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Abstract. We study the distribution of coefficients of rank polynomials of

random sparse graphs. We first discuss the limiting distribution for general
graph sequences that converge in the sense of Benjamini-Schramm. Then we

compute the limiting distribution and Newton polygons of the coefficients of

the rank polynomial of random d-regular graphs.

1. Introduction

Dichromatic polynomial is the most general graph invariant satisfying deletion-
contraction properties. It contains important information about G, in particular
about its connectivity properties, and about nowhere-zero flows on G. In Statis-
tical Physics, it describes the partition function for the Potts model on G. When
restricted to certain curves (or points), the dichromatic polynomial specializes to
some well-known graph invariants, including chromatic polynomial, the number of
spanning trees, the number of acyclic orientations etc. It is closely related to impor-
tant invariants in knot theory, including the Jones polynomial. Equivalent forms of
dichromatic polynomial include the Tutte and the rank polynomials of the graph.
The Tutte polynomial is perhaps better known. (See [Wel] for an excellent survey
on the properties of the Tutte polynomial.) In this paper, however, we consider
rank polynomials (defined in 2.1), focusing on the coefficients, as it turns out that
the behaviour of the coefficients of rank polynomial is more tangible.

We focus on the asymptotic properties of the rank polynomial, focusing primarily
on the sparse graphs. The asymptotic behaviour of many graph invariants, includ-
ing Laplace spectrum, cycle distribution, colouring properties, non-concentration of
eigenvectors etc. has been studied extensively before. However, several asymptotic
properties of the rank and Tutte polynomials have not been considered before, to
our knowledge. In our paper, we focus on the coefficients of those polynomials. We
first study Newton polygons for the rank polynomials for random regular graphs in
2.1. We determine them for d-edge connected d-regular graphs (Theorem 2.3), then
describe them for general graphs.

Next, we define probability measures describing the concentration of the (nor-
malized) coefficients of those polynomials. The coefficient measure for the rank
polynomial is defined in 4.2.

In sections 4 and 5, we discuss the limiting distribution of the coefficients of the
rank polynomial associated for Benjamini-Schramm convergent sequences of graphs
and compute it exactly for random d-regular graphs.
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The questions considered in this paper were suggested by numerical experiments
in the paper [RT], where some a priori results on the coefficient measures for the
Tutte polynomial were also established.

2. Rank polynomial

Let G be a graph without loops or multiple edges, with the vertex set V = V (G)
and the edge set E = E(G). We let |V (G)| = n and |E(G)| = m. We denote by
G|A the subgraph of G whose edge set is A and whose vertex set is V (G), and we
denote by k(H) the number of connected components of a graph H.

The rank polynomial RG of a graph G with n vertices and m edges, cf. [Big1,
Definition 10.1] is defined by

(2.1) RG(x, y) :=
∑

A⊂E(G)

xr(G|A)ys(G|A),

where r(G|A) = n−k(G|A) denotes the rank of G|A, and s(G|A) = |A|−n+k(G|A)
denotes the co-rank of G|A.

It is easy to see that RG(x, y) is indeed a polynomial. Let G1, . . . , Gk be the
connected components of G|A; we see that

|A| =
k∑
i=1

|E(Gi)| ≥
k∑
i=1

(|V (Gi)| − 1) = n− k(G|A),

therefore s(G|A) ≥ 0. The above argument also shows that s(G|A) = 0 if and only
if G|A is a forest. Also, clearly r(G|A) ≥ 0, and the equality holds if and only if
A = ∅. Thus A = ∅ corresponds to the constant term 1 in RG(x, y).

Denote the coefficients of the rank polynomial by ρrs:

(2.2) RG(x, y) =
∑
r,s

ρrsx
rys.

Thus ρrs denotes the number of subgraphs of G with rank r and co-rank s. Those
coefficients are the entries of the rank matrix ρrs(G) of the graph G, see [Big1, Ch.
10] or [G-R, Ch. 15].

