MATH 550: Combinatorics. Winter 2015.

Assignment # 3: Discrete Geometry.

Due in class on Thursday, April 9th.

1. For $X \subseteq \mathbb{R}^d$ define S(X) as a set of all points which lie on segments with ends in X. Let $S_2(X) := S(S(X))$ and, more generally, $S_{k+1}(X) = S(S_k(X))$. Show that $S_{\lceil \log_2(d+1) \rceil}(X)$ is always convex.

2. Show that for all positive integers n, d there exists a positive integer N such that in every set of N points $P \subseteq \mathbb{R}^d$ in general position one can find a subset of size n in convex position. (A set of P is in *general position* in \mathbb{R}^d if no set of d + 1 points in P is affinely dependent.)

3. Matoušek. 1.3.4. A strip of width w is a part of the plane bounded by two parallel lines at distance w. The width of a set $X \subseteq \mathbb{R}^2$ is the smallest width of a strip containing X.

- (a) Show that every compact convex set of width 1 contains a segment of length 1 in every direction.
- (b) Let C_1, C_2, \ldots, C_n be closed convex sets in the plane, $n \ge 3$, such that the intersection of every 3 of them has width at least 1. Show that $\bigcap_{i=1}^n C_i$ has width at least 1.

4.

- (a) Prove that if a collection of n convex sets in ℝ² has the property that out of every 4 sets some three have a point in common then there is a point that belongs to at least n/12 sets in the collection.
- (b) Prove that for all positive integers p, d so that $p \ge d + 1$ there exists a constant c = c(d, p) > 0 so that if a family of $n \ge p$ convex sets in \mathbb{R}^d has the property that among any p sets some d + 1 have a point in common then some point belongs to at least cn sets in the family.
- (c) Prove that for every positive integer d there is a constant c = c(d) such that if a family \mathcal{F} of n convex sets in \mathbb{R}^d has the property that out of any d + 2 sets in F some d + 1 have a point in common, then \mathcal{F} can be partitioned into at most $c \log n$ intersecting sub-families.

5. Matoušek. 4.1.5 (a). Use the Szemerédi-Trotter theorem to show that n points in the plane determine at most $O(n^{7/3})$ triangles of unit area.

6. Tao-Vu. 8.2.6. (Beck's theorem.) Let $P \subseteq \mathbb{R}^2$ be finite. Show that there either exists a line incident with $\Omega(|P|)$ points in P or there exist $\Omega(|P|^2)$ lines incident with at least 2 points in P.