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Exercise 1 (l2(Z), ‖ · ‖2) is a complete and separable Hilbert space.

Proof Let {u(n)}n∈N be a Cauchy sequence. Say u(n) = (..., u
(n)
−2 , u

(n)
−1 , u

(n)
0 , u

(n)
1 , u

(n)
2 , ...). In particular for every

fixed m ∈ N the sequence (u
(n)
m )∞n=1 is Cauchy in (C, | · |), so ∃!um ∈ C such that u(n)

m → um as n → ∞. We claim
that u = (..., u−2, u−1, u0, u1, u2, ...) ∈ l2(Z) and that u(n) → u in (l2(Z), ‖ · ‖2).

• Since the sequence {u(n)}n∈N is Cauchy, it is bounded by say N. Also for all n andM we have (
M∑

m=−M
|um|2)1/2 ≤

(
M∑

m=−M
|um−u(n)

m |2)1/2+N . Taking first the limit as n→∞ and then the limit asM →∞ shows that ‖u‖2 ≤ N .

• Now let ε > 0 be given. Choose N such that ‖u(n) − u(n′)‖2 < ε whenever n, n′ ≥ N . In particular for every

M ∈ N, and n, n′ ≥ N we have
M∑

m=−M
|u(n)
m − u(n′)

m |2 < ε2. Taking first the limit as n′ → ∞ and then the limit

as M →∞ shows that ‖u(n) − u‖2 < ε whenever n ≥ N .

• Now for n ∈ N, let Dn = {u ∈ (l2(Z) : ui ∈ Q for |i| ≤ n, ui = 0 for |i| > n}. We claim that
⋃
n≥0

Dn is a

countable dense set of l2(Z). Indeed given u ∈ l2(Z) and ε > 0, first choose N such that
∑
|n|>N

|un|2 < ε and then

choose 2N + 1 rationals q−N , ...qN such that
∑
|n|≤N

|un − qn|2 < ε. Then letting q = (..., 0, q−N , ..., qN , 0, ...) ∈ D,

we certainly have ‖u− q‖2
2 < 2ε.

Exercise 2

1. In general, L1(Rn) 6⊂ L2(Rn)

2. In general, L2(Rn) 6⊂ L1(Rn).

3. If f ∈ L2(Rn) and f is supported on a set E of finite measure, then f ∈ L1(Rn).

4. If f ∈ L1(Rn) and f is bounded by M (almost everywhere), then f ∈ L2(Rn).

Proof We are working in n dimensions.

1. Consider
∫

B(0,1)

|x|−αdx =
∫ 1

0
r−αrn−1dr

∫
dΩn−1 =

∫ 1

0
rn−1−αdr

∫
dΩn−1 where

∫
dΩn−1 = 2πn/2

Γ(n/2)
.

Choose α so that n − 1 − α = −1
2
. Then

∫
B(0,1)

|x|−αdx = 4πn/2

Γ(n/2)
, but

∫
B(0,1)

|x|−2αdx = ∞. i.e. the function

|x|−n+1/21B(0,1) belongs to L1(Rn) but doesn’t belong to L2(Rn).
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2. Consider
∫

B(0,1)c
|x|−αdx =

∫∞
1
rn−1−αdr

∫
dΩn−1. Choose α so that n− 1− α = −1. Then

∫
B(0,1)c

|x|−αdx =∞,

but
∫

B(0,1)c
|x|−2αdx = 2πn/2

Γ(n/2)
i.e. the function |x|−n1B(0,1)c belongs to L2(Rn) but doesn’t belong to L1(Rn).

3. ‖f‖1 = ‖f1E‖1 ≤ ‖f‖2‖1E‖2 = ‖f‖2m(E)1/2

4. ‖f‖2 ≤ ‖f ·M‖1/2
1 = ‖f‖1/2

1 M1/2.

Exercise 3 Let {φk}∞k=1 be an orthonormal basis for L2(Rn). Then {φk(x)φj(y)}∞k,j=1 is an orthonormal basis for
L2(Rn × Rn).