2.1. Newton polygon of the rank polynomial. In this section we consider the
Newton polygon Π(RG) for the rank polynomial RG. is the convex hull of the set
of all lattice points {(r, s) ∈ Z2 : ρrs 6= 0}.

We start by making some simple observations about Π(RG). We first remark
that all the points lying on the line segment I0(G) := {(a, 0) : 0 ≤ a ≤ m − 1}
belong to Π(RG): They correspond to forest subgraphs of G with a edges. This
segment coincides with Π(RG) if and only if G is a forest. From now on, we assume
that G is connected and has at least one cycle; in that case I0(G) is a proper subset
of Π(RG).

If the graph G|A has one connected component and contains all the vertices of
G, then r(G|A) = n − 1; its co-rank varies between s = 0 (a spanning tree) and
s = m− n+ 1 (A = E); accordingly all the points {(n− 1, b) : 0 ≤ b ≤ m− n+ 1}
belong to Π(RG). The tangent of the angle α(m,n) that the line from (0, 0) to
(n− 1,m− n+ 1) forms with the x-axis satisfies tanα(m,n) = m−n+1

n−1 = m
n−1 − 1.
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Accordingly, if we denote by α0 the angle formed by the sides of Π(RG) at the
origin (0, 0), it will satisfy

tanα0 = sup
A⊆E:(G|A) has cycles

|E(G|A)|
|V (G|A)| − 1

− 1.

In general, the supremum need not be attained for A = E.

Example 2.1. Consider a graph G(n, s) consisting of complete graph Kn+1 on (n+1)
vertices; and a path of length s starting at one of the vertices of Kn+1. If we take A

to be all the edges of Kn+1, then tanα(A) = (n+1)n
2n − 1 = n−1

2 . If we take A = E,

then we get tanα(E) = (n+1)n/2+s
n+s − 1 < tanα(A) by an easy calculation.

For regular graphs, Π(RG) also need not be a triangle.

Example 2.2. Consider a graph G(k, q) constructed as follows: take q ≥ 2 disjoint
copies of the complete graph Kk; then connect those graphs by edge switching
along a cycle of length q. Clearly, after removing 2 ≤ p ≤ q “cycle” edges from
that graph, we will get a graph Gp(k, q) with p connected components. It is easy
to show that for k ≥ 5, we shall have

tanα(Gp(k, q)) =
qk(k − 3)

2(kq − p)
>
qk(k − 3) + 2

2(kq − 1)
= tanα(G(k, q)).

It follows that Π(RG(k,q)) is not a triangle.

The situation is simpler for d-edge connected d-regular graphs.

Theorem 2.3. Let G be a d-edge connected d-regular graph (d ≥ 3) on n vertices.
Then the Newton polygon Π(RG) of the rank polynomial RG is the triangle T (n, d)
with the vertices at (0, 0), (0, n− 1) and (n− 1,m− n+ 1).

Proof: Let An = (0, 0), Bn = (0, n−1) and Cn = (n−1,m−n+ 1) be the vertices
of T (n, d); since d is fixed, we suppress the dependence on d.

We have shown previously that the line segments [An, Bn] and [Bn, Cn] belong
to the boundary of Π(RG); it remains to be shown that Π(RG) ⊆ T (n, d). Equiva-
lently, all points in Π(RG) lie below the line segment [An, Cn]. The tangent of the
angle α(G) formed by the sides Cn, An and Bn, An of Tn is equal to

tanα(G) =
m− n+ 1

n− 1
=
dn/2− n+ 1

n− 1
.

Let A ⊆ E; suppose the graph G|A has connected components. The number of
edges in E \A satisfies

(2.3) |E \A| ≥ d · k
2
,

by the d-edge connectivity of G: for a fixed component C of G|A, there are at least
d edges with exactly one endpoint in C.

