MATH 550: Combinatorics. Winter 2015.

Assignment \# 2: Turán- and Ramsey-type problems.

Due in class on Thursday, March 12th.

1. Let G be a graph on n vertices for some $n \geq 3$ with $|G| \geq\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$.
a) Show that G contains at least $\left\lfloor\frac{n}{2}\right\rfloor$ triangles.
b) Show that the bound in a) is tight: For every $n \geq 3$ there exists a graph G on n vertices with $|G|=\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$ containing exactly $\left\lfloor\frac{n}{2}\right\rfloor$ triangles.
2. Show that for every positive integer t there exists $\delta>0$ such that the following holds. If G is a graph not containing K_{t} on n vertices and every vertex of G belongs to at least $\left(\frac{t-2}{t-1}-\delta\right) n$ edges then G is $(t-1)$-colorable.
3. Bollobás. 8.7. Let $K_{4}^{(3)}$ denote the complete 3 -graph on 4 vertices, i.e. the 3graph isomorphic to $[4]^{(3)}$. Following de Caen (1983), we give an upper bound on $\pi\left(K_{4}^{(3)}\right)$. Let $\mathcal{F} \subseteq[n]^{(3)}$ be a hypergraph containing no $K_{4}^{(3)}$ with $|\mathcal{F}|=m$. For $x, y \in[n], x \neq y$ let

$$
A(x, y):=\{z \in[n] \mid\{x, y, z\} \in \mathcal{F}\},
$$

and let $a_{x y}:=|A(x, y)|$. Note that if $\{x, y, z\} \in \mathcal{F}$ then $A(x, y) \cap A(y, z) \cap A(z, x)=\emptyset$ and so $a_{x y}+a_{y z}+a_{z x} \leq 2 n-3$.
Summing over all edges of \mathcal{F} deduce that

$$
\sum_{\{x, y\} \in[n]^{(2)}} a_{x y}^{2} \leq(2 n-3) m .
$$

Using convexity of x^{2} show that the left hand side is at least $(3 m)^{2} /\binom{n}{2}$ and deduce that $m \leq \frac{2 n-3}{9}\binom{n}{2}$ and $\pi\left(K_{4}^{(3)}\right) \leq 2 / 3$.
4. Let G be a graph with $V(G)=[17]$ and $x, y \in V(G)$ adjacent if and only if

$$
(x-y) \bmod 17 \in\{ \pm 1, \pm 2, \pm 4, \pm 8\} .
$$

a) Show that neither G nor the complement of G contains a K_{4} subgraph.
b) Deduce that $R(4,4)=18$.
5. Hypergraph Ramsey theorem. Show that for all positive integers r, k_{1} and k_{2} there exists a positive integer $n=R^{(r)}\left(k_{1}, k_{2}\right)$ so that the following holds. If elements of $[n]^{(r)}$ are colored in colors red and blue then there is a set $Z \subseteq[n]$ such that either $|Z|=k_{1}$ and all elements of $Z^{(r)}$ are red, or $|Z|=k_{2}$ and all elements of $Z^{(r)}$ are blue.
(Hint: Use induction on r and, for given r, induction on $k_{1}+k_{2}$. Consider all hyperedges containing a given vertex and attempt to imitate the proof of Ramsey's theorem.)
6. Show that for each $\varepsilon>0$ there exists N with the following property. For each real $\alpha>0$ there exist integers q and p such that $1 \leq q \leq N$ and

$$
\left|q^{2} \alpha-p\right| \leq \varepsilon
$$

(Hint: Use van der Waerden's theorem.)

