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Exercise 1
Let f ∈ C0(R) and periodic with f(x+2π) = f(x). Let an = 1

2π

∫ π
−π f(t)e−intdt

and (SNf)(x) =
N∑

n=−N
ane

inx. If f is continuously differentiable at xo ∈ [−π, π],

then f(x0) = lim
N→∞

(SNf)(x0).

Solution

Define F (t) =

{
f(x0−t)−f(x0)

t t 6= 0 and |t| < π
−f ′(x0) t = 0

By the assumptions on f , F is bounded on [−π, π]. Recall the Dirichlet

Kernel DN defined by sin((N+1/2)t)
sin(t/2) . One can verify that (SNf)(x) = (f ∗DN )(x)

and that 1
2π

∫ π
−πDN = 1.

Then

(SNf)(x0)− f(x0) =
1

2π

∫ π

−π
f(x0 − t)DN (t)dt− f(x0)

=
1

2π

∫ π

−π
(f(x0 − t)− f(x0))DN (t)dt

=
1

2π

∫ π

−π
F (t)

t

sin(t/2)
sin((N + 1/2)t)dt

From here we write sin((N + 1/2)t) = sin(Nt) cos(t/2) + cos(Nt) sin(t/2)
and take the limit as N →∞. Since the terms in the integrand not depending
on N are bounded this integral converges to 0 by the Riemann-Lebesgue lemma.

Exercise 2
The Volterra integral operator T : L2([0, 1])→ L2([0, 1]) given by (Tf)(x) =∫ x

0
f(y)dy for x ∈ [0, 1] is compact with spectrum = {0}.
Solution
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T is a bounded operator since

‖Tf‖22 =

∫ 1

0

(∫ x

0

f(y)dy

)2

dx

≤
∫ 1

0

‖f‖21dx

≤ ‖f‖22

Notice that we can rewrite T as (Tf)(x) =
∫ 1

0
k(x, y)f(y)dy where k(x, y) ={

1 y < x
0 y ≥ x
Since k : [0, 1]2 → C ∈ L2([0, 1]2), T is Hilbert-Schmidt and therefore com-

pact.
From the general theory of compact operators, λ 6= 0andλ ∈ σ(T ) −→ λ is

an eigenvalue, and since L2([0, 1]) is infinite dimensional, 0 ∈ σ(T ). Suppose

that
∫ 1

0
f(y)dy = λf(x). Since f ∈ L1([0, 1]), by the fundamental theorem of

calculus we may differentiate the equation to obtain f(x) = λf ′(x) which has
solution f(x) = ce

x
λ for λ 6= 0. Putting back into the integral equation will give

that c = 0, and we conclude that λ 6= 0 is not possible.

Exercise 3
The Medellin transform defined as M : L2(R+, dt/t) → L2(R), (Mf)(x) =

1√
2π

∫
0
∞f(t)tix−1dt is a unitary operator.

Solution
An alternate definition, perhaps more standard, of the Medellin transform

is M̃ : L2(R+)→ L2(R). (M̃f)(x) = 1√
2π

∫∞
0
f(t)t−1/2+ixdt.

Consider the map φ̃ : L2(R+) → L2(R) (φ̃f)(z) = ez/2f(ez). φ̃ is unitary
since ‖φ̃f‖22 =

∫∞
−∞ ez|f(ez)|2dz =

∫∞
0
|f(u)|2du = ‖f‖22 and is easily seen to be

surjective.
Now notice that M̃ = F◦φ̃, where F denotes the Fourier transform. Indeed,

1√
2π

∫∞
−∞ ez/2f(ez)e−izxdz = 1√

2π

∫∞
0
f(t)tix−1dt

Similarly one checks that M = F−1 ◦ φ where φ : L2(R+, dt/t) → L2(R)
(φf)(z) = f(ez) and F−1 denotes the inverse Fourier transform. φ is unitary
since ‖φf‖22 =

∫∞
−∞ |f(ez)|2dz =

∫∞
0
|f(u)|2 1

udu = ‖f‖22.
In either case, we have the composition of two unitary maps, so the Medellin

transform is unitary.

Exercise 4
Let Ω ⊂ C be open andH be the subspace of L2(Ω) consisting of holomorphic

functions on Ω. Then H is closed subspace of L2(Ω) and hence a Hilbert space
with inner product 〈f, g〉 =

∫
Ω
f(x+ iy)g(x+ iy)dxdy
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Solution
Obviously the second part of the statement follows from the first as closed

subspaces of Hilbert spaces are Hilbert spaces with the same inner product. We
shall need the following result from complex analysis:

Let {fn(z)}∞n=1 be a sequence of complex-valued functions analytic on an
open connected set D ⊂ C which converge uniformly to f(z). Then f(z) is
analytic on D.

