
SOLUTIONS TO ASSIGNMENT 2 - MATH 355

Problem 1.
Recall that,

Bn = {ω ∈ [0, 1] : |Sn(ω)| > nεn},

N = {ω ∈ [0, 1] : lim
n→∞

Sn(ω)

n
= 0},

and

m(Bn) ≤ 3

n2ε4
.

We want to show that m(N c) = 0.

Let δ > 0. We can pick ε4n = c√
n

with c > 3
δ

∑∞
n=1 n

−3/2. Then,

∞∑
n=1

m(Bn) ≤ 3

c

∞∑
n=1

1

n3/2
< δ.

Now, if ω ∈ N c then there exists µ > 0 such that for all n ∈ N, |Sn(ω)| ≥ nµ. There
exists N ∈ N such that εN < µ; hence ω ∈ BN . Thus, N c ⊂ ∪∞n=1Bn and

m(N c) < δ.

Since δ > 0 is arbitrary, m(N c) = 0..

Problems from the textbook. Pages 90-93.

Problem 4. Suppose f is integrable on [0, b] and

g(x) =

∫ b

x

f(t)

t
dt,

0 < x ≤ b. Prove that g is integrable on [0, b] and∫ b

0
g(x)dx =

∫ b

0
f(t)dt.

Solution. We can assume that f(x) ≥ 0 (and hence g(x) ≥ 0), since f = f+ − f− and the
Lebesgue integral is linear.
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∫ b

0
g(x)dx =

∫ b

0

∫ b

x

f(t)

t
dtdx =

∫ b

0

∫ b

0

f(t)

t
χ{t≥x}(t)dxdt

=

∫ b

0

f(t)

t

∫ b

0
χ{x≤t}(x)dx dt =

∫ b

0

f(t)

t

∫ t

0
dx dt

=

∫ b

0

f(t)

t
t dt,

where we used Tonelli’s theorem to switch the order of integration.

Problem 5. Suppose F is a closed set in R, whose complement has finite measure, and
let δ(x) = inf{|x− y| : y ∈ F}. Let

I(x) :=

∫
R

δ(y)

|x− y|2
dy.

(a) Show that, for all x, x′ ∈ R,

|δ(x)− δ(x′)| ≤ |x− x′|.

Solution. Let ε > 0. There exists y ∈ F such that |x− y| ≤ δ(x) + ε. Then,

δ(x′) ≤ |x′ − y| ≤ |x− x′|+ |x− y| = |x− x′|+ δ(x) + ε

so δ(x)−δ(x′) ≤ |x−x′|+ε. Switching the roles of x and x′ we get δ(x′)−δ(x) ≤ |x−x′|+ε,
so |δ(x)− δ(x′)| ≤ |x− x′|+ ε, and the result follows.

(b) Show that I(x) = +∞ for all x 6∈ F .

Solution. Let x 6∈ F . Since F is closed, we have δ(x) = a > 0. From the Lipschitz condition
we have that |δ(y)− δ(x)| ≤ a

2 whenever |x− y| < a
2 . Then,

∫
R

δ(y)

|x− y|2
dy ≥

∫ x+a/2

x−a/2

δ(y)

|x− y|2
dy ≥

∫ x+a/2

x−a/2

a/2

|x− y|2
dy

=
a

2

∫ a/2

−a/2

1

|y|2
dy =∞,

where we used that |δ(y)− δ(x)| ≤ a
2 iff δ(x)− a

2 ≤ δ(y)− ≤ a
2 + δ(x), so δ(y) ≥ a

2 .

(c) Show that I(x) <∞ for a.e. x ∈ F .

Solution. If y ∈ F we have δ(y) = 0. Let y 6∈ F . For all x ∈ F , we have |x − y| ≥ δ(y).
Thus,
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∫
F

1

|x− y|2
dx ≤

∫ y−δ(y)

−∞

1

|x− y|2
dx+

∫ +∞

y+δ(y)

1

|x− y|2
dx

= 2

∫ +∞

δ(y)

1

|x|2
=

2

δ(y)
.