Proof By Fubini’s theorem,
∫∫

Rn×Rn φk(x)φj(y)φk′(x)φj′(y)dxdy =
∫
Rn

(∫
Rn φk(x)φk′(x)dx

)
φj(y)φj′(y)dy = Kro-

necker(k,k’) Kronecker(j,j’). So the φk(x)φj(y) are mutually orthogonal. To show that they span L2(Rn × Rn), it is
equivalent to show that if f(x, y) ∈ L2(Rn × Rn) is such that

∫∫
Rn×Rn f(x, y)φk(x)φj(y)dxdy = 0, then f(x, y) = 0.

(In other words, the only vector that is simultaneously orthogonal to all the basis elements is the 0 vector.) Indeed,
by Fubini, 0 =

∫∫
Rn×Rn f(x, y)φk(x)φj(y)dxdy =

∫
Rn

(∫
Rn f(x, y)φk(x)dx

)
φj(y)dy. Since {φj}∞j=1 is an orthonormal

basis for L2(Rn), this implies that for every k
∫
Rn f(x, y)φk(x)dx = 0 for LebRn - a.e. y ∈ Rn. That is, for every k,

there is a setMk ⊂ Rn withm(Mk) = 1 such that for y ∈Mk,
∫
Rn f(x, y)φk(x)dx = 0. Then obviouslym(

⋂
k≥1

Mk) = 1

and for y ∈
⋂
k≥1

Mk, f(x, y) = 0 for LebRn - a.e. x ∈ Rn. Hence f(x, y) = 0 for LebRn×Rn - a.e. (x, y) ∈ Rn×Rn.

Exercise 4 Let L2([−π, π]) be the Hilbert space of functions F (eiθ) on the unit circle with inner product 〈F,G〉 =

1
2π

π∫
−π
F (eiθ)G(eiθ)dθ. Then the mapping U : L2([−π, π]) 3 F → f ∈ L2(R), where f is given by f(x) = 1√

π(i+x)
F ( i−x

i+x
)

is unitary.

Proof Let C+ = {z ∈ C : Im(z) > 0} (open upper half plane) and D = {z ∈ C : |z| < 1} open unit disc. The
well-known conformal map C+ 3 z → i−z

i+z
∈ D extends to a homeomorphism C+ 3 z → i−z

i+z
∈ D \ {−1}.

Clearly if z = x ∈ R, then | i−z
i+z
| = 1, and the map x→ i−x

i+x
takes 0→ 1, 1→ i, −1→ −i, etc . . . The inverse of

the map R 3 x→ i−x
i+x
∈ ∂D \ {−1} is ∂D \ {−1} 3 ω → i(1−ω)

1+ω
∈ R.

〈f, g〉 =
∫∞
−∞ f(x)g(x)dx = 1

π

∫∞
−∞

1

(i+x)(i+x)
F ( i−x

i+x
)G( i−x

i+x
)dx = 1

π

∫∞
−∞

1
1+x2

F ( i−x
i+x

)G( i−x
i+x

)dx

Performing the change of variable x = tan( θ
2
), we have dθ = 2dx

1+x2
, sin(θ) = 2x

1+x2
, cos(θ) = 1−x2

1+x2
, and i−x

i+x
= eiθ

Hence 〈f, g〉 = 〈F,G〉. We also need to check that U is surjective:
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Given a function f ∈ L2(R), we have for all x ∈ R, f(x) = f
(
i(1−ω)

1+ω

)
, where ω = i−x

i+x
.

Also i+ x = 2i
i−x
i+x

+1
= 2i

ω+1
. Consider the function ∂D \ {−1} 3 ω → F (ω) = 2i

√
π

ω+1
f
(
i(1−ω)

1+ω

)
∈ C. By construction

UF = f and so U is surjective.
Note: technically, as a function, F should be defined on ∂D. But since {−1} is a set of measure zero, we have

defined the equivalence class in which F belongs, and that is what is relevant.
Since {einx : n ∈ Z} form an orthonormal basis for L2([−π, π]), automatically {Ueinx : n ∈ Z} = { 1√

π(i+x)

(
i−x
i+x

)n
:

n ∈ Z} form an orthonormal basis for L2(R).

