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LECTURE 1
Fundamental definitions and theorems.

1.1. Outline of Lecture

• Definitions
• Hall’s theorem
• Tutte’s Matching theorem

1.2. Basic definitions.

A matching in a graph G is a set of edges M such that no two edges
share a common end. A vertex v is said to be saturated or matched
by a matching M if v is an end of an edge in M . Otherwise, v is
unsaturated or unmatched. The matching number ν(G) of G is the
maximum number of edges in a matching in G.

A matching M is perfect if every vertex of G is saturated. We
will be primarily interested in perfect matchings. We will denote by
M(G) the set of all perfect matchings of a graph G and by m(G) :=
|M(G)| the number of perfect matchings. The main goal of this course
is to demonstrate classical and new results related to computing or
estimating the quantity m(G).

Example 1. The graph K4 is the complete graph on 4 vertices. Let
V (K4) = {1, 2, 3, 4}. Then {12, 34}, {13, 24}, {14, 23} are all perfect
matchings of K4, i.e. all the elements of the set M(G). We have
|m(G)| = 3. Every edge of K4 belongs to exactly one perfect matching.
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Figure 1. A graph with no perfect matching.

Computation of m(G) is of interest for the following reasons. If G
is a graph representing connections between the atoms in a molecule,
then m(G) encodes some stability and thermodynamic properties of
the molecule.

Let G be a bipartite graph with bipartition (R,C). If R = {r1, r2,
. . . , rn}, C = {c1, c2, . . . , cn} then the biadjacency matrix B = (bij)

n
i,j=1

of the graph G is the (0, 1)-matrix defined by bij = 1 if ricj ∈ E(G),
and bij = 0, otherwise. The number of perfect matchings is equal to
the permanent of the biadjacency matrix:

m(G) = perm(B) :=
∑
σ∈Sn

n∏
i=1

biσ(i).

Valiant has shown that computing the permanent is a ]P -complete
problem, even for (0, 1)-matrices, and so can not be done efficiently in
general. It can however be computed in polynomial time for certain
classes of graphs, e.g. for planar graphs. We will see this later.

The perfect matching problem is the problem of determining whether
a graph has a perfect matching. This will be the first problem we ex-
amine. Clearly if |V (G)| is odd then G has no perfect matching. A
graph, containing two vertices of degree one sharing a neighbor does
not have a perfect matching, and neither does a graph on Figure 1.

Given a matching M an M-alternating path (or cycle) in a graph G
is a path(or cycle) which contains alternately edges from M and E(G)−
M . An M -alternating path is M-augmenting if it starts and ends with
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a vertex unsaturated in M . Alternating paths cycles and augmenting
paths are considered in proofs of many theorems in matching theory.

Exercise 1. A matching M in a graph G is maximum (|M | = ν(G))
if and only if G contains no M -augmenting path.

1.3. Perfect matchings in bipartite graphs. Hall’s
theorem

Let G be a bipartite graph with bipartition (A,B). Let N(S) denote
the neighborhood of S, the set of vertices adjacent to vertices in S. Note
that every perfect matching “chooses” a neighbor in B for every vertex
in A. If G has a perfect matching then |N(S)| ≥ |S| for every S ⊆ A
or S ⊆ B. The converse also holds:

Theorem 1 (Hall’s theorem). A bipartite graph G with biparitition
(A,B) contains a matching saturating A if and only if

(1) |N(S)| ≥ |S|
for every S ⊆ A.

First proof. By induction on |A|. If |A| = 1 then the theorem clearly
holds. For the induction step, we first notice that if |N(S)| > |S| for
every non-empty S ⊂ A, S 6= A then we can choose any v ∈ A match
it to any neighbor u ∈ B and then match vertices in G \ {u, v} by the
induction hypothesis. Therefore we suppose that for some S ( A we
have |N(S)| = |S|. Let G1 = G[S∪N(S)] and let G2 = G\(S∪N(S)).
(We use G[X] to denote the restriction of G to the vertex set X.)
We claim that G1 and G2 satisfy the conditions of the theorem and
therefore contain matching saturating S and A− S, respectively. The
claim trivially holds for G1. Consider now S ′ ⊆ V (G2) ∩ A and let
S ′′ = S ′ ∪ S. Then

|N(S ′)| ≥ |N(S ′′)| − |N(S)| ≥ |S ′′| − |N(S)| = |S ′′| − |S| ≥ |S ′|,
and the claim holds for G2. �

Second proof. The next proof we give has an advantage of provid-
ing an algorithm for testing whether a bipartite graph has a perfect
matching or not. Let M be a matching in G. If M is not perfect we
will either construct an M -augmenting path or find a set S violating
the Hall’s condition (1). By the easy implication of Exercise 1 this
would prove the theorem. Let a0 ∈ A be a vertex unmatched by M .
Choose a neighbor b1 of a0 in B. If b1 is unmatched then a0b1 is an
augmenting path, consisting of one edge. Otherwise, we choose a1 so
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that a1b1 ∈ M. Note that there exists an M -alternating path starting
at a0 and ending in a1.

