1 Question 1 (E)
Bet $x=x+2 y$ for $z_{1} y<E$ R. Then,

$$
\begin{array}{rll}
|t| x \mid & =x(x)+1 & \Leftrightarrow x^{2}+x^{2}-x+1 \\
& \Leftrightarrow x^{2}+y^{2}-x^{2}+2 x+1 \\
& \Leftrightarrow y^{2}-2 x+1
\end{array}
$$

Thans, ahis sot is the pacaliolis of $05\left(y^{2}-1\right)$ whieh looks Hike thals

2 Question 8

Let

$$
\begin{aligned}
& f(x, y)=u(x, y)+i v(x, y) \\
& g(u, v)=\varepsilon(u, v)+i y(u, v)
\end{aligned}
$$

Then, we have the following:

$$
\begin{aligned}
& \frac{\partial \theta}{\partial s}=\frac{1}{2}\left(\frac{\partial}{\partial u}-\frac{\partial}{\partial v}\right)(\xi(u, v)+i v(u, v))=\frac{1}{2}\left(\xi_{u}+\eta_{v}-i\left(\xi_{u}-\eta_{u}\right)\right) \\
& \frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-2 \frac{\partial}{\partial u}\right)(u(x, y)+i v(x, y))=\frac{1}{2}\left(u_{x}+v_{v}-i\left(u_{y}-v_{s}\right)\right) \\
& \frac{\partial g}{\partial \xi}=\frac{1}{2}\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)(\xi(v, v)+i v(u, v))=\frac{1}{2}\left(\xi_{u}-\eta_{v}+i\left(\xi_{v}+\eta_{v}\right)\right)
\end{aligned}
$$

$$
\frac{\partial f}{\partial r}=\frac{1}{2}\left(\frac{a}{\partial r}-i \frac{\partial}{\partial y}\right)(x(x, y)-i v(2, y))=\frac{1}{3}\left(a_{z}-1 y-i\left(u_{y}+a_{x}\right)\right)
$$

Thas

$$
\begin{aligned}
& \left.+\frac{1}{4}\left(\delta_{n}+n_{n}\right)\left(-v_{4}+v_{4}\right)+\left(-\xi_{0}+m_{*}\right)\left(v_{z}+v_{*}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } \left.\frac{1}{4}\left(\delta \delta_{u}-x_{v}\right)\left(-\alpha_{y}-t_{k}\right)+\left(\delta_{v}+t_{y}\right)\left(u_{z}-v_{y}\right)\right) \\
& =\frac{3}{2}\left(\xi_{2} u_{8}+\theta_{2} t_{y}+\xi_{p} E_{x}+n_{0} u_{y}\right) \\
& +\frac{1}{2}\left(-\xi_{H} m_{2}+n_{n} n_{7}-k_{T} n_{H}+n_{0} n_{-}\right) \\
& =\frac{1}{2}\left(\frac{\partial}{\partial x} \varepsilon(x(x, y), v(x, y))+\frac{a}{\partial y} \eta(x(x, y), v(x, y))\right) \\
& +\frac{i}{2}\left(-\frac{\partial}{\partial y} f(w(x, y), v(x, y))+\frac{\partial}{\partial x} \eta(u(x, y), x(x, y))\right)
\end{aligned}
$$

Honee.

$$
\begin{aligned}
\frac{a t}{\partial z}= & \frac{\partial}{\partial z} g(f(x, y)) \\
= & \frac{\partial}{\partial z} g(u(x, y), v(x, y)) \\
= & \frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)(\xi(u(x, y), v(x, y))+i \eta(u(x, y), v(x, y))) \\
= & \frac{1}{2}\left(\frac{\partial}{\partial x} \xi(u(x, y), v(x, y))+\frac{\partial}{\partial y} \eta(u(x, y), v(x, y))\right) \\
& +\frac{1}{2}\left(-\frac{\partial}{\partial y} \xi(u(x, y), v(x, y))+\frac{\partial}{\partial x} \eta(u(x, y), v(x, y))\right) \\
= & \frac{\partial g}{\partial z} \frac{\partial f}{\partial z}+\frac{\partial g}{\partial z} \frac{\partial J}{\partial z}
\end{aligned}
$$

