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LECTURE 5
Drawing Pfaffian graphs with crossings

5.1. Outline of Lecture

• Drawings in the plane with crossings.
• Cross-cap-odd embeddings in the Klein bottle.
• k-Pfaffian graphs.
• Pfaffian braces.

5.2. Drawing Pfaffian graphs with crossings

In this section we extend Kasteleyn’s theorem (Theorem 2 in Lecture
4) to graphs drawn in the plane with crossings.

By a drawing Γ of a graph G we mean an immersion of G in the
plane such that edges are represented by homeomorphic images of [0, 1],
not containing vertices in their interiors. Edges are permitted to inter-
sect, but there are only finitely many intersections and each intersection
is a crossing. For edges e, f of a graph G drawn in the plane let cr(e, f)
denote the number of times the edges e and f cross. For a set J ⊆ E(G)
let cr(J,Γ), or cr(J) if the drawing is understood from context, denote∑
cr(e, f), where the sum is taken over all unordered pairs of distinct

edges e, f ∈ J .

Theorem 1. A graph G is Pfaffian if and only if there exists a drawing
of G in the plane such that cr(M) is even for every perfect matching
M of G.
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Figure 1. Changing the drawing.

We will derive Theorem 1 from a more general result. To state it
we need a definition. Let Γ be a drawing of a graph G in the plane.
We say that S ⊆ E(G) is a marking of Γ if cr(M) and |M ∩ S| have
the same parity for every perfect matching M of G.

Theorem 2. For a graph G the following are equivalent:
(a) G is Pfaffian;
(b) some drawing of G in the plane has a marking;
(c) every drawing of G in the plane has a marking;
(d) there exists a drawing of G in the plane such that cr(M) is even
for every perfect matching M of G.

We say that Γ is a standard drawing of a labeled graph G if the
vertices of Γ are arranged on a circle in order and every edge of Γ is
drawn as a straight line.

Theorem 2 immediately follows from the next two lemmas.

Lemma 1. There exists a one-to-one correspondence between Pfaffian
orientations of a labeled graph G and markings of its standard drawing
Γ.

Proof. Let D be an orientation of G. Let M = {u1v1, u2v2, . . . , ukvk}
be a perfect matching of D. The sign of M is the sign of the permuta-
tion

P =

(
1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)
.
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Let i(P ) denote the number of inversions in P . We have

sgnD(M) = sgn(P ) = (−1)i(P ) =
∏

1≤i<j≤2k

sgn(P (j)− P (i)) =

=
∏

1≤i<j≤k

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi))×

×
∏

1≤i≤k

sgn(vi − ui).(1)

In Γ edges uivi and ujvj cross if and only if, in the circle containing
the vertices of Γ, each of the two arcs with ends ui and vi contains one
of the vertices uj and vj, in other words if and only if

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi)) = −1.

Define SD = {uv ∈ E(D)|u > v}. From (1) we deduce that

sgn(M) = (−1)cr(M) × (−1)|M∩SD|.

Therefore M has a positive sign if and only if cr(M) and |M ∩SD| have
the same parity. It follows that D is a Pfaffian orientation of G if and
only if SD is a marking of the standard drawing of G. �

Lemma 2. Let Γ1 and Γ2 be two drawings of a labeled graph G in
the plane. Then Γ1 has a marking if and only if Γ2 has one. If some
drawing of a labeled graph G in the plane has a marking then there
exists another drawing of G in the plane that has an empty set as a
marking.

Proof. We may assume without loss of generality that the vertices of G
are represented by the same points in the plane in both Γ1 and Γ2. We
transform the drawing Γ1 into the drawing Γ2 by smoothly changing
the images of edges, one edge at a time. We consider changes in the
number of crossings between edges. One can classify events that cause
these changes into three types (see Figure 1). We show that none of
these events affects the existence of a marking.

In the event of type (a) and (b) the parity of the number of crossings
between any two non-adjacent edges remains unchanged. In the event
of type (c) the image of an edge e passes through an image of a vertex v,
such that e is not incident to v. The number of crossings in any perfect
matching containing e changes by one. Therefore one can replace a
marking S of a drawing prior to this event by a marking S4{e} of a
drawing after the event.