We also need the following inequality for finite measure spaces:
If µ(Ω) < ∞, then for 0 < p < q < ∞, ‖f‖p ≤ ‖f‖qµ(Ω)1/p−1/q which is

proved by using Holder’s inequality with conjugate exponents q
p and q

q−p :

‖f‖pp =

∫
|f |p · 1 ≤ ‖|f |p‖q/p‖1‖ q

q−p
= ‖f‖pqµ(Ω)

q−p
q

Let g be a holomorphic function on Ω. Then by the mean value property
of holomorphic functions for any z ∈ Ω and any r = r(z) > 0 sufficiently
small so that B(z, r) ⊂ Ω we have f(z) = 1

πr2

∫
B(z,r)

f(ζ)dA Then |f(z)| ≤
1
πr2 ‖f‖1,B(z,r) ≤ 1√

πr
‖f‖2,B(z,r) ≤ 1√

πr
‖f‖2 In particular, if K ⊂ C is compact,

and z ∈ K, then |f(z)| ≤ 1√
πro
‖f‖2 where ro = d(K,Ωc). Hence if {fn} is

a Cauchy sequence in L2(Ω), then {fn} is uniformly Cauchy on all compacts
K ⊂ Ω, and therefore converges uniformly on all compacts K ⊂ Ω. Combining
this with previous result stated earlier completes the proof.

Exercise 5
Let {ϕn}∞n=0 be an orthonormal basis for H. Then:

1. ∀z ∈ Ω,
∞∑
n=0
|ϕn(z)|2 ≤ 1

πd(z,Ωc)2

2. B(z, w) =
∞∑
n=0

ϕn(z)ϕn(w) called the Bergman kernel converges absolutely

for (z, w) ∈ Ω× Ω and is independent of the choice of orthonormal basis.

3. The linear transformation T : L2(Ω) → H, (Tf)(x) =
∫

Ω
B(z, w)f(w)dw

is the orthogonal projection onto H.

4. In the special case where Ω is the unit disc, f ∈ H iff f(z) =
∞∑
n=0

anz
n for

some an satisfying
∞∑
n=0

|an|2
n+1 <∞. Also {zn

√
n+1
π }

∞
n=0 is an orthonormal

basis of H and B(z, w) = 1
π(1−zw)2 .

Solution
We start with a lemma: Let {an}∞n=0, {bn}∞n=0 be sequences of complex

numbers. Then

√
∞∑
n=0
|bn|2 = sup∑

|an|2≤1

|
∞∑
n=0

anbn|.
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By Cauchy-Schwarz, we have

√
∞∑
n=0
|bn|2 ≥ sup∑

|an|2≤1

|
∞∑
n=0

anbn|. By taking

a
(N)
n = 1√

N∑
j=0
|bj |2

{
bn n ≤ N
0 n > N

the supremum attains

√
∞∑
n=0
|bn|2.

1. For
∞∑
n=0
|an|2 ≤ 1, from the previous exercise we have |

∞∑
n=0

anϕn(z)| ≤

1√
πd(z,Ωc)

‖
∞∑
n=0

anϕn(z)‖2 = 1√
πd(z,Ωc)

, Now taking an = a
(N)
n = 1√

N∑
j=0
|ϕj(z)|2

{
ϕn(z) n ≤ N

0 n > N

and applying the lemma yields the result.

2. The fact that B(z, w) converges absolutely follows from applying Cauchy-
Schwarz and invoking the previous result, (and remembering that for com-
plex series, convergence implies absolute convergence).

3. Since H is a Hilbert subspace of L2(Ω) we may complete {ϕn}∞n=0 with
{ψk}∞k=0 to an orthonormal basis of L2(Ω). For f ∈ L2(Ω), say f =
∞∑
n=0

anϕn +
∞∑
k=0

bkψk we have

(Tf)(Z) =

∫
Ω

( ∞∑
n=0

ϕn(z)ϕn(w)

)( ∞∑
m=0

amϕm(w) +

∞∑
k=0

bkψk(w)

)
dw

=

∞∑
n=0

∞∑
m=0

amϕn(z)

∫
Ω

ϕn(w)ϕm(w)dw +

∞∑
n=0

∞∑
k=0

bkϕn(z)

∫
Ω

ϕn(w)ψk(w)dw

=

∞∑
n=0

anϕn(z)

The fact that the kernel B(z, w) is independent of the choice of basis is
now easy to see, because if B(z, w) corresponds to {ϕn} and B̃(z, w) corre-

sponds to {ϕ̃n}, then for all f ∈ L2(Ω) we have
∫

Ω

(
B(z, w)− B̃(z, w)

)
f(w)dw

which implies that for all z, B(z, w)− B̃(z, w) = 0.