The monomial corresponding to the graph G|A corresponds to the point C(A)
with the coordinates (n−k(A), |A|−n+k(A)), hence the tangent of the angle α(A)
formed by the lines AnBn and AnCn is given by

tanα(A) =
|A| − n+ k(A)

n− k(A)
.
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To prove the theorem, it suffices to show that tanα(S) ≤ tanα(G), which is equiv-
alent to

(dn/2− n+ 1)(n− k(A)) ≥ (|A| − n+ k(A))(n− 1).

After cancellations and multiplication by 2, we get dn(n− k(A)) ≥ 2(n− 1)|A| or
dn2 − 2(n− 1)|A| ≥ k(A)dn. This can be rewritten as

In := dn+ 2(n− 1)

[
dn

2
− k(A)

]
= dn+ 2(n− 1)|E \A| ≥ dn · k(A).

Substituting (2.3), we find that the left-hand side In satisfies

In ≥ dn+ 2(n− 1)
d · k(A)

2
.

Accordingly, it suffices to show that

dn+ (n− 1)d · k(A) ≥ dn · k(A).

But the latter is equivalent to

dn ≥ d · k(A),

which is clearly true. �
We remark that random d-regular graphs are a.a.s. d-edge connected [Bol].

Corollary 2.4. The conclusion of Theorem 2.3 holds for random regular graphs
with probability tending to 1 as n→∞.

3. Newton polygon of the rank polynomial for general graphs

In this section we describe the Newton polygon of the rank polynomial for general
graphs. The key relevant notion turns out to be the so-called k-edge-connectivity,
defined in [BC] and also [Gol80, Gol81].

Let G be a connected graph with n vertices. For k ≤ n, the k-edge-connectivity
λk(G) is defined to be the minimal number of edges that need to be removed from
G to separate G into k connected components.

We remark that the notation in [BC] is slightly different from ours: λi in [BC]
equals to our λi+1; our notation is consistent with the notation in [ZHLS].

Consider the vertical line {r = const} ⊂ Z2; we would like to determine the
largest s such that the point (r, s) lies in Π(RG). LetA ⊂ E(G), and let xr(G|A)ys(G|A)

be the corresponding monomial in RG. We have r(G|A) = n− k(G|A) (from 2.2),
so fixing r is equivalent to fixing the number k = k(G|A) of the connected compo-
nents of the graph (G|A). For a fixed r, we would like to find the largest possible
s = s(G|A). We remark that r(G|A) + s(G|A) = |A|, so finding the largest s is
equivalent to finding the largest |A| such that removing E \A from the graph G dis-
connects it into k connected components. By the definition of k-edge-connectivity,
we have m− |A| = λk(G) and therefore |A| = m− λk(G).

We summarize the above discussion.

Theorem 3.1. Let G be a connected graph with n vertices and m edges, and let
Π = Π(RG) denote the Newton polygon of the rank polynomial RG.

(a) The lower part of the boundary ∂Π contains the horizontal line segment
connecting the points (0, 0) and (n− 1, 0);

(b) The right part of the boundary ∂Π contains the vertical line segment con-
necting the points (n− 1, 0) and (n− 1,m− n+ 1);
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(c) The upper part of the boundary ∂Π coincides with the (“upper”) convex hull
of the set of points

{(n− k,m− λk(G)) : 1 ≤ k ≤ n},

where λk(G) denotes the k-edge-connectivity of G.

It is clear from (2.1) that if the graph G2 is obtained from the graph G1 by
adding several new edges (G1 ⊆ G2), then any monomial appearing in RG1 also
appears in RG2 , since any subset A of E(G1) is also a subset of E(G2). It follows
that Π(RG1

) ⊆ Π(RG2
). It was shown in [BC, Corollary 2] that λk(Kn) = (k −

1)(2n − k)/2. Accordingly, for any graph G on n vertices, Π(RG) lies below the
“upper” convex hull of the set

{(n− k, n(n− 1)/2− (k − 1)(2n− k)/2) : 1 ≤ k ≤ n}.

