c1, c

@]

= [b1,b
@ ∗ c] + (−1)n[c1,b ∗ c@] = b ∗ c

We are now ready to prove the theorem. The case n = m = 1 is an immediate
computation. We will suppose that the conclusion is valid for all pairs of indices
whose sum is smaller than n+m. It follows from Lemma 1.7 that if b ∈ Ci, c ∈ Cj
and i+ j < m+ n+ 2, then

∂̃(b ∗̃ c) = (∂̃b) ∗̃ c + (−1)i−1b ∗̃ (∂̃c) (♣)

Since ∂0 is a derivation with respect to ∗, it is sufficient to show that ∂̃ is. For
b ∈ Ci and c ∈ Cj , we apply 1.8 to ∂(b ∗ c):

∂̃(b ∗ c) = ∂̃(b ∗̃ [1, c]) + (−1)i∂̃([1,b] ∗̃ c)

If we apply (♣) to the first term and make the obvious expansion of the second, we
get

(∂̃b) ∗̃ [1, c] + (−1)i−1b ∗̃ (∂̃[1, c]) + (−1)i∂̃[1,b] ∗̃ c + [1,b] ∗̃ ∂̃c
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Since ∂̃[1,b] = b− [1, ∂̃b] and similarly for c, this last expands and then cancels to

(∂̃b) ∗̃ [1, c] + (−1)i−1b ∗̃ c + (−1)ib ∗̃ [1, ∂̃c]

+ (−1)ib ∗̃ c + (−1)i+1[1, ∂̃b] ∗̃ c + [1,b] ∗̃ (∂̃c)

= (∂̃b) ∗̃ [1, c] + (−1)i−1[1, ∂̃b] ∗̃ c + (−1)i
(
b ∗̃ [1, ∂̃c] + (−1)i[1,b] ∗̃ (∂̃c)

)
But from (♠), this is nothing but

(∂̃b) ∗ c + (−1)ib ∗ (∂̃c)

1.9. The shuffle idempotent. At this point, we define the Harrison complex of
p:B // A as follows. Let SA• (B) be the subspace of C• consisting of all shuffles of
elements of positive degrees. Then the Harrison complex is C•/S•. For convenience
we will denote this quotient CHa

• (B), suppressing mention of A.

1.10. Theorem. Suppose K is a field of characteristic 0. Then the projection
φ:C•(B) // CHa

• (B) is a split epimorphism and the splitting maps are natural
chain transformations.

Proof. It is clear that Cn is acted on by the symmetric group Sn by

σ−1[b1, . . . , bn] = [bσ1, . . . , bσn]

When K is a field of characteristic 0 (although it would suffice that K be a commu-
tative ring containing Q), Cn becomes a module over the group algebra Q[Sn]. We
will be finding appropriate idempotents in the group algebra to give the splitting. If
e =

∑
λσσ is an element of the group algebra, we let sgn(e) =

∑
λσ sgn(σ), where

sgn is the usual signum function. If we denote by εn the element 1
n!

∑
σ∈Sn

sgn(σ)σ,

then it is clear that for any e ∈ Sn, eεn = εne = sgn(e)εn. The same equation will
be true with e replaced by any element of the group. Since, sgn(εn) = 1, it also
follows that εn is idempotent.

For the purposes of the next discussion, we will understand the generic chain
in Cn, or the generic n-chain, to be the chain [x1, . . . , xn] in the polynomial ring
B = K[x1, . . . , xn]. An equation is true of the generic chain if and only if it is true
for an arbitrary chain in an arbitrary algebra.

1.11. Proposition. Let x be the generic chain in Cn. Then ∂εnx = 0. If e ∈ Q[Sn]
has the property that ∂ex = 0, then e is a multiple of εn, namely e = sgn(e)εn = eεn.
In particular, if eεn = 0 as well, then e = 0.

Proof. Let us calculate n!∂εnx to avoid fractions. For any σ ∈ Sn, there are two
terms of the form xσ1[xσ2, · · · , xσn], namely the first term of the boundary of σ−1x
and the last term of the boundary of (σζ)−1x, where ζ = ( 1 2 · · · n ) is the
cyclic permutation. In the first instance, it appears with the coefficient sgn(σ)
and in the second with the coefficient (−1)n sgn(σ) sgn(ζ) = − sgn(σ) and so they
cancel. In a similar way, the term [xσ1, · · · , xσixσ(i+1), · · · , xσn] appears twice, but

with opposite sign, once as the ith term in the boundary of σ−1x and once as the
ith term of the boundary of (( i i+ 1 )σ)−1x. Thus all terms cancel.

For the converse, let e =
∑
λσσ. In the polynomial ring Q[x1, . . . , xn] we can

carry out the same analysis to ex to conclude that if ex = 0, then for all trans-
positions τ = ( i i+ 1 ), we have λσ = −λστ . Since the adjacent transpositions
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generate Sn, it follows that λσ = sgn(σ)λ1. The remaining statements are now
evident.

1.12. Corollary. Let x be the generic n-chain and u, v ∈ Q[Sn]. Then u = v if
and only if ∂ux = ∂vx and εnu = εnv.

This corollary is what allows us to apply induction to get the splitting we seek.
Let us write sij for the operator on Ci+j defined by

sijx = [x1, · · · , xi] ∗ [xi+1, · · · , xi+j ]
If we let ∂i:Ci // Ci−1 denote the ith boundary operator, then the results of
Theorem 1.4 can be summarized by the equation

∂i+j ◦ sij = si−1 j ◦ (∂i ⊗ 1) + (−1)isi j−1 ◦ (1⊗ ∂j)
Note that ∂1 is identically 0 on a symmetric module, so that the first term vanishes
when i = 1 and the second term does when j = 1.

1.13. Proposition. When 0 < m < n, ∂n = ∂m+1 ⊗ 1 + (−1)m(1⊗ ∂n−m).

Proof. We calculate that

(∂m+1 ⊗ 1)x = (∂[x1, · · · , xm+1])⊗ [xm+2, · · · , xn]

= p(x1)[x2, · · · , xn] +

m∑
i=1

(−1)i[x1, · · · , xixi+1, · · · , xn]

+ (−1)m+1p(xm+1)[x1, · · · , xm, xm+2, · · · , xn]

while

(−1)m(1⊗ ∂n−m)x = [x1, · · · , xm]⊗ (∂[xm+1, · · · , xn])

= (−1)mp(xm+1)[x1, · · · , xm, xm+2, · · · , xn]

+

n−1∑
i=m+1

(−1)i[x1, · · · , xixi+1, · · · , xn]

+ (−1)nxn[x1, · · · , xn−1]

and the sum of these two sums is evidently ∂x.

We now define sn:Cn // Cn as
∑n−1
i=1 si n−i.

1.14. Proposition. ∂ ◦ sn = sn−1 ◦ ∂.
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Proof. We have

∂n ◦ sn =

n−1∑
i=1

∂n ◦ si n−1

=

n−1∑
i=2

si−1n−i ◦ (∂i ⊗ 1) + (−1)i
n−2∑
i=1

si n−1−i ◦ (1⊗ ∂n−i−1)

=

n−2∑
i=1

si n−1−i ◦ (∂i+1 ⊗ 1) + (−1)i
n−2∑
i=1

si n−1−i ◦ (1⊗ ∂n−i−1)

=

n−2∑
i=1

si n−1−i ◦ (∂i+1 ⊗ 1 + (−1)i(1⊗ ∂n−i−1))

=

n−2∑
i=1

si n−1−i ◦ ∂n = sn−1 ◦ ∂

1.15. Theorem. There is a sequence of elements e2 ∈ Q[S2], . . . , en ∈ Q[Sn],
. . . , with the following properties:

(a) en is a polynomial in sn without constant term;
(b) sgn en = 1;
(c) ∂ ◦ en = en−1 ◦ ∂;
(d) e2

n = en;
(e) ensi n−i = si n−1, for 0 < i < n.

Proof. One easily proves, using induction, that sgn(sij) is the binomial coefficient(
i+ j

i

)
. It follows that sgn(sn) is the sum of all the binomial coefficients except

the first and last, so that sgn(sn) = 2n − 2. Let e2 = ε2 = 1
2s2. Assuming that we

have found e2, e3, . . . , en−1, satisfying the conditions above, let p be a polynomial
such that p(sn−1) = en−1. Define

en = p(sn) + (1− p(sn))
sn

sgn sn

It is obvious that (a) is satisfied and (b) is an immediate calculation. Since ∂ ◦sn =
sn−1 ◦ ∂, it is immediate that ∂ ◦ p(sn) = p(sn−1) ◦ ∂ and then we have

∂ ◦ en = ∂ ◦ p(sn) + ∂ ◦ (1− p(sn))
sn

sgn sn

= p(sn−1) ◦ ∂ + (1− p(sn−1))
sn−1 ◦ ∂

sgn sn

= en−1 ◦ ∂ + (1− en−1)
sn−1 ◦ ∂

sgn sn

= en−1 ◦ ∂ +
(sn−1 − en−1sn−1) ◦ ∂

sgn sn

= en−1 ◦ ∂
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From ∂ ◦ e2
n = e2

n−1 ◦∂ = en−1 ◦∂ = ∂ ◦ en together with sgn(e2
n) = 1 = sgn(en),

we conclude from Proposition 1.11 that en is idempotent.
Finally, we calculate that

∂ ◦ en ◦ si n−i = en−1 ◦ ∂ ◦ si n−i

= en−1 ◦ (si−1 ◦ (∂i ⊗ 1) + (−1)isi,n−1−i ◦ (1⊗ ∂n−i))

= si−1 ◦ (∂i ⊗ 1) + (−1)isi,n−1−i ◦ (1⊗ ∂n−i) = sn−1 ◦ ∂

In addition, εnensi n−i = εnsi n−i so we conclude from Proposition 1.11 that
ensi n−i = si n−i.

From (a) it follows that im en ⊆ im sn, while from (e) and the definition of sn,
we see that im si n−i ⊆ im en for i = 1, . . . , n− 1, so that

im en ⊆ im sn ⊆
n−1∑
i=1

im si n−i ⊆ im en

and thus the image of en is exactly the shuffles. Since en is idempotent, this image
along with the quotient modulo it is split and, from (c), the splitting is compatible
with the boundary operator and so we have split the chain (as well as cochain)
complexes, as seen in the following.

1.16. Corollary. In characteristic 0, the Harrison chain complex is a direct sum-
mand of the Hochschild chain complex, being the chains that are annihilated by en.

We call en the nth shuffle idempotent since it characterizes sums of shuffles as
though permutations it preserves. Gerstenhaber and Schack have made remarkable
use of it as the first idempotent of their “Hodge decomposition” of the Hochschild
cohomology groups of a commutative algebra, which we briefly describe.

We begin with the observation that e2 = ε2, which we call e22. If we let
e21 = 1 − e2, we have 1 = e21 + e22 is a sum of orthogonal idempotents, one of
which is the shuffle idempotent. The idempotent e3 can be written as e3 = e32+e33,
where e32 = e3− ε3 and e33 = ε3 are orthogonal idempotents. If we let e31 = 1−e3,
then we have 1 = e31 + e32 + e33 and e3 = e32 + e33. Moreover, ∂ ◦ e31 = e21 ◦ ∂,
∂ ◦e32 = e22 ◦∂ and ∂ ◦e33 = 0. For general n, they make clever use of Corollary 1.12
to show inductively that the characteristic polynomial of sn acting on the subring
of Q[sn] ⊆ Q[Sn] generated by sn is

µn(t) = t(t− 2)(t− 6) · · · (t− (2n − 2)) = (t− (2n − 2))µn−1(t)

Since the eigenvalues are distinct, it follows that Q[sn] is a direct sum of one
dimensional ideals generated by idempotents eni, which generates the kernel of
sn − (2i − 2). The idempotent corresponding to 2n − 2 is εn and it is not hard to
prove, using 1.12 once more, that ∂ ◦ eni = en−1 i for i < n and ∂ ◦ enn = 0. It is
also not hard to show that

en = 1− en1 = en2 + · · ·+ enn

These idempotents divides the nth Hochschild chain group into a direct sum of n
pieces and, being compatible with the boundary, do the same for the homology and
cohomology groups. The commutative cohomology is the first piece. The remaining
pieces are not well understood, but the whole process is reminiscent of the Hodge
decomposition of the (co-)homology of a manifold.
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1.17. Harrison cohomology of polynomial rings. Free commutative alge-
bras are polynomial algebras. We want to use the splitting of the Hochschild
cohomology to show that the Harrison cohomology of polynomial algebras vanishes
in characteristic 0, which is a necessary condition for the Harrison cohomology be-
ing isomorphic to the cohomology derived from the free algebra resolution. In light
of the acyclic models theorem, it is close to being sufficient. The basic idea is to be-
gin by analyzing the Hochschild cohomology and showing that all the cohomology
classes are represented by cochains that are in the image of sn. We will do this for
polynomial rings in a finite number of indeterminates by a counting argument and
then use a direct limit construction for the general case. Let B = K[x1, · · · , xn] be
a polynomial ring in n variables. We will be treating K as a B-module in which
the variables annihilate K. We begin with a preliminary result. In the statement,
we form the tensor product (over K) of the ring B with D-modules M and N . It
is understood that the resultant objects are B ⊗ D-modules in the obvious way,
which is to say that (b⊗ d)(b′ ⊗m) = bb′ ⊗ dm.

1.18. Proposition. Let B and D be algebras over the commutative ring K with
B being K-flat. Then for any right D-module M and left D-module N , we have
TorB⊗D• (B ⊗M,B ⊗N) ∼= B ⊗ TorD• (M,N).

Proof. Let P• be an D-projective resolution of N . Then B ⊗ P• is an B ⊗ D
projective resolution of B ⊗ N . It is exact because B is flat. If we apply (B ⊗
M)⊗B⊗D −, we get

(B ⊗M)⊗B⊗D (B ⊗ P•) ∼= B ⊗M ⊗D P•

Since B is K-flat, the functor B ⊗ − is exact, which means it commutes with
homology, so that the homology of the right hand side is B ⊗ TorD• (M,N). The
homology of the left hand side of that isomorphism is, of course,
TorB⊗D• (B ⊗M,B ⊗N).

1.19. Corollary. TorB⊗B(B ⊗K,B ⊗K) ∼= B ⊗ TorB(K,K)

Of course, B ⊗ K ∼= B as an abelian group (and K-module) but not as an
B-module. The reason is that on B ⊗K the variables in the second copy of B act
trivially, which is not true in B. We have, however, the following.