Then, ∫
R
I(x)dx =

∫
R×R

δ(y)

|x− y|2
χF (x)dy dx =

∫
F c

δ(y)

∫
F

1

|x− y|2
dx dy

≤
∫
F c

δ(y)
2

δ(y)
dy = 2m(F c) <∞.

Again, we could switch the order of integration thanks to Tonelli’s theorem (I(x) ≥ 0).
Since

∫
R I(x)dx <∞, I(x) <∞ for almost all x ∈ R.

Problem 6. Integrability of f on R does not necessarily imply the convergence of f(x) to
0 as x→∞.

(a) There exists a positive continuous function f on R such that f is integrable on R ,
yet lim supx→∞ f(x) =∞.

Solution: One example is

f(x) =


2n4x− 2n(n4 − 1) x ∈ [n− 1

n3 , n], n ≥ 1

−2n4x+ 2n(n4 + 1) x ∈ [n, n+ 1
n3 ], n ≥ 1;

0 otherwise.

Here, the graph of f consists on “triangles” of area 1
2n2 centred at every positive integer

n. Then
∫
R fdx = 1

2

∑∞
n=1

1
n2 <∞.

(b) However, if we assume that f is uniformly continuous on R and integrable, then
lim|x|→∞ f(x) = 0.

Solution. Let ε > 0. Since f uniformly continuous, there exists δ > 0 such that
|f(x)− f(y)| < ε

2 whenever |x− y| < δ. Take δ < 1
2 Suppose f(x) 6→ 0 as |x| → ∞. Then,

there exists x1 ∈ R, s.t. |f(x1)| ≥ ε. thus, |f(y)| ≥ ε
2 for all y ∈ (x1− δ, x1 + δ). Now, there

exists x2 > x1 + 1 s.t. |f(x2)| ≥ ε and thus |f(y)| ≥ ε
2 for all y ∈ (x2− δ, x2 + δ) Note that

(x1 − δ, x1 + δ)∩ (x2 − δ, x2 + δ) = ∅. Continue this way so as to find a sequence xn →∞,
xn+1 > xn + 1, such that |f(y)| ≥ ε

2 whenever y ∈ (xn − δ, xn + δ). Therefore,∫
R
|f(x)|dx ≥

∞∑
n=1

∫
(xn−δ,xn+δ)

|f(x)|dx ≥
∞∑
n=1

δε =∞.
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Problem 8. If f is integrable on R, show that

F (x) =

∫ x

−∞
f(t)dt

is uniformly continuous.

Solution. Let ε > 0 and δ := ε · (
∫
R |f |dt)

−1 <∞, since f integrable. Let x, y ∈ R such
that x < y, |x− y| < δ. Then,

|F (x)− F (y)| ≤
∫ y

x
|f(t)|dt ≤ |x− y|

∫
R
|f(t)|dt < ε.

Problem 15.
Consider the function defined over R by

f(x) =

{
x−1/2, if 0 < x < 1;

0, otherwise.

For a fixed enumeration {rn} of the rationals Q, let

F (x) =
∞∑
n=1

2−nf(x− rn).

Prove that F is integrable, hence the series defining F converges for almost every x ∈ R.
However, observe that this series is unbounded on every interval, and in fact, any function
F̃ that agrees with F a.e. is unbounded in any interval.

Solution. We first compute
∫
R fdx. The improper Riemann integral of f is given by∫ 1

0

1√
x
dx = 2

√
x
∣∣1
0

= 2.

We know that the proper Riemann and Lebesgue integrals coincide. Then,

∫
R
f(x) dx =

∞∑
n=1

∫
( 1
n+1

, 1
n
]
f(x)dx =

∞∑
n=1

∫ 1
n

1
n+1

f(x)dx

= 2
∞∑
n=1

(
1√
n
− 1√

n+ 1
) = 2.
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Now, by Monotone convergence theorem and translation invariance of the Lebesgue
measure, ∫

R
F (x) dx = lim

N→∞

∫
R

N∑
n=1

2−nf(x− rn) dx =
∞∑
n=1

∫
R

2−nf(x− rn) dx

=
∞∑
n=1

2−n
∫
R
f(x) dx =

∞∑
n=1

2−n+1 = 2.