Exercise 5 Let H be a Hilbert space; A : H → H be a linear operator. Then ‖AA∗‖ = ‖A∗A‖ = ‖A∗‖2 = ‖A‖2

Remark If ‖A‖ = sup
x∈H,‖x‖≤1

‖Ax‖ < ∞, we say that A is a bounded operator with norm ‖A‖. The following are

equal to ‖A‖ as defined above:

1. sup
x∈H,‖x‖=1

‖Ax‖

2. sup
x∈H,x 6=0

‖Ax‖
‖x‖

3. inf{M ≥ 0 : ‖Ax‖ ≤M‖x‖ for all x ∈ H}

4. sup{|〈x,Ay〉| : x, y ∈ H, ‖x‖ ≤ 1, ‖y‖ ≤ 1}

5. sup{|〈x,Ay〉| : x, y ∈ H, ‖x‖ = 1, ‖y‖ = 1}

The proof of these is obvious for the most part.
By Cauchy-Schwarz, we have sup{|〈x,Ay〉| : x, y ∈ H, ‖x‖ ≤ 1, ‖y‖ ≤ 1} ≤ ‖A‖. Conversely,

sup{|〈x,Ay〉| : x, y ∈ H, ‖x‖ ≤ 1, ‖y‖ ≤ 1} ≥ sup{|〈 Ay
‖Ay‖

, Ay〉| : y ∈ H, ‖y‖ ≤ 1}

= sup{‖Ay‖ : y ∈ H, ‖y‖ ≤ 1}
= ‖A‖.

Proof Clearly |〈x,Ay〉| = |〈y, A∗x〉| for all x, y so this gives ‖A‖ = ‖A∗‖.
Next, ‖A∗A‖ = sup

x∈H,‖x‖=1

‖A∗(Ax)‖ ≤ sup
x∈H,‖x‖=1

‖A∗‖‖Ax‖ = ‖A∗‖‖A‖.

Conversely ‖A‖2 =

(
sup

x∈H,‖x‖=1

‖Ax‖

)2

= sup
x∈H,‖x‖=1

‖Ax‖2 (since x → x2 is increasing and continuous on [0,∞))

= sup
x∈H,‖x‖=1

〈Ax,Ax〉 = sup
x∈H,‖x‖=1

〈x,A∗Ax〉 ≤ ‖A∗A‖ by Cauchy-Schwarz.
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Exercise 6 Let H be an infinite dimensional (separable) Hilbert space, (fk)
∞
k=1 a sequence in H, with ‖fk‖ = 1

for all k. Then there exists a subsequence (fkj)
∞
j=1 of (fk)

∞
k=1 and a unique f ∈ H such that fkj

w−→ f , that is
〈fkj , g〉 → 〈f, g〉 for all g ∈ H.

Proof This is a special case of the famous theorem by Alaoglu. Let {gn} be an orthonormal basis for H. We
are assuming that H is separable so that the basis is countable. Consider the (infinite) array with k, nth entry equal
to 〈fk, gn〉. We describe the diagonalization procedure which produces a subsequence (fkj)

∞
j=1 of (fk)

∞
k=1 such that

〈fkj , gn〉 converges in (C, | · |) as j →∞ for every n ∈ N.
Consider the first column of the array, namely the sequence (〈fk, g1〉)∞k=1. This is a bounded sequence (C-S) in C

so it has a convergent subsequence denoted by (〈fk1j , g1〉)∞j=1. Denote this limit c1. Now we move on to the second
column of the array, and consider the sequence (〈fk1j , g2〉)∞j=1. Notice that we are restricting our attention only to
the indices of the subsequence obtained in the previous column. This is a bounded sequence and we may therefore
extract a converging subsequence (〈fk2j , g2〉)∞j=1. Denote the limit c2. In general, suppose that in the nth column we
have found a subsequence (〈fknj , gn〉)∞j=1 of (〈fk, gn〉)∞k=1 converging to cn. Then we pass to the (n+ 1)th column and
extract a subsequence (〈fk(n+1)j

, gn+1〉)∞j=1 of (〈fknj , gn+1〉)∞j=1 converging to cn+1.
Now set kj = kjj for j = 1, 2, 3, . . . Then for every n, (〈fkj , gn〉)∞j=1 is a subsequence of (〈fknj , gn〉)∞j=1 starting

from j = n. Hence for every n, (〈fkj , gn〉)∞j=1 → cn.