1.20. Proposition. In the category of all modules (see 1.11), (B ⊗ B,B) ∼=
(B ⊗B,B ⊗K).

Proof. The ring B ⊗B is a polynomial ring in 2n indeterminates x1 ⊗ 1, . . . , xn ⊗
1, 1 ⊗ x1, . . . , 1 ⊗ xn. The action on B is that both xi ⊗ 1 and 1 ⊗ xi act as
multiplication by xi. The action on B⊗K ∼= B is that xi⊗1 acts as multiplication
by xi, but 1⊗xi acts trivially. We now define (φ, f): (B⊗B,B) // (B⊗B,B⊗K)
by φ(xi ⊗ 1) = xi ⊗ 1, φ(1⊗ xi) = xi ⊗ 1− 1⊗ xi and f(r) = r ⊗ 1. Then

φ(xi ⊗ 1)f(r) = (xi ⊗ 1)(r ⊗ 1) = xir ⊗ 1 = f(xir) = f((xi ⊗ 1)r)

and

φ(1⊗ xi)f(r) = (xi ⊗ 1− 1⊗ xi)(r ⊗ 1) = xir ⊗ 1 = f(xir) = f((1⊗ xi)r)
which shows that (φ, f) is a morphism in the category of modules. The inverse is
given by (γ, g) where γ(xi⊗1) = xi⊗1, γ(1⊗xi) = xi⊗1+1⊗xi and g(r⊗a = ar).
These maps are readily seen to be inverse to each other.
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1.21. Proposition. TorB⊗B(B,B) ∼= B ⊗ TorB(K,K) as K-modules.

Proof. If I is a set, denote by I ·B the direct sum of I copies of B. There is a free
resolution of K of the form

· · · // In ·B // In−1 ·B // · · · // I1 ·B // I0 ·B
By using 1.11.1, we have a long sequence augmented over B⊗K using the same (or
isomorphic) objects. Exactness is a property of sequences of abelian groups so the
isomorphic sequence is also exact. The result will follow from the next proposition.

1.22. Proposition. Tensor product is defined as a functor

B−Rmod×Ring B−Lmod // Ab

Proof. The domain category has as objects all pairs ((B,M), (B,M ′)) where M is
a right B-module and M ′ is a left B-module. An arrow is a 3-tuple

(φ, f, f ′): ((B,M), (B,M ′)) // ((D,N), (D,N ′))

such that (φ, f) is an arrow of B-Rmod and (φ, f ′) is an arrow of Lmod. On objects
we define (B,M)⊗ (B,M ′) = M ⊗B M ′. Suppose that

(φ, f, f ′): ((B,M), (B,M ′)) // ((D,N), (D,N ′))

is an arrow. Then the composite g:M ×M ′
f × f ′ // N ×N ′ // N ⊗D N ′ has

to be shown to be middle bilinear. It is evidently biadditive since f and f ′ are
additive. For the middle exchange, we have

g(mr,m′) = f(mr)⊗ f ′(m′) = f(m)φ(r)⊗ f ′(m′)

= f(m)⊗ φ(r)f ′(m′) = f(m)⊗ f ′(rm′) = g(m, rm′)

1.23. Proposition. Let B be as above. Then TorBm(K,K) is a free B-module of

dimension
( n
m

)
.

Proof. We will prove this by induction on the number of variables. When n = 0, it
is obvious. From the inductive definition of the binomial coefficients, it will follow
immediately from,

1.24. Proposition. For any ring B, right B-module M and left B-module N ,

we have M ⊗B[x] N ∼= M ⊗B N and for n > 0, TorB[x]
n (M,N) ∼= TorBn (M,N) ⊕

TorBn−1(M,N).

Proof. There is an exact sequence of B[x]-modules

0 // B[x]
x // B[x] // B // 0
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whose first three terms constitute an B[x]-projective resolution of B. Let P• be an
B-projective resolution of N . Then in the double complex

· · · Pn// Pn Pn−1
//Pn

0
��

Pn−1

0
��

B[x]⊗ Pn B[x]⊗ Pn−1
//· · · B[x]⊗ Pn//

· · · B[x]⊗ Pn// B[x]⊗ Pn B[x]⊗ Pn−1
//B[x]⊗ Pn

0

��
B[x]⊗ Pn−1

0

��
B[x]⊗ Pn−1

B[x]⊗ Pn−1

��

B[x]⊗ Pn

B[x]⊗ Pn
��

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

B[x]⊗ Pn

Pn
��

B[x]⊗ Pn−1

Pn−1

��
Pn−1 · · ·// · · · P0

// P0

0
��

P0 0//

B[x]⊗ P0 0//· · · B[x]⊗ P0
//B[x]⊗ Pn−1 · · ·//

B[x]⊗ Pn−1 · · ·// · · · B[x]⊗ P0
// B[x]⊗ P0

0

��
B[x]⊗ P0 0//B[x]⊗ P0

B[x]⊗ P0

��

· · ·

· · ·

· · ·

· · ·

B[x]⊗ Pn−1

B[x]⊗ Pn−1

��
B[x]⊗ Pn−1

Pn−1

��

· · ·

· · ·

· · ·

· · ·

B[x]⊗ P0

P0

��

The double complex as a whole is acyclic, from Theorem 3.6.3, since each column is.
It follows that the subcomplex consisting of the top two non-zero rows is homologous
to the bottom row, whose homology is M concentrated in degree 0. Since each term
in that subcomplex is B[x] projective, it follows that those top two rows are an B[x]-
projective resolution of M . Condensing this into a single complex, we have an B[x]
projective resolution of M

· · · // (B[x]⊗ Pn)⊕ (B[x]⊗ Pn−1) // (B[x]⊗ Pn−1)⊕ (B[x]⊗ Pn−2)

// · · · // B[x]⊗ P0
// 0

The boundary operator has matrix(
B[x]⊗ d x⊗ id

0 B[x]⊗ d

)
After applying M ⊗B[x] − we get the complex

· · · //(M ⊗ Pn)⊕ (M ⊗ Pn−1) // (M ⊗ Pn−1)⊕ (M ⊗ Pn−2)

// · · · //M ⊗ P0
// 0

However, since x is the 0 operator on M , the boundary is now(
M ⊗ d 0

0 M ⊗ d

)
Now the conclusion is evident.

1.25. Proposition. Let B be a polynomial ring over K and M be a submodule
of a free B-module such that K ⊗B M = 0. Then M = 0.

Proof. Let J be the ideal generated by the variables. Since

0 // J // B // K // 0

is exact, so is

J ⊗B M // B ⊗B M ∼= M // K ⊗B M // 0
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so that K ⊗B M = 0 implies that JM = M . Therefore M =
⋂
i J

iM , which
is impossible for a free module or any non-zero submodule since

⋂∞
i=1 J

iM ⊆⋂∞
i=1 J

iF = 0.

1.26. Proposition. In Cm(B)⊗B K, there is a K-subspace of dimension
( n
m

)
consisting of cocycles, that is independent modulo boundaries and on which sm acts
as the identity.

Proof. For each subset i1 < i2 < · · · < im of {1, . . . , n}, let 〈xi1 , . . . , xim〉 denote

εm[xi1 , . . . , xim ]. These are clearly linearly independent and there exactly
( n
m

)
of

them. It follows from d ◦ εm = 0 that these are cycles and from sm ◦ εm = εm that
sm acts as the identity.

Let Bm(B) ⊗B K denote the group of boundaries. Now Cm(B) ⊗B K is free
on all forms b = [b1, . . . , bm], where b1, . . . , bm are monomials, so that Bm(B) is
generated by all d[b1, . . . , bm]. If for some i, bi = 1 while bi−1 6= 1 6= bi+1, then
d i−1b = d ib so that those terms cancel. If there are two or more consecutive 1s,
then every term of db has a 1. If b1 6= 1, then d0b = 0 because all variables
annihilate K and similarly for dm. Finally, if bi−1 6= 1 6= bi, then the i− 1st term
of d ib has degree greater than 1. Thus no term of db has a single term consisting
of monomials of degree exactly 1. But every 〈xi1 , . . . , xim〉 has exactly that form.

1.27. Corollary. CHa
• (B)⊗B K = 0 is exact.

Proof. For we have the exact sequence

0 // CHa
• (B)⊗BK // C•(B)⊗BK // snC•(B)⊗B K // 0

and we have just seen that the second map induces an isomorphism of homology.

1.28. Proposition. H(CHa
• (B)⊗BK) ∼= H(CHa

• (B))⊗BK .

Proof. We know from 1.23 that the homology of the Hochschild complex consists
of B projectives. These facts are still true for the Harrison subcomplex, because
that is a retract. Thus it is sufficient to show,

1.29. Lemma. Suppose C• // 0 is a chain complex of B-projectives whose
homology also consists of B projectives. Then for any B-module M , H(C•⊗BM) ∼=
H(C•)⊗B M .

Proof. Suppose the starting degree of C• is 0, that is that Cn = 0 for n < 0. Let
Bi, Zi and Hi denote the ith boundary, cycle and homology groups. We have exact
sequences

0 // Zi // Ci // Bi−1
// 0

0 // Bi // Zi // Hi
// 0

Since B−1 = 0, it follows that Z0 = C0 is projective. But then Z0 and H0 are
projective and therefore B0 is. Continuing in this way, we see inductively that each
Zi and Bi is projective. But then the sequences

0 // Zi ⊗B M // Ci ⊗B M // Bi−1 ⊗B M // 0

0 // Bi ⊗B M // Zi ⊗B M // Hi ⊗B M // 0

are exact from which it follows that the homology of C• ⊗B M is H• ⊗B M .
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1.30. Corollary. A polynomial ring in a finite number of indeterminates has
trivial Harrison homology and cohomology.

Proof. Just put together the preceding with Corollary 1.27 and Proposition 1.25.

1.31. Theorem. The Harrison homology and cohomology of a polynomial ring is
trivial.

Proof. For a polynomial ring in finitely many indeterminates, we have seen this
already. Any cycle in the Harrison chain complex of an arbitrary polynomial ring
involves only a finitely many indeterminates and so is a cycle in the chain group of
a finite polynomial algebra and hence a boundary. Thus the chain complex is exact.
When B is a polynomial ring, the module of differentials is B-projective and so the
chain complex augmented over Diff(B) is contractible, whence the cohomology is
also trivial.

1.32. Corollary. For algebras over a field of characteristic 0, the Harrison ho-
mology and cohomology theories are weakly equivalent to the cotriple homology and
cohomology.

Proof. On each ring there is a map of the complexes that is a homotopy equivalence.
Thus we can use the acyclic models by taking Γ to be the weakly contractible
complexes. This gives us weak homotopy equivalences between the Harrison and
cotriple cohomology theories. We have not constructed, nor do we know how to
construct, a natural homotopy inverse.

1.33. An example in finite characteristic. Let K be a field of characteristic
p 6= 0. We will show that there is a non-trivial Harrison cohomology class in degrees
2pm for any m > 0. In particular, H4

Ha(B,B) 6= 0 when K has characteristic 2.
We begin by counting the number of even less the number of odd permutations

in sij . Call this number qij . It is apparent from the inductive definition of sij that

qij = qji

qi1 =
{

1 if i is even
0 if i is odd

qij =

{
qi−1 j + qi j−1 if i is even
qi−1 j − qi j−1 if i is odd

from which we can show by induction that

qij =


0 if i and j are both odd(

[i/2] + [j/2]

[i/2]

)
otherwise

From this and standard properties of binomial coefficients, we see that when i+j =
n = 2pm, then for all 0 < i < n, p divides n. Now define a cochain f of degree n
on K[x] with coefficients in K by

f [xi1 , . . . , xin ] =
{

1 if i1 = · · · = in = 1
0 otherwise

Then fsi n−i[x, . . . , x] = qi,n−if [x, . . . , x] = 0 for 0 < i < n from which it follows
that fsn[x, · · · , x] = 0 and since en is a polynomial without constant in sn, it follows
that fen[x, . . . , x] = 0 and, since f vanishes on all other terms, that fen = 0 and
therefore f is a Harrison cochain. On the other hand, it is trivially seen to be a
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cocycle and, from the previous analysis, the linear space generated by this cycle
does not meet the coboundaries except in 0.

1.34. n! suffices. Although there is no known application for this fact, it is at
least of minor interest that in the construction of the idempotent en ∈ Q[Sn], the
denominator is only n! instead of the

∏n
i=1(2i − 2) that appears in the construction.

Thus, for example, e4, e5 and e6 are definable over a field of characteristic 7, even
though 7|24 − 2.

Let B = Q[x1, x2, . . .] be the polynomial ring in countably many variables and
let x be the chain [x1, x2, . . . , xn] ∈ Cn(B). Also write Cn for Cn(B).

A most important observation is that if c ∈ Q[Sn] is such that ∂cx ∈ Z[Sn−1Cn−1],
then there is an a ∈ Q such that c − aεn ∈ Z[Sn]. The proof of this assertion is es-
sentially the same as the proof that if ∂cx = 0, then c is a multiple of εn. In the
computation of ∂cx each term appears twice one from a term of the form rσσx and
once from rττx where σ = ( i i+ 1 ) τ and the only way that they can contribute
an integer to the sum is if rσ − rτ is an integer. Let bσ be the fractional part of rσ.
Then bσ − bτ is an integer which must be 0. This is true whenever σ and τ differ by
an adjacent transposition. But the adjacent transpositions generate Sn.

From this we conclude that if ∂cx ∈ Z[Sn−1]Cn−1 and cεn is an integer multiple
of εn, then c ∈ Z[Sn]. In fact, if we write c = c′ + aεn with c′ ∈ Z[Sn], then
cεn = c′εn + aεn. Since c′ has integer coefficients, c′εn clearly is an integer multiple
of εn and if cεn is too, then a must be an integer.

Now suppose that p ∈ Q[t] is a polynomial such that p(sn−1) has integer coeffi-
cients. (We do not assume that p has integer coefficients.) Then ∂p(sn)x = p(sn−1)∂x
has integer coefficients. Moreover, p(sn)εn = p(snεn) = p((2n − 2)εn) = p(2n − 2)εn.

We apply this to the polynomial p(t) = (n− 1)!pn−1,i(t) where

pn−1 i(t) =
(t− λ1) . . . (t− λi−1)(t− λi+1) . . . (t− λn−1)

(λi − λ1) . . . (λi − λi−1)(λi − λi+1) . . . (λi − λn−1)

Here λi = 2i − 2 à la Gerstenhaber and Schack. I claim that

pn−1 i(λn) =
(λn − λ1) . . . (λn − λi−1)(λn − λi+1) . . . (λn − λn−1)

(λi − λ1) . . . (λi − λi−1)(λi − λi+1) . . . (λi − λn−1)

is an integer (even without the (n− 1)! factor). We break it up into two factors. The
second is

(2n − 2i+1) . . . (2n − 2n−1)

(2i − 2i+1) . . . (2i − 2n−1)

which after reversing the numerator is, up to a sign

(2n − 2i+1) . . . (2n − 2n−1)

(2n−1 − 2i) . . . (2i+1 − 2i)
= 2 · 4 · · · 2n−i−1

(Note that i ≤ n− 1.) The first factor is

(2n − 2) . . . (2n − 2i−1)

(2i − 2) . . . (2i − 2i−1)

This numerator and denominator in this fraction are clearly divisible by the same
factor of 2. For the rest, we work modulo powers of two in the multiplicative group
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of positive rationals. We have

(2n − 2) · · · (2n − 2i−1)

(2i − 2) · · · (2i − 2i−1)
=

(2n−1 − 1) · · · (2n−1 − 2i−2)

(2i−1 − 1) · · · (2i−1 − 2i−2)

=
(2n−1 − 1) · · · (2n−1 − 2i−2)(2n−1 − 2i−1)(2n−1 − 2n−2)

(2i−1 − 1) · · · (2i−1 − 2i−2)(2n−1 − 2i−1)(2n−1 − 2n−2)

=
(2n−1 − 1) · · · (2n−1 − 2i−2)(2n−1 − 2i−1) · · · (2n−1 − 2n−2)

(2i−1 − 1) · · · (2i−1 − 2i−2)(2n−i − 1) · · · (2n−i − 2n−i−1)

=
f(n− 1)

f(i− 1)f(n− i)

where f(k) = (2k − 1)(2k − 2) · · · (2k − 2k−1). One way of seeing that f(k+l)
f(k)f(l)

is

always an integer, is to begin by showing that f(k) is the order of GLk(2). For
in choosing an invertible kxk matrix we must first choose a non-zero vector in k
dimensional space, of which there are exactly 2k−1 choices. Having chosen one such
vector, the second row is any vector not a multiple of the first row, of which there
are 2k − 2 choices. The first two rows span a space of four vectors and any vector
not in that space is an admissible third row, thus there are 2k − 4 choices and so
on. Now we can embed GLk(2) and GLl(2) into GLk+l(2) as the automorphisms of
some k dimensional subspace and some complementary l dimensional subspace of an
m dimensional space. These subgroups are disjoint and commute pointwise so that
their product is a subgroup of order f(k)f(l) and the index is the number we seek.