4. If n = m,

〈ϕn, ϕn〉 =
n+ 1

π

∫
B(0,1)

znzndz

=
n+ 1

π

∫ 1

r=0

∫ 2π

θ=0

r2nrdrdθ = 1

If n 6= m,
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〈ϕn, ϕm〉 =

√
(n+ 1)(m+ 1)

π

∫
B(0,1)

znzmdz

=

√
(n+ 1)(m+ 1)

π

∫ 1

r=0

∫ 2π

θ=0

rn+meiθ(n−m)rdrdθ = 0

If f ∈ H, then f(z) =
∞∑
n=0

anz
n for some an. Then f =

∞∑
n=0

an
√

π
n+1ϕn

and so
∞∑
n=0
|an|2 π

n+1 <∞.

Finally B(z, w) =
∞∑
n=0

√
n+1
π zn

√
n+1
π wn = 1

π

∞∑
n=0

(n+ 1)(zw)n = 1
π(1−zw)2

where we used the fact that for |ζ| < 1, 1
1−ζ =

∞∑
n=0

ζn implies 1
(1−ζ)2 =

∞∑
n=0

(n+ 1)ζn

Exercise 6

Let L be a linear partial differential operator with constant coefficients.
Then the space of solutions u of Lu = 0 with u ∈ C∞(Rd) is infinite
dimensional for d ≥ 2.

Solution

First we argue that a non-constant polynomial in two variables has un-
countably many zeroes. If p(x, y) ∈ C[x, y] then we can find polyno-
mials qo(y), ..., qn(y) with qn(y) not identically zero such that p(x, y) =
n∑
i=0

qi(y)xi. Let ∆n denote the set of zeroes of qn(y) in C and for fixed λ,

Zλ the set of zeroes of p(x, λ) in C. Since qn(y) is not identically zero,
∆n is a finite collection and so C \ ∆n is uncountable. Now for fixed
λ ∈ C \ ∆n, the polynomial p(x, λ) is of degree n, and therefore has at
least one zero. It follows that

⋃
λ∈C\∆n

Zλ × {λ} is an uncountable distinct

union of zeroes of p(x, y). This same argument can be done for higher
dimensions. For simplicity of notation, we continue in 2d.

Now we need to show that we can find infinitely many solutions to P (ξ)û(ξ) =
0 with u ∈ C∞(Rd). Most of the work is already done because we can find

an infinite sequence of distinct roots (r
(k)
1 , r

(k)
2 )∞k=0, i.e. P (r

(k)
1 , r

(k)
2 ) = 0.

Take then û(k)(ξ1, ξ2) = er
(k)
1 ξ1+r

(k)
2 ξ2 . It is easy to check that u(k) ∈

C∞(Rd) and that the collection {û(k) : 0 ≤ k ≤ N} is linearly indepen-
dent for all N.
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Exercise 7

Let f ∈ L2(Rd). Then there exists g ∈ L2(Rd) such that
(
∂
∂x

)α
f(x) =

g(x) in the weak sense iff (2πiξ)αf̂(ξ) = ĝ(ξ) ∈ L2(Rd).
Solution

We let L =
(
∂
∂x

)α
so that L∗ = (−1)|α|

(
∂
∂x

)alpha
. Notice that ˆL∗ψ(ξ) =

(−1)|α|(2πiξ)αψ̂(ξ) = (2πiξ)αψ̂(ξ)

If (2πiξ)αf̂(ξ) = ĝ(ξ), then by Plancherel’s formula we have for any ψ ∈
C∞0 :

∫
Rd
g(x)ψ(x) =

∫
Rd
ĝ(ξ)ψ̂(ξ)

=

∫
Rd

(2πiξ)αf̂(ξ)ψ̂(ξ)

=

∫
Rd
f̂(ξ) ˆL∗ψ(ξ)

=

∫
Rd
f(x)L∗ψ(x)

so g = Lf weakly. Conversely, suppose g = Lf weakly. Then

∫
Rd
ĝ(ξ)ψ̂(ξ) =

∫
Rd
g(x)ψ(x)

=

∫
Rd
f(x)L∗ψ(x)

=

∫
Rd
f̂(ξ) ˆL∗ψ(ξ)

=

∫
Rd

(2πiξ)αf̂(ξ)ψ̂(ξ)

which implies that (2πiξ)αf̂(ξ) = ĝ(ξ)
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