Therefore, we have

$$
\frac{\partial h}{\partial z}=\frac{\partial g}{\partial z} \frac{\partial f}{\partial z}+\frac{\partial g}{\partial z} \frac{\partial f}{\partial z}
$$

We now jnove thes mecound istategsend Whi lave

$$
\begin{aligned}
& \partial)^{2}-\frac{1}{2}\left(\frac{a}{3 x}+i \frac{a}{2 y}\right)(u(x, y)-x(x, y))=\frac{1}{3}\left(x_{y}+x_{y}+i\left(x_{y}-x_{4}\right)\right)
\end{aligned}
$$

Thas

$$
\begin{aligned}
& +\frac{1}{4}\left(\left(\delta_{x}-n_{0}\right)\left(u_{p}-v_{k}\right)+\left(\delta_{v}+v_{x}\right)\left(u_{x}+v_{y}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{y_{2}}{2}\left(\varepsilon_{v} u_{y}+\eta_{0} v_{x}+\xi_{v} t_{y}+\eta_{n} u_{x}\right) \\
& =\frac{1}{2}\left(\frac{\partial}{\partial x} \epsilon(v(x, y) v(x, y))-\frac{\partial}{\partial y} v(u(x, y), v(x, y))\right) \\
& +\frac{i}{2}\left(\frac{\partial}{\partial y} \xi(u(x, y), v(x, y))+\frac{\partial}{\partial x} v(u(x, y), v(x, y))\right) \\
& =\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\xi(u(x, y), v(x, y)+\operatorname{in}(u(x, y), t(x, y))) \\
& =\frac{\partial}{\partial E^{2}} g(f(x, y)) \\
& =\frac{\partial h}{\partial z}
\end{aligned}
$$

Therefore, we also have

$$
\begin{aligned}
& \frac{\partial h}{\partial z}=\frac{\partial g}{\partial z} \frac{\partial f}{\partial z}+\frac{\partial g}{\partial z} \frac{\partial f}{\partial z} \\
& 3 \text { QUESTION } 10
\end{aligned}
$$

We have,

$$
4 \frac{\partial}{\partial z} \frac{\partial}{\partial z}=4\left[\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\right]\left[\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\right]
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\frac{a}{a z} & -\frac{a}{b y}
\end{array}\right)\left(\begin{array}{l}
a \\
a_{2}
\end{array}+\frac{a}{\theta_{y}}\right)
\end{aligned}
$$

$$
4 \frac{d a}{d x d x} \frac{a^{2}}{\partial x}+\frac{\theta^{2}}{g^{2}}
$$

Siendaeth by Clairaut th thestrom athats.

$$
\begin{aligned}
& =4\left[\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\right]\left[\frac{1}{2}\left(\frac{\partial}{\partial z}+\frac{\partial}{\partial y}\right)\right\} \\
& =4 \frac{\partial}{\partial z} \frac{\partial}{\partial \pi} \\
& =\frac{\partial^{2}}{\partial x^{2}}+\frac{v^{2}}{\partial y^{2}} \\
& 4 \text { Question } 14
\end{aligned}
$$

$$
\begin{aligned}
\sum_{N=M}^{N} a_{n} b_{n} & =\sum_{n=M}^{N} a_{n}\left(B_{n}-B_{n-1}\right) \\
& =\sum_{m=M}^{N} a_{n} B_{n}-\sum_{n=M}^{N} a_{n} B_{n-1} \\
& =\left(a_{N} B_{N}+\sum_{n=M}^{N-1} a_{n} B_{n}\right)-\left(a_{M} B_{M-1}+\sum_{n=M+1}^{N} a_{n} B_{n-1}\right) \\
& =a_{N} B_{N}-a_{M} B_{M-1}+\sum_{n=M}^{N-1} a_{n} B_{n}-\sum_{n=1}^{N-1} a_{n+1} B_{n} \\
& =a_{N} B_{M}-a_{M} B_{M-1}-\sum_{n=M}^{N-1}\left(a_{n+1}-a_{n}\right) B_{n}
\end{aligned}
$$