The conclusion is that (n− 1)!pn−1 i(sn) is an integer. Now suppose that p(t) is
a polynomial such that p(sn−1) is idempotent and such that p(sn)εn = aεn. Then I
claim that a is the unique number such that p(sn)−aεn is an idempotent orthogonal
to εn. In fact, from the fact that p(sn−1) is idempotent, it is immediate that p(sn)2−
p(sn) is a multiple of εn and clearly the coefficient is a2 − a. Then (p(sn)− aεn)2 =
p(sn)2 − 2ap(sn)εn + a2εn = p(sn) + (a2 − a)εn − 2a2εn + a2εn = p(sn) − aεn.
The uniqueness is clear. It follows from the preceding analysis that pni = pn−1 i −
pn−1 i(2

n − 2)εn and the first term uses only (n − 1)! in the denominator, while the
second uses n!.

1.35. Exercise

1. The purpose of this exercise is to sketch another proof that when A =

K[x1, . . . , xn], then TorAm(K,K) is a vector space of dimension
( n
m

)
. Let Am

denote the free A-module generated by all sequences [xj1 , . . . , xjm ] such that
j1 < j2 < · · · < xjm . The module A0 = A is thought of as generated by an
empty bracket. Define ∂:Am // Am−1 to be the A-linear map such that

∂[xj1 , . . . , xjm ] =

m∑
i=1

(−1)ixji [xj1 , . . . , x̂ji , . . . , xjm ]

Also define ∂:A0
// A by ∂[] = 1.

(a) Show that this is a chain complex.

(b) Define a K-linear map σ:Am // Am+1 as follows. There is a K-basis of
Am consisting of all µ[xj1 , . . . , xjm ] where µ is a monomial, possibly 1. If µ 6= 1, let
j be the smallest index of a variable in µ. Then define

s(µ[xj1 , . . . , xjm ]) =
{
µ/xj [xj , xj1 , . . . , xjm if j < j1
0 otherwise
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In particular s[xj1 , . . . , xjm ] = 0. In degree −1, σ1 = []. Show that σ ◦∂+∂ ◦σ = id.

(c) Show that K ⊗A Am is the vector space generated by all [xj1 , . . . , xjm for
j1 < · · · < jm and that K ⊗A ∂ = 0.

(d) Conclude that TorAm(K,K) is a vector space of dimension
( n
m

)
.

1.36. Historical comment. In my 1962 dissertation, I gave explicit proofs of the
splitting of the Hochschild complex in dimensions 3 and 4 over fields of characteristic
not 2 or 3. (The remaining dimensions were settled in [Barr, 1968b]). The argument
above, from 1.17 to here, was sketched out instantly by Harrison as soon as I had
told him about the splitting. Although we never discussed it (and his memory for
this part of his career is now virtually nil), it seems clear in retrospect that he
was already aware that the splitting of the Hochschild complex would lead to this
proof of the vanishing of the cohomology of polynomial rings. The argument he
gave in [Harrison, 1962] (limited to dimension 2 and 3) was based on giving an
explicit proof for a polynomial ring in one generator and then proving that the
cohomology of a tensor product of commutative algebras is the direct product of
the cohomology groups of the factors. My guess is that he had used this argument
in dimension 2 (where the splitting is obvious) then did not push it through in
dimension 3, but instead found the different argument using tensor products. André
proves the general tensor product theorem in his 1967 notes, but his definition of
the cohomology is rather obviously equivalent to the one derived from the cotriple
resolution.

2. More on cohomology of commutative cohomology

2.1. André cohomology. Michel André [1967, 1974] developed the commuta-
tive cohomology into a powerful tool for studying commutative algebras. He used
a definition of cohomology via polynomial algebra resolutions that was equivalent
to the polynomial algebra cotriple cohomology.

LetK be a commutative ring and A be a commutativeK-algebra. A polynomial
resolution of A is a simplicial K-algebra

· · ·
d0
//

... //
dn+1

An

d0
//

... //
dn

An−1

d0
//

... //
dn−1

· · ·
d0
//

d1
// A0

d // A

for which each An, n ≥ 0 is a polynomial algebra and for which the associated chain
complex

· · ·
∑

(−1)d
i

// An

∑
(−1)d

i

// An−1
// · · · d0 − d1

// A0
d // A // 0

is exact. Then the cohomology with coefficients in the A-module M is defined to
be that of the cochain complex

0 // Der(A0,M) // · · · // Der(An,M) // Der(An+1,M) // · · ·

using, in degree n, the map
∑n+1
i=0 (−1)idi. Since the polynomial algebra cotriples

complex satisfies André’s conditions, his cohomology theory is just the cotriple
cohomology.
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2.2. The long exact sequence. We wish to show that the homology and co-
homology of pairs introduced in 3.8 takes a particularly useful form in the case
of commutative algebras. A commutative algebra homomorphism A // B de-
fines B as an A-algebra. Thus for a B-module M we have both H•A(B,M) and
H•K(B,A,M). What we want to do in this section is to show that the two groups
are naturally isomorphic. The facts for homology are similar, but we give proofs
mainly for cohomology. We begin with,

2.3. Theorem. Suppose K is a commutative ring and A and B are K-algebras
such that TorKn (A,B) = 0 for all n > 0. Then for any A, B-bimodule M , the
natural map H•(A⊗B,M) // H•(A,M)⊕H•(B,M) is an isomorphism.

Proof. Let A• // A and B• // B be simplicial resolution of A and B, respec-
tively by polynomial algebras. Then I claim that the homology associated to the
simplicial set C• defined by Cn = An⊗Bn with each face and degeneracy operator
being the tensor product of the corresponding face and degeneracy operators, is
Tor(A,B). Consider the double chain complex associated to the double simplicial
object whose m,nth term is Am ⊗Bn. The mth row is

· · · // Am ⊗Bn // Am ⊗Bn−1
// · · · // Am ⊗B0

which is the tensor product of Am with a K-projective resolution of B, whose
homology is Tor(Am, B). But Am isK-projective and hence the homology is Am⊗B
concentrated in degree 0. Thus the complex augmented by Am⊗B is acyclic and the
homology of the double complex is the same as the homology of the augmentation
row, which is

· · · // Am ⊗B // Am−1 ⊗B // · · · // A0 ⊗B
which is the homology of a K-projective resolution of A tensored with B, whose
homology is thereby Tor(A,B). If all the higher Tor groups vanish, then this
homology is A ⊗ B concentrated in degree 0, so that the double complex is a
polynomial algebra resolution of A ⊗ B. The Eilenberg-Zilber theorem, which we
will be taking up in Section 4 below, states that the total chain complex of the
double chain complex associated to a double simplicial object is homotopic to the
chain complex associated to the diagonal simplicial object. In this case the diagonal
simplicial algebra is

· · ·
//

... //An ⊗Bn
//

... //An−1 ⊗Bn−1

//
... // · · ·

//// A0

and so it follows that An ⊗ Bn is a resolution of A ⊗ B. It is easy to prove that
Der(An ⊗ Bn,M) // Der(An,M) ⊕ Der(Bn,M) is an isomorphism, from which
the conclusion follows.

2.4. Corollary. Suppose X is a set B = A[X] is the algebra of polynomials in X
over A. Then for any B-module M

Hn(B,M) ∼=
{
Hn(A,M) if n > 0

Der(A,M)⊕MX if n = 0

Proof. This is an immediate consequence of the fact that B ∼= A ⊗ K[X], the
preceding theorem and the homology of a polynomial algebra.
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2.5. Theorem. Suppose that f :A // B is a homomorphism of commutative
K-algebras. Then for any B-module M , there is a natural equivalence H•AB,M

∼=
H•(B,A,M).

Proof. Let G = (G, ε, δ) denote the free commutative K-algebra cotriple on the
category of A-algebras and GA = (GA, εA, δA) denote the free commutative A-
algebra cotriple on the same category. The groups H•A(B,M) are the cohomology
of the cochain complex

0 // DerA(GAB,M) // · · · // DerA(GnAB,M

// DerA(Gn+1
A B,M) // · · ·

with boundary operator given by
n∑
i=0

(−1)i Der(GiAεAG
n−i
A ,M)

while the groups H•(B,A,M) are the cohomology of the cochain complex

0 // Der(GB,M) // Der(G2B,M)⊕Der(GA,M) // · · ·

Der(GnB,M)⊕Der(Gn−1A,M) // Der(Gn+1,M)⊕Der(GnA,M) // · · ·
with boundary operator given by(∑n

i=0(−1)i Der(GiεGn−i) 0

Der(Gnf,M)
∑n−1
i=0 (−1)i Der(GiεGn−i−1A,M)

)
We will use acyclic models to compare these two cochain complexes. Consider the
case that B = A[X] is a polynomial algebra over A with variable set X. Then

Hn
A(B,M) =

{
MX if n = 0
0 if n > 0

From the fact that B ∼= A⊗ k[X] we have just seen that

Hn(B,M) =

{
H0(A,M)⊕MX if n = 0
Hn(A,M) if n > 0

However, the inclusion A // B is split monic in the category of k-algebras so that
the map Hn(B,M) // Hn(A,M) is split epic for all n ≥ 0 and so the long exact
mapping cone sequence breaks up into a series of short exact sequences

0 // H0(B,A,M) // Der(B,M) // Der(A,M) // 0

for n = 0 and

0 // Hn(B,A,M) // Hn(B,M) // Hn(A,M) // 0

for n > 0. Thus H0(B,A,M) is the kernel of Der(B,M) // Der(A,M), which is
easily seen to be DerA(B,M) = MX so that the augmented complex C•(B,A,M)
//MX // 0 is acyclic. Similarly, the augmented complex C•A(B,M) //MX

is acyclic. Thus the two complexes are acyclic on models and have the same 0
dimensional group. Finally, for n > 0, we need maps CnA(GAB,M) // CnA(B,M)
that splits CnA(εA,M) and similarly for Cn(B,A,M). For the first, take

DerA(δAG
n
AB,M): DerA(Gn+2

A B,M) // DerA(Gn+1
A B,M)
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and for the second,

Der(δGnB,M)⊕ id: Der(Gn+2B,M)⊕Der(Gn+1A,M)

// Der(Gn+2B,M)⊕Der(GnA,M)

Then the two theories are equivalent.

3. Shukla cohomology

Hochschild’s original cohomology theory for associative algebras, [1945] was for al-
gebras over a field. In the Cartan–Eilenberg version, the ground ring was allowed
to be an arbitrary commutative ring. However, the theory was relative to that
ring. For example, the second cohomology group (in the original numbering) clas-
sified the singular extensions of the ring with the coefficient module as kernel. The
Cartan–Eilenberg version classified only those extensions that split as modules over
the ground ring. Such a theory is called a relative cohomology theory. Actu-
ally, the same was true for Harrison’s theory. His original paper, [1962], included
an appendix that computed the absolute H2 of a commutative ring, written by
me. The referee insisted on an appendectomy, since the results had no obvious
application. The referee was probably right and the same comment could be made
for the Shukla cohomology groups we discuss briefly below. This is why we give no
details, but refer to the original papers for the proofs.

In is dissertation, published as [1961], Shukla produced a cohomology theory
for associative algebras that takes into account both the additive and multiplicative
structure. In dimension k, there were k different kinds of chain groups that had to be
sum to produce the k-dimensional chain groups. Each kind had its own coboundary
operator. In each dimension, one of the kinds concerned purely the multiplicative
structure and one the linear structure and the others were a mixture. The crucial
step in showing that this theory was equivalent to the cohomology defined by the
(absolutely) free algebra functor was, as usual, to show that it vanished on free
algebras. The details are found in [Barr, 1967]. A crucial part of the argument was
the use of distributive laws among cotriples, another important idea of Jon Beck’s
(but unpublished by him).

4. The Eilenberg–Zilber theorem

The Eilenberg–Zilber theorem states that the two functors K and TL, described
in 3.7.3, from the category of double simplicial objects to the category of chain
complexes are homotopic. The classical proof is geometric, based on a triangulation
of a product of two simplexes. But a straightforward acyclic models proof is quite
easy. For more details on the statement of the theorem, see 7.3 of Chapter 3

4.1. Theorem. Let A be an abelian category, let B be the category of augmented
double simplicial objects over A , and let C be the category of chain complexes over
A . Let C∆: B // C assign to each augmented double simplicial object the chain
complex associated to the diagonal complex and TL assign to each double simplicial
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object the total complex of the double chain complex associated to it. Then C∆ is
homotopic to TL.

Proof. We use the cotriple GT from 3.3 of Chapter 4. In order to apply it to ordinary
double simplicial objects, we consider every double simplicial object an augmented
double simplicial object with 0 objects in all terms with at least one negative index.
An object of the form GTA has contractible rows and columns and hence so does
the double chain complex associated. Either the row or column contractions suffice
to give a contraction on the total complex. Hence TL is acyclic on models. Since
the rows and columns are contractible, so is the diagonal and hence so is C∆ and
hence that functor is also acyclic on models. For the GT -presentability, we first
observe that the adjunction arrow GT // Id is induced by d0 and ∂0. On C∆ it
is just d0∂0 and has a right inverse σ0s0. These faces and degeneracies are just the
ones that are dropped from the simplicial objects when GT is applied. The case of
TL is a little more complicated. In degree n,

TLεA:An+1 0 ⊕An1 ⊕ · · · ⊕A0n+1
// An0 ⊕An−1 0 ⊕ · · · ⊕A0n

has an n+1× n matrix 
d0 ∂0 0 · · · 0
0 d0 ∂0 · · · 0
· · · · · · ·
0 0 0 · · · d0


and has a right inverse given by the n× n+1 matrix

s0 −s0∂0s0 s0∂0s0∂0s0 · · · (−1)n+1s0(∂0s0)n

0 s0 −s0∂0s0 · · · (−1)ns0(∂0s0)n−1

· · · · · · ·
0 0 0 · · · s0

0 0 0 · · · 0


as can be verified by direct calculation.

