Homework\#3 Solutions

$$
\begin{aligned}
& \text { I) } \frac{z}{z^{3} 1}=\frac{1}{2}\left[\frac{1}{z-1}+\frac{1}{z+i}\right] \text {. } \\
& \text { Now } \frac{d}{d z}\left[\frac{1}{2} \log (z-1)+\frac{1}{2} \log (z+1)\right]=\frac{z}{z^{2}-1}
\end{aligned}
$$

The Function $\frac{1}{2}[\operatorname{Los}(z-1)+\operatorname{Los}(z+1)]$ is analytic in a simply connected domain containing the path $\stackrel{p+1}{1+i}_{4+2 i}$
个 branch wit for $\operatorname{LOQ}(z-1)+\log (z+1)$

$$
\begin{aligned}
& \text { answer }=\frac{1}{2}[\log (z-1)+\log (z+1)]_{1+i}^{4+2 i}= \\
& \frac{1}{2}[\log (3+2 i)+\log [s+2 i]-\log (i)-\log (2+i)] \\
& (\text { continued next page })
\end{aligned}
$$

(continued next page)
\rightarrow continued

$$
\begin{aligned}
& \frac{1}{2}[\log (3+2 i)-\operatorname{Los} i+\log [5+2 i)-\operatorname{cog}(2+i)] \\
& =\frac{1}{2}\left[\log \left(\frac{3+2 i}{i}\right)+\log \left(\frac{5+2 i}{2+i}\right)\right]= \\
& \frac{1}{2}\left[\log \frac{11+16 i}{-1+2 i}\right]
\end{aligned}
$$

10- Note: $\frac{d}{d z} \frac{(\log z)^{2}}{2}=\frac{\log z}{z}$ analytic in any domain not containing $z=0$ or points on the negative real axis. On r contour can lis in such a domain. Thus $\int_{1+i}^{-1-i} \frac{\log z}{2} d z=\left.\frac{i}{2}(\log z)^{2}\right|_{1+i} ^{-6}$

$$
=\frac{1}{2}\left[\left[\log \sqrt{2}-13 \frac{\pi}{4}\right]^{2}-\left(\log \sqrt{2}+i \frac{\pi}{4}\right)^{3}\right]=-i \pi \log 2-\pi^{2} / 2
$$

12) As above $S^{i} z^{1 / 2} d z=\left.\frac{2}{3} z \cdot z^{1 / 2}\right|_{1} ^{i}$

$$
z^{\prime \prime}=\sqrt{z 1} / \frac{\theta}{2}+k \pi, \text { take } k=1,-\pi<\theta<\pi
$$

$$
c^{\prime 1}=-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}, \quad b^{12}=(-1)
$$

$$
\int_{1}^{i} z^{1} d z=\left(\frac{2}{3}\right)^{\sqrt{2}} i\left[-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right]-\frac{2}{3}(\cdot 1) *(-1)
$$

$$
=\frac{2}{3}+\frac{2}{3} \frac{1}{\sqrt{2}}-\frac{2}{3} \frac{i}{\sqrt{2}}
$$

161
(b) continued

Use a different branch of $\log (z-i)$. Take $\frac{d}{d z} \log (z-i)=\left(\frac{i}{z-i}\right)$ Now $\log (z-i)=\log |z-i|+$

$$
\begin{aligned}
& \text { Tace } 0<\operatorname{lons}(z-i)<2 \pi i=\left.\log (z-i)\right|_{0} ^{2 i}=\log ((z-i)-i) \\
& \left.\int_{0}\left(\frac{1}{z}-i\right) d z=i z-i\right) \\
& \left.-\log [0-i]=i \frac{\pi}{2}-i \frac{3 \pi}{2}=-i \pi\right]
\end{aligned}
$$

81

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint \frac{e^{i z}}{(z-i)^{2}} d z & =\left.\frac{d}{d z} e^{i z}\right|_{z=i} \\
1 z-11=2 & =i e^{i z} / i=e^{i e^{-i}}
\end{aligned}
$$

$\begin{array}{ll}121 & z=0,\end{array} \quad f^{n}(z)=\frac{n D}{2 \pi 2} \quad n=14 \quad \frac{f(z)}{\left(z-z_{0} J_{n+}\right.} d z$

$$
\left.\begin{aligned}
& f(z)=\sin 2 z, \\
& \frac{d+4}{d z} \sin 2 z \\
& 140
\end{aligned}\right|_{z=0} ^{n}=\frac{1}{2 \pi i} \text { f } \frac{\sin (2 z)}{z^{15}} d z
$$

Note, any even derivative off sun (az) has the form (constant) $* \operatorname{sun}(2 z)$ whose value is zero at $z=0]$ or answer is zero.

