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4.1. Outline of Lecture

e Determinants and perfect matchings.
e Pfaffian orientations.

4.2. Determinants and perfect matchings.

In this lecture we examine the possibility of solving the perfect match-
ing problem and evaluating m(G) efficiently using linear algebra, specif-
ically by evaluating determinants. The material presented in the first
section is due to Jim Geelen.

Let G be a bipartite graph with bipartition (R, C') and let
(ze | e € E(G)) be algebraically independent variables. We define a
variant of the biadjacency matrix introduced in Section 1.2, an
R x C-matrix B = (b;;), where b, = 2 if e = uv, and b,, = 0, other-
wise. We call B the bipartite matching matriz of G. For example, let
G be obtained from the complete bipartite graph K33 with bipartition
(R,C), where R = {a,b,c} and C' = {1,2,3}, by deleting the edge cl.
Then the bipartite matching matrix of G is

Zal a2 <a3
(1) B=1 2 22 23 |,
0 Ze2  Ze3
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1

Figure 1. A Pfaffian orientation of Kj.

and

det B = 241202263 — Za1263%c2 — Za22b1%¢3 + Za3%p1%c2.
More generally, if B is the bipartite matching matrix of a balanced
bipartite graph G then

det B = Z sgn(M) H Ze,

MeM(G) ecM

where sgn(M) is the sign of the permutation associated with M. In
particular, det M # 0 if and only if G has a perfect matching.

For general graphs there also exists a relation between determinants
and perfect matchings. Let GG be a simple graph, let D be some ori-
entation of its edges, and let (z. | e € D) be once again a collection of
algebraically independent variables. A V(G) x V(G) skew-symmetric
matrix 7' = (t,,), called the Tutte matriz of D and introduced by Tutte
in 1947 is defined as follows: t,, = z. and t,, = —z. if e = uv € D, and
2w = 0 if wv € E(G). For example, if G = Ky with V(G) = {1,2,3,4}
and D is the orientation shown on Figure 1, then

0 212 213 214
—z 0 z —z
(2) T _ 12 23 42
—z13 —z3 0 234
—214 242 —za 0

One can check that
det T = (25122!34 + 213242 + 214223)2-

In general, let G be a graph on 2n vertices with V(G) = {1,2,...,2n},
let D be an orientation of G and let M = {ujvy, ugvs, ..., u,v,} be a
perfect matching of G with w;v; € D for 1 < i < n. Define sgn, (M),
the sign of M, to be the sign of the permutation
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1 2 3 4 ... 2n—1 2n
Uy U1 Uy Vo ... U, Up )
Note that the sign of a perfect matching is well-defined as it does not

depend on the order in which the edges of M are listed. The Pfaffian
of the Tutte matrix of D is defined as

(3) PH(T) = Z sgnp, (M) H Ze.

MeM(G) eeM
Exercise 1. Show that det T = (Pf(T)).

It follows from Exercise 1 that G has a perfect matching if and only
if T' is nonsingular.

Can we develop an efficient algorithm for the perfect matching prob-
lem based on the observations above? One can not efficiently perform
operations on a matrix with indeterminate entries. Instead, we at-
tempt replacing the indeterminates (z.) by particular values. However,
the resulting evaluation of the matrix can become singular. For ex-
ample, if we replace all the variables by 1 then the matrix B in (1)
becomes singular. On the other hand, for the matrix 7" in (2), we have
Pf(T) = m(K,). Fortunately, it follows from the following theorem
of Zippel and Schwarz that if G has a perfect matching then a ran-
dom evaluation of its bipartite matching matrix (or its Tutte matrix)
is non-zero with high probability.

Theorem 1. Let p(z1,...,2x) be a non-zero polynomial of degree at
most d, and let S be a finite subset of R. If Z1,25,...,2, are chosen
from S uniformly and independently at random then p(Zq,..., %) # 0

with probability at least 1 — %.

Exercise 2. Prove Theorem 1 by induction on the number of variables.

The following corollary immediately follow from Theorem 1 and
the discussion above. It provides an efficient randomized algorithm for
solving the perfect matching problem.