Finally, we have to show that the two chain complex functors give naturally
equivalent 0 dimensional homology. This means showing that the coequalizer of

A10 ⊕A01

( d0 − d1 ∂0 − ∂1 )
// A00

is naturally equivalent to the coequalizer of

A11
d0∂0 − d1∂1

// A00
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To see this, we show that both squares commute in

A11 A00
//

A10 ⊕A01

A11

(σ0 s0 )

��

A10 ⊕A01 A00

( d0 − d1 ∂0 − ∂1 )
// A00

A00

id

��

A10 ⊕A01 A00
( d0 − d1 ∂0 − ∂1 )

//

A11

A10 ⊕A01

(
∂0

d1

)
��

A11 A00
d0∂0 − d1∂1

// A00

A00

id

��

In fact,

( d0 − d1 ∂0 − ∂1 )

(
∂0

d1

)
= ∂0d0 − ∂0d1 + d1∂0 − ∂1d1 = ∂0d0 − ∂1d1

and

(∂0d0 − ∂1d1) (σ0 s0 ) = ( (∂0d0 − ∂1d1)σ0 (∂0d0 − ∂1d1)s0 ) =

( d0 − d1 ∂0 − ∂1 )

That this implies that the induced map between the coequalizers is the identity
follows from:

4.2. Proposition. Suppose both squares of

A′1 A′0
//

A1

A′1

f1

��

A1 A0
d // A0

A′0

f0

��

A1 A0
d //

A′1

A1

g1

��

A′1 A′0
d′ // A′0

A0

g0

��

commute and that f0 and g0 are inverse isomorphisms. Then the induced coker d
// coker d′ is an isomorphism.

Proof. The composite square

A1 A0
d
//

A1

A1

g1f1

��

A1 A0
d // A0

A0

g0f0 = id

��

and the identity induces id: coker d // coker d. The same is true of the map
induced by f0g0 and the conclusion follows.



CHAPTER 8

Applications in topology

1. Singular homology

1.1. Singular chains. This is the time to read 2.6. Although singular chain
groups can, and usually are, defined on the category Top, we will find it helpful to
define them as additive functors on the additive category ZTop. To emphasize this,
we will write ZHom(X,Y ) for the set of morphisms between two spaces in ZTop.

We denote by ∆n the subset of (n+ 1)-dimensional euclidean space consisting
of all (t0, . . . , tn) for which ti ≥ 0, i = 0, . . . , n and t0 + · · · + tn = 1. This set
is, in fact, the convex hull of the basis vectors in (n + 1)-dimensional euclidean
space. Geometrically, it is an n-dimensional simplex. There is a map ∂ i: ∆n−1
// ∆n defined for i = 0, . . . , n by ∂ i(t0, . . . , tn−1) = (t0, · · · , ti−1, 0, ti, . . . , tn−1).

Then ∂ =
∑n
i=0(−1)i∂ i: ∆n−1

// ∆n is an arrow of ZTop. One easily shows that
∂ ◦ ∂ = 0. In fact, assuming that i < j the term in which ti = tj = 0 appears in the
sum, one in which the coefficient is (−1)i+j because first tj and then ti was set to
0 and second with coefficient (−1)i+j−1 since first ti was set to 0 and second the
(j − 1)st entry, now tj was.

The nth singular chain group, Cn(X) of a space X is defined as the free abelian
group generated by the set Hom(∆n, X) of continuous functions of the n-simplex
into X. An element of Hom(∆n, X) is called an n-simplex (or singular n-simplex)
in X, while an element of ZHom(∆n, X) is called an n-chain. We define d:Cn(X)
// Cn−1(X) by dc = c ◦ ∂. From ∂ ◦ ∂ = 0, it immediately follows that d ◦ d = 0.

1.2. Cone construction. If U is a convex open subset of a euclidean space, b
is an element of U and σ: ∆n

// U is a singular n-simplex, the cone b · σ is a
singular n+ 1-simplex. There is a standard definition, but later on we will want to
vary it, so we use a somewhat less obvious definition.

Let r(t) be any continuous bijective function I // I such that r(0) = 0 and
r(1) = 1. The identity function obviously qualifies, but we will have occasion to
use a different one. Fix a choice of r and define

b · σ(t0, t1, . . . , tn+1) =

{
r(t0)b+ (1− r(t0))σ

(
t1

1−t0 , · · · ,
tn+1

1−t0

)
if t0 6= 1

b if t0 = 1

This is continuous since 1 − r(t0) // 0 as t0 // 1, while the second term is
bounded, since it is a continuous function on a compact set.

1.3. Proposition. For a singular n-simplex σ in a convex set U in euclidean
space,

d(b · σ) =

{
σ − b · (σ ◦ ∂) if n > 0
σ − [b] if n = 0

157
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Proof. We will show that (b · σ) ◦ ∂0 = σ and (b · σ) ◦ ∂ i = b · (σ ◦ ∂ i−1) for i > 0.
For the first, we have

(b · σ) ◦ ∂0(t0, . . . , tn) = b · σ(0, t0, . . . , tn)

= r(0)b+ (1− r(0))σ(t0, . . . , tn)

= σ(t0, . . . , tn)

For i > 0 and t 6= 1, we have

(b·σ) ◦ ∂ i(t0, . . . , tn) = b · σ(t0, . . . , ti−1, 0, ti, . . . , tn)

= r(t0)b+ (1− r(t0))σ

(
t1

1− t0
, . . . ,

ti−1

1− t0
, 0,

ti
1− t0

, . . . ,
tn

1− t0

)
while

b·(σ ◦ ∂ i−1)(t0, . . . , tn) = r(t0)b+ (1− r(t0))σ ◦ ∂ i−1

(
t1

1− t0
, . . . ,

tn
1− t0

)

= r(t0)b+ (1− r(t0))σ

(
t1

1− t0
, . . . ,

ti−1

1− t0
, 0,

ti
1− t0

, . . . ,
tn

1− t0

)

The argument when t0 = 1 is trivial.

When you see a special case in a formula as above, you might wonder if there
is something behind it. There is good reason for thinking that there ought to be an
empty, dimension −1-simplex that is the boundary of every 0 dimensional simplex
and whose boundary is 0. If you are familiar with homology theory, you will see that
that would give reduced homology instead of ordinary. The formula for the boundary
of b ·σ = σ− b · ∂σ would then work without restriction, including dimension 0. This
is not a very important point, however.

1.4. Corollary. The singular chain complex of a convex subset of euclidean space
is contractible.

Proof. Let U be a convex subset of euclidean space and let b ∈ U be arbitrary.
Then the maps sn:Cn(U) // Cn+1 defined by sσ = b · σ satisfy

dsnσ + sn−1dσ = (b · σ) ◦ ∂ + b · (σ ◦ ∂)

= σ − b · (σ ◦ ∂) + b · (σ ◦ ∂) = σ

so that dsn + sn−1d = id

1.5. Barycentric subdivision. Barycentric subdivision is a way of dividing sim-
plexes into smaller pieces and is crucial for proving such things as that homology
with small simplexes (see 2.1 below) is the same as the full homology. The basic
idea is not really hard; however the formal description is complicated. Basically, the
standard simplex is divided into a number of smaller pieces and a singular simplex
is equivalent, up to homotopy with the sum of singular simplexes on the pieces.
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We illustrate with the subdivision of a triangle as the sum of the six individual
triangles shown below.

tttttttt

JJJJJJJJ

tttttttt

�������

JJJJ JJJJJJJJ

///////

tttt
JJJJ

������� tttt

///////

We will show that a simplex is homotopic to its subdivision. This fact is a good
illustration of the fact that the algebraic operation of formal addition of simplexes
turns into the topological union, at least in a certain sense. It is the same sense in
which algebraic topology turns topology into algebra.

We begin by inductively defining an arrow ξn: ∆n
// ∆n in ZTop. Let bn

denote the point (1/(n+ 1), 1/(n+ 1), . . . , 1/(n+ 1)) of the n-simplex. This point
is called the barycenter. Then ξ0 is the identity and for n > 0,

ξn = bn · (∂ ◦ ξn−1)

1.6. Proposition. For n > 0, ξn ◦ ∂ = ∂ ◦ ξn−1.

Proof. For n = 1,
ξ1 ◦ ∂ = (b1 · (∂ ◦ ξ0)) ◦ ∂

= ∂ ◦ ξ0 − [b1] ◦ ∂ = ∂ ◦ ξ0
For n > 1, assume the result inductively for n− 1. Then

ξn ◦ ∂ = (bn · (∂ ◦ ξn−1)) ◦ ∂ = ∂ ◦ ξn−1 − bn · (∂ ◦ ξn−1 ◦ ∂)

= ∂ ◦ ξn−1 − bn · (∂ ◦ ∂ ◦ ξn−2) = ∂ ◦ ξn−1

For a space X define SdnX:Cn(X) // Cn(X) on simplexes by Sdn σ = σ◦ξn.

1.7. Proposition. The transformation Sdn(X) is the component at X of a natural
chain transformation.

Proof. For a map f :X // Y and σ ∈ Cn(X)

Cn(f) ◦ Sdn(X)(σ) = Cn(f)(σ ◦ ξn) = f ◦ σ ◦ ξn

= Sdn(Y )(f ◦ σ) = Sdn(Y ) ◦ Cn(f)(σ)

d ◦ Sdn(X)(σ) = d(σ ◦ ξn) = σ ◦ xin ◦ ∂

= σ ◦ ∂ ◦ ξn−1 = d(σ) ◦ ξn−1 = Sdn−1 ◦d(σ)

Let U be a convex subset of euclidean space and σ: ∆n
// U be a singular

simplex. We will say that σ is totally convex if for any face φ: ∆m
// ∆n the

image of σ ◦φ is a convex subset of U . It follows, among other things, that the only
extreme points of σ(∆n) occur at the vertices.
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1.8. Proposition. Suppose U is a subset of euclidean space, b ∈ U and σ is a
totally convex n-simplex in U . Then b · σ is totally convex.

Proof. If b /∈ ∆n, the equation

b · σ(t0, . . . , tn+1) = r(t0)b+ (1− r(t0))σ

(
t1

1− t0
, . . . ,

tn+1

1− t0

)
implies that the image of b ·σ is convex. The faces for t0 = 0 are the faces of σ and
are convex by assumption. The remaining faces are b · τ where τ is a face of σ and
it is convex by the first remark.

1.9. Proposition. The diameter of any simplex of the barycentric subdivision
of the standard n-simplex does not exceed n

n+1 times the diameter of the original
simplex.

Proof. Let us suppose that U is a subset of euclidean space and that σ: ∆n
// U

is an affine simplex. Suppose the vertices of σ are v0, . . . , vn. Let

b(σ) =
v0 + v1 + · · ·+ vn

n+ 1

The subdivision formula on such a simplex is

Sd(σ) = b(σ) · (σ ◦ ∂)

and a simplex of the subdivision is a simplex of b(σ) · (σ ◦ ∂ i) for 0 ≤ i ≤ n. By
induction, a simplex Sdn(σ) is a sum of simplexes of the form

b(σ) · b(σ ◦ ∂ i) · b(σ ◦ ∂ i ◦ ∂ j) · · · · · b(σ ◦ ∂ i ◦ ∂ j ◦ · · · ◦ ∂k)

and these factors are the vertices. Thus the diameter is the maximum distance
between any two of these barycenters. After renumbering, we can assume that the
maximum is assumed between the barycenters (v0 + · · ·+vi)/(i+ 1) and (v0 + · · ·+
vj)/j + 1 with i < j. The distance between them is∥∥∥∥v0 + . . .+ vi

i+ 1
− v0 + · · ·+ vj

j + 1

∥∥∥∥
=

∥∥∥∥v0 + · · ·+ vi
i+ 1

− v0 + · · ·+ vi
j + 1

− vi+1 + · · ·+ vj
j + 1

∥∥∥∥
=

∥∥∥∥(v0 + · · ·+ vi)

(
1

i+ 1
− 1

j + 1

)
− vi+1 + · · ·+ vj

j + 1

∥∥∥∥
=

∥∥∥∥(v0 + · · ·+ vi)
j − i

(i+ 1)(j + 1)
− vi+1 + · · ·+ vj

j + 1

∥∥∥∥
=
‖(v0 + · · ·+ vi)(j − i)− (i+ 1)(vi+1 + · · ·+ vj)‖

(i+ 1)(j + 1)

What is inside the distance sign is the difference of two expressions, each of which
is the sum of exactly (i+ 1)(j− i) vertices of the simplex. No matter how these are
arranged, none of those differences can exceed r and so the whole sum is at most

(i+ 1)(j − i)
(i+ 1)(j + 1)

r =
j − i
j + 1

r ≤ j

j + 1
r ≤ n

n+ 1
r
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1.10. Lemma. [Hausdorff covering lemma.] Let X be a compact metric space and
suppose U is an open cover of X. Then there is an r > 0 such that every set of
diameter less than r is in some element of U .

Proof. For x ∈ X, let Nε(x) denote the ε sphere around x. For each ε > 0, let Vε
consist of all points x ∈ X for which there is a δ > ε such that Nδ is included in
some set in U . It is clear that ε1 < ε2 implies that Vε1 ⊇ Vε2 . If x ∈ Vε and δ > ε
is such that Nδ(x) is in some member of U , then for any y ∈ N(δ−ε)/2(x), it is
immediate that N(δ+ε)/2(y) is in the same member of U and thus Vε is open. Since
the set of all Vε covers X, a finite subset does. Since they are nested, a single one
does.

1.11. Corollary. Let ∆ be a simplex and U a cover of ∆. Then there is an
integer k such that every simplex of Sdk(∆) is contained in some single member of
U .

1.12. A cotriple. We will use a model-induced cotriple on the category of topo-
logical spaces that is gotten by taking the simplexes as models (see 2). This means
that

GX =
∑
n

∑
σ:∆n

//X
∆n

For σ: ∆n
// X, we denote by 〈σ〉: ∆n

// GX the inclusion into the sum. Then
εX:GX // X is defined by εX ◦ 〈σ〉 = σ and δX:GX by δX ◦ 〈σ〉 = 〈〈σ〉〉. Then
G = (G, ε, δ) is a cotriple.

1.13. Proposition. The singular chain complex functor C• is G-presentable and
G-acyclic on models with respect to the class of homotopy equivalences.

Proof. If σ: ∆n
// X is a singular n-simplex in X, then 〈σ〉: ∆n

// GX is a
singular n-simplex in GX for which ε◦〈σ〉 = σ. If f :X // Y is a continuous map,
then, by definition, Gf ◦ 〈σ〉 = 〈f ◦ σ〉, which shows that 〈−〉:Cn(X) // Cn(GX)
is natural. This is the G-presentability. As for the G acyclicity, GX is a disjoint
union of simplexes and the chain complex of every simplex is contractible.

1.14. Corollary. Suppose α•:C• // C• is an endomorphism of the singular
chain complex functor which induces the identity arrow on H0. Then α• is homo-
topic to the identity.

Proof. From the commutative

C0 H0
d

//

C0

C0

id

��

C0 H0
d // // H0

H0

α−1

����

we conclude that α−1 is the identity.

