MATH 381
HOMEWORK 2 SOLUTIONS

Question 1 (p.86 #8). If \(g(x)[e^{2y} - e^{-2y}]\) is harmonic, \(g(0) = 0, g'(0) = 1\), find \(g(x)\).

Solution. Let \(f(x, y) = g(x)[e^{2y} - e^{-2y}]\). Then

\[
\frac{\partial^2 f}{\partial x^2} = g''(x)[e^{2y} - e^{-2y}]
\]
\[
\frac{\partial^2 f}{\partial y^2} = 4g(x)[e^{2y} - e^{-2y}].
\]

Since \(f(x, y)\) is harmonic, \(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0\) and we require

\[
g''(x) + 4g(x) = 0.
\]

Thus \(g(x)\) has the form \(A\sin(2x) + B\cos(2x)\) and by the initial conditions, \(A = 1/2\) and \(B = 0\). Therefore,

\[
g(x) = \frac{1}{2}\sin(2x).
\]

\(\square\)

Question 2 (p.86 #12). Find the harmonic conjugate of \(\tan^{-1}\left(\frac{z}{\pi}\right)\) where \(-\pi < \tan^{-1}\left(\frac{z}{\pi}\right) \leq \pi\).

Solution. Write \(u(x, y) = \tan^{-1}\left(\frac{x}{y}\right)\). Then by the Cauchy-Riemann equations,

(1)
\[
\frac{\partial u}{\partial x} = \frac{y^2 - x^2}{x^2 + y^2} = \frac{1}{x^2 + y^2} \frac{\partial v}{\partial y}
\]
\[
-\frac{\partial u}{\partial y} = -\frac{y^2 - x^2}{x^2 + y^2} = \frac{x}{x^2 + y^2} \frac{\partial v}{\partial x}.
\]

By (1),

\[
v = \frac{1}{2}\log(x^2 + y^2) + C(x),
\]

and by (2)

\[
\frac{\partial v}{\partial x} = \frac{x}{x^2 + y^2} + C'(x) = \frac{x}{x^2 + y^2}
\]

so \(C'(x) = 0\) and \(C(x)\) is a constant, call it \(D\). Therefore,

\[
v(x, y) = \frac{1}{2}\log(x^2 + y^2) + D.
\]

\(\square\)

Question 3. (p.86 #13) Show, if \(u(x, y)\) and \(v(x, y)\) are harmonic functions, that \(u + v\) must be a harmonic function but that \(uv\) need not be a harmonic function. Is \(e^u e^v\) a harmonic function?

Solution. If \(u\) and \(v\) are harmonic, then \(u + v\) is harmonic since

\[
\frac{\partial^2 (u + v)}{\partial x^2} + \frac{\partial^2 (u + v)}{\partial y^2} = \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) + \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 v}{\partial x^2}\right)
\]
\[
= \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) = 0.
\]

To show that \(uv\) is not necessarily harmonic, it suffices to show that there exists \(u, v\) harmonic such that

\[
\frac{1}{2} \left(\frac{\partial^2 (uv)}{\partial x^2} + \frac{\partial^2 (uv)}{\partial y^2}\right) = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} = 0.
\]

Any \(u = v\) harmonic where \(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \neq 0\) will suffice. For instance, taking \(u = v = x\) will work, since it’s harmonic (both of its second-order partials vanish) but

\[
\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} = 1^2 \neq 0.
\]

Date: October 23, 2011.
Now, in order for $e^u e^v$ to be harmonic, we need
\[
\frac{\partial^2 (e^u e^v)}{\partial x^2} + \frac{\partial^2 (e^u e^v)}{\partial y^2} = e^{u+v} \left[\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right] = 0.
\]
Thus, the existence of any u, v harmonic such that \(\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \neq 0 \) will show that $e^u e^v$ is not harmonic. Again, taking $u = v = x$ gives us what we want as e^{2x} is easily seen to be non-harmonic.

\[\square \]

Question 4 (p.106 #14). State the domain of analyticity of $f(z) = e^{iz}$. Find the real and imaginary parts $u(x, y)$ and $v(x, y)$ of the function, show that these satisfy the Cauchy-Riemann equations, and find $f'(z)$ in terms of z.