Finally letting f =
∞∑
n=1

cngn, we have that (〈fkj , gn〉)∞j=1 → 〈f, gn〉 for every n. If g =
N∑
i=1

aigi, Then by linearity of

the inner product (〈fkj , g〉)∞j=1 → 〈f, g〉.

Exercise 7
Consider a Hilbert space H and the collection of bounded operators on H equipped with the operator norm.

1. Strong convergence doesn’t imply convergence in norm.

2. Weak convergence doesn’t imply strong convergence

3. For any bounded operator T on H there exists a sequence of finite rank operators (Tn)∞n=1 such that Tn → T
strongly.

Proof

1. Consider the Hilbert space l2(N), ‖ · ‖2) and the shift operator to the left (Lx)n = xn+1 for n ≥ 0, x ∈ l2(N).

We claim that the sequence (Ln)∞n=1 (L composed with itself n times) converges strongly to the 0 operator but

does not converge in norm to the 0 operator. Given ε > 0 and x ∈ l2(N) choose N such that
∞∑
i=N

|xi|2 < ε. Then

‖Lnx‖2
2 < ε for every n ≥ N . Since ε was arbitrary we have ‖Lnx‖2 → 0, i.e. Lnx → 0. On the other hand we

clearly have ‖Ln‖ ≤ 1 and ‖Lnδn+1‖2 = 1, where δn+1 is the element (0, 0, ..., 1, 0, 0, ...) where the 1 occurs in
the n+ 1 position. Hence ‖Ln‖ = 1 for all n, and Ln cannot converge in norm to the 0 operator.
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2. Now consider the shift operator to the right (Rx)n+1 = xn for n ≥ 0, (Rx)0 = 0, x ∈ l2(N). We claim that the
sequence (Rn)∞n=1 converges weakly to the 0 operator but does not converge strongly to the 0 operator.

Clearly ‖Rnx‖2 = ‖x‖2 for all x and so (Rn)∞n=1 cannot converge strongly to 0 operator. However, since

(l2(N))∗ = l2(N), every linear functional on l2(N) is of the form 〈a, ·〉 =
∞∑
n=0

an·n for some a ∈ l2(N). Hence

given ε > 0, a, x ∈ l2(N), choose N such
√ ∞∑

i=N

|ai|2 < ε. Then for n ≥ N , |〈a,Rnx〉| ≤
∞∑
i=N

|aixi−N | ≤√ ∞∑
i=N

|ai|2‖x‖2 ≤ ε‖x‖2.

3. Let (gk)
∞
k=1 be a orthonormal basis of H. Let Tngk = Tgk for k ≤ n and Tngk = 0 for k > n. Then each Tn has

finite rank (i.e. dimension of range is finite) and ‖Tngk − Tgk‖ = 0 for n sufficiently large. For an arbitrary
vector g, applying the triangle inequality gives ‖Tng − Tg‖ = 0 for n sufficiently large.

Exercise 9 Suppose w is a measurable function on Rd with 0 < w(x) <∞ for a.e. x, K is a measurable function
on R2d that satisfies:

1.
∫
Rd |K(x, y)|w(y)dy ≤ Aw(x) for almost every x ∈ Rd

2.
∫
Rd |K(x, y)|w(x)dx ≤ Aw(y) for almost every y ∈ Rd

Then the integral operator L2(Rd) 3 f(x) → Tf(x) =
∫
Rd K(x, y)f(y)dy ∈ L2(Rd) is bounded with operator

norm less than A.