1.15. Corollary. The chain map Sd•:C• // C• induces a natural homotopy
equivalence.
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1.16. An explicit formula. It will be useful to have an explicit formula for
the homotopy. Define ηn+1: ∆n+1

// ∆n in ZTop for n ≥ 0 by η1 = 0 and
ηn+1 = bn · (1− ξn − ∂ ◦ ηn). Assume inductively that ηn∂ = 1− ξn−1 − ∂ ◦ ηn−1.
Then

ηn+1 ◦ ∂ = (bn · (1− ξn − ∂ ◦ ηn)) ◦ ∂

= 1− ξn − ∂ ◦ ηn − bn · (∂ − ξn ◦ ∂ − ∂ ◦ ηn ◦ ∂)

= 1− ξn − ∂ ◦ ηn − bn · (∂ − ∂ ◦ ξn−1 − ∂ ◦ (1− ξn−1 − ∂ ◦ ξn−1))

= 1− ξn − ∂ ◦ ηn
so that ηn+1 ◦ ∂ + ∂ ◦ ηn = 1 − ξn. It follows immediately that if we define
hn(X):Cn(X) // Cn+1(X) by hn(σ) = σ ◦ ηn+1, then d ◦ hn(X) + hn−1(X) ◦ d =
1− Sdn(X). The naturality of hn is also clear.

1.17. Exercise

1. Show that the diameter of an affine simplex is the largest distance between any
two vertices. One way is to first show that if this maximum is M , then the distance
from any point in the simplex to any vertex is at most M and then use that to
show that the distance of any point in the simplex to any other is at most M .

2. Covered spaces

Some of what we do in algebraic topology is best dealt with by considering the
category Cov of covered topological spaces. An object of Cov is a pair (X,U )
where X is a topological space and U is an open cover of X. An arrow f : (X,U )
// (Y,V ) in this category consists of a continuous function f such that for U ∈ U ,

there is a V ∈ V such that fU ⊆ V . Since this is equivalent to U ⊆ f−1V , we can
also describe this by saying that U refines f−1V .

2.1. Small simplexes. If (X,U ) is a covered space, we denote by Ĉ•(X,U ) the

chain complex defined by Ĉn(X,U ) = ZHomCov((∆n, {∆n}), (X,U )). This means
that ∆n is given the singleton cover and an n-simplex is a singular simplex whose
image is entirely contained in some member of U . Such a simplex will be called a
U -small simplex or simply small simplex, if no confusion can result. Since any

face of a small simplex is small, it follows that Ĉ•(X,U ) is a subcomplex of C•(X).
Moreover, C•(X) = C•(X, {X}). We will also write C•(X,U ) = C•(X) so that we

can compare C• with Ĉ• as functors on the same category.

2.2. Two cotriples. There are two ways of extending the cotriple G to Cov. The
first is not actually model induced, although the same formulas apply. We continue
to call it G and it is defined at the covered space (X,U ) by

G(X,U ) =
∑
n≥0

∑
σ:∆n

//X
(∆n, σ

−1U )
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Note that we do not use only small simplexes, which is why this is not model
induced. On the other hand, the cover of X survives to become the covers of the
components of G(X,U ), which is why ε is an arrow of Cov.

We use the same notation as for the model induced cotriple, that is for σ: ∆n
// X, we denote by 〈σ〉: (∆n, σ

−1U ) // G(X,U ) the inclusion into the
sum. Then ε(X,U ):G(X,U ) // (X,U ) is defined by ε(X,U ) ◦ 〈σ〉 = σ and
δ(X,U ):G(X,U ) by δ(X,U ) ◦ 〈σ〉 = 〈〈σ〉〉. The thing to note is that these are
maps in the category of covered spaces, even though the original simplexes did
not respect the covers. Then G = (G, ε, δ) is a cotriple. As with model induced
cotriples, if f : (X,U ) // (Y,V ) is an arrow in the category of covered spaces,
then Gf is defined by Gf ◦ 〈σ〉 = 〈f ◦ σ〉. If σ: ∆n

// X, then the cover on
∆n is σ−1U . In order to show that Gf is an arrow in the category of covered
spaces, we have to show that the identity map on ∆n is an arrow (∆n, σ

−1U )
// (∆n, (f ◦ σ)−1V ). This is the same thing as saying that the cover by σ−1U

refines that of (f ◦σ)−1V . Now if U ∈ U , there is some V ∈ V such that f(U) ⊆ V
or V ⊆ f−1V . But then σ−1U ⊆ σ−1 ◦ f−1V = (f ◦ σ)−1V . We note that this
cotriple also makes sense on the category of ordinary spaces, thought of as having
a single element cover. In that case it is model induced.

The second cotriple, Ĝ = (Ĝ, ε̂, δ̂) is a model induced cotriple, induced by the
simplexes ∆n, covered by themselves. So a map ∆n

// (X,U ) is, by definition,
a small simplex. The cotriples are similar, but each has a role to play in the
development.

2.3. Singular homology on Cov. We will not repeat the arguments, but the
same development that we have just carried out with G and C• can be repeated,

mutatis mutandis, with Ĝ and Ĉ•. We conclude that,

2.4. Theorem. Any chain map α: Ĉ• // Ĉ• that induces an isomorphism of
0 dimensional homology and, in particular any for which α0 is the identity, is
homotopic to the identity.

2.5. Corollary. The chain map Sd•: Ĉ•(X,U ) // Ĉ•(X,U ) induces a homo-
topy equivalence.

2.6. Proposition. If (∆n,U ) is a covered simplex, the complex Ĉ•(∆n,U ) is
contractible.

Proof. Since it is a complex of free abelian groups, it suffices to show it is acyclic.
Given an m-cycle c, it is an m-cycle in the complex Cm(∆n). That complex is
certainly contractible, so there is a c′ ∈ Cm+1(∆n) such that ∂c′ = c. Of course,
c′ is not necessarily a sum of small simplexes, but it is the sum of a finitely many
simplexes, so there is a k such that each simplex of βkc′ is small. Then ∂βkc′ =
βk∂c′ = βkc and we know that in Cn(∆,U ), βkc ∼ c. Thus c − βkc and βkc are
both boundaries and hence so is c.

Notice that no naturality is claimed here. It is hard to see how there could be.

2.7. Theorem. The inclusion Ĉ• // C• is a weak homotopy equivalence.

Proof. We use the acyclic models theorem with weak contractions as the acyclic
class and G as the cotriple. If σ: ∆n

// (X,U ) is a small simplex, then there is
a corresponding summand 〈σ〉: ∆n

// G(X,U ). Moreover, since σ is small, the
summand 〈σ〉 is covered by itself. That is, the cover will generally contain many,
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even infinitely many sets, but one of them will be the whole simplex. Then we can

think of 〈σ〉 as defining a simplex of Ĉn(G(X,U )). Clearly, ε̂(X,U ) ◦ 〈σ〉 = σ. If
σ: ∆n

// X is a simplex, then 〈σ〉: ∆n
// Cn(GX) is also a simplex and clearly

εX ◦ 〈σ〉 = σ. Thus both functors are G-presentable. Now G(X,U ) is simply a
sum of simplexes and so the standard argument that the augmented chain complex
of a contractible space carries over to a disjoint sum of them and shows that C• is

G-contractible on models. Finally Proposition 2.6 shows that Ĉ• is as well.

2.8. Homology of the nerve of a cover. Let (X,U ) be a covered space.
Define a chain complex as follows: An n-simplex is a string [U0, U1, . . . , Un] with
each Ui ∈ U and such that U0∩U1∩· · ·∩Un 6= ∅. If [U0, U1, . . . , Un] is an n-simplex,
then for i = 0, . . . , n, we define

di[U0, U1, · · · , Un] = [U0, U1, . . . , Ûi, . . . , Un]

and
si[U0, U1, . . . , Un] = [U0, U1, . . . , Ui, Ui, . . . , Un]

We let Kn(U ) denote the free abelian group generated by the n-simplexes of the
cover with the boundary operator defined as usual for the simplicial abelian group
defined by the di and si. The simplicial set is called the nerve of the cover and its
homology is called the homology of the nerve of the cover.

2.9. Theorem. Let the topological space X be contractible to a point. Then the
singular homology complex of X is contractible.

Proof. There is a continuous map H:X × [0, 1] // X such that H(−, 0) is the
identity and H(−, 1) is constant at a point ∗. Define s:Cn(X) // Cn+1 by the
formula

sf(x0, . . . , xn+1) =

{ ∗ if x0 = 1

H
(
f
(

x1

1−x0
, . . . , xn+1

1−x0

)
, x0

)
if x0 6= 1

This is obviously continuous for x0 6= 1 and the continuity at the remaining point
follows readily from the fact that H(−, 1) is constant. Now we calculate (assuming
x0 6= 1; the remaining case is similar), writing y0 = 1− x0

(d ◦ s)f(x0, . . . , xn)

= sf(0, x0, . . . , xn) +

n+1∑
i=1

(−1)isf(x0, . . . , xi−1, 0, xi, . . . , xn)

= H(f(x0, . . . , xn), 0) +

n+1∑
i=1

(−1)iH

(
f

(
x1

y0
, . . . ,

xi−1

y0
, 0,

xi
y0
, . . . ,

xn
y0

)
, x0

)

= f(x0, . . . , xn) +

n+1∑
i=1

(−1)iH

(
f

(
x1

y0
, . . . ,

xi−1

y0
, 0,

xi
y0
, . . . ,

xn
y0

)
, x0

)

= f(x0, . . . , xn) +

n∑
i=0

(−1)i+1H

(
f

(
x1

y0
, . . . ,

xi
y0
, 0,

xi+1

y0
, . . . ,

xn
y0

)
, x0

)
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and

(s ◦ d)f(x0, . . . , xn) =

n∑
i=0

(−1)i(s ◦ d i)f(x0, . . . , xn)

=

n∑
i=0

(−1)iH

(
d if

(
x1

y0
, . . . ,

xn
y0

)
, x0

)

=

n∑
i=0

(−1)iH

(
f

(
x1

y0
, . . . ,

xi
y0
, 0,

xi+1

y0
, . . . ,

xn
y0

)
, x0

)
and adding these we see that

s ◦ d+ d ◦ s = id

2.10. Simple covers. A cover U of a space X is called simple if for every finite
set U0, . . . , Un of sets in U , either U0 ∩ . . . ∩ Un is empty or it is contractible to a
point. In the rest of this section, U will always be a simple cover.

Now, let Y be the disjoint union of the members of U . There is an obvious
map Y // X which includes each U ∈ U into X. It is clear that the image of
Cn(Y ) // Cn(X) is exactly Cn(Y,U ).

An element of Y can be denoted (x, U) where x ∈ U ∈ U . Let Y nX be the nth
fiber power of Y // X, which we can describe as a subset of the nth cartesian
power Y n. An element of Y n is an n-tuple ((x1, U1), . . . , (xn, Un)). This element is
in Y nX if and only if x1 = · · · = xn. The element x must then be in U1 ∩ . . . ∩ Un.
Thus Y nX is a disjoint union of all the non-empty sets U1 ∩ . . . ∩ Un, each of which
is connected. These intersections are thus the connected components of the fiber
power and each is, by assumption, contractible to a point.

A point to note is that the cover induced on each component of Y nX by U
is refined by the whole component. Thus the cover induced on Y nX is that of
the connected components. Since simplexes are connected, there is no difference

between C• and Ĉ• on Y nX .

There are projections ∂ i:Y n+1
X

// Y nX for i = 0, . . . , n given by

∂ i((x, U0), . . . , (x, Un)) = ((x, U0), . . . , (̂x, Ui), . . . , (xn, Un))

We now form the double complex C••(X,U ) as follows:

Cmn =


Cn(Y m+1

X ), n ≥ 0 and m ≥ 0

Km(U ), n ≥ 0 and m = −1

Ĉn(X,U ), m ≥ 0 and n = −1
0, otherwise

The operators di and ∂ j induce the horizontal and vertical boundary operators.
They naturally commute, but if we negate the boundary in every other row, they
will anticommute.

2.11. Proposition. The rows and columns of this double complex are contractible,
except for the bottom row and right hand column.

Proof. The columns of this double complex are the singular complex of a space
that is the disjoint union of spaces contractible to a point, augmented over the
free abelian group generated by its components. To prove this contractible, it is
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sufficient to show that if the space X is contractible, then the augmented singular
complex C•(X) // Z is contractible, which is the content of Theorem 2.9. As for
the rows, we must find a contraction in the complex

· · · // Cn(Y mX ) // · · · // Cn(Y ) // Cn(X,U ) // 0

This complex is just the chain complex associated to the Z operator applied to the
augmented simplicial set

· · · ...

//
//Hom(∆n, Y

M
X ) ...

//
// · · · ////// Hom(∆n, Y

2
X) //// Hom(∆n, Y ) // Hom(∆n, (X,U ))

We define a contracting homotopy in this simplicial set as follows. Choose, for
each small simplex σ: ∆n

// (X,U ), a set f(σ) ∈ U such that σ(∆n) ⊆ f(σ).
The space Y mX is the disjoint union of subspaces of the form U1 ∩ U2 ∩ · · · ∩ Um,
taken over all sequences U1, U2, . . . , Um ∈ U m. An n-simplex in Hom(∆n, Y

m
X ) is

a map σ: ∆n
// U1 ∩ U2 ∩ · · · ∩ Um, indexed by such a sequence. We denote

this element of Hom(∆n, Y
m
X ) by 〈σ;U1, U2, . . . , Um〉. Then define s: Hom(∆n, Y

m
X )

// Hom(∆n, Y
m+1
X ) by

s〈σ;U1, · · · , Um〉 = 〈σ; f(σ), U1, U2, . . . , Um〉
When n = −1, this is interpreted to mean that sσ = 〈σ; f(σ)〉. Then one sees
immediately that d0 ◦ s = id and d i+1 ◦ s = s ◦ d i so that s is a contracting
homotopy in the row.

2.12. Corollary. The homology of the nerve of a simple cover is equivalent to
that of the singular homology with small simplexes.

Proof. This follows immediately from 3.6.1.

Here is another application.

2.13. Theorem. Suppose X is a topological space and A and B are two open
subsets such that X = A ∪B. Then there is an exact homology sequence

· · · // Hn(A ∩B) // Hn(A)⊕Hn(B) // Hn(X) // Hn−1(A ∩B) // · · ·
Proof. Let U = {A,B} be the 2 element cover of X. Let i:A // X, j:B // X,
u:A ∩ B // A, and v:A ∩ B // B be the inclusions. Then we have an exact
sequence

0 // Cn(A ∩B)

(
Cn(u)
−Cn(v)

)
// Cn(A)⊕ Cn(B)

(Cn(i) Cn(j) )
// Cn(X,U ) // 0

from which the conclusion follows.

This is, essentially, the Mayer-Vietoris exact sequence which is proved under
hypotheses on A and B that guarantee that they are retracts of open neighborhoods
so that this theorem can be applied to other than open sets.