Below, we summarize some of the known results about λk(G). It was shown in
[BC, Theorem 1] that for 1 ≤ k < j < n, we have

(3.1) λj ≥
(j − 1)(j − k + 1)

(j + 1)(j − k − 1)
λj−k

A special case is λj ≥ λj−1j(j − 1)/[(j + 1)(j − 2)]. Also, it was shown in [BC,
Theorem 2] that if G has minimum degree δ, 1 ≤ k < n and λ2(G) ≥ bn/kc,
then λk(G) ≥ δ. It was also shown in [BC, Corollary 4] that for a d-regular graph

containing an i-clique Ki, for d ≥ in/(i+ 1) we have λi+1 = di− i(i−1)
2 . It was also

shown in [ZHLS, Theorem 2.5] that for n ≥ l > 1, we have

(3.2) λl(G) ≥ l · λ2(G)

2
.

We next discuss the values of λk(G) for small k and small n − k. Clearly,
λ1(G) = 0 for connected graphs; λ2(G) is the edge connectivity of G. Clearly,
λ2(G) ≤ δ(G), the minimal degree of G. Next, λn(G) = m for connected graphs.

Let A ⊂ E(G); the graph (G,A) has the same vertex set as G, and its edge set
coincides with A; note that (G,A) is in general different from the graph (G|A) For
simple graphs G, if the set A ⊂ E contains at least 2 edges, then (G,A) has at
most (n − 2) components, so λn−1(G) = m − 1, hence the point (1, 1) ∈ Π(RG).
Also, if G has girth 3 (contains triangles), then λn−2(G) = m− 3, hence the point
(2, 3) ∈ Π(RG).

4. Benjamini-Schramm convergence and the coefficient measures.

Below, we define a probability measure that describes the relative size of the
coefficients of the rank polynomial; we call it the coefficient measure. Recall that
the coefficients ρrs of the rank polynomial RG were defined in 2.2. The monomials
of RG are in bijection with subsets of E(G), where |E(G)| = m, hence

(4.1)
∑
r,s

ρrs = 2m.

Also, for any A ⊂ E we have r(G|A) ≤ n − 1, and s(G|A) ≤ |A| ≤ m. It seems
natural to consider a probability measure associated to RG defined as follows

(4.2) µR(G) :=
1

2m

∑
rs

ρG(r, s) · δ(r/n, s/m),
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By the previous remarks, µR(G) is a probability measure supported in the triangle
with vertices at (0, 0), (1, 0) and (0, 1).

Consider a sequence Gi of graphs such that |V (Gi)| → ∞ and Gi → Γ in
the sense of Benjamini-Schramm. In this section we study convergence of the
coefficient measures µR(Gi). Let us first recall the definition of Benjamini-Schramm
convergence. For a graph G and rooted graph g, an integer r, let P(G, g, r) denote
the probability that the ball of radius r centered at a uniformly random vertex of
G is isomorphic to G. We say that a sequence of graphs Gi with |V (Gi)| → ∞
and a uniformly bounded maximum degree is Benjamini-Schramm convergent if
P(Gi, g, r) converges for all g and r. In the remainder of the paper we study
the behavior of coefficients of rank polynomials of Benjamini-Schramm convergent
sequences of graphs. First we show that the coefficient measures converge.

Theorem 4.1. Let Gi be a Benjamini-Schramm convergent sequence of connected
graphs. Then µR(Gi) converges to a point mass.

Proof. Recall that we need to show almost sure convergence of |V (Gi)−k(Gi|Ai)|
|V (Gi)| and

of |Ai|−|V (Gi)+k(Gi|Ai)|
|E(Gi)| , where Ai is a subset of E(Gi) chosen uniformly at random.

It is well known (see e.g. [, ]) that the average degree of Gi converges to some
constant d.