Proof First,∫
Rd
|K(x, y)||f(y)|dy =

∫
Rd
|K(x, y)|1/2w(y)1/2|K(x, y)|−1/2|f(y)|w(y)−1/2dy

≤
(∫

Rd
|K(x, y)|w(y)dy

)1/2(∫
Rd
|K(x, y)||f(y)|2w(y)−1dy

)1/2

≤ A1/2w(x)1/2

(∫
Rd
|K(x, y)||f(y)|2w(y)−1dy

)1/2
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Next,

‖Tf‖2
2 =

∫
Rd
|
∫
Rd
K(x, y)f(y)dy|2dx

≤
∫
Rd
Aw(x)

(∫
Rd
|K(x, y)||f(y)|2w(y)−1dy

)
dx

= (Fubini)

∫
Rd
A|f(y)|2w(y)−1

(∫
Rd
|K(x, y)|w(x)dx

)
dy

≤ A2

∫
Rd
|f(y)|2w(y)−1w(y)dy

= A2‖f‖2
2

Somehow it all works out nicely and ‖T‖ ≤ A.

Exercise 10 The operator L2(0,∞) 3 f(x)→ Tf(x) =
∫∞

0
1

π(x+y)
f(y)dy ∈ L2(0,∞) is bounded and ‖T‖ ≤ 1.

Proof Let w(x) = 1√
x
. By the previous exercise it is enough to check that

∫∞
0

1
π(x+y)

w(y)dy ≤ Aw(x).
By the change of variable √y = u one verifies that

∫∞
0

1
π(x+y)

1√
y
dy = 1√

x
. So the desired inequality holds with

A = 1.

Exercise 11 Consider the sawtooth function defined on [−π, π) by K(x) = i(πsgn(x) − x) and extended to
R with period 2π. Suppose that f ∈ L1([−π, π]) is extended to R with period 2π, and consider the operator
Tf(x) = 1

2π

∫ π
−πK(x− y)f(y)dy. Then

1. F (x) = Tf(x) is absolutely continuous and F ′(x) = if(x) a.e. x whenever
∫ π
−π f(y)dy = 0

2. The map f → Tf is compact and symmetric on L2([−π, π]).

3. ϕ(x) ∈ L2([−π, π]) is an eigenfunction for T iff ϕ(x) ∼ einx for some integer n 6= 0 with eigenvalue 1/n or
ϕ(x) = 1 with eigenvalue 0.

4. {einx}n∈Z is an orthonormal basis of L2([−π, π])

Remark First we remind two important results

1. If f : [a, b]→ R is absolutely continuous then f ′ exists for a.e. x ∈ [a, b].
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2. A function f : R→ R satisfies the Lipschitz condition with Lipschitz constant M iff f is absolutely continuous
and |f ′(x)| ≤M for a.e. x.

Proof

1. To show that F (x) = Tf(x) is absolutely continuous we could hope to show that F (x) is Lipshitz. We will do
a first calculation and realize that F (x) may not necessarily be Lipschitz, but the calculation will shed some
light on how to get around the problem.

|Tf(x)− Tf(y)| = | 1

2π

∫ π

−π
(K(x− s)−K(y − s))f(s)ds|

≤ 1

2π

∫ π

−π
|π(sgn(x− s)− πsgn(y − s) + y − x||f(s)|ds

WLOG we assume that x < y then

|πsgn(x− s)− πsgn(y − s) + y − x| =

{
|y − x| if s < x or s > y

| − 2π + y − x| if x < s < y

We don’t need to specify the function at s = x and s = y since this doesn’t change the integration.So

|Tf(x)− Tf(y)| ≤ 1

2π

∫ x

−π
|y − x||f(s)|ds+

∫ y

x

| − 2π + y − x||f(s)|ds+

∫ π

y

|y − x||f(s)|ds

≤ 1

2π
2|y − x|

∫ π

−π
|f(s)|ds+

1

2π

∫ y

x

| − 2π + y − x||f(s)|ds

Now f ∈ L1([−π, π]), so from here we see here that we almost have Lipschitzity, but the second term on the
RHS with the −2π is problematic. Indeed as the distance between x and y gets smaller, the first term on the
RHS gets better while the while the second term gets worse. This is precisely what happens to the difference of
two identical sawtooth functions as the phase between them gets smaller. In general the difference gets smaller,
but it gets larger at the point where there is a jump discontinuity. This problem is inherent to the sawtooth
function so to bypass the problem we have to use the fact that f ∈ L1([−π, π]).