3. Simplicial homology

In this section, we describe the simplicial homology on the category of triangulated
spaces using so-called oriented simplexes. In addition, we will show that for a
triangulated space, the simplicial homology and singular homology coincide.
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3.1. Triangulated spaces. By a triangulated space we mean a space that is
a union of simplexes subject to two conditions

1. A set is open if and only if its intersection with each simplex is open.
2. The intersection of two simplexes is a face of each.

The first condition says the space is a quotient of a disjoint union of simplexes
and the second is a restriction on the nature of the kernel pair of that quotient
mapping.

3.2. The simplicial category. Let T be a triangulated space. Let V (T ) denote
the set of all the vertices of the simplexes of T . We denote by Simp the category
whose objects are triangulated spaces and whose morphisms are functions that take
simplexes to simplexes and are linear on the interiors. If T is a triangulated space,
we let |T | denote the underlying topological space.

3.3. Chains. Let T be a triangulated space. We define a chain complexes,
called C•(T ). An n-simplex, denoted [v0, . . . , vn], is a string of vertices of T ,
not necessarily distinct, such that {v0, . . . , vn} is the set of vertices of some
simplex. Then Cn(T ) is the free abelian group generated by the set of n-
simplexes. For i = 0 . . . n we define face operators d i:Cn(T ) // Cn−1(T )
by d i[v0, . . . , vn] = [v0, . . . , v̂i, . . . , vn] and degeneracy operators si:Cn(T ) //

Cn−1(T ) by si[v0, . . . , vn] = [v0, . . . , vi, vi, . . . , vn].
We define a cotriple on Simp that takes a triangulated space T to the space

GT defined as the disjoint union of all the simplexes of T , each triangulated in the
standard way. So an element of GT is a pair (x, σ), where x ∈ σ and σ is a simplex
of T . A vertex of GT is then a pair (v, σ) where σ is a simplex of T and v a vertex
of σ. We define εT :GT // T by εT (x, σ) = x. A simplex of GT is a pair (σ, τ)
where τ is a simplex of T and σ is a face of τ . Thus an element of G2T is a triplet
(x, σ, τ) where τ is a simplex of T , σ is a face of τ and x ∈ σ. Then we define
δT :GT // G2T by δT (x, σ) = (x, σ, σ). If f :T // T ′ is an arrow in Simp, then
Gf(x, σ) = (fx, fσ), which makes sense since f takes simplexes to simplexes.

3.4. Proposition. The complex C•(T ) is G-presentable.

Proof. Let [v0, . . . , vn] be an n-simplex of Cn(T ). Let σ be the simplex of T whose
vertices are the set {v0, · · · , vn}. Then we let θ[v0, . . . , vn] = [(v0, σ), . . . , (vn, σ)].
It is clear that εT ◦ θ = id. To show naturality, suppose f :T // T ′ is a simplicial
map. Then f(σ) is the unique simplex whose vertices are fv0, . . . , fvn. Then

θ ◦ Cn(T )f [v0, . . . , vn] = θ[fv0, . . . , fvn]

= [(fv0, fσ), . . . , (fvn, fσ)] = Cn(GT )f [(v0, σ), . . . , (vn, σ)]

= Cn(GT )f ◦ θ[v0, . . . , vn]

3.5. Proposition. The complex C•(T ) is G-acyclic.

Proof. Since GT is a disjoint union of simplexes and both chain groups take disjoint
unions to direct sums, it is sufficient to show this for simplexes. So let ∆n denote
an n-simplex, with a total order on its vertices, say v0 < · · · < vn. An m-simplex in
Cm(∆n) is an m-tuple [vi0 , . . . , vim ]. Now let s[vi0 , . . . , vim ] = [v0, vi0 , . . . , vim ]. It
is clear that d0 ◦s = id and d i ◦s = s ◦d i−1 for 0 < i ≤ m, so that s is a contracting
homotopy on the complex C•(∆n).
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3.6. Corollary. Suppose α•:C• // C• is an endomorphism of the simplicial
chain complex functor which induces the identity arrow on H0. Then α• is homo-
topic to the identity.

4. Singular homology of triangulated spaces

4.1. Barycentric coordinates. There is a special coordinate system induced
by a triangulation of a space that is quite useful. We begin by observing that each
point of a triangulated space is in the interior of a unique simplex. For each point
of the space is in at least one simplex and each point of a simplex is interior to
some face of the simplex (a vertex is interior to itself). Second, since two simplexes
can intersect only at a common face and the points in the face cannot be interior
to both, no point can be interior to more than one simplex.

If {v0, . . . , vn} are the set of vertices of an n-simplex, then a point of that
simplex can be written uniquely as t0v0 + · · · tnvn where each ti is a non-negative
real number and t0 + · · · tn = 1. The point is interior to the simplex if every ti > 0.

Now we think of the n-simplex as being the set of points (t0, t1, . . . , tn) ∈ Rn

such that
∑n
i=0 ti = 1 and each ti ≥ 0. It is interior if and only if each ti > 0.

These coordinates are called the barycentric coordinates of the point. (Question:
Why are they called the “barycentric coordinates”? The barycenter is the center
of gravity. “Affine coordinates” would make a lot more sense.)

We can make use of this in the following way. Let V be the set of vertices of
the triangulated space. Let {tv | v ∈ V } be a set of real numbers, finitely non-zero,
all non-negative with

∑
v∈V tv = 1. Let v0, . . . ,vn denote the set of vertices for

which tvi 6= 0. If there is a simplex σ whose vertices are v0, . . . , vn then there is a
unique point x ∈ σ whose barycentric coordinates are (tv1 , . . . , tvn). If there is no
such simplex, then there is no point with those barycentric coordinates. However,
each point gives rise to a unique set {tv | v ∈ V } which will be called its barycentric
coordinates.

4.2. Open star cover. If σ is a simplex of T , the open star of σ, denoted stσ,
is the union of the interiors of all the simplexes of which σ is a face. In particular, if
v is a vertex, st v is the union the interiors of all the simplexes that v is a vertex of
and the interior of a 0-simplex is itself. Clearly every point of X = |T | is an interior
point of at least one simplex. Thus the open stars of the vertices are a cover of X
called the open star cover.

4.3. Proposition. Let v0, . . . , vn be vertices of simplexes in X. Then

st v0 ∩ · · · ∩ st vn =

{
stσ if v0, . . ., vn are the vertices of σ
∅ if they are not the vertices of any simplex

Proof. Suppose that v0, . . . , vn are the vertices of the simplex σ. Then each vi is a
face of any simplex that σ is a face of, so that any point in the interior of one of
those simplexes in the star of each vi and hence in their intersection. On the other
hand, any simplex of which σ is not a face cannot have every vi as a vertex and
hence any interior point of such a simplex is not in the star of at least one vi. The
same argument applies in the case that there is no simplex that v0, . . . , vn are all
members of.
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4.4. Proposition. For any simplex σ, stσ is contractible.

Proof. Define H: stσ × [0, 1] // σ as follows, using the barycentric coordinates.
Fix a vertex v0 of σ. If p is a point of stσ with barycentric coordinates {pv | v ∈ V },
define H(p, t) to be the point whose barycentric coordinates are{

(1− t)pv + t, if v = v0

(1− t)pv, otherwise

Since p is in the open star of σ, it has non-zero coordinates corresponding to each
vertex of σ, in particular for v0. It follows that for 0 ≤ t < 1, p has the same non-
zero coordinates as those of H(p, t), which implies that the latter point actually
exists. Evidently H(p, 0) = p, while H(p, 1) = v0.

Put the two preceding propositions together to conclude:

4.5. Theorem. The open star cover of a simplicial complex is simple.

This fact is a direct consequence of the requirement that in a triangulation any
two simplexes, if they meet, do so in a common face.

4.6. Theorem. The homology of the nerve of the open star cover of a simplicial
complex is isomorphic to the simplicial homology.

Proof. If Y is the disjoint union of the stars of the vertices, then Y nX is the disjoint
unions of the all the non-empty sets

st v0 ∩ . . . ∩ st vn

This set is stσ if the vertices of σ are v0, . . . , vn. Note that these vertices may be
repeated, so that σ is not necessarily an n-simplex. Thus we get one copy of st v for
each ordering of the vertices of σ. But this is the definition of the chain complex
of a simplicial complex.

5. Homology with ordered simplexes

The original definitions of homology went to some effort to avoid simplexes with
repeated vertices and having simplexes that differed only in the order of the vertices.
I do not know whether this was merely for computational efficiency or that it was
not realized at first that two such simplexes were necessarily in the same homology
class. The same thing happened for the early definitions of singular homology. In
this section, we will use acyclic models to show that these older definitions give the
same homology and cohomology.

5.1. Ordered simplicial homology. Let T be a triangulated space and suppose
a total order is chosen on the set V of vertices. Then an ordered n-simplex
〈v0, v1, . . . , vn〉 consists of a string of vertices such that

1. v0, v1, . . . , vn are the vertices of some simplex of T ; and
2. v0 < v1 < · · · < vn.

Note that this means, among other things, that the vi are all distinct. We
let Cord

n (T ) denote the free abelian group generated by the ordered n-simplexes.
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Although there are no degeneracy operators, the same formula works to give a
boundary operator. Namely, define d i:Cord

n (T ) // Cord
n−1(T ) for i = 0, . . . , n by

d i〈v0, v1, . . . , vn〉 = 〈v0, v1, . . . , vi−1, vi+1, . . . , vn〉
The right hand side of that formula is usually denoted 〈v0, v1, . . . , v̂i, . . . , vn〉. Then

d =

n∑
i=0

(−1)id i:Cord
n (T ) // Cord

n−1(T )

One readily shows that d ◦ d = 0 and then there are homology groups Hord
• (T ).

There is an obvious natural inclusion α•:C
ord
•

// C• that commutes with the
boundary operator. It is less obvious, but this inclusion has a natural splitting.
To see this, define an action of the symmetric group Sn+1 on Cn(T ) by letting, for
π ∈ Sn+1 and σ = [v0, v1, . . . , vn],

π−1σ = sgn(π)[vπ0, vπ1, . . . , vπn]

Define βn:Cn // Cord
n as follows. Suppose that T is a triangulated space

with a total order on its vertices. and σ = [v0, . . . , vn] ∈ Cn(T ) is a simplex. If
σ has a repeated vertex, let βn(σ) = 0. Otherwise, there is a unique permutation
π ∈ Sn+1 such that πσ is ± an ordered simplex and we let βn(σ) = πσ. This
definition on simplexes extends to a unique homomorphism Cn(T ) // Cord

n (T ).
Clearly βn ◦ αn = id, from which we conclude that if Kn = ker(βn), then Cn(T ) ∼=
Cord
n (T )⊕Kn.

5.2. Theorem. For any triangulated space T , we have d ◦ βn = βn−1 ◦ d.

Proof. If σ is an ordered simplex, let Kn(σ) denote the subgroup of Kn spanned by
all σ − πσ for π ∈ Sn+1 and Dn be the subgroup of Kn spanned by all degenerate
simplexes (those with at least one repeated vertex). It is clear that Kn = Dn ⊕∑
Kn(σ), the sum taken over all the ordered simplexes. Hence it is sufficient to

show that d takes every degenerate simplex as well as every simplex of the form
σ − πσ into Kn−1. If σ = 〈v0, . . . , vn〉 is multiply degenerate, that is two vertices
are repeated or one vertex is repeated more than once, then every d iσ is degenerate
and hence dσ ∈ Kn−1. Thus we can suppose that vi = vj , i < j and there is no
other degeneracy. In that case, all but two terms of dσ are degenerate and those
terms are

(−1)i〈v0, . . . , v̂i, . . . , vj , . . . , vn〉+ (−1)j〈v0, . . . , vi, . . . , v̂j , . . . , vn〉
and these two terms differ only by j − i− 1 transpositions and hence add up to an
element of Kn−1.

We now consider the case of σ−πσ, where σ is an ordered simplex and π ∈ Sn+1,
by induction on the number of adjacent transpositions necessary to express π. If
this number is 0, π is the identity and there is nothing to prove. Write π = θφ,
where θ is an adjacent transposition and φ is expressible as a composite of fewer
adjacent transpositions than π. Then σ−πσ = (σ−φσ) + (φσ− θφσ). We assume
that d(σ − φσ) ∈ Kn−1. We will let τ = ±φσ, the sign chosen so that τ is an
ordered simplex and will show that d(τ − θτ) ∈ Kn−1.

Suppose that τ = 〈v0, . . . , vj , vj+1, . . . , vn and that θ interchanges j with j+ 1.
Let θ′, θ′′ ∈ Sn interchange j−1 with j and j with j+1, respectively. (In the cases
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that j = 0 or j = n only one of these will actually occur.) Now we calculate easily
that

d i(τ − θτ) =


d iτ − θ′d iτ if i < j

d jτ + d i+1τ if i = j

d j+1τ + d jτ if i = j + 1

d iτ − θ′′d iτ if i > j + 1
from which we can readily calculate that

d(τ − θτ) =

j−1∑
i=1

(−1)idiτ − θ′d iτ +

n∑
i=j+1

(−1)idiτ − θ′′d iτ

and therefore lies in Kn−1.
It is clear that when σ is an ordered simplex, so is dσ and so d ◦ βn(σ) = dσ =

βn−1 ◦ dσ. Given a simplex σ /∈ Kn choose a permutation θ such that θσ is an
ordered simplex. Then

bn−1dσ = βn−1dθσ + βn−1d(σ − θσ)

= dβnθσ = dβn−1σ + dβn(θσ − σ)

= dβnσ

from which the conclusion follows.

5.3. Theorem. The inclusion Cord
•

// C• is a homotopy equivalence on the
category of triangulated spaces.

Proof. If we identify Cord
• with C•/K•, then we have that the composite Cord

•
// C• // Cord

• is the identity. Since Cord
0 = C0, the other composite is the

identity in degree 0 and the conclusion now follows from Corollary 3.5.

5.4. Ordered singular chains. Now we consider the category of spaces. There
is no analog of the subgroup of ordered singular chains, but there is an analog of
the C•/D• construction. If σ: ∆n

// X is a singular n-simplex and π ∈ Sn+1,
define π−1σ by (πσ)(t0, . . . , tn) = sgn(π)σ(tπ0, . . . , tπn). This extends to a unique
additive operation on singular chains. Let Dn(X) consist of those singular chains
c for which πc = −c.
5.5. Proposition. Let θ be an adjacent transposition. Then d(c− θc) ∈ Dn−1.

Proof. Assume that θ ∈ Sn+1 interchanges j with j + 1. As above, we will let
θ′, θ′′ ∈ Sn denote the permutations that interchange j− 1 with j and j with j+ 1,
respectively.