The argument above also shows how to obtain a drawing with an
empty set as a marking from a drawing with an arbitrary marking. One
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Figure 2. Dense Pfaffian brick

has to transform every edge belonging to the marking so that this edge
passes through a single vertex in the course of transformation. �

Exercise 1. a) Show that if G = K3,3 or G = K5 then∑
{e,f}⊂E(G)

e 6∼f

cr(e, f)

is odd for every drawing of G in the plane, using methods similar to
those employed in the proof of Lemma 2. (The summation above is
over all pairs of independent edges of G, i.e. over all pairs of edges
which do not share an end.)

b) Use the result of part a) and Kuratowski’s theorem (every non-
planar graph contains a subdivision of K3,3 or K5) to derive the follow-
ing theorem of Hanani and Tutte:

If a graph G can be drawn in the plane so that every pair of inde-
pendent edges intersects even number of times then G can be drawn in
the plane without crossings.

Exercise 2. For an integer n ≥ 3 the graph Hn is defined as fol-
lows. Let V (Hn) = {a1, a2, . . . an, b1,b2,. . . , bn−2}. Let the vertices
a1, a2, . . . , an form a clique and let bi be joined by an edge to a1, ai+1

and ai+2 for every 1 ≤ i ≤ n− 2 (see Figure 5.2).
a) Show that Hn is a brick. b) Show that Hn is Pfaffian.
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5.3. Cross-cap-odd embeddings in the Klein bottle

In this section we use Theorem 1 to extend Kasteleyn’s theorem to cer-
tain graphs embedded in the Klein bottle. Let G be a graph embedded
on a surface S, which is obtained from a sphere by replacing k disjoint
disks with Möbius strips. If k = 1 then S is the projective plane, and
if k = 2 then S is the Klein bottle. We say that a cycle C in G is
separating if cutting S along C separates the surface, and we say that
C is non-separating otherwise. Finally, we say that an embedding of
G in S is cross-cap-odd if a non-separating cycle C in G is odd if and
only if cutting S along C produces a surface with connected boundary.

Theorem 3. Every graph that admits a cross-cap-odd embedding in
the Klein bottle is Pfaffian.

Proof. Let G be a graph and let Γ be a cross-cap-odd embedding of
G in the Klein bottle. Without loss of generality, we assume that G
is matching-covered and connected, and as such it is 2-connected. If
G does not contain a non-separating cycle then G is planar, and hence
Pfaffian by Kasteleyn’s theorem. Therefore we assume that G contains
a non-separating cycle.

We claim that every separating cycle is even. We prove the claim
by induction on |E(G)|. If G contains a vertex of degree two then
the claim follows from induction hypothesis by considering the graph
obtained from G by contracting one of the edges incident to such a
vertex.

Therefore we assume that G has minimum degree three and fix
a non-separating cycle C in G. By a standard “ear decomposition”
argument, there exists e = uv ∈ E(G) − E(C) such that G \ e is
2-connected. We start by proving that there exists a non-separating
cycle containing e in G. Let P1 and P2 be two vertex disjoint (possibly
trivial) paths with ends u and u′, and v and v′ respectively, such that
u′, v′ ∈ V (C), and P1 and P2 are otherwise disjoint from C. The
vertices u′ and v′ separate C into two paths Q1 and Q2. One of the
cycles P1 ∪ {e} ∪ P2 ∪Q1 and P1 ∪ {e} ∪ P2 ∪Q2 is non-separating.

Suppose now that there exists an odd separating cycle in G. By
induction hypothesis applied to G \ e every such cycle contains e. We
choose a separating cycle C ′ and a non-separating cycle C ′′, such that
C ′ is odd, e ∈ E(C ′)∩E(C ′′) and subject to that E(C ′)∪E(C ′′) is min-
imal. If C ′ \C ′′ is a path then the cycle D with edge set E(C ′)4E(C ′′)
is non-separating and of the same homotopy type as C ′′. Therefore
|E(D)| and |E(C ′′)| have the same parity, in contradiction with the
parity of C ′. If C ′ \ C ′′ is not a path then let P be a subpath of C ′′
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with both ends in C ′ and otherwise disjoint from C ′. Let P ′ be a sub-
path of C ′ with the same ends as P , such that e ∈ P ′. By the choice
of C and C ′ the cycle D′ = P ∪ P ′ is non-separating and even. But
then the cycle D′4C ′ is non-separating, odd and does not contain e,
in contradiction with induction hypothesis. This finishes the proof of
the claim.