5 Question 16

(b) We will first slow that $\lim _{n \rightarrow \infty}\left(n^{t}\right)^{1 / n}=\infty$. Note that

$$
(n)^{1 / a}=e^{3}+6 m^{x}
$$

$$
\begin{aligned}
\frac{1}{n} \ln n! & =\frac{1}{n} \sum_{i=1}^{4} \ln t \geq \frac{1}{n} \int_{-1}^{n} \ln x d x \\
& =\frac{1}{4}(n(\ln n-1)+1)=\ln n-1+\frac{1}{n} \\
& >\ln n-1
\end{aligned}
$$

Thus

$$
(x))^{2} \rightarrow x-n^{x} \operatorname{mon} x e^{\ln x=}: \frac{n}{e}
$$

$$
\operatorname{limsum}_{n a x}(n)^{1 / n}=\alpha
$$

so he kindamaril's formula, the radius of convergence is $A=0$.
(c) We tare

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{4^{n}+3 n}-\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{3}_{3}^{3}+\frac{3}{a}}
$$

Now, $\frac{5}{n^{2}} \rightarrow \infty$ and $\frac{\frac{3}{n}}{\rightarrow 0}$ as $n \rightarrow \infty$, so

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{4^{n}+3 n}=0
$$

Thous,

$$
\limsup _{n \rightarrow \infty} \frac{n^{2}}{4^{n}+3 n}=0
$$

so we get by Hadamard's formula that the radius of convergence is $R=\Delta X$
(d) By using Stirling's formula, ie.

$$
n^{\prime} \nRightarrow c n^{m+\frac{1}{2}} e^{-n}
$$

for some $c>0$, we get

$$
\begin{aligned}
& \text { 0. we get } \\
& a_{n}=\frac{(n t)^{3}}{(3 n)^{3}} \sim \frac{c^{3} n^{3 n+3}+\frac{1}{-3 n}}{c(3 n)^{3 n+3} \sqrt{-3 n} e^{-3 n}}=\frac{c^{2}}{\sqrt{3}} \frac{1}{2 T^{n}} \Rightarrow \operatorname{limp}_{n} a_{n}=\frac{1}{2}
\end{aligned}
$$

Now, $\frac{n}{2^{n}} \rightarrow 0$ as $n \rightarrow \infty, s o a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus,

$$
\limsup _{n \rightarrow \infty}=0
$$

no by Hadamard's formula, the radius of convergence is $R=X$. converge. Equivalumly wey munt ithom that the limit

$$
\lim s_{n}
$$

of protial nums

$$
s_{x}=\sum_{n=1}^{x} n i^{\circ}
$$

 Thas. wenge. But. $\lim _{n \rightarrow \infty} n$ cos $n \boldsymbol{\theta}$ does not exists, so in particular $\lim _{n \rightarrow+\infty} n$ nosent f
 does ant ecostr, so wee oonclude that sle series $\sum_{n=1}^{x}$ min does not cotwerge wheses $\mathrm{n} /=1$

7 Question 20

3.0

$$
f(z)=(1-z)^{-m}
$$

We have

$$
\begin{aligned}
& f^{\prime}(z)=m(1-z)^{-m-1} \\
& f^{\prime \prime}(z)=m(m+1)(1-z)^{-m-2}
\end{aligned}
$$

and in graeral

$$
f^{(n)}(z)=m(m+1) \cdots(m+n-1)(1-2)^{m-n}
$$

Thus,

$$
f^{(e)}(0)=m(m+1)-(m+n-1)=\frac{(m-n)!}{(m-1)!}
$$

Henee.

$$
f(t)=\sum_{n=0}^{t} \frac{(m+n-1)!}{n!(m-1)!} A^{n}+R_{4}(s)
$$

Thas, if

4heit

$$
(1-2)^{-m}=\sum_{n=0}^{\infty} a_{n} 2^{n}
$$

Now,

$$
\text { An } n=\frac{(m+n-1)!}{n^{4}(m-1)!}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\binom{(n+s-n}{m+\infty}}{\left(\frac{m^{m}-1}{m-0}\right)} & =\lim _{n \rightarrow \infty} \frac{(m+n-1)!}{n!n^{m-1}} \\
& =\lim _{n \rightarrow \infty} \frac{(m+1)(n+2)-(n+m-1)}{n^{m-1}} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \cdots\left(1+\frac{m-1}{n}\right) \\
& =1 \\
a_{n} & =\frac{(m+n-1)!}{n^{\prime}(m-1)!} \sim \frac{n^{m-1}}{(m-1)!}
\end{aligned}
$$