Indeed we choose a bounded (simple) function g such that
∫ π
−π |f(s)− g(s)|ds < ε .

Then
∫ y
x
| − 2π + y − x||f(s)|ds ≤ 2π

∫ y
x
|f(s)− g(s)|ds+ 2πM |y − x| where M is an upper bound for g.

Let ε > 0 be given and suppose that (xi, yi) are disjoint intervals of [−π, π] such that
n∑
i=1

|xi − yi| < ε. Choose

g such that |g(x)| ≤M and
∫ π
−π |f(s)− g(s)|ds < ε.

Then
n∑
i=1

|Tf(xi)− Tf(yi)| ≤
n∑
i=1

C1|xi − yi|+
∫

∪i(xi,yi)
|f(s)− g(s)|ds ≤ Cε + ε, where C = 1

π

∫ π
−π |f(s)|ds + M .

So F (x) = Tf(x) is absolutely continuous and its derivative exists almost everywhere.

Suppose that
∫ π
−π f(s)ds = 0. We want to calculate lim

h↓0
Tf(x+h)−Tf(x)

h
= lim

h↓0
1

2π

∫ π
−π

K(x+h−s)−K(x−s)
h

f(s)ds.

vii



K(x+ h− s)−K(x− s) = i (πsgn(x+ h− s)− πsgn(x− s)− h) =

{
−ih if s < x or s > x+ h

i(2π − h) if x < s < x+ h

So lim
h↓0

Tf(x+h)−Tf(x)
h

= lim
h↓0

∫ π
−π i

1(x,x+h)(s)

h
f(s)ds− i

2π

∫ π
−π f(s)ds = lim

h↓0
i
h

∫ x+h

x
f(s)ds = if(x) by the Fundamental

theorem of calculus. Similarly lim
h↑0

Tf(x+h)−Tf(x)
h

= if(x). So (Tf)′ = if. Another way of deriving this way would

have been to use DCT and the fact that the derivative of the sign function is two times the delta function.

2. The integral operator T is easily seen to be Hilbert-Schmidt. Indeed, since the sawtooth function is bounded
and we are on a finite measure space,

∫ π
−π

∫ π
−π |K(x, y)|2dxdy < ∞. From the general theory of bounded

operators, Hilbert-Schmidt operators are compact (see p.190 of Stein & Shakarchi).

We also check that T is symmetric:

〈Tf, g〉 =

∫ π

−π
Tf(x)g(x)dx

=

∫ π

−π

∫ π

−π
i(πsgn(x− s)− (x− s))f(s)ds g(x)dx

=

∫ π

−π

∫ π

−π
i(πsgn(s− x)− (s− x))f(s)ds g(x)dx

=

∫ π

−π

∫ π

−π
i(πsgn(s− x)− (s− x))g(x)dx f(s)ds

= 〈f, Tg〉

3. One may compute the integrals to verify that {einx}n∈Z\{0} are indeed eigenfunctions of T with eigenvalue 1
n

and that 1 is an eigenfunction with eigenvalue 0. Conversely, if Tf = λf , then 1
2π

∫ π
−π

∫ π
−πK(x− y)f(y)dy dx =

λ
∫ π
−π f(x)dx = 1

2π

∫ π
−π f(y)

∫ π
−πK(x− y)dx dy = 0. Hence by 1., (Tf)′ = λf ′ = if , so f(x) = e

i
λ
x, when λ 6= 0.

Going back to eigenvalue problem will give us a condition on λ:
1

2π

∫ π
−πK(x− y)e

i
λ
ydy = λe

1
λ
x − λ2

π
e

1
λ
x sin π

λ
. Hence we must have sin π

λ
= 0, that is λ = 1

n
. For the case λ = 0,

we have (Tf)′ = 0 = if , so f is a constant function.

4. T has been checked to be compact and symmetric. By the spectral theorem, a subset of the eigenvectors of T
forms an orthonormal basis for L2([−π, π]). Since {einx}n∈Z are the only eigenvectors of T and are mutually
orthogonal, they must be a basis for L2([−π, π]).
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