We repeat the construction procedure, as follows. Suppose a1, a2,
. . . , ak, b1, . . . , bk have been constructed, so that each ai is an end
of an M -alternating path starting in a0. Let S = {a0, a1, . . . , ak}.
Either S violates the Hall’s condition or there exists bk+1 ∈ N(S) −
{b1, b2, . . . , bk}. If bk+1 is unmatched we have an augmenting path and,
otherwise, we select ak+1 with ak+1bk+1 ∈M.

As claimed, our process of numbering the vertices terminates either
with an M -augmenting path or a set violating the Hall’s condition. �

Exercise 2. A graph is called k-regular if every vertex in it has degree
k.

a) Show that every k-regular bipartite graph has a perfect match-
ing.

b) Deduce that the edges of any k-regular bipartite graph can be
colored in k colors so that every vertex is incident with an edge of every
color.

A vertex cover in a graph G is a set C such that every edge has an
end in C. A concept of the vertex cover is dual to that of a matching.
If M is a matching and C a vertex cover then |M | ≤ |C|. Therefore if
|M | = |C| then M is the maximum matching and C is the minimum
vertex cover. Let τ(G) denote the size of the minimum vertex cover in
G.

Theorem 2 (König’s theorem). If G is bipartite then τ(G) = ν(G).

Note that an analogue of König’s theorem does not hold for non-
bipartite graphs. A cycle C2k+1 on 2k + 1 vertices has ν(C2k+1) = k
and τ(C2k+1) = k + 1.

Exercise 3. a) Derive König’s theorem from Hall’s theorem. b) Show
that τ(G) ≤ 2ν(G) for every graph G.

One can determine ν(G) in polynomial time. By Exercise 3 ν(G)
approximates τ(G) within a factor of 2. The problem of approximating
τ(G) within a multiplicative factor less than 2 in polynomial time is
open.

1.4. Perfect matchings in general graphs

In a graph G let co(G) denote the number of odd components of G.
Note that ν(G) ≤ (|V (G)|−co(G))/2. Also, if G has a perfect matching
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Figure 2. The construction in the proof of Theorem 3.

then co(G − X) ≤ |X| for every X ⊆ V (G). The pair of encircled
vertices on Figure 1 violates this condition. This necessary condition
is also sufficient:

Theorem 3 (Tutte’s Matching theorem). A graph G has a perfect
matching if and only if

(2) co(G−X) ≤ |X|
for every X ⊆ V (G).

Proof. We assume that G is edge-maximal graph without a perfect
matching. It suffices to prove the theorem for such graphs: If G′ is
a spanning subgraph of G and X ⊆ V (G) violates (2) in G, then X
violates (2) in G′.

Suppose we are able to find vertices a, b, c and d in G so that ab, cd 6∈
E(G), and bc, bd ∈ E(G). (See Figure 2.) Consider a perfect matching
M1 of G + ab and a perfect matching M2 of G + cd. Consider the
component of G[M1 ∪M2] containing a. It is a path, which we will
denote by P , with one end a and another end in {b, c, d}. If b is an end
of P then P is M2-augmenting and M24E(P ) is a perfect matching in
G, contradicting the choice of G. Otherwise, without loss of generality,
c is an end of P and P+cb is M2-augmenting path, once again providing
a contradiction.

Therefore no choice of vertices a, b, c and d as above is possible. Let
X be the set of those vertices in G which are adjacent to every other
vertex. Then every component of G−X is complete. Indeed otherwise,
we will be able to find an induced path cdb in one of the components and
a non-neighbor a of b. We can match the vertices in even components
among themselves, and all but one vertices in the odd components,
matching the remaining vertices to X, unless co(G − X) > |X|, as
desired. �
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Exercise 4. Given a positive integer n determine minimum δ = δ(n),
such that every graph G on 2n vertices with minimum degree δ has a
perfect matching.

Exercise 5. Show that for every bridgeless cubic graph G and every
e ∈ E(G) there exists a perfect matching in G containing e. (A bridge
in a graph is an edge whose deletion disconnects it. A graph is bridgeless
if it contains no bridges.)

Exercise 6. (Tutte-Berge formula) The deficiency def(G) of a graph
G is defined as the minimum number of vertices avoided by a matching.
Clearly def(G) = |V (G)| − 2ν(G). Show that

def(G) = max
X⊆V (G)

(co(G−X)− |X|).