Corollary 1. Let T be the Tutte matriz corresponding to some ori-
entation of a graph G with a perfect matching. If T is an evaluation
of T with entries chosen uniformly and independently at random from
{1,...,[V(G)|} then T is non-singular with probability at least 3.

Note that if G is bipartite then one can replace the Tutte matrix
in Corollary 1 by the bipartite matching matrix.
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4.3. Pfaffian orientations

By (3) and Exercise 1 we can compute m(G) efficiently if we can find
an orientation D of G such that the signs of all perfect matchings in D
are the same. Such an orientation is called Pfaffian. A graph is called
Pfaffian if it admits a Pfaffian orientation.

Let C' be an even cycle in G. We say that C' is evenly oriented in
D if traversing C' we encounter an even number of edges of D oriented
in the direction of the traversal, and oddly oriented otherwise.

Lemma 1. Let My and M, be perfect matchings in a graph G such that
My AM,y consists of a single even cycle C. Let D be an orientation of
G. Then sgnp (M) = sgnp(Ms) if and only if C' is oddly oriented in
D.

Proof. Note that exchanging the numbers of two vertices of G changes
the sign of all perfect matchings. Therefore we may assume that the
vertices of C' are {1,2,...,2k} in order, for some integer k. Further
note that reversing orientation of an edge in C' changes C' from oddly
to evenly oriented and vice versa. This reversal also changes the sign
of exactly one of M; and Ms. It follows that we may also assume that
C is directed. The lemma now follows from the direct computation: C'
is evenly oriented and sgnp, (M) # sgnp(Ms), as

1 234 ... 2%—1 2
0\ 9k 1 2 3 ... 2%—2 2%—1
L 1 234 ... 2%—1 2k
{1 92 34 . 2%—1 2 )

U

A cycle C'is said to be M -alternating for a matching M if the edges
in C alternate between edges of M and E(G) — M.

Corollary 2. For an orientation D of a graph G the following are
equivalent.

(a) D is Pfaffian,

(b) every central cycle of G is oddly oriented in D,

(c) every M-alternating cycle of G is oddly oriented in D for some
M e M(G).

Exercise 3. Derive Corollary 2 from Lemma 1.

We are now ready to prove the classical theorem of Kasteleyn, which
exhibits a wide and natural class of Pfaffian graphs.

Theorem 2. FEvery planar graph is Pfaffian.
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Proof. Let G be a planar graph. Fix a drawing of G in the plane.
Given an orientation D of GG, we say that a cycle C' in G is clockwise
even if traversing C' clockwise we encounter an even number of edges
of D oriented in the direction of the traversal, and we say that C is
clockwise odd otherwise. Note that unlike the notion of evenly/oddly
oriented cycles introduced earlier this new notion is well-defined for
odd cycles.

Let D be an orientation of GG so that every face of GG, except possibly
for the infinite face, is oddly oriented in D. The existence of such an
orientation can be derived by induction on |E(G)|. For the induction
step, we apply induction hypothesis to the graph G — e for some edge e
incident to the infinite face of G, and then orient e so that the unique
non-infinite face of G incident to e is oddly oriented.

Let C be a cycle in G. We claim that C is oddly oriented in D
if and only if the region bounded by C' in the plane contains an even
number of vertices of GG in its strict interior. Note that the theorem
follows from this claim by Corollary 2, as every region bounded by a
central cycle must contain even number of vertices in its interior.

We verify the claim by induction on the number of edges of GG in the
interior of the region bounded by C'. The base case holds by the choice
of D. For the induction step, we partition the region bounded by C' into
two smaller regions bounded by cycles €y and C respectively. Suppose
that the region bounded by C; contains r; vertices in its interior, for
1 = 1,2, and that C; and (5 share k vertices. Applying the induction
hypothesis, one can routinely verify that traversing C' in the clockwise
direction one encounters (r141)+(ro+1) —(k+1) edges in the direction
of traversal modulo 2. As the region bounded by C' contains r; + 79
vertices in its interior, this finishes the proof of the claim. U

Exercise 4. Show that a matching-covered graph G is Pfaffian if and
only if every brick and brace in the tight cut decomposition of G is
Pfaffian.

Exercise 5. Show that K33 is not Pfaffian.