Solution. By definition,
\[
f(z) = e^{iz} = e^{ix} - e^{-iy} = e^{-y}[\cos x + i \sin x].
\]

Therefore,
\[
u(x, y) = e^{-y} \cos x \\
v(x, y) = e^{-y} \sin x.
\]

These are continuous functions at all $(x, y) \in \mathbb{R}^2$. Now,
\[
\begin{align*}
\frac{\partial u}{\partial x} &= -e^{-y} \sin x = \frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} &= -e^{-y} \cos x = -\frac{\partial v}{\partial x}
\end{align*}
\]

so u, v satisfy the C-R equations, and these derivatives are continuous for all x, y. Therefore, $f(z)$ is entire. Furthermore,
\[
f'(z) = -e^{-y} \sin x + i(e^{-y} \cos x) = i(e^{-y}[\cos x + i \sin x]) = ie^{iz}.
\]

\[\square \]

Question 5 (p.106 #16). State the domain of analyticity of $f(z) = e^{e^z}$. Find the real and imaginary parts $u(x, y)$ and $v(x, y)$ of the function, show that these satisfy the Cauchy-Riemann equations, and find $f'(z)$ in terms of z.

Solution. First, observe that f is an entire function of an entire function, so it is analytic everywhere. Now,
\[
e^{e^z} = e^{e^{x+y} \sin y} = e^{e^x \cos y} \left(\cos(e^x \sin y) + i \sin(e^x \sin y) \right),
\]
so
\[
u(x, y) = e^{e^x \cos y} \cos(e^x \sin y) \\
v(x, y) = e^{e^x \cos y} \sin(e^x \sin y)
\]

\[
\begin{align*}
\frac{\partial u}{\partial x} &= e^{e^x \cos y} (e^x \cos y) \cos(e^x \sin y) - e^{e^x \cos y} (e^x \sin y) \sin(e^x \sin y) \\
&= e^{e^x \cos y} (e^y \cos(e^x \sin y) - e^y \sin(e^x \sin y)) \\
\frac{\partial v}{\partial y} &= e^{e^x \cos y} (-e^x \sin y) \sin(e^x \sin y) + e^{e^x \cos y} \cos(e^x \sin y) (e^x \cos y) \\
&= e^{e^x \cos y} (e^y \cos(e^x \sin y) - e^y \sin(e^x \sin y)) \\
\frac{\partial u}{\partial y} &= e^{e^x \cos y} (-e^x \sin y) \cos(e^x \sin y) + e^{e^x \cos y} (e^x \cos y) (-e^x \sin y) \\
&= -e^{e^x \cos y} (e^y \sin(e^x \sin y) + e^y \cos(e^x \sin y)) \\
\frac{\partial v}{\partial x} &= e^{e^x \cos y} (e^x \cos y) \sin(e^x \sin y) + e^{e^x \cos y} (e^x \sin y) \cos(e^x \sin y) \\
&= e^{e^x \cos y} (e^y \sin(e^x \sin y) + e^y \cos(e^x \sin y))
\end{align*}
\]

and f satisfies the C-R equations. Furthermore,
\[
f'(z) = e^{e^x \cos y} e^z \left((e^y \cos(e^x \sin y) - e^y \sin(e^x \sin y)) + i(e^y \sin(e^x \sin y) + e^y \cos(e^x \sin y)) \right) \\
= e^{e^x \cos y} \left(e^x \cos y (e^x \sin y + i \sin(e^x \sin y)) + e^x \sin y (i \cos(e^x \sin y) - e^x \sin y) \right) \\
= e^{e^x \cos y} (\cos(e^x \sin y) + i \sin(e^x \sin y)) e^{e^x} (e^y + i e^y)
\]

\[\square \]
Question 6 (p.106 #23).