Consider now the standard representation of the Klein bottle as a
disk bounded by quadrilateral ABCD with pairs of the quadrilateral’s
opposite sides identified as follows: AB with DC, and AD with CB.
By bisubdividing edges of G if necessary we assume that every edge
in E(G) crosses the boundary of the quadrilateral at most once. Let
E2, E3 ⊆ E(G) be the sets of all edges of G that cross AB and AD,
respectively, and let E1 = E(G)−E2−E3. Note that (V (G), E1 ∪E2)
is bipartite with bipartition (X, Y ), and every edge of E3 joins two
vertices of X or two vertices of Y . We may extend Γ to a drawing Γ′

of G in the plane such that for e, f ∈ E(G) we have cr(e, f) = 1 if and
only if e 6= f , |{e, f} ∩ E3| ≥ 1 and |{e, f} ∩ E1| = 0, and we have
cr(e, f) = 0, otherwise.

Let k = (|X| − |Y |)/2. Let E ′, E ′′ be the sets of all edges in E3

joining two vertices of X and two vertices of Y , respectively. For a
perfect matching M of G denote |M ∩E ′| by nM . We have |M ∩E ′′| =
nM − k and |M ∩ E3| = 2nM − k. Note that

crΓ′(M) =
(2nM + k)(2nM + k − 1)

2
+ (2nM + k)|M ∩ E2|.

We construct a Pfaffian marking S of Γ′. If k is even then crΓ′(M) =
nM +k/2 modulo 2 and therefore S = E ′ is a Pfaffian marking of Γ′ if k
is divisible by four and S = E ′4δ(v) is a Pfaffian marking of Γ′ for every
v ∈ V (G) otherwise. If k is odd then crΓ′(M) = nM+(k−1)/2+|M∩E2|
modulo 2 and S = E ′∪E2 is a Pfaffian marking of Γ′ if k = 1 modulo 4
and S = (E ′∪E2)4δ(v) is a Pfaffian marking of Γ′ for every v ∈ V (G)
otherwise.

It follows from Theorem 1 that G is Pfaffian. �

Note that Theorem 3 can not be extended to graphs that admit
a cross-cap-odd embedding on surfaces of higher genus, as K3,3 ad-
mits a cross-cap-odd embedding on a surface of Euler characteristic
−1 (see Figure 5.3). Note also that non-bipartite graphs that admit
an embedding in the projective plane with all faces even also admit a
cross-cap-odd embedding in the Klein bottle and are therefore Pfaffian.

The class of graph described in Theorem 3 to the best of our knowl-
edge represents the largest topologically defined class of Pfaffian graphs.
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Figure 3. An cross-cap-odd embedding of K3,3 on a surface with
three “crosscaps”.

It is tempting to conjecture that every Pfaffian graph can be decom-
posed in some way into graphs in this class. An example in Exercise 2
shows that such a decomposition, if it exists, must be “finer” than the
tight cut decomposition. A structural decomposition of Pfaffian bi-
partite graphs into planar pieces is known and is described in a later
section.

5.4. k-Pfaffian graphs.

A graph G is k-Pfaffian if there exist orientations D1, D2, . . . , Dk of
G and real numbers α1, α2, . . . , αk such that

∑k
i=1 αisgnDi

(M) = 1
for every perfect matching M of G. Thus if k is fixed and the the
orientations and coefficients as above are given, then the number of
perfect matchings of G can be calculated efficiently. The following was
noted by Kasteleyn and proved by Galluccio and Loebland Tesler.

Theorem 4. Every graph that has an embedding in the orientable sur-
face of genus g is 4g-Pfaffian.

Exercise 3. Use methods similar to those employed in the proof of
Theorem 3 to prove Theorem 4 for g = 1.

Does there exist a geometric characterization of k-Pfaffian graphs,
similar to the characterization of Pfaffian graphs offered in Theorem 1?
In particular, is every k-Pfaffian graph 4g-Pfaffian for some integer g
with 4g ≤ k. The answer to the second question turns out to be
negative in general, but positive for very small values of k. To prove
the corresponding result we need an auxiliary lemma.
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Lemma 3. Let G be a labeled graph, let k be an odd integer and let
D1, D2, . . . , Dk be orientations of G. Then there exists an orientation
D of G such that for every perfect matching M of G we have

sgnD(M) = sgnD1
(M) sgnD2

(M) . . . sgnDk
(M).

Proof. Define the orientation D of G as follows. For every edge uv ∈
E(G), let uv ∈ E(D) if |{i | 1 ≤ i ≤ k, uv ∈ Di}| is odd and let
vu ∈ E(D) otherwise. Denote by Si the set of edges on which D differs
from Di. We have

sgnDi
(M) = (−1)|M∩Si| sgnD(M).

It follows that

sgnD1
(M) sgnD2

(M) . . . sgnDk
(M) = (−1)|M∩S1|+|M∩S2|+...+|M∩Sk| sgnD(M).