Next let us consider the convergence of |Ai|
|E(Gi)| . For each i, |Ai| is a binomial

random variable of mean |E(Gi)|
2 and variance |E(Gi)|

2 . Thus |Ai|
|E(Gi)| has mean 1

2

and variance 1
4|E(Gi)| . Since the Gi are connected, |E(Gi)| → ∞. Thus the mean

is constant and the variance tends to 0 and so we have almost sure convergence of
|Ai|
|E(Gi)| to 1

2 .

Finally, consider the limit of the quantity k(Gi|Ai)
|V (Gi)| . We again use the technique

of showing that the expected value converges while the variance tends to 0. For a
vertex v and a graph H, let c(v,H) be 1 over the size of the component containing
v in H. Then k(H) =

∑
v∈V (H) c(v,H). For every positive integer R and a graph

H define kR(H) to be the number of components of size less than R in H, and let
cR(v,H) = c(v,H)χ

(
c(v,H) > 1

R

)
. We have kR(H) =

∑
v∈V (H) cR(v,H), and in

particular

(4.3) k(H)− |V (H)|
R

≤ kR(H) ≤ k(H).

For a rooted graph g, let c1/2(g) be the random variable equal to cR(v, h), where
h is the subgraph of g obtained by taking a subset of edges of g uniformly at random.
If a vertex lies in a component of size less than R, all the information about the
component is entirely contained in B(v,R). Let S be the set of all rooted graphs
of radius R. Thus clearly

EAi

(
kR(Gi|Ai)
|V (Gi)|

)
=

1

|V (Gi)|
∑

v∈V (V (Gi))

c1/2(v,B(v,R))

& =
∑
g∈S

Pv(B(v,R) = g)c1/2(g)(4.4)
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It follows that EAi

(
kR(Gi|Ai)
|V (Gi)|

)
converges to a limit αR for every R as i → ∞.

Moreover from (4.3) we have∣∣∣∣EAi

(
kR(Gi|Ai)
|V (Gi)|

)
− EAi

(
k(Gi|Ai)
|V (Gi)|

)∣∣∣∣ ≤ 1

R
.

It follows that there exists a limit limR→∞ αR = α, and that EAi

(
k(Gi|Ai)
|V (Gi)|

)
con-

verges to this limit, as desired.

We now need only show that V ar
(
kR(Gi|Ai)
|V (Gi)|

)
tends to 0. Fix ε > 0. We use

the same c and cR as above. However, since no confusion is likely to arise, we will
omit the Gi|Ai. We will also simply write V for V (Gi). Note that cR(v) ≤ 1 and
c(v)− cR(v) < 1/R for all vertices v.

V ar
(∑

v∈V c(v)
)

|V (G)|2
=
V ar

(∑
v∈V cR(v) + (c(v)− cR(v))

)
|V (G)|2

=
V ar

(∑
v∈V cR(v)

)
|V (G)|2

+
V ar

(∑
v∈V c(v)− cR(v)

)
|V (G)|2

+
Cov

(∑
v∈V cR(v),

∑
v∈V cR(v)− c(v)

)
|V (G)|2

≤
V ar

(∑
v∈V cR(v)

)
|V (G)|2

+
E
[(∑

v∈V c(v)− cR(v)
)2]

|V (G)|2

+
E
[∑

v∈V cR(v) ·
∑
v∈V cR(v)− c(v)

]
|V (G)|2

≤
V ar

(∑
v∈V cR(v)

)
|V (G)|2

+
|V (G)|2 /R2

|V (G)|2
+
|V (G)|2 /R
|V (G)|2

≤
V ar

(∑
v∈V cR(v)

)
|V (G)|2

+
2

R

Choose R large enough that 2
R < ε.