(a) Prove the expression given in the text for the n^{th} derivative of $f(t) = \frac{t}{e^{t^2/4}} = \Re\left(\frac{1}{t^{i+1}}\right)$. (Note: $t \in \mathbb{R}$).

(b) Find similar expressions for the n^{th} derivative of $f(t) = \frac{1}{e^{t^2/4}} = \Im\left(\frac{1}{t^{i+1}}\right)$. (Note: $t \in \mathbb{R}$).

Solution.

(a) By the Lemma, for $n \geq 1$,

$$f^{(n)}(t) = \Re\left(\frac{d^n}{dt^n} \frac{1}{t - i}\right) = \Re\left(\frac{(-1)^n n!}{(t - i)^{n+1}}\right).$$

Now, observe that $\frac{1}{t - i} = \frac{i}{t^2 + 1}$, so by the binomial theorem

$$\frac{(-1)^n n!}{(t - i)^{n+1}} = \frac{(-1)^n n! (t + i)^{n+1}}{(t^2 + 1)^{n+1}} = \frac{(-1)^n n! (n + 1)!}{(t^2 + 1)^{n+1}} \sum_{k=0}^{n+1} \frac{i^k t^{n+1-k}}{(n + 1 - k)!}.$$

But notice that we only get contributions to the real part of this expression when k is even, i.e. when $i^k \in \mathbb{R}$. Summing over the even integers, $k = 2m$, we get for n odd that

$$f^{(n)}(t) = \frac{(-1)^n n! (n + 1)!}{(t^2 + 1)^{n+1}} \sum_{m=0}^{\frac{n+1}{2}} \frac{i^{2m} t^{n+1-2m}}{(n + 1 - 2m)!}.$$

and for n even that

$$f^{(n)}(t) = \frac{n! (n + 1)!}{(t^2 + 1)^{n+1}} \sum_{m=0}^{\frac{n}{2}} \frac{i^{2m} t^{n+1-2m}}{(n + 1 - 2m)!}.$$

(b) In this case we want

$$f^{(n)}(t) = \Im\left(\frac{d^n}{dt^n} \frac{1}{t - i}\right) = \Im\left(\frac{(-1)^n n!}{(t - i)^{n+1}}\right).$$

By the work above, we want the imaginary part of

$$\frac{(-1)^n n! (n + 1)!}{(t^2 + 1)^{n+1}} \sum_{k=0}^{n+1} \frac{i^k t^{n+1-k}}{(n + 1 - k)!}.$$

In this case we get contributions when k is odd, so we take the sum over $k = 2m + 1$ for $m \geq 0$. Note that $i^{2m+1} = (-1)^m i$. It follows that when n is odd,

$$f^{(n)}(t) = \frac{(-1)^n n! (n + 1)!}{(t^2 + 1)^{n+1}} \sum_{m=0}^{\frac{n+1}{2}} \frac{(-1)^m t^{n-2m}}{(n - 2m)!}.$$

and when n is even,

$$f^{(n)}(t) = \frac{n! (n + 1)!}{(t^2 + 1)^{n+1}} \sum_{m=0}^{\frac{n}{2}} \frac{(-1)^m t^{n-2m}}{(n - 2m)!}.$$

\[\square\]

Question 7 (p.106 #25). Let $P(\psi) = \sum_{n=0}^{N-1} e^{in\psi}$.

(a) Show that

$$|P(\psi)| = \left|\frac{\sin(N\psi/2)}{\sin(\psi/2)}\right|.$$

(b) Find $\lim_{\psi \to 0} |P(\psi)|$.

(c) Plot $|P(\psi)|$ for $0 \leq \psi \leq 2$ and $N = 3$.

Solution.