As usual d i:Cn(X) // Cn−1(X) is defined by

d iσ(t0, . . . , tn−1) = σ(t0, . . . , ti−1, 0, ti, . . . , tn−1)

Then we claim that

d iθσ =


θ′d iσ if i < j

d j+1σ if i = j

d jσ, if i = j + 1

θ′′ ◦ d iσ, if i > j + 1
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We prove, for example, the first one. The others are proved similarly. We have, for
i < j,

d i ◦ θjσ(t0, . . . , tn−1) = θjσ(t0, . . . , ti−1, 0, ti, . . . , tj−1, tj , . . . , tn−1)

= σ(t0, . . . , ti−1, 0, ti, . . . , tj , tj−1, . . . , tn−1)

= d iσ(t0, . . . , ti−1, ti, . . . , tj , tj−1, . . . , tn−1)

= θj−1d iσ(t0, . . . , ti−1, ti, . . . , tj−1, tj , . . . , tn−1)

From this we calculate that

d ◦ (1− θ) =

n∑
i=0

(−1)id i ◦ (1− θ)

=

j−1∑
i=0

(−1)id i ◦ (1− θ) + (−1)jd j(1− θ)

+ (−1)j+1d j+1(1− θ) +

n∑
i=j+2

(−1)id i ◦ (1− θ)

=

j−1∑
i=0

(−1)i(1− θ′) ◦ d i + (−1)j(d j + d j+1)

+ (−1)j+1(d j+1 + d j) +

n∑
i=j+2

(−1)i(1− θ′′) ◦ d i

= (1− θ′) ◦
j−1∑
i=0

(−1)id i + (1− θ′′)
n∑

i=j+2

(−1)i ◦ d i

Now if θσ = −σ, then (1− θ)σ = 2σ and then

d(2σ) = d(1− θ)σ

= (1− θj−1) ◦
j−1∑
i=0

(−1)id iσ + (1− θ)
n∑

i=j+2

(−1)i ◦ d iσ

⊆ Dn−1

This implies that there is a natural homomorphism C• // Cord
• . We would

now like to show it is a homotopy equivalence. Unlike the case of simplicial com-
plexes, there does not seem to be any way of making it natural, but rather will
show that it is a weak homotopy equivalence. In order to do this, we make use of
a cotriple that was first used by Kleisli [1974] for similar purposes. I = [0, 1] is the
unit interval of real numbers.
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For a space X and element x ∈ X, let I −−◦
x
X denote the space of continuous

functions (called paths) p: I // X such that p(0) = x, topologized with the
compact/open topology. This means that for a compact subset K ⊆ I and an open
subset U ⊆ X, we let N(K,U) denote the set {p: I // X | p(K) ⊆ U}. Then the
compact/open topology is the one that takes the set of all N(K,U) as a basis for
the topology.

Define GX =
∑
x∈X I −−◦x X. Of course, the point set of GX is just the set of

paths in X, but the topology is not that of the path space, since paths starting at
distinct points are in different components. We define εX:GX // X as evaluation
at 1. We could also define δ:G // G2 so as to make (G, ε, δ) a cotriple, but this
part of the structure is not needed.

In order to interpret the next theorem, we will think of Σn+1 as embedded as
the subgroup of Σn+2 consisting of those permutations of {0, . . . , n + 1} that fix
n+ 1.

5.6. Proposition. There is a natural chain contraction s in the augmented chain
complex functor C•G // C−1G // 0 such that for an n-simplex σ and π ∈ Σn+1,
s(πσ) = πs(σ).

Proof. Let X be any space and suppose that σ: ∆n
// GX is a singular n-simplex.

Since σ is a continuous function from a connected space into a disjoint sum of
spaces, it necessarily factors through one of the summands. Thus we can think
of σ as being a continuous function ∆n

// I −−◦
x
X for a uniquely determined

x ∈ X. A function σ: ∆n
// I −−◦

x
X transposes to a function that will also denote

σ: ∆× I // X and we will denote its value at the point t = (t0, . . . , tn) such that
t0 + · · ·+ tn = 1 and u ∈ I by σ(t;u). First we consider the case of dimensions −1
and 0. Any path in I −−◦

x
X is homotopic to the constant path at x which we will

denote px. In fact, the map H: I×I // X given by H(u0, u1) = p(u0u1) gives the
path p when u0 = 1 and px when u0 = 0. On the other hand, two distinct elements
of x correspond to distinct components of GX. Thus C−1(GX) = H0(GX) is
the free abelian group generated by the elements of X. We now let s:C−1(GX)
// C0(GX) given by sx = px. The group C0(GX) is the free abelian group

generated by the paths in GX. For n ≥ 0, define s:Cn(GX) // Cn+1(GX) by

(sσ)(t, tn+1;u)

= (−1)n+1

{
σ
(

t0
1−tn+1

, . . . , tn
1−tn+1

; (1− tn+1)u
)
, if tn+1 6= 1

x, if tn+1 = 1

This is obviously continuous for tn+1 < 1. We will defer to later the proof that it
is continuous at tn+1 = 1.

The first thing we want to do is calculate sd+ ds in degree 0. A 0-path in GX
is just an element of GX, that is a path in X. To conform with the notation in
higher degrees, we denote it p(1;u). The 1 stands for the single element of ∆0 and
u ∈ I. By definition, dp = p(1; 0), the starting point, which we will call x. Then
sdp = px, which we can write as sdp(1;u) = p(1; 0). We have,

dsp(1;u) = sp(0, 1;u)− sp(1, 0;u) = −p(1; 0) + p(1;u) = p(1;u)− sd(1;u)



174 8. APPLICATIONS IN TOPOLOGY

as required. For n > 0, we calculate, assuming tn 6= 1,

dsσ(t0, . . . , tn;u) =

n+1∑
i=0

(−1)isσ (t0, . . . , ti−1, 0, ti, . . . , tn;u)

= (−1)n+1
n∑
i=0

(−1)isσ (t0, . . . , ti−1, 0, ti, . . . , tn;u)

+ (−1)n+1sσ (t0, . . . , tn, 0;u)

= (−1)n+1
n∑
i=0

(−1)iσ

(
t0

1− tn
, . . . ,

ti−1

1− tn
, 0,

ti
1− tn

, . . . ,
tn−1

1− tn
; (1− tn)u

)
+ (−1)n+1(−1)n+1σ (t0, . . . , tn;u)

= (−1)n+1dσ

(
t0

1− tn
, . . . ,

tn−1

1− tn
; (1− tn)u

)
+ σ (t0, . . . , tn;u)

= −sdσ (t0, . . . , tn;u) + σ (t0, . . . , tn;u)

so that ds = −sd + 1. The case that tn = 1 can be handled similarly (or use
continuity).

Next we show that s is continuous at tn+1 = 1. Let U be a neighborhood of
x. Since σ is continuous and σ(t; 1) = x for all t = (t0, . . . , tn) ∈ ∆n, there is a
neighborhood Vt of t and a number εt > 0 such that t′ ∈ Vt and 0 < u < εt implies
that σ(t, u) ∈ U . Since ∆n is compact, it is covered by a finite number of these Vt.
Taking ε as the minimum of the εt corresponding to those finitely many Vt, we see
that when 0 < u < ε, then σ(t, u) ∈ U for all t ∈ ∆n and hence

lim
tn+1

//1
σ

(
t0

1− tn+1
, . . . ,

tn
1− tn+1

; (1− tn+1)u

)
= x

The fact that πs = sπ for π ∈ Σn+1 is obvious.

5.7. Proposition. For all n ≥ 0, there is a natural transformation θn:Cn //

CnG such that Cnε ◦ θn = id and such that for each π ∈ Σn+1, θn(πσ) = πθn(σ).

Proof. Let X be a topological space. Define θnX:CnX // CnGX by

θn(σ)(t0, . . . , tn)(u) = σ

(
ut0 +

1− u
n+ 1

, . . . , utn +
1− u
n+ 1

)
which is a simplex in the component of GX based at σ( 1−u

n+1 , . . . ,
1−u
n+1 ). It is clear

that θn(σ)(t0, . . . , tn)(1) = σ(t0, . . . , tn) and that θ(σ ◦ p) = θ(σ) ◦ p, from which
the second claim follows.

Now we can apply acyclic models to C• as well as Cord
• . We have shown that

C• is ε-presentable and that C• // C−1
// 0 is G-contractible and both natural

transformations commute with the action of the symmetric groups. This implies
that s(Dn) ⊆ Dn+1, and similarly that θn(Dn) ⊆ DnG and so Cord

• is also ε-
presentable and that Cord

•
// Cord
−1

// 0 is G-contractible. Since C0 = Cord
0 , it

follows that
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5.8. Theorem. C• // Cord
• is a homotopy equivalence.

6. Application to homology on manifolds

Consider a differentiable manifold M of class Cq, for 0 ≤ q ≤ ∞. For p ≤ q, we can
form the group Cpn(M) of singular n-simplexes in M that are p times continuously
differentiable. Intuitively, we feel that the resultant chain complex should not
depend, up to homology, on q. We would expect a process analogous to simplicial
approximation to allow us to smooth a simplex of class Cp to obtain a homologous
simplex of class Cq. The case q = ∞ and p = 0 is well known, in connection with
de Rham cohomology see [Bredon, 1993]. Here we deal with the general case and
show homotopy equivalence directly. The basic argument is a modification of the
one used in Bredon. We have previously given an argument that is based even more
directly on our acyclic models theorem, but it depends on the existence of a simple
cover and on paracompactness, which this one does not. See [Barr, 1996].

A simplex is not a manifold, so that one has to define what it means for a
singular simplex in a manifold to be smooth. One possibility would be to extend
the category to manifolds with boundary and thus to include the simplexes. Then
smoothness would have to be defined in terms of one-sided derivative. I know no
reason that this would not work, but simplexes have lots of corners and this leads
us into uncharted (for me!) waters that I would rather avoid. Thus I will follow
Bredon and define a smooth simplex as one that has a smooth extension to some
neighborhood of ∆ in the space defined by t0 + · · · + tn = 1, which is, essentially,
Rn.

The main consequence of this decision for us is that the various cotriples that
are used to prove, for example, the subdivision and Mayer-Vietoris theorems are
no longer available. However, the explicit formula of 1.16 will be valid as soon as
we can describe a ”smooth cone” construction that takes smooth cones to smooth
cones.

Recall that in 1.2 we defined, for a convex subset U of a euclidean space, a
point b ∈ U and a singular simplex σ: ∆n

// U a cone b · σ: ∆n+1
// U by

b · σ(t0, t1, . . . , tn+1) =

{
r(t0)b+ (1− r(t0))σ

(
t1

1−t0 , · · · ,
tn+1

1−t0

)
if t0 6= 1

b if t0 = 1

The function r: I // I is any continuous bijective function such that r(0) = 0
and r(1) = 1. The problem is the 1− t0 in the denominator that does not interfere
with continuity since σ is bounded on the compact set ∆n, but does interfere with
smoothness. We will show that for the choice of

r(t) =

{
1− e1− 1

1−t if 0 ≤ t ≤ 1
1 if t = 1

In order to extend this to a neighborhood, we extend the definition of r(t) to the
entire line by

r(t) =

{
1− e1− 1

1−t if t ≤ 1
1 if t ≥ 1
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Since U is open, b is at positive distance from the complement and hence there will
be some ε > 0 such that for all t0 ∈ [−ε, 1 + ε], the extension defined by

b · σ(t0,t1, . . . , tn+1)

=

{
r(t0)b+ (1− r(t0))σ

(
t1

1−t0 , · · · ,
tn+1

1−t0

)
if −ε < t0 < 1

b if 1 ≤ t0 ≤ 1 + ε

still takes values in U .

6.1. Proposition. If σ is p times continuous differential, then so is b · σ.

Proof. There is obviously no problem except when t0 = 1. As t0 // 1−, the
exponent goes to −∞ and hence limt0

//1− r(t) = 1, which establishes continuity.
The differentiability follows from the following lemma.

6.2. Lemma. Suppose we write τ = 1/(1−t0) and that k and l are positive integers,
s is a polynomial in t0, . . . , tn and φ is at least k times continuously differentiable
on a neighborhood of ∆n. Let f be the function defined on a neighborhood of ∆n to
be 0 for t0 ≥ 1 for t0 < 1 by

e−ττ−ls(t0, . . . , tn)φ(τt0, . . . , τ tn) (∗)
has a continuous partial derivative that is a finite sum of terms of the same form
involving the functions and their first partial derivatives of those appearing in (∗)
and is, therefore, at least k − 1 times continuously differentiable.

Proof. Let φi denote the partial derivative of φ with respect to its ith variable.
Then the partial derivative of (∗) with respect to t0 is

− e−τ ∂τ
∂t0

τ−ls(t0, . . . , tn)φ(τt0, . . . , τ tn)

− 2ke−ττ−l−1s(t0, . . . , tn)φ(τt0, . . . , τ tn)

+ e−ττ−l
∂s(t0, . . . , tn)

∂t0
φ(τt0, . . . , τ tn)

+ e−ττ−ls(t0, . . . , tn)φ0(τt0, . . . , τ tn)τ

+ e−ττ−ls(t0, . . . , tn)

n∑
i=0

φi(τt0, . . . , τ tn)ti
∂τ

∂t0

Since ∂τ/∂t0 = −1/τ2 each term has the required form and is at least k − 1
times differentiable. Since limτ //∞ e−ττ−l = 0, each term is continuous at the
boundary.

Let M be a manifold of class Cq as above, p ≤ q and suppose that j(M):Cp• (M)
// C•(M) is the inclusion of the group of q-smooth singular chains into the group

of all chains. It is clear that j(M) is the M component of a natural transformation
between these functors. We will be showing that it is a quasi-homotopy equivalence,
that is a homotopy equivalence at each object, without necessarily having a natural
homotopy inverse. We note that with the smooth cone, the proof of 1.4 remains
valid and we can conclude that
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6.3. Lemma. Let U be a non-empty convex open subset of Rn. Then the simplicial
set of smooth simplexes on U is contractible.

Similarly the construction of the simplicial subdivision, as well as the proof,
using the explicit formula of 1.16 that it is homotopic to the identity, remain un-
changed.

If M is a manifold of class Cp, 1 ≤ p ≤ ∞, let j•(M):Cp• (M) // C•(M)
denote the inclusion of the subgroup of p times differentiable chains into the group
of all singular chains. We wish to show that this is, for each M , a homotopy
equivalence. To this end, we let J• denote the mapping cone of j•. In accordance
with 2.9, to prove that j• is a homotopy equivalence, it suffices to show that J• is
contractible. Since the terms are all projective, it suffices to show that it is exact.