It remains to note that by definition of D

|E ∩ S1|+ |E ∩ S2|+ . . .+ |E ∩ Sk|
is even for every E ⊆ E(G). �

Theorem 5. Every 3-Pfaffian graph is Pfaffian.

Exercise 4. Prove Theorem 5 using Lemma 3 and the following ob-
servation.

Suppose that D1, D2 and D3 are orientations of the graph G so that

α1 sgnD1
(M) + α2 sgnD2

(M) + α3 sgnD3
(M) = 1

for all M ∈M(G) and α1, α2, α3 6= 0. Then for all matchings M1,M2 ∈
M(G) either sgnDi

(M1) = sgnDi
(M2) for i = 1, 2, 3, or the signs of M1

and M2 differ in exactly two of these orientations.

Miranda and Lucchesi exhibited an example of a 6-Pfaffian graph
which is not 5-Pfaffian. They stated the following problem.

Problem 1. Is it true that for every even k ≥ 4 there exist k-Pfaffian
graphs, which are not (k−1)-Pfaffian? Do there exist k-Pfaffian graphs,
which are not (k − 1)-Pfaffian for any odd k > 1?

5.5. Pfaffian braces.

In this section we give (without proof) a characterization of Pfaffian
braces due to Robertson, Seymour and Thomas and, independently,
to McCuaig. We also describe two problems closely connected to the
problem of characterizing bipartite Pfaffian graphs.

We start with the characterization. Let G0 be a graph, let C be a
central cycle of G0 of length four, and let G1, G2, G3 be three subgraphs
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Figure 4. The Heawood graph

of G0 such that G1 ∪ G2 ∪ G3 = G0, and for distinct integers i, j ∈
{1, 2, 3}, Gi ∩ Gj = C and V (Gi) − V (C) 6= ∅. Let G be obtained
from G0 by deleting some (possibly none) of the edges of C. In these
circumstances we say thatG is a trisum ofG1, G2 andG3. The Heawood
graph is the bipartite graph associated with the incidence matrix of the
Fano plane (see Figure 4).

Theorem 6. A brace has a Pfaffian orientation if and only if either it
is isomorphic to the Heawood graph, or it can be obtained from planar
braces by repeated application of the trisum operation.

Theorem 6 allows for a polynomial time algorithm for recogniz-
ing Pfaffian bipartite graphs. No such algorithm is known for general
graphs. There exist various obstructions to obtaining an exact ana-
logue of Theorem 6. In particular, the brick described in Exercise 2
has 2n− 2 vertices, (n2 + 5n− 12)/2 edges and has Kn as a subgraph.
Meanwhile, the following exercise implies that every Pfaffian brace is
sparse.

Exercise 5. Derive from Theorem 6 that every Pfaffian brace on n
vertices has at most 2n− 4 edges and has no K2,3 as a subgraph.

A directed graph D is even if for every weight function w : E(D)→
{0, 1} there there exists a cycle in D of even total weight. It is known
that and is not difficult to see that testing evenness of a digraph is
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polynomial-time equivalent to testing whether a digraph has an even
directed cycle. Let G be a bipartite graph with bipartition (A,B), and
let Mbe a perfect matching in G. The digraph D(G,M) is obtained
from G by directing every edge from A to B, and contracting every edge
of M . The following connection between even digraphs and Pfaffian
orientations is due to Little.

Exercise 6. Let G be a bipartite graph, and let M be a perfect match-
ing in G. Then G has a Pfaffian orientation if and only if D(G,M) is
not even.

The final problem connected to Pfaffian orientations of bipartite
graphs which we describe concerns hypergraph coloring. A hypergraph
H is a pair (V (H), E(H)), where V (H) is a finite set and E(H) is a
collection of distinct nonempty subsets of V (H). The hypergraph H is
2-colorable if V (H) can be colored using two colors so that no edge is
monochromatic. A hypergraph H with no isolated vertices is minimally
non-2-colorable if H is not 2-colorable and H−e is 2-colorable for every
e ∈ E(H). The next theorem is due to Seymour.

Theorem 7. Let Hbe a hypergraph with no isolated vertices and |E(H)| =
|V (H)|, let D be the digraph with bipartition (V (H), E(H)) so that D
has an edge directed from v ∈ V (H) to E ∈ E(H) if and only if v is
contained in e and let G be the underlying undirected graph of D. Then
H is minimally non-2-colorable if and only if G is matching-covered and
D is a Pfaffian orientation of G.