(a) Note that

$$P(\psi) = \frac{1 - e^{iN\psi}}{1 - e^{i\psi}}.$$
Thus,
\[P(\psi) = \frac{e^{iN\psi} - 1}{e^{i\psi} - 1} = \frac{e^{in\psi/2} - e^{-in\psi/2}}{e^{i\psi/2} - e^{-i\psi/2}} = \frac{\cos(n\psi/2) + isin(n\psi/2) - \cos(-n\psi/2) - isin(-n\psi/2)}{\cos(\psi/2) + isin(\psi/2) - \cos(-\psi/2) - isin(-\psi/2)} = \frac{2isin(N\psi/2)}{2isin(\psi/2)}. \]

Thus,
\[|P(\psi)| = \left| \frac{e^{in\psi/2}}{e^{i\psi/2}} \right| = \left| \frac{\cos(n\psi/2)}{\sin(\psi/2)} \right| = \left| \frac{\sin(N\psi/2)}{\sin(\psi/2)} \right|. \]

(b) By l’Hopital’s rule we get
\[\lim_{\psi \to 0} \frac{\sin(N\psi/2)}{\sin(\psi/2)} = \lim_{\psi \to 0} \frac{N/2 \sin(N\psi/2)}{1/2 \sin(\psi/2)} = N. \]

(c) If you have nothing else, just plug it in Wolfram Alpha.

\[\square \]

Question 8 (p.112 #17). Show that \(\sin z - \cos z = 0 \) has solutions only for real values of \(z \). What are the solutions?

Solution. In other words, for \(z = x + iy \) we want
\[\sin x \cosh y + i \cos x \sinh y = \cos x \cosh y - i \sin x \sinh y. \]

Equating the real parts and imaginary parts we require
\[\begin{align*}
\sin x \cosh y &= \cos x \cosh y \\
\cos x \sinh y &= -\sin x \sinh y.
\end{align*} \]

Suppose \(y \neq 0 \) and hence \(\sinh y \neq 0 \) and \(\cosh y \neq 0 \). Then in order to have solutions, by (3), we need \(\cos x = \sin x \) and by (4) we need \(\cos x = -\sin x \). These equations are only satisfied for \(\sin x = \cos x = 0 \), but no solutions for \(x \) exists. Therefore, if there are solutions to the original equation, we must have that \(y = 0 \).

Suppose \(y = 0 \). Then since \(\cosh 0 = 1 \) and \(\sinh 0 = 0 \) we simply need solutions to \(\sin x = \cos x \). Thus we have solutions if and only if
\[z = \frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z}. \]

\[\square \]

Question 9 (p.112 #21). Where does the function \(f(z) = \frac{1}{\sqrt{3} \sin z - \cos z} \) fail to be analytic?

Solution. Since \(\sin z \) and \(\cos z \) are both analytic, \(f(z) \) will fail to be analytic when \(\sqrt{3} \sin z - \cos z = 0 \). In other words, when we have solutions to
\[\sqrt{3} \sin x \cosh y + i \cos x \sinh y = \cos x \cosh y - i \sin x \sinh y. \]

Equating the real parts and imaginary parts we require
\[\begin{align*}
\sqrt{3} \sin x \cosh y &= \cos x \cosh y \\
\sqrt{3} \cos x \sinh y &= -\sin x \sinh y.
\end{align*} \]

By the same argument as the previous question, there are no solutions when \(y \neq 0 \). Suppose \(y = 0 \). Then since \(\cosh 0 = 1 \) and \(\sinh 0 = 0 \) we simply need solutions to \(\sqrt{3} \sin x = \cos x \), that is to \(\tan x = \frac{1}{\sqrt{3}} \). So \(f(z) \) is not analytic when
\[z = \frac{\pi}{6} + k\pi, \quad k \in \mathbb{Z}. \]

\[\square \]

Question 10 (p.112 #22). Let \(f(z) = \sin \left(\frac{z}{2} \right) \).