苗 (a) If $l a l>1$, $\frac{1}{z-a}$ is analytic on and inside $L z i=1$. Thus $S \frac{d z}{\langle z-\alpha}=0$ [cauchy-Goursat]
 b) \bar{z} is nowhere analytic $\frac{1}{\bar{z}-a}$ is nowhere analytic Thins neither the Cauchy - Goursat Theorem nor the Cauchy Jretegral Formula apply.
Suppose $1 a 1>1$. $\quad F \frac{d z}{\bar{z}-a}=\int \frac{d z}{z-a}=\frac{d z}{z-a z}$

Suppose $|a|<1$
$\mathcal{F} \frac{d z}{z-a}=\frac{-1}{a} \frac{z d z}{z-\frac{1}{a}}$ as above. The intergrade is analytic in and onions answer $=0$ for $1 a \ll$ completely The sets of answers to b) and (b)
zit different se i 4.6
$\lambda \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{e^{i \theta}} d \theta \quad u \sec (4.6-1), z_{0}=0, f(z)=e^{z}$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{e^{i \theta}} d \theta=\left.e^{z}\right|_{0}=1
$$

$$
F=1
$$

ai $\int_{\pi}^{\pi} e^{\cos \theta} \cos i \sin \theta d \theta=\int_{0}^{2 \pi} \cdots \cdot d \theta$
$u \leqslant \theta \quad E_{8} .(4.6-1)$. Consider previous problem $\frac{1}{2 \pi} S_{0}^{2 \pi} e \cos \theta+i \sin \theta d \theta \quad-\frac{1}{2 \pi} \int_{0}^{2 \pi} e e^{\operatorname{aros} \theta} e^{\sin \theta} d \theta$
$=\frac{1}{2 \pi} S_{0}^{2 \pi} e \cos \theta[\cos [\sin \theta]+i \sin (\sin \theta)] d \theta$
$=1$. use real pent once
$\frac{1}{2 \pi} S_{0}^{2 \pi} e \cos _{0}^{2 \pi} \cos [s \sin \theta] d \theta=1 . \quad \int_{0}^{2 \pi} e^{\cos \theta} \cos (\sin \theta) d \theta=2 \pi$
1.) $|f(z)|=e^{x}$
max value $=e^{2}$ at $x=2, y=1$
min value $=e^{0}=1$ at $x=0, y=1$
 151 4 min is max here max at 1,0 min at 0,1

31 lu $\left|=\left|2^{i z}\right|^{n}=2^{n}\right| z 1^{n}$
suppose $z_{1}=\frac{1}{2}$, then $u_{n} l=1$ all n, and u_{n}, as does not $30+\infty$ zero as $n \rightarrow \infty$, sores dir
 diversion - - .
$\left\lvert\, s . \quad\left(\left.u_{n}\left|=\frac{n(\sqrt{z})^{n}}{\left[z-\left.2 i\right|^{n}\right.} \quad I f \quad\right| z-2 L|=\sqrt{z}, \quad| u_{n} \right\rvert\,=n\right.\right.$
$l u n+\infty$ as $n-\infty$. series diverges.
If $|z-2 i|<\sqrt{z}, \quad \frac{\sqrt{2}}{1 z-2 i i}>1 \quad$ and $n\left|\frac{\sqrt{z}}{z-2 i}\right|^{n} \rightarrow \infty$ as n divers.
7)

$$
\begin{aligned}
& \quad\left|\frac{u_{n+1}}{u_{n}}\right|=\frac{(n+1)^{2}}{n^{2}} \frac{\left|z+\frac{1}{2}\right|^{n+1}}{|z+1 / 2|^{n}}=\left(1+\frac{1}{n}\right) \quad\left|z+\frac{1}{2}\right|=|z+1 / 2| \\
& \therefore \text { as }|=1 / 2|<1 \text { and diverges } \\
& \therefore \text { series is abs. comp. }|z+1 / 2|
\end{aligned}
$$