The variable cR(v) is independent of cR(w) for all but O(|V (G)|) pairs of vertices
(v, w). This is because there are O(|V (G)|) pairs of vertices within distance R of
each other. The variance of cR(v) and the covariance of (cR(v), cR(w)) are both
bounded above by 1. Thus

V ar
(∑

v∈V cR(v)
)

|V (G)|2
=
O(|V (G)|)
|V (G)|2

= o(1)

and so
V ar

(∑
v∈V cR(v)

)
|V (G)|2

→ 0. Since |V (Gi)| → ∞ we have

lim
i→∞

V ar
(∑

v∈V c(v)
)

|V (G)|2
< ε

for all ε > 0 and so V ar
(
kR(Gi|Ai)
|V (Gi)|

)
→ 0.

Thus the expectation converges and the variance goes to 0 and so kR(Gi|Ai)
|V (Gi)| → α

almost surely.



8 D. JAKOBSON, S. NORIN, AND L. TURNER

Thus, putting all of this together, we have that r(Gi|Ai)
|V (Gi)| → 1−α and s(Gi|Ai)

|E(Gi)| →
1
2 −

1
2d + α

2d almost surely. �

In general, it may not be easy to find α. However, section 5 does this in the case
of random regular graphs.

5. Generating functions for the number of components in random
subgraphs of random regular graphs

Let G = (V,E) be a d-regular graph with |V | = n. Suppose we take a subgraph
F ⊆ E by independently and uniformly choosing each edge with probability 1/2.
Then, using generating functions we find a concentration in the limiting coefficients
of the Tutte polynomial.

Lemma 5.1. Let G ∈ G(n, d) be random and let F be a random subset of G. As
n → ∞, the probability that a component chosen uniformly at random contains a
cycle tends to 0.

Proof. As n → ∞, for i ≥ 3, the number of i-cycles in a random G ∈ G(n, d) is
asymptotically Poisson with mean (d − 1)i/(2i), [Bol, p. 56]. In particular, the
mean converges to a finite limit as does the variance.

We claim that the mean number of components in F is at least n2−d

d+1 . Each

vertex has probability 2−d of not having any neighbours in F . Now construct an
independent set in G as follows. We work with two sets: A the set of accepted
vertices and P the set of potential vertices. Start with A empty and P = V . Now
choose any vertex v ∈ P and add it to A. Remove all the neighbours of v from
P . Continue this procedure until P is empty. A cannot contain any vertices which
are neighbours in G. Also, since every step removes at most r + 1 vertices from
P while adding one to A, |A| ≥ n

d+1 . Now the number of these vertices which

are alone in their components in F follows a binomial with probability 2−r. This
probability does not depend on n. Hence, by the strong law of large numbers,
the number of vertices in A which are isolated in F converges almost surely to
2−r |A|. Furthermore, the number of components is bounded above by n. Thus,
k(F ) = Θ(n) almost surely.

We first consider components in F of size at most m for each m. These can only
contain cycles of size up to m. The expected number of such cycles in G is

m∑
i=3

(d− 1)i

2i
≤ (d− 1)m+1

In particular, this expectation does not depend on n. Furthermore, since the dis-
tribution is asymptotically the sum of independent Poisson random variables, it is
a Poisson.

Now let n → ∞. Choose a vertex vn uniformly at random in each graph. The
property of vn being in a component of size m can only depend on edges incident
to less than a bounded number of vertices Nm (vertices in the component and their
neighbours). Thus the probability that vn lies in a component of size at most m
stays constant when n > Nm. Then the probability that vn is in a component of size
at most m converges to a positive limit pm. Hence the number of such components
is Θ(n). Hence the probability that any given component of size at most m in a
graph of size n contains a cycle is Θ(1/n).
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Since all components in any finite graph must have finite size,
∑
m≥1 pm = 1.

Now let ε > 0. Choose M large enough that
∑
m≥M pm < ε/2. Now the probability

that a given component of size at most M contains a cycle is Θ(1/n). Thus it tends
to 0. Choose N large enough that for n ≥ N , it is at most ε/2. Thus the probability
of a randomly selected component containing a cycle is less than ε.