(a) Express this function in the form \(u(x,y) + iv(x,y) \). Where in the complex plane is this function analytic?

(b) What is the derivative of \(f(z) \)? Where in the complex plane is \(f'(z) \) analytic?

Solution.
(a) Since \(\sin z \) is entire, and \(\frac{1}{z} \) is analytic for \(z \neq 0 \), it follows that \(f(z) \) is analytic for \(z \neq 0 \).

\[
\sin \left(\frac{1}{z} \right) = \sin \left(\frac{x - iy}{x^2 + y^2} \right) \\
= \sin \left(\frac{x}{x^2 + y^2} \right) \cosh \left(\frac{-y}{x^2 + y^2} \right) + i \cos \left(\frac{x}{x^2 + y^2} \right) \sinh \left(\frac{-y}{x^2 + y^2} \right) \\
= \sin \left(\frac{x}{x^2 + y^2} \right) \cosh \left(\frac{y}{x^2 + y^2} \right) - i \cos \left(\frac{x}{x^2 + y^2} \right) \sinh \left(\frac{y}{x^2 + y^2} \right).
\]

(b) For \(z \neq 0 \),

\[
\frac{d}{dz} \sin \left(\frac{1}{z} \right) = (\cos \frac{1}{z}) \left(-\frac{1}{z^2} \right)
\]

which is analytic for all \(z \neq 0 \).

\[\square\]

Question 11 (p.112 #25). Show that \(|\cos z| = \sqrt{\sinh^2 y + \cos^2 x} \).

Solution.

\[
|\cos z| = |\cos x \cosh y - i \sin x \sinh y| \\
= \sqrt{\cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y} \\
= \sqrt{\cos^2 x (1 + \sinh^2 y) + \sin^2 x \sinh^2 y} \\
= \sqrt{\cos^2 x + \sinh^2 y (\cos^2 x + \sin^2 x)} \\
= \sqrt{\cos^2 x + \sinh^2 y}
\]

\[\square\]

Question 12 (p.119 #16). Use logarithms to find solutions to \(e^z = e^{i\pi} \).

Solution. We want solutions to \(e^z (1 - i) = 1 \), so taking logs on both sides we get for any \(k \in \mathbb{Z} \), \(z(1 - i) = 2\pi i k \), so

\[
z = \frac{2\pi i k}{1 - i} = \left(\frac{1}{2} + i \frac{3\pi}{2} \right) = (i - 1)k\pi.
\]

\[\square\]

Question 13 (p.119 #18). Use logarithms to find solutions to \(e^z = (e^z - 1)^2 \).

Solution. In other words, we want solutions to \(e^{2z} - 3e^z + 1 = 0 \). By the quadratic formula, we get that

\[
e^z = \frac{3 \pm \sqrt{9 - 8}}{2} = \frac{3 \pm \sqrt{1}}{2}.
\]

Taking logs gives that

\[
z = \log \left(\frac{3}{2} \pm \frac{1}{2} \right) + 2\pi i k
\]

for \(k \in \mathbb{Z} \).

\[\square\]

Question 14 (p.119 #21). Use logarithms to find solutions to \(e^z = 1 \).

Solution. First, taking logs we get \(e^z = 2\pi i k \) for \(k \in \mathbb{Z} \). Now for \(k > 0 \), the argument of \(2\pi i k \) is \(\frac{\pi}{2} + 2\pi m \) where \(m \in \mathbb{Z} \), and for \(k < 0 \), the argument of \(2\pi i k \) is \(\frac{3\pi}{2} + 2\pi m \) (again \(m \in \mathbb{Z} \)). Thus, for \(k > 0 \),

\[
z = \log(2\pi k) + i \left(\frac{\pi}{2} + 2m\pi \right)
\]

and for \(k < 0 \),

\[
z = \log(2\pi k) + i \left(-\frac{\pi}{2} + 2m\pi \right).
\]

\[\square\]

