MATH 550: Combinatorics. Winter 2018. Final exam. Due electronically at snorine@gmail.com by 5PM on Sunday, April 29th.

1. Sperner families. Let $k \ge 1$ be fixed, and let $\mathcal{F} \subseteq \mathcal{P}([n])$ be a Sperner family containing at least one set of size at most k, at least one set of size at least n - k, and no sets whose size is strictly between k and n - k.

- a) Show that there exists a constant c_k such that $|\mathcal{F}| \leq c_k n^{k-1}$.
- b) What is the maximum of |F| for k = 2?

2. Ramsey theorem & subgraph densities.

For a pair of positive integers $n \ge t$, let d(n,t) denote the minimum number of monochromatic copies of K_t among all edge colorings of K_n in two colors.

a) Show that $d(t) := \lim_{n \to \infty} \frac{d(n,t)}{\binom{n}{t}}$ exists for every t and is positive.

- **b)** Show that $d(t) \leq 2^{1-\binom{t}{2}}$ for every $t \geq 2$.
- c) Show that d(3) = 1/4.
- **d)** Show that $d(4) \ge 2^{-11}$.

3. Convexity & Ramsey theory.

Show that for all positive integers n, d there exists a positive integer N = N(n, d) such that in every set of N points $P \subseteq \mathbb{R}^d$ in general position one can find a subset of size n in convex position. (A set of P is in general position in \mathbb{R}^d if no set of d+1 points in P is affinely dependent. A set X is in convex position if no point of X lies in the convex hull of the remaining points.)

4. Convexity.

Let $K \subseteq \mathbb{R}^d$ be a convex set, and let $C_1, C_2, \ldots, C_n \subseteq \mathbb{R}^d$ for some $n \ge d+1$ be convex sets such that intersection of any d+1 of them contains a translated copy of K. Show that $\bigcap_{i=1}^n C_i$ also contains a translated copy of K.

5. Szemeredi-Trotter theorem.

Let P be a collection of n points in \mathbb{R}^2 , and let $k \leq \sqrt{n}$ be an integer. Let S be the set of pairs $\{p,q\} \subseteq P$, such that the number of points of P on the line joining p and q is between k and 2k. Prove that

$$|S| \le c \frac{n^2}{k},$$

for some constant c independent of n and k.

6. Combinatorial Nullstellensatz.

Let \mathcal{F} be a set system such that $|\bigcup_{F \in \mathcal{F}} F| > 2|\mathcal{F}|$. Show that there exists $\mathcal{F}' \subseteq \mathcal{F}, \mathcal{F}' \neq \emptyset$ such that for every $x \in X$ the number of elements of \mathcal{F}' containing x is divisible by 3.