Thus the probability that a randomly selected component contains a cycle tends
to 0 as n→∞. �

Lemma 5.2. Fix an integer radius R. Let Gn ∈ G(n, r) be chosen uniformly at
random. Let vn be chosen uniformly at random from the vertices of Gn. Then as
n→∞, the probability that there is a cycle contained in BGn(vn, R) tends to 0.

Proof. First of all, we know that |BGn
(vn, R)| ≤

∑R
d=1 d

d ≤ dR+1 since this would
be the size of a tree with this degree rooted at vn. Hence BGn(vn, R) cannot contain
cycles of length more than dR+1. Hence we may ignore such long cycles.

The number of cycles of a given length in a random regular graph of size n is
asymptotically Poisson with finite mean and variance. Let Cn,l be the number
of cycles of length at most l in G(n, d). The sum of independent Poisson random
variables is Poisson so Cn,l is asymptotically Poisson with finite mean and variance.
Then, for any ε > 0, there is an M such that limn→∞ P (Cn,l > M) < ε.

Fix ε > 0, set l = dR+1 and choose M large enough that limn→∞ P (Cn,l > M) <
ε. Let An be the event that BGn

(vn, R) contains a cycle.

lim
n→∞

P (An) = lim
n→∞

P (An ∩ {Cn,l > M}) + lim
n→∞

P (An ∩ {Cn,l ≤M})

< lim
n→∞

P (Cn,l > M) + lim
n→∞

P (An ∩ {Cn,l ≤M})

< ε+ lim
n→∞

P (An ∩ {Cn,l ≤M})

If Cn,l ≤ M , then there are at most lM vertices in cycles shorter than l. If
BGn(vn, R) contains an entire cycle, then it must contain an element of a cycle of
length at most l. The probability that a given vertex is an element of such a cycle

if Cn,l ≤M is at most Ml
n . Hence P (An ∩ {Cn,l ≤M}) ≤ Ml2

n . This tends to 0 as
n→∞. Thus, for all ε > 0,

lim
n→∞

P (An) < ε

and so P (An)→ 0 which is want. �

This in fact simply states that a sequence of random regular graphs of increasing
size will almost surely converge to a tree in the sense of Benjamini-Schramm. Thus
we may apply Theorem 4.1. Clearly, the average degree will be the constant degree
d. The tricky part is to find α. For this we use 4.4. The limiting probability of
having a tree neighbourhood is 1 for any radius so it suffices to find the expected
inverse of component size in a tree. For convenience, set k = d− 1.

Definition 5.3. Let v be a vertex in a k-ary tree whose root may have k+1 children.
Randomly select a subset of the edges of the tree by randomly and independently
including each edge with probability 1/2.

Let g(x) =
∑∞
j=1 ajx

j be the function such that for small j, aj is the probability
that the component of a vertex v has size j.

Let f be the analogous generating function in the case where v is the root and
it only has k children.
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We obtain a recurrence relation for f by adding a layer at the root. The new
root can have from 0 to k children. Each of these will have a certain number of
descendants with probabilities given by coefficients of f . Furthermore, we have
added one vertex to our tree. Thus we have

f(x) = x
(1 + f(x))k

2k

In fact the root of the tree may have as many as k + 1 children. Thus

g(x) = x
(1 + f(x))k+1

2k+1
=

1

2
(1 + f(x))f(x)

Lemma 5.4. The expected value of 1 over the size of a component in such a random
subset of a k-ary tree whose root may have up to k+1 children is 1

2

(
f(1)− k−1

2 f(1)2
)
.

When k = 2, f(1) = 1 and when k ≥ 3, f(1) is the solution to 2kp = (1 + p)k in
the interval (0, 1).