Thas,

8 Question 23

We have

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ e^{-1 / x^{2}} & \text { if } x>0\end{cases}
$$

We will nhow that $f(x)$ is indefinitely differentiable on \mathbb{R}. Our lirst step will be to prove that $f(x)$ is differentiable for all $x \in \mathbb{R}$. This is clear for $z<0$, we have $f^{\prime}\left(X^{*}=0\right.$ in that cese. Also, it is clear for $x>0$ with $f^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}$. Now, for $x=0$, we have

$$
\lim _{h \rightarrow 0+} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0)+} \frac{e^{-1 / h^{7}}}{h}=\lim _{h \rightarrow 0+} \frac{1 / h}{e^{1 / h h^{2}}}
$$

wow
and ETal

Oa whe other bawh.

$$
\lim _{x \rightarrow 0} \frac{f(x+h)}{h}-f(x)=\lim _{x \rightarrow 0} 0=0
$$

Thes, we have

$$
f(0)=\lim _{h \rightarrow \infty} \frac{f(x+h)=f(x)}{h}=0
$$

Brown. $f(x)$ sxists for all $x \in$ 度 and wo heve

$$
f^{\prime}(x)= \begin{cases}0 & \text { if } x \leq 0 \\ \frac{3}{x} f(x) & \text {, if } x>0\end{cases}
$$

Oour secound steq is to show that f is indefinitely differestintile, mond that

$$
f^{(n)}(x)= \begin{cases}0 & \text { if } x \leq 0 \\ g_{n}(x) f(x) & , \text { if } x>0\end{cases}
$$

fore some fronctions $夕_{m}(x)$ that are a sum of terms of the form $\frac{6}{5}$ for some monstants c_{2} and $k \in N$. We will show this by induction on n. We already pooval the case $n=1$. Now sulppose the result is true for some $n \in \mathbb{N}$. The resuilt for $n+1$ is then clear for $x<0$, we have $f^{(n+1)}(x)=0$ in that case It is also ciearly true for $x>0$. Indoed if $x>0$ then we have

$$
f^{(x+2)}(x)=g_{m}^{\prime}(x) f(x)+g_{n}(x) \frac{2}{x^{3}} f(x)=\left(g_{n}^{\prime}(x)+\frac{2 g_{n}(x)}{x^{3}}\right) f(x)
$$

no that $\operatorname{sn+1}(x)=y_{n}^{\prime}(x)+\frac{2 g n}{x^{3}}(x)$ which is still a sum of terms of the form $\frac{9}{7}$. Now, for $x=0$, this is true only if we have

$$
\lim _{h \rightarrow 0+} \frac{f^{(n)}(0+h)-f^{(n)}(0)}{h}=\lim _{h \rightarrow 0+} \frac{g_{n}(h) f(h)}{h}=0
$$

Phich is automatically true if we can show that for all $k \in \mathbb{N}$,

$$
\lim _{h \rightarrow 0+} \frac{e^{-1 / h^{2}}}{h^{k}}=0
$$

Thas is dowe by muconsively applying I'liopital Rule an for the case $k=1$ that we did. We get

$$
\begin{aligned}
& =\frac{k(k-2)}{2^{2}} \lim _{x \rightarrow 0+} \frac{1 / h^{k-4}}{e^{1 / h^{2}}}=\frac{k(k-2)(k-4)}{2^{k}} \lim _{k \rightarrow 0+} \frac{1 / h^{k-6}}{e^{1 / \omega^{5}}} \\
& =\frac{k(k-2) \cdots(k-2(j-2))}{2)} \lim _{h \rightarrow 0+} \frac{1 / h^{k-2 j}}{e^{j / k}}
\end{aligned}
$$

Contimuing this way, we reach a point where the exponent $k-2 j$ on becomes negative and the limit is then obviously equal to zero. Hence, lawe $f^{i n+1}(\theta)=0$ so the result is true for $n+1$.