Thus F is integrable and therefore finite a.e..

Let I ⊂ R be an interval. Since rationals are dense in R there exists N ∈ N such that
rN ∈ I. Since F (x) is a sum of positive terms,

lim
x→rN

F (x) ≥ lim
x→rN

2−Nf(x− rN ) = +∞.

Let F̄ coincide with F almost everywhere. Let M > 0. Since limx→rN F (x) = +∞, There
exists ε > 0 such that F (x) > M for all x ∈ (rN − ε, rN + ε). Then F̄ (x) > M almost
everywhere on (rN − ε, rN + ε), so F̄ (x0) > M for some x0 ∈ (rN − ε, rN + ε). Since M is
arbitrarily large, F̄ is unbounded on I.

Problem 17. Suppose f is defined on R2 as follows

f(x, y) =


an, n ≤ x < n+ 1 and n ≤ y < n+ 1, n ≥ 0;

−an n ≤ x < n+ 1 and n+ 1 ≤ y < n+ 2, n ≥ 0;

0, otherwise.

Here, an =
∑

k≤n bk, with {bk} a positive sequence such that
∑∞

k=0 bk = s ≤ ∞.

(a) Verify that each slice fy(x) and fx(y) is integrable. Also, for all x,
∫
fx(y)dy = 0,

and hence
∫ ∫

f(x, y)dy dx = 0.

Solution. Let y ∈ R. There exists a unique n ∈ N such that n ≤ y < n+ 1. Then

∫
R
|fy(x)|dx =

∫
[n−1,n)

|fy(x)|dx+

∫
[n,n+1)

|fy(x)|dx = an−1 + an.

Let x ∈ R. There exists a unique n ∈ N such that n ≤ x < n+ 1. Then

∫
R
|fx(y)|dy =

∫
[n,n+1)

|fx(y)|dy +

∫
[n+1,n+2)

|fx(y)|dy = 2an.

Moreover,
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∫
R
fx(y)dy =

∫
[n,n+1)

fx(y)dy +

∫
[n+1,n+2)

fx(y)dy = an − an = 0.

It follows that, ∫
R

∫
R
f(x, y)dy dx =

∫
R

∫
R
fx(y)dy dx = 0

(b) For 0 ≤ y < 1, ∫
R
fy(x)dx =

∫
[0,1)

fy(x)dx = a0.

If y ≥ 1, ∫
R
fy(x)dx =

∫
[n−1,n)

fy(x)dx+

∫
[n,n+1)

fy(x)dx = an − an−1.

Hence

∫
R

∫
R
fy(x)dx dy =

∞∑
n=0

∫
[n,n+1)

(∫
[n−1,n)

fy(x)dx+

∫
[n,n+1)

fy(x)dx

)
dy

=

∞∑
n=0

[an − an−1] =

∞∑
n=0

bn = s.

(c) By Tonelli,

∫
R×R
|f(x, y)|dxdy =

∞∑
n=0

∫
[n,n+1)

∫
R
|fx(y)|dy dx =

∞∑
n=0

2an =∞,

since an is increasing.

Problem 19. Suppose f is integrable in Rd. For each α > 0 let Eα = {x : |f(x)| > α}.
Prove that ∫

Rd

|f(x)|dx =

∫ +∞

0
m(Eα)dα.

Solution:
First note that

|f(x)| =
∫ |f(x)|
0

1dα.

Then, by Tonelli,
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∫
Rd

|f(x)|dx =

∫
Rd

∫ |f(x)|
0

dα dx =

∫
Rd

∫ +∞

0
χ{α<|f(x)|}(α)dα dx

=

∫ +∞

0

∫
Rd

χ{α<|f(x)|}(x)dx dα

=

∫ +∞

0
m(Eα)dα.