Proof. If g has power series
∑∞
j=1 ajx

j , then the expected number of components

is n
∑∞
j=1

1
j aj . Multiplying the terms by xj yields the power series for

(5.1) K(x) =

∫ x

0

g(t)

t
dt

To compute this, implicitly differentiate the recurrence relation for f and simplify
by the same relation.

f ′(x) =
(1 + f(x))k

2k
+ kxf ′(x)

(1 + f(x))k−1

2k

f ′(x) =
f(x)

x
+ kf ′(x)

f(x)

1 + f(x)

f ′(x)

(
1− k f(x)

1 + f(x)

)
=
f(x)

x

f ′(x) (1 + f(x)− kf(x)) =
(1 + f(x))f(x)

x
d

dx

(
f(x)− k − 1

2
(f(x))2

)
= 2

g(x)

x

Thus, by the fundamental theorem of calculus, and since f(0) = 0,

(5.2) K(x) =
1

2

(
f(x)− k − 1

2
(f(x))2

)
Thus the expected number of components is

1

2

(
f(1)− k − 1

2
f(1)2

)
To give us an idea, we now compute p = f(1). This is the total probability that

a random k-ary tree will have finite size. Thus it lies in the interval [0, 1]. It solves
the equation 2kp = (1 + p)k. For k = 2, the only solution is p = 1. For r ≥ 3,
there are two solutions in the interval. Now we know that all the coefficients of f
are non-negative. Thus f is increasing. Also f(0) = 0 and f is continuous. Thus,
we must have f(1) being the smaller of the two roots by the intermediate value
theorem. This incidentally means that, with positive probability, the random tree
is infinite when k ≥ 3. �
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Recall that the degree of the graph is k + 1. The generating functions f(x) and
g(x) were defined in 5.3.

Definition 5.5. We thus have α = α(k + 1) given by the formula α = K(1), where
the function K(x) was defined in 5.1 and computed in 5.2.

The values of α are given in a table below:

k p α
2 1 1

4

3
√

5− 2 5
√
5−11
2

4 ≈ 0.087378 ≈ 0.03796

We may then apply the proof of Theorem 4.1 to obtain convergence to a specific
delta function.

Corollary 5.6. Let G ∈ G(n, d). Then the coefficient measures µR defined in 4.2
converge weakly as n→∞ to the δ-measure

δ(d1, 2d2/d) = δ

(
1− α, 2(α− 1)

d
+

1

2

)
,

where α = α(d), d = k + 1 was defined in 5.5.

6. Further questions

The questions considered in this paper can be formulated for different classes of
graphs. It seems interesting to consider planar graphs; for example, every knot can
be represented using its planar projections, giving rise to 4-regular planar graphs.
However, regular planar graphs are quite different from random regular graphs; in
particular, as |E(G)| < 3|V (G)| for every non-null planar graph G d-regular planar
graphs only exist for d ≤ 5. Also, random 3-regular planar graphs are typically not
3-connected. The probability that a random 3-regular planar graph is 3-connected
is exponentially small in the number of vertices; we refer to [Kan, Thm 6.4.1] for
precise asymptotics of that probability. Similar results hold for d > 3. Accordingly,
Theorem 2.3 does not apply for random planar regular graphs. Also, the number
of spanning trees in random regular planar graphs grows slower [JR, Ly] than in
general regular graphs [McK]. It would be interesting to study the limiting shapes
of the Newton polygons, and the limiting distribution of the coefficient measures
for random planar regular graphs (and more generally for random planar graphs of
bounded degree).

It seems interesting and challenging to extend our results to the Tutte polyno-
mial. (The Tutte polynomial of graph G can be defined from the rank polynomial
by

TG(x, y) = (x− 1)−n+1RG(x− 1, y − 1).

It also seems very interesting to explore in more detail the restrictions of the 2-
variable polynomials considered in this paper to some specific curves; and to study
the distribution of the corresponding zeros, e.g. of the chromatic polynomials, or
of Alexander polynomial of a random knot, considered in [Riv16]. We remark that
the expected value of TG for subgraphs obtained by randomly deleting edges from
G were considered in [Wel, Thm 6.3].

It seems interesting to study the limiting distribution of zeros of RG (or, equiv-
alently, TG), considered as subsets of R2 and C2.
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