Question 15 (p.119 #23). Show that

\[
\text{Re} \left(\log(1 + e^{i\theta}) \right) = \log \left| 2 \cos \left(\frac{\theta}{2} \right) \right|
\]

where \(\theta \in \mathbb{R} \) and \(e^{i\theta} \neq -1 \).
Along the given path, this attains a maximum when

\[\text{Solution.} \]

Integration, show that

\[\text{Question} \]

Theorem, the length of the path is

\[\text{Solution.} \]

Parametrization is 1:1 except for when

\[\text{Has solutions} \]

And furthermore, \(2 \cos \theta \)

\[\text{Solution.} \]

Ellipse in the first quadrant.

\[\text{Question} \]

\[\text{Solution.} \]

Letting \(z = e^{it} \), then we are integrating along the interval \(t \in [0, \pi] \). Now, \(dz = ie^{it} dt \) so

\[\int_{1}^{-1} \frac{1}{z} \, dz = \int_{0}^{-\pi} \frac{1}{e^{it}} ie^{it} dt = -i\pi. \]

\[\text{Question 17 (p.170 #11).} \]

Show that \(x = 2 \cos t, y = \sin t \), where \(t \) ranges from 0 to \(2\pi \), yields a parametric representation of the ellipse \(\frac{x^2}{4} + y^2 = 1 \). Use this representation to evaluate \(\int_{\frac{3}{2}}^{\frac{3}{2}} \bar{z} \, dz \) along the portion of the ellipse in the first quadrant.

\[\text{Solution.} \]

Note that

\[\frac{(2 \cos t)^2}{4} + \sin^2 t = \cos^2 t + \sin^2 t = 1 \]

and furthermore \(2 \cos 0 = 2 \cos 2\pi = 2 \) and \(\sin 0 = \sin 2\pi = 0 \). To see that we get all of the ellipse, note that \(x = 2 \cos t \) has solutions \(t \in [0, 2\pi] \) for all \(x \in [-2, 2] \) and \(y = \sin t \) has solutions \(t \in [0, 2\pi] \) for all \(y \in [-1, 1] \). Furthermore, the parametrization is 1:1 except for when \(x = 2, y = 0 \).

Setting \(z = x + iy = 2 \cos t + i \sin t \), we get \(dz = (i \cos t - 2 \sin t) dt \) and

\[\int_{\frac{3}{2}} \bar{z} \, dz = \int_{0}^{\frac{3}{2}} (2 \cos t - i \sin t) (i \cos t - 2 \sin t) \, dt \]

\[= \int_{0}^{\frac{3}{2}} (2i - 3 \sin t \cos t) \, dt \]

\[= \frac{3}{2} + i\pi. \]

\[\text{Question 18 (p.170 #14).} \]

Consider \(I = \int_{0}^{2+1} e^{i \bar{z}} \, dz \) taken along the line \(x = 2y \). Without actually doing the integration, show that \(|I| \leq \sqrt{5}e^{3} \).

\[\text{Solution.} \]

Let \(M \) be the maximal value attained by \(|e^{i \bar{z}}| \) along the path of integration. Now, for \(x = 2y \),

\[|e^{i \bar{z}}| = |e^{2y^2 - 2xy} - 2i\bar{y}y| = e^{3y^2} \]

which attains its maximum when \(y \) attains a maximum—that is, when \(z = 2 + i \). Therefore \(M = e^{3} \). By the pythagorean theorem, the length of the path is \(\sqrt{2^2 + 1^2} = \sqrt{5} \), so by the ML inequality, \(|I| \leq ML = \sqrt{5}e^{3} \).

\[\text{Question 19 (p.170 #16).} \]

Consider \(I = \int_{1}^{1} e^{i \log \bar{z}} \, dz \) taken along the parabola \(y = 1 - x^2 \). Without doing the integration, show that \(|I| \leq 1.479e^{\pi/2} \).

\[\text{Solution.} \]