Thermfore, we proved that f is indefinitely differentiable, and in part aular that $f^{(\infty)}(0)=0$ for all $n \in \mathbb{N}$. Thus, the nth Taylor expansion of f $z=0$ is

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{1}{2!} f^{\prime \prime}(0) x^{2}+\cdots+\frac{1}{n!} f^{(n)}(0) x^{n}+R_{n}(x)=R_{n}(x
$$

Hence, the remainder $R_{n}(x)$ is $f(x)$ so it does not converge to zexp : $x \propto 0$. Thus, f does not have a Taylor series expansion near $x=0$.

$1 /|z|: A C(x)+1+\sqrt{x^{2}+y^{2}}=x+1$
$\rightarrow x^{2}+y^{2}=x^{2}+2 x+1 \Rightarrow x=\left\{\left(y^{2}-1\right)\right.$
 we could abs say that it is the st of points
$\left\{(x, y): x \in\left[-\frac{1}{2}, \infty\right), y= \pm \sqrt{2 x+i}\right\}$
8. We have that (1) $h_{z}=\frac{1}{2}\left(h_{x}-i h_{y}\right), h_{\bar{z}}=\frac{1}{2}\left(h_{x}+i h_{y}\right)$ Looker at g as a a function of \underline{u} and v re get
(2) $h_{x}=g_{u} u_{x}+g_{v} k_{x} h_{y}=g_{u} u_{y}+g_{v} v_{y}$

Combining (2) and $(3) g_{z}=\frac{1}{2}\left(g_{4}-i g_{v}\right), g_{\frac{1}{2}}=\frac{1}{2}\left(g_{4}+i g_{u}\right)$
gives (4) $g_{4}=g_{z}+g_{z}, \quad g_{v}=i\left(g_{z}-g_{z}\right)$
Combining (1), (2) and (4) gives

$$
\begin{aligned}
h_{z} & \left.=\frac{1}{2}\left(\left(g_{z}+g_{z}\right) u_{x}+i\left(g_{z}-g_{z}\right) v_{x}\right)-i\left(g_{z}+g_{z}\right) u_{y}+i g_{z}-g_{z}\right) v_{y} \\
& =\frac{1}{2}\left(g_{z}\left(u_{x}+i v_{x}\right)-i\left(u_{y}+i v_{y}\right)+g_{z}\left(u_{x}+i v_{x}\right)+i\left(u_{y}-i k_{y}\right)\right. \\
& =\frac{1}{2}\left(g_{z}\left(l_{x}-i l_{y}\right)+g_{z}\left(\rho_{x}-i l_{y}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=g_{2} \partial \mid x-i f\right)+g_{2}=\left(\left\lvert\, r-i(y) \frac{\partial t}{\partial g}\right.\right. \\
& =g_{2} t_{2}+g_{2} t,=\frac{\partial g}{\partial x} \frac{\partial z}{\partial z \partial z}
\end{aligned}
$$

The same that an by dore dor $\frac{\partial b}{22}$, chang

$$
\begin{aligned}
& \frac{\partial h}{\partial z^{2}}=\frac{1}{2}\left(g_{7}\left(1 x+i \frac{1 y}{}\right)+9=\left(1+i T_{y}\right)\right) \\
& =g_{z} \frac{1}{3}(1+i i y)+d_{z}(1 x+i t y) \\
& =g_{z}\left|z+g_{z}\right| u \quad \frac{\partial g}{\partial z} \frac{\partial z}{\partial z}+\frac{\partial g}{\partial z} \frac{\partial J}{\partial z}
\end{aligned}
$$

10 We know that

$$
\frac{\partial}{\partial z}=\frac{1}{2}(\partial x+i \partial y), \frac{\partial}{\partial z}=\frac{1}{2}(\partial x+i \partial y)
$$

Dong an elementary multiplication gives

$$
\frac{\partial}{\partial z} \frac{\partial}{\partial z}=\frac{1}{y}\left(\partial x \partial x+i \partial y \partial x-i \partial t \partial y-i^{2} \partial, \partial y\right)
$$

the equally $\partial y \partial x=\partial y \partial x$ then implies

$$
\frac{\partial}{\partial z} \frac{\partial}{\partial z}=\frac{\partial}{\partial z} \frac{\partial}{\partial z}=\frac{1}{4}\left(\frac{\partial^{2}}{\partial x} \times \frac{\partial^{2}}{\partial x}\right)=\frac{1}{4} \Delta
$$

The do the desired result.