6.4. Proposition. The complex J• satisfies the Mayer-Vietoris theorem.

Proof. Suppose U and V are open subsets of the manifold M . Let C• = C•(U ∪V )

and Cp• = Cp• (U ∪ V ). Let C̃p• = Cp• (U ∪ V, {U, V }), C̃• = C•(U ∪ V, {U, V }) and

J̃• = C̃p•/C̃•. Let Ĉp• = Cp•/C̃
p
• , Ĉ• = C•/C̃•, and Ĵ• = J•/J̃•. The 3 × 3 lemma

(2.3.12)applied to

J̃• J•//J̃•0 // J̃•

0
��

J• Ĵ•//J•

0
��

Ĵ•

0
��

Ĵ• 0//

Ĉ• 0//C• Ĉ•//C̃• C•//C̃•0 //

C̃p• Cp•//C̃p•0 // C̃p•

0

��
Cp• Ĉp•//Cp•

0

��
Ĉp•

0

��
Ĉp• 0//Ĉp•

Ĉ•

��

Cp•

C•
��

C̃p•

C̃•

��
C̃•

J̃•

��

C•

J•
��

Ĉ•

Ĵ•

��

implies that Ĵ• is acyclic so that the inclusion J̃• // J• is a homology, hence
homotopy equivalence.
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The 3× 3 lemma applied to

J•(U ∩ V ) J•(U)⊕ J•(V )//J•(U ∩ V )0 // J•(U ∩ V )

0
��

J•(U)⊕ J•(V ) J̃•//J•(U)⊕ J•(V )

0
��

J̃•

0
��

J̃• 0//

C̃• 0//C•(U)⊕ C•(V ) C̃•//C•(U ∩ V ) C•(U)⊕ C•(V )//C•(U ∩ V )0 //

Cp• (U ∩ V ) C•(U)⊕ C•(V )//Cp• (U ∩ V )0 // Cp• (U ∩ V )

0

��
C•(U)⊕ C•(V ) C̃•//C•(U)⊕ C•(V )

0

��
C̃•

0

��
C̃• 0//C̃•

C̃•

��

C•(U)⊕ C•(V )

C•(U)⊕ C•(V )
��

Cp• (U ∩ V )

C•(U ∩ V )
��

C•(U ∩ V )

J•(U ∩ V )
��

C•(U)⊕ C•(V )

J•(U)⊕ J•(V )
��

C̃•

J̃•

��

implies that the bottom row is exact. In conjunction with the previous diagram,
this implies the Mayer-Vietoris theorem for J .

6.5. Proposition. Suppose U is a cover of the manifold M . Every simplex and
hence every chain of C•(M) lies in a finite union of elements of U .

Proof. This is an immediate consequence of the compactness of simplexes.

6.6. Corollary. The groups J•(M) are the union, taken over all finite subsets
{U1, . . . , Un} ⊆ U of J•(U1 ∪ · · · ∪ Un).

Proof. This is true of both C•(M) and Cp• (M) and is easily seen to be true of the
quotient.

6.7. Corollary. If J•(U1∪· · ·∪Un) = 0 for every finite subset {U1, . . . , Un} ⊆ U ,
then J•(M) = 0.

Proof. For any cycle c ∈ Jm(M), there is a finite subset {U1, . . . , Un} ⊆ U such
that c is a cycle in Jm({U1 ∪ · · · ∪Un). If c is not a boundary in Jm(M), then it is
certainly not a boundary in Jm({U1 ∪ · · · ∪ Un).

6.8. Proposition. Suppose that U and V are open subsets of M such that J• is
acyclic at U , V and U ∩ V . Then it is acyclic at U ∪ V .

Proof. This is an immediate consequence of the Mayer-Vietoris theorem.

6.9. Proposition. Suppose U1, . . . , Un are open subsets of M such that J• is
acyclic at the intersection of every non-empty finite subset of them. Then J• is
acyclic at their union.

Proof. Assume this is true for all sets of n−1 open sets. It follows that J• is acyclic
at U1 ∪ · · · ∪ Un−1, at Un and also at

(U1 ∪ · · · ∪ Un−1) ∩ Un = (U1 ∩ Un) ∪ · · · ∪ (Un−1 ∩ Un)

and hence, by the preceding result, at U1 ∪ · · · ∪ Un−1 ∪ Un.
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6.10. Proposition. Suppose that U is an open subset of euclidean space. Then
J•(U) is acyclic.

Proof. On a convex subset of euclidean space, the homology of both Cp• and C•
reduce to Z concentrated in degree 0 and the induced map in degree 0 is the identity,
since all 0-simplexes are smooth. Hence J• is exact on a convex subset. A spherical
neighborhood is convex and any intersection of convex sets is convex, so that the
cover by spherical neighborhoods has the property that any finite intersection is
convex and hence J• is acyclic on any finite union and hence on all of U .

6.11. Theorem. The chain functor J• is acyclic, and hence contractible, on
any manifold M . It follows that the inclusion Cp• (M) // C•(M) is a homotopy
equivalence.

Proof. A manifold has an open cover by euclidean spaces. Any finite intersection
of these is an open subset of a euclidean space and hence J• is acyclic on all those
finite intersections and hence on every finite union of them and therefore on all of
M .

6.12. De Rham’s Theorem. One of the reasons that homology theory was cap-
tured the interest of mathematicians in the early part of the century was the
connection between integrability of forms and the topological properties of the
set on which they were defined. A closed (or exact) form on a contractible space
was integrable, but on a non-contractible space need not be. This comes to fruition
in de Rham’s theorem which connects these facts by an equivalence of cohomology
theories.

We will not here develop the theory of de Rham cohomology, which is far from
the purposes of this book. Nor will we include a proof of the Poincaré Lemma on
which all proofs I am aware of depend on. What we will do is show how the methods
developed here can help organize the argument. See, for example, [Bredon, 1993]
or [Spivak, 1965] for excellent treatments of the de Rham theory.

Although previous results did not require paracompactness, this one apparently
does. At any rate, the proof given here uses it. A paracompact manifold has a
partition of unity [Bredon, 1993, pages 35–37]. For our purposes, the partition of
unity is more basic than the atlas. To explain, if X is a topological space and
{αi | i ∈ I} is a partition of unity such that for each i ∈ I, the support of αi,
denoted suppαi, is homeomorphic to an open subset of Rn, then X is obviously
a manifold since each point will have a neighborhood that is homeomorphic to an
open ball in Rn and hence to Rn. If on suppαi ∩ suppαj , the transition map
from the αi coordinates to the αj coordinates are smooth, then we have a smooth
manifold. Conversely, if we begin with a smooth manifold, we can begin by choosing
a smooth partition of unity [Bredon, 1993, pages 89–90] and then we will have a
smooth manifold in the sense just described.

Thus motivated, we can define a special category for the proof. An object
of the category is a pair (X, {αi | i ∈ I}) such that X is a topological space and
{αi | i ∈ I}) is a partition of unity that gives X a smooth structure. A map-
ping (X, {αi | i ∈ I}) // (Y, {βj | j ∈ J}) is a pair (f, φ) where f :X // Y is a
smooth map and φ: I // J is a function that induces, for each x ∈ X a bijection
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between the {i ∈ I | αix 6= 0} and {j ∈ J | βjfx 6= 0} such that the diagram

X

R

αi
��???????????X Y
f // Y

R

βφi
�������������

commutes. It is not required, and not generally true, that φ be a bijection, but it
must be locally so, in the sense described. We will call this category the category
of partitioned spaces and denote it Part.

Let G(X, {αi}) =
⋃
i∈I(suppαi, {αi′ | suppαi}). That is, we take the disjoint

union of the supports and on each one, restrict the partition of unity to that support.
Of course, these will mostly vanish on this support, but the way things are set up,
this causes no harm. The index set of the partition of unity in G(X, {αi}) is then
I × I with the function αi′ | suppαi being the function indexed by the pair (i, i′). If
(f, φ): (X, {αi}) // (Y, {βj}) is an arrow of Part, we have a commutative square,
for each i ∈ I,

suppβφi Y//

suppαi

suppβφi
��

suppαi X// X

Y

f

��

in which the vertical maps are inclusions and the left hand arrow the unique one
making the square commute. This defines the arrowG(f, φ). The map ε:G(X, {αi})
is the unique arrow whose restriction to the component indexed by i is (⊆, p2), the
latter being the second coordinate projection. This is clearly an arrow of Part and
the component at (X, {αi}) of a natural transformation. We do not need it, but a
natural transformation δ making (G, ε, δ) into a cotriple can also be defined. There
is a contravariant functor Ωm that associates to each smooth manifold the group
of differential m forms on that manifold. This functor is clearly defined on Part,
ignoring the partition. I claim there is a natural transformation t: ΩG // Ω for
which t ◦ Ωε = id. In fact, a differential m form on G(X, {αi}) consists of an I
indexed family {ωi} of m forms ωi on suppαi. Then we let t({αi}) =

∑
i∈I αiωi.

We see that if {ωi} = {ω| suppαi}, then

t({αi}) =
∑
i∈I

αiωi =
∑
i∈I

αiω = ω

which shows that t ◦ Ωε = id. We still have to show that t is natural on Part. This
means showing that if (f, φ): (X, {αi}) // (Y, {βj}) is an arrow of Part, that the
square

Ωm(GX) Ωm(X)
tX

//

Ωm(GY )

Ωm(GX)

Ωm(Gf)

��

Ωm(GY ) Ωm(Y )
tY // Ωm(Y )

Ωm(X)

Ωm(f)

��
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commutes. We have that

Ω(Gf) {ωj | j ∈ J} = {f∗(ωφi) | i ∈ I}
which comes from the commutative square

suppβφi Y//

suppαi

suppβφi
��

suppαi X// X

Y

f

��

that tells how G is a functor. Then

tX ◦ Ω(Gf){ωj} = tX{f∗ωφi} =
∑
i∈I

αif
∗(ωφi)

Going the other way, we have

Ω(f) ◦ tY {ωj} = Ω(f)
∑
j∈J

ωj =
∑
j∈J

βjf
∗(ωj)

Now when this is applied at an element x ∈ X, we can write each j ∈ J for which
βj(fx) 6= 0 as φi for a unique i ∈ I for which αi(x) 6= 0. Thus this last sum becomes∑

i∈I
βφif

∗(ωφi) =
∑
i∈I

αif
∗(ωφi)

What this argument shows is that the de Rham cochain complex is G acyclic
with respect to natural homotopy equivalence in Part. The Poincaré Lemma shows
that the de Rham complex is contractible on convex subspaces of Rn. The same
argument as used previously shows that the canonical map from the de Rham com-
plex to the smooth cochain complex is a homotopy equivalence on open subspaces
of euclidean spaces and then on all paracompact manifolds.
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M. André (1974), Homologie des algèbres commutatives. Springer-Verlag, Berlin,
Heidelberg, New York.

H. Appelgate (1965), Categories with models. Dissertation, Columbia University.

M. Barr (1962), On the cohomology of commutative algebras. Dissertation,
University of Pennsylvania.

M. Barr (1965a), A cohomology theory for commutative algebras, I. Proc. Amer.
Math. Soc. 16, 1379–1384.

M. Barr (1965b), A cohomology theory for commutative algebras, II. Proc. Amer.
Math. Soc. 16, 1385–1391.

M. Barr (1966), Cohomology in tensored categories. Proceedings of the Conference
on Categorical Algebra, Springer-Verlag, Berlin, Heidelberg, New York, 344–
354.

M. Barr (1967), Shukla cohomology and triples. J. Algebra 5, 222–231.

M. Barr (1968a), A note on commutative algebra cohomology. Bull. Amer. Math.
Soc. 74, 310–313.

M. Barr (1968b), Harrison homology, Hochschild homology and triples. J. Algebra
8, 314–323.

M. Barr (1969b), Composite cotriples and derived functors. In B. Eckmann, ed.
Seminar on Triples and Categorical Homology Theory, Lecture Notes in
Mathematics 80, 336–356, Springer-Verlag, Berlin, Heidelberg, New York.

M. Barr (1969c), Cohomology and obstructions: commutative algebras. In B.
Eckmann, ed. Seminar on Triples and Categorical Homology Theory, Lecture
Notes in Mathematics 80, 357–375, Springer-Verlag, Berlin, Heidelberg, New
York.

M. Barr (1971), Exact Categories. In Exact Categories and Categories of Sheaves,
Lecture Notes in Mathematics 236, 2–121, Springer-Verlag, Berlin, Heidel-
berg, New York.

M. Barr (1996a), Cartan-Eilenberg cohomology and triples. J. Pure Applied
Algebra, 112, 219–238.

M. Barr (1996b), Acyclic models. Canadian J. Math., 48, 258-273.

M. Barr (forthcoming), Resolutions and derived functors. ftp.math.mcgill.ca/pub/
barr/derfun.{ps,pdf}

182



BIBLIOGRAPHY 183

M. Barr and J. Beck (1966), Acyclic models and triples. Proceedings of the
Conference on Categorical Algebra, Springer, 336–343.

M. Barr and J. Beck (1969), Homology and standard constructions. In B. Eckmann,
ed. Seminar on Triples and Categorical Homology Theory, Lecture Notes in
Mathematics 80, Springer-Verlag, Berlin, Heidelberg, New York, 245–335.

M. Barr and J. Beck (1969), Homology and standard constructons. In M. Tierney
and A. Heller, eds., Seminar on Triples and Categorical Homology Theory,
Lecture Notes in Mathematics 80, Springer-Verlag, Berlin, Heidelberg, New
York, 245–535.

M. Barr and M.-A. Knus (1971), Extensions of Derivations. Proc. Amer. Math.
Soc. 28, 313–314.

M. Barr, and G.S. Rinehart (1966), Cohomology as the derived functor of
derivations. Trans. Amer. Math. Soc. 122, 416–426.

M. Barr and C. F. Wells (1984,) Triples, Toposes and Theories. Springer-
Verlag, Berlin, Heidelberg, New York.

D. Bayer and P. Diaconis (1992), Trailing the dovetail shuffle to its lair, Ann.
Appl. Probability, 2, 294–313

J.M. Beck (1967), Triples, algebras and cohomology. Dissertation, Columbia
University.

G. Bredon (1993), Topology and Geometry, Springer-Verlag, Berlin, Heidelberg,
New York.

H. Cartan and S. Eilenberg (1956), Homological Algebra. Princeton University
Press.

C. Chevalley and S. Eilenberg (1948), Cohomology theory of Lie groups and Lie
algebras. Trans. Amer. Math. Soc., 63, 85–124.

A. Dold and D. Puppe (1961), Homologie nicht-additiver Funktoren. Anwendun-
gen. Ann. Inst. Fourier Grenoble 11, 201–312.

S. Eilenberg and S. Mac Lane (1947), Cohomology theory in abstract groups, I.
Ann. Math., 48, 51–78.

S. Eilenberg and S. Mac Lane (1953), Acyclic models. Amer. J. Math., 75, 189–199.

S. Eilenberg and J. Moore (1965), Adjoint functors and triples. Ill. J. Math., 58,
381–398.

S. Eilenberg and J. Zilber (1953), On products of complexes. Amer. J. Math., 75,
200–204.

P.J. Freyd (1964), Abelian Categories. Harper and Row.

P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory. Springer-
Verlag, Berlin, Heidelberg, New York1967.

G. Hochschild (1945), On the cohomology groups of an associative algebra. Ann.
of Math. (2), 46, 58–67.

G. Hochschild (1946), On the cohomology theory for associative algebras. Ann. of
Math. (2), 47, 568–579.

D.K. Harrison (1962), Commutative algebras and cohomology. Trans. Amer. Math.
Soc., 104, 191–204.

D. Kan (1958), Adjoint functors. Trans. Amer. Math. Soc., 87, 294–329.



184 BIBLIOGRAPHY

H. Kleisli (1965), Every standard construction is induced by a pair of adjoint
functors. Proc. Amer. Math. Soc., 16, 544–546.

H. Kleisli (1974), On the construction of standard complexes. J. Pure Applied
Algebra, 4, 243–260.

S. Mac Lane (1963), Homology. Springer-Verlag, Berlin, Heidelberg, New York.

S. Mac Lane (1971), Categories for the Working Mathematician. Springer-Verlag,
Berlin, Heidelberg, New York.
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