Letting \(\theta = \arg z \)

\[|e^{i \log \bar{z}}| = |e^{i \log |z| - i\theta}| = |e^{i \log |z|}e^{i \theta}| = e^{i \theta}. \]

Along the given path, this attains a maximum when \(\theta = \pi/2 \), so let \(M = e^{\pi/2} \).
Now, we need to find the length of the path of integration. So since $dy = -2x\,dx$,
\[
L = \int_0^1 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx
= \int_0^1 \sqrt{1 + 4x^2} \, dx
< 1.479.
\]
The ML inequality then gives the desired result. \qed

\textbf{Question 20 (p.180 #2).} Is the Cauchy-Goursat theorem directly applicable to $\oint_{|z|=1} \frac{\sin z}{z^2} \, dz$?

\textbf{Solution.} Since $\frac{\sin z}{z^2}$ is analytic everywhere except for $z = -2\pi$ which is not in the unit circle, the C-G theorem is directly applicable. \qed

\textbf{Question 21 (p.180 #6).} Is the Cauchy-Goursat theorem directly applicable to $\oint_{|z-i|=1} \log z \, dz$?

\textbf{Solution.} Since 0 is not in the unit circle about $i+1$, $\log z$ is analytic in the desired region so the C-G theorem is directly applicable. \qed

\textbf{Question 22 (p.180 #7).} Is the Cauchy-Goursat theorem directly applicable to $\oint_{|z|=1/2} \frac{1}{(z-1)^4+1} \, dz$?

\textbf{Solution.} Observe that we have a singularity when $z-1$ is a primitive 8th root of unity—that is, when $(z-1)^4 = -1$. These roots of unity lie on the unit circle, so shifting over by 1, we need to determine if the roots closest to the origin, at $z = e^{\pi i/4} + 1$ and $z = e^{3\pi i/4} + 1$ have absolute value greater than $1/2$. By geometry (right angle triangles), it can be seen that at these points,
\[
|z| = \sqrt{\left(1 - \frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} > 1/2
\]
so the C-G theorem directly applies. \qed

\textbf{Question 23 (p.180 #9).} Is the Cauchy-Goursat theorem directly applicable to
\[
\oint_{|z|=b} \frac{1}{z^2 + bz + 1} \, dz
\]
where $0 < b < 1$?

\textbf{Solution.} In this case the singularities are at the roots of the equation $x^2 + bx + 1$, that is, when
\[
z = \frac{-b \pm \sqrt{b^2 - 4}}{2} = \frac{-b}{2} \pm i \frac{\sqrt{4 - b^2}}{2}.
\]
Here,
\[
|z| = \sqrt{\frac{b^2}{4} + \frac{4 - b^2}{4}} = 1 > b
\]
therefore C-G applies directly. \qed

\textbf{Question 24 (p.180 #13).} Prove that
\[
\int_0^{2\pi} e^{\cos \theta} (\sin(\sin \theta + \theta)) \, d\theta = 0.
\]
Begin with $e^z \, dz$ performed around $|z| = 1$. Use the parametric representation $z = e^{i\theta}$, $0 \leq \theta \leq 2\pi$. Separate your equation into real and imaginary parts.

\textbf{Solution.} Let $z = e^{i\theta} = \cos \theta + i\sin \theta$, so $dz = e^{i\theta} \, d\theta$. Since e^z is analytic,
\[
\oint_{|z|=1} e^z \, dz = \int_0^{2\pi} e^{\cos \theta + i\sin \theta} \, e^{i\theta} \, d\theta = 0.
\]
But then
\[
\int_0^{2\pi} e^{\cos \theta + i(\sin \theta + \theta)} \, d\theta = \int_0^{2\pi} e^{e^{i\theta}} (\cos(\theta + \sin \theta) + i\sin(\theta + \sin \theta)) \, d\theta = 0
\]
so by equating the imaginary part with zero we get the desired